File size: 16,903 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e82512
484e3bc
7e82512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484e3bc
7e82512
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e82512
484e3bc
 
 
 
 
 
 
 
7e82512
 
484e3bc
 
7e82512
484e3bc
 
 
 
7e82512
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e82512
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
"""
Bayesian Inference Engine

Provides principled way to update beliefs as new intelligence, rumors,
events, or data arrive.

Components:
- Priors: Baseline beliefs
- Likelihood: Evidence
- Posteriors: Updated beliefs

Necessary for:
- Real-time updates
- Intelligence feeds
- Event-driven recalibration
- Uncertainty tracking

Monte Carlo + Bayesian updating = elite forecasting
"""

import numpy as np
import pandas as pd
from typing import Dict, List, Optional, Callable, Any, Tuple
from dataclasses import dataclass
from scipy import stats


@dataclass
class Prior:
    """
    Represents a prior distribution.

    Attributes
    ----------
    name : str
        Name of the variable
    distribution : Any
        Prior distribution (scipy.stats distribution)
    parameters : dict
        Distribution parameters
    """
    name: str
    distribution: Any
    parameters: Dict[str, float]

    def sample(self, n_samples: int = 1) -> np.ndarray:
        """
        Sample from prior.

        Parameters
        ----------
        n_samples : int
            Number of samples

        Returns
        -------
        np.ndarray
            Samples from prior
        """
        return self.distribution.rvs(size=n_samples, **self.parameters)

    def pdf(self, x: np.ndarray) -> np.ndarray:
        """
        Evaluate prior probability density.

        Parameters
        ----------
        x : np.ndarray
            Points to evaluate

        Returns
        -------
        np.ndarray
            Probability densities
        """
        return self.distribution.pdf(x, **self.parameters)

    def log_pdf(self, x: np.ndarray) -> np.ndarray:
        """
        Evaluate log prior probability density.

        Parameters
        ----------
        x : np.ndarray
            Points to evaluate

        Returns
        -------
        np.ndarray
            Log probability densities
        """
        return self.distribution.logpdf(x, **self.parameters)


@dataclass
class Evidence:
    """
    Represents evidence/observation.

    Attributes
    ----------
    observation : Any
        Observed data
    likelihood_fn : Callable
        Likelihood function
    timestamp : float
        Time of observation
    confidence : float
        Confidence in observation (0-1)
    """
    observation: Any
    likelihood_fn: Callable
    timestamp: float
    confidence: float = 1.0


class BayesianEngine:
    """
    Bayesian inference engine for belief updating.

    This engine maintains and updates probability distributions
    as new evidence arrives, enabling real-time forecasting with
    uncertainty quantification.
    """

    def __init__(self):
        """Initialize Bayesian engine."""
        self.priors: Dict[str, Prior] = {}
        self.posteriors: Dict[str, np.ndarray] = {}
        self.evidence_history: List[Evidence] = []

    def set_prior(self, prior: Prior) -> None:
        """
        Set prior distribution for a variable.

        Parameters
        ----------
        prior : Prior
            Prior distribution
        """
        self.priors[prior.name] = prior

    def update(
        self,
        variable: str,
        evidence: Evidence,
        method: str = 'grid'
    ) -> np.ndarray:
        """
        Update beliefs given evidence.

        Parameters
        ----------
        variable : str
            Variable to update
        evidence : Evidence
            New evidence
        method : str
            Update method ('grid', 'mcmc', 'analytical')

        Returns
        -------
        np.ndarray
            Posterior samples
        """
        if variable not in self.priors:
            raise ValueError(f"No prior set for {variable}")

        self.evidence_history.append(evidence)

        if method == 'grid':
            posterior = self._grid_update(variable, evidence)
        elif method == 'mcmc':
            posterior = self._mcmc_update(variable, evidence)
        elif method == 'analytical':
            posterior = self._analytical_update(variable, evidence)
        else:
            raise ValueError(f"Unknown method: {method}")

        self.posteriors[variable] = posterior
        return posterior

    def _grid_update(self, variable: str, evidence: Evidence) -> np.ndarray:
        """
        Grid approximation for Bayesian update.

        Parameters
        ----------
        variable : str
            Variable name
        evidence : Evidence
            Evidence

        Returns
        -------
        np.ndarray
            Posterior samples
        """
        prior = self.priors[variable]

        # Create grid based on distribution type
        n_grid = 1000

        # Check distribution type by name
        dist_name = prior.distribution.name if hasattr(prior.distribution, 'name') else 'unknown'

        if dist_name == 'beta':
            # Beta distribution always has support [0, 1]
            grid = np.linspace(0, 1, n_grid)
        elif dist_name == 'gamma':
            # Gamma distribution has support [0, inf)
            # Use reasonable upper bound based on parameters
            shape = prior.parameters.get('a', 1)
            scale = prior.parameters.get('scale', 1)
            mean = shape * scale
            std = np.sqrt(shape) * scale
            grid = np.linspace(0, mean + 4*std, n_grid)
        elif dist_name == 'uniform':
            # Uniform distribution uses loc and scale
            loc = prior.parameters.get('loc', 0)
            scale = prior.parameters.get('scale', 1)
            grid = np.linspace(loc, loc + scale, n_grid)
        else:
            # Default for normal and other distributions
            mean = prior.parameters.get('loc', 0)
            std = prior.parameters.get('scale', 1)
            grid = np.linspace(mean - 4*std, mean + 4*std, n_grid)

        # Compute prior * likelihood
        prior_vals = prior.pdf(grid)
        likelihood_vals = evidence.likelihood_fn(grid, evidence.observation)

        # Weight by evidence confidence
        likelihood_vals = likelihood_vals ** evidence.confidence

        # Compute posterior (unnormalized)
        posterior_vals = prior_vals * likelihood_vals

        # Normalize
        posterior_vals /= posterior_vals.sum()

        # Sample from posterior
        n_samples = 10000
        posterior_samples = np.random.choice(grid, size=n_samples, p=posterior_vals)

        return posterior_samples

    def _mcmc_update(
        self,
        variable: str,
        evidence: Evidence,
        n_samples: int = 10000
    ) -> np.ndarray:
        """
        MCMC-based Bayesian update.

        Parameters
        ----------
        variable : str
            Variable name
        evidence : Evidence
            Evidence
        n_samples : int
            Number of MCMC samples

        Returns
        -------
        np.ndarray
            Posterior samples
        """
        prior = self.priors[variable]

        def log_posterior(x):
            log_prior = prior.log_pdf(np.array([x]))[0]
            log_likelihood = np.log(evidence.likelihood_fn(np.array([x]), evidence.observation)[0] + 1e-10)
            return log_prior + evidence.confidence * log_likelihood

        # Simple Metropolis-Hastings
        samples = []
        current = prior.sample(1)[0]
        current_log_p = log_posterior(current)

        for _ in range(n_samples):
            # Propose
            proposal = current + np.random.normal(0, 0.1)
            proposal_log_p = log_posterior(proposal)

            # Accept/reject
            log_alpha = proposal_log_p - current_log_p
            if np.log(np.random.uniform()) < log_alpha:
                current = proposal
                current_log_p = proposal_log_p

            samples.append(current)

        return np.array(samples)

    def _analytical_update(self, variable: str, evidence: Evidence) -> np.ndarray:
        """
        Analytical Bayesian update (for conjugate priors).

        Parameters
        ----------
        variable : str
            Variable name
        evidence : Evidence
            Evidence

        Returns
        -------
        np.ndarray
            Posterior samples
        """
        # Placeholder - would implement conjugate updates
        # For now, fall back to grid
        return self._grid_update(variable, evidence)

    def get_posterior_summary(self, variable: str) -> Dict[str, float]:
        """
        Get summary statistics of posterior.

        Parameters
        ----------
        variable : str
            Variable name

        Returns
        -------
        dict
            Summary statistics
        """
        if variable not in self.posteriors:
            raise ValueError(f"No posterior for {variable}")

        samples = self.posteriors[variable]

        return {
            'mean': np.mean(samples),
            'median': np.median(samples),
            'std': np.std(samples),
            'q5': np.percentile(samples, 5),
            'q25': np.percentile(samples, 25),
            'q75': np.percentile(samples, 75),
            'q95': np.percentile(samples, 95)
        }

    def get_credible_interval(
        self,
        variable: str,
        alpha: float = 0.05
    ) -> Tuple[float, float]:
        """
        Get credible interval for posterior.

        Parameters
        ----------
        variable : str
            Variable name
        alpha : float
            Significance level

        Returns
        -------
        tuple
            (lower, upper) bounds of credible interval
        """
        if variable not in self.posteriors:
            raise ValueError(f"No posterior for {variable}")

        samples = self.posteriors[variable]
        lower = np.percentile(samples, 100 * alpha / 2)
        upper = np.percentile(samples, 100 * (1 - alpha / 2))

        return lower, upper

    def compute_bayes_factor(
        self,
        variable: str,
        hypothesis1: Callable,
        hypothesis2: Callable
    ) -> float:
        """
        Compute Bayes factor for two hypotheses.

        Parameters
        ----------
        variable : str
            Variable name
        hypothesis1 : callable
            First hypothesis (returns bool)
        hypothesis2 : callable
            Second hypothesis (returns bool)

        Returns
        -------
        float
            Bayes factor (BF > 1 favors hypothesis1)
        """
        if variable not in self.posteriors:
            raise ValueError(f"No posterior for {variable}")

        samples = self.posteriors[variable]

        p1 = np.mean([hypothesis1(x) for x in samples])
        p2 = np.mean([hypothesis2(x) for x in samples])

        if p2 == 0:
            return np.inf
        return p1 / p2


class BeliefUpdater:
    """
    High-level interface for updating geopolitical beliefs.

    This class provides domain-specific methods for updating
    beliefs based on intelligence, events, and rumors.
    """

    def __init__(self):
        """Initialize belief updater."""
        self.engine = BayesianEngine()
        self.beliefs: Dict[str, Dict[str, Any]] = {}

    def initialize_belief(
        self,
        name: str,
        prior_mean: float,
        prior_std: float,
        belief_type: str = 'continuous'
    ) -> None:
        """
        Initialize a belief with prior.

        Parameters
        ----------
        name : str
            Belief name
        prior_mean : float
            Prior mean
        prior_std : float
            Prior standard deviation
        belief_type : str
            Type of belief ('continuous', 'probability')
        """
        if belief_type == 'continuous':
            distribution = stats.norm
            parameters = {'loc': prior_mean, 'scale': prior_std}
        elif belief_type == 'probability':
            # Use beta distribution for probabilities
            # Convert mean/std to alpha/beta parameters
            mean = np.clip(prior_mean, 0.01, 0.99)
            var = prior_std ** 2
            alpha = mean * (mean * (1 - mean) / var - 1)
            beta = (1 - mean) * (mean * (1 - mean) / var - 1)
            distribution = stats.beta
            # Beta uses 'a' and 'b' parameters, not 'loc' and 'scale'
            parameters = {'a': alpha, 'b': beta}
        else:
            distribution = stats.norm
            parameters = {'loc': prior_mean, 'scale': prior_std}

        prior = Prior(
            name=name,
            distribution=distribution,
            parameters=parameters
        )

        self.engine.set_prior(prior)
        self.beliefs[name] = {
            'type': belief_type,
            'initialized': True
        }

    def update_from_intelligence(
        self,
        belief: str,
        observation: float,
        reliability: float = 0.8
    ) -> Dict[str, float]:
        """
        Update belief from intelligence report.

        Parameters
        ----------
        belief : str
            Belief name
        observation : float
            Observed value from intelligence
        reliability : float
            Reliability of intelligence source (0-1)

        Returns
        -------
        dict
            Posterior summary
        """
        def likelihood_fn(x, obs):
            # Gaussian likelihood centered at observation
            # Width depends on reliability
            std = 1.0 / reliability
            return stats.norm.pdf(x, loc=obs, scale=std)

        evidence = Evidence(
            observation=observation,
            likelihood_fn=likelihood_fn,
            timestamp=pd.Timestamp.now().timestamp(),
            confidence=reliability
        )

        self.engine.update(belief, evidence, method='grid