File size: 11,741 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""
Web Scraping and Article Extraction Module

Comprehensive web scraping capabilities for:
- News articles
- Analysis pieces
- Intelligence reports
- Research papers
- Real-time news feeds

Supports multiple extraction methods for robustness.
"""

import re
import requests
from datetime import datetime
from urllib.parse import urlparse
from typing import (
    List,
    Dict,
    Any,
    Tuple,
    Optional,
    Callable,
)

# -----------------------------------------------------
#                     WEB SCRAPER
# -----------------------------------------------------

class WebScraper:
    """
    General-purpose web scraper for geopolitical content.
    Handles various website structures and content types.
    """

    def __init__(self, user_agent: Optional[str] = None):
        self.user_agent = user_agent or "GeoBotv1/1.0 (Geopolitical Analysis)"
        self.session = requests.Session()
        self.session.headers.update({"User-Agent": self.user_agent})

    def fetch_url(self, url: str, timeout: int = 30) -> Dict[str, Any]:
        """Fetch raw HTML from a URL."""
        try:
            response = self.session.get(url, timeout=timeout)
            response.raise_for_status()
            return {
                "url": url,
                "status_code": response.status_code,
                "content": response.text,
                "headers": dict(response.headers),
                "encoding": response.encoding,
                "timestamp": datetime.now().isoformat(),
            }

        except requests.RequestException as e:
            return {
                "url": url,
                "error": str(e),
                "status_code": None,
                "content": None,
                "timestamp": datetime.now().isoformat(),
            }

    def parse_html(self, html_content: str) -> Dict[str, Any]:
        """Parse HTML using BeautifulSoup if available."""
        try:
            from bs4 import BeautifulSoup

            soup = BeautifulSoup(html_content, "html.parser")

            parsed = {
                "title": soup.title.string if soup.title else "",
                "text": soup.get_text(),
                "links": [a.get("href") for a in soup.find_all("a", href=True)],
                "images": [img.get("src") for img in soup.find_all("img", src=True)],
                "meta": {},
            }

            for meta in soup.find_all("meta"):
                name = meta.get("name") or meta.get("property")
                content = meta.get("content")
                if name and content:
                    parsed["meta"][name] = content

            return parsed

        except ImportError:
            # Fallback if soup is missing
            return {
                "title": "",
                "text": self._simple_html_strip(html_content),
                "links": [],
                "images": [],
                "meta": {},
            }

    def _simple_html_strip(self, html: str) -> str:
        """Simple fallback for removing HTML tags."""
        return re.sub(r"<[^>]+>", "", html)

    def scrape_url(self, url: str) -> Dict[str, Any]:
        """Fetch + parse a URL."""
        response = self.fetch_url(url)
        if response.get("error"):
            return response

        parsed = self.parse_html(response["content"])

        return {
            "url": url,
            "domain": urlparse(url).netloc,
            "title": parsed["title"],
            "text": parsed["text"],
            "meta": parsed["meta"],
            "links": parsed["links"],
            "images": parsed["images"],
            "timestamp": response["timestamp"],
            "status_code": response["status_code"],
        }


# -----------------------------------------------------
#                 ARTICLE EXTRACTION
# -----------------------------------------------------

class ArticleExtractor:
    """
    Wrapper for newspaper3k / trafilatura / fallback extraction.
    """

    def __init__(self, method: str = "auto"):
        self.method = method
        self._check_dependencies()

    def _check_dependencies(self) -> None:
        self.has_newspaper = False
        self.has_trafilatura = False

        try:
            import newspaper  # noqa
            self.has_newspaper = True
        except ImportError:
            pass

        try:
            import trafilatura  # noqa
            self.has_trafilatura = True
        except ImportError:
            pass

    def extract_article(self, url: str) -> Dict[str, Any]:
        """Choose extraction method based on dependencies."""
        method = self.method

        if method == "auto":
            if self.has_newspaper:
                method = "newspaper"
            elif self.has_trafilatura:
                method = "trafilatura"
            else:
                method = "basic"

        if method == "newspaper":
            return self._extract_with_newspaper(url)
        elif method == "trafilatura":
            return self._extract_with_trafilatura(url)
        else:
            return self._extract_basic(url)

    def _extract_with_newspaper(self, url: str) -> Dict[str, Any]:
        """Extract article using newspaper3k."""
        try:
            from newspaper import Article

            article = Article(url)
            article.download()
            article.parse()

            try:
                article.nlp()
                keywords = article.keywords
                summary = article.summary
            except Exception:
                keywords = []
                summary = ""

            return {
                "url": url,
                "title": article.title,
                "text": article.text,
                "authors": article.authors,
                "publish_date": article.publish_date.isoformat() if article.publish_date else None,
                "keywords": keywords,
                "summary": summary,
                "top_image": article.top_image,
                "images": list(article.images),
                "method": "newspaper",
                "timestamp": datetime.now().isoformat(),
            }

        except Exception as e:
            return {"url": url, "error": str(e), "method": "newspaper"}

    def _extract_with_trafilatura(self, url: str) -> Dict[str, Any]:
        """Extract article using trafilatura."""
        try:
            import trafilatura

            downloaded = trafilatura.fetch_url(url)
            text = trafilatura.extract(downloaded)
            metadata = trafilatura.extract_metadata(downloaded)

            return {
                "url": url,
                "title": metadata.title if metadata else "",
                "text": text or "",
                "authors": [metadata.author] if metadata and metadata.author else [],
                "publish_date": metadata.date if metadata else None,
                "description": metadata.description if metadata else "",
                "method": "trafilatura",
                "timestamp": datetime.now().isoformat(),
            }

        except Exception as e:
            return {"url": url, "error": str(e), "method": "trafilatura"}

    def _extract_basic(self, url: str) -> Dict[str, Any]:
        scraper = WebScraper()
        content = scraper.scrape_url(url)

        return {
            "url": url,
            "title": content.get("title", ""),
            "text": content.get("text", ""),
            "meta": content.get("meta", {}),
            "method": "basic",
            "timestamp": datetime.now().isoformat(),
        }

    def batch_extract(self, urls: List[str]) -> List[Dict[str, Any]]:
        articles = []
        for url in urls:
            try:
                articles.append(self.extract_article(url))
            except Exception as e:
                print(f"Error extracting {url}: {e}")
        return articles


# -----------------------------------------------------
#                NEWS AGGREGATOR
# -----------------------------------------------------

class NewsAggregator:
    """Aggregate RSS feeds + websites into normalized article objects."""

    def __init__(self):
        self.extractor = ArticleExtractor()
        self.sources: List[Dict[str, Any]] = []

    def add_source(self, name: str, url: str, source_type: str = "rss") -> None:
        self.sources.append({"name": name, "url": url, "type": source_type})

    def fetch_news(self, keywords: Optional[List[str]] = None) -> List[Dict[str, Any]]:
        articles = []

        for source in self.sources:
            try:
                if source["type"] == "rss":
                    pulled = self._fetch_rss(source["url"])
                else:
                    pulled = self._fetch_website(source["url"])

                for a in pulled:
                    a["source"] = source["name"]
                    if keywords:
                        txt = a.get("text", "").lower()
                        if any(kw.lower() in txt for kw in keywords):
                            articles.append(a)
                    else:
                        articles.append(a)

            except Exception as e:
                print(f"Error fetching from {source['name']}: {e}")

        return articles

    def _fetch_rss(self, rss_url: str) -> List[Dict[str, Any]]:
        try:
            import feedparser

            feed = feedparser.parse(rss_url)
            articles = []

            for entry in feed.entries:
                base = {
                    "title": entry.get("title", ""),
                    "url": entry.get("link", ""),
                    "summary": entry.get("summary", ""),
                    "publish_date": entry.get("published", ""),
                    "authors": [a.get("name") for a in entry.get("authors", [])],
                }

                if base["url"]:
                    try:
                        full = self.extractor.extract_article(base["url"])
                        base["text"] = full.get("text", base["summary"])
                    except Exception:
                        base["text"] = base["summary"]

                articles.append(base)

            return articles

        except ImportError:
            print("feedparser not installed: pip install feedparser")
            return []

    def _fetch_website(self, url: str) -> List[Dict[str, Any]]:
        article = self.extractor.extract_article(url)
        return [article] if not article.get("error") else []

    def monitor_sources(
        self,
        keywords: List[str],
        callback: Optional[Callable[[List[Dict[str, Any]]], None]] = None,
        interval: int = 3600,
    ) -> None:
        """Continuously monitor sources for new articles."""
        import time

        seen: set = set()

        while True:
            articles = self.fetch_news(keywords)
            new_articles = [a for a in articles if a["url"] not in seen]

            if new_articles and callback:
                callback(new_articles)

            seen.update(a["url"] for a in new_articles)

            time.sleep(interval)

    def get_trending_topics(
        self,
        articles: List[Dict[str, Any]],
        n_topics: int = 10
    ) -> List[Tuple[str, int]]:
        """Compute most common keywords."""
        from collections import Counter

        words = []
        stop = {
            "the", "a", "an", "and", "or", "but", "in", "on", "at",
            "to", "for", "of", "with", "by", "from"
        }

        for art in articles:
            text = (art.get("text", "") + " " + art.get("title", "")).lower()
            ws = [w for w in text.split() if len(w) > 3 and w not in stop]
            words.extend(ws)

        return Counter(words).most_common(n_topics)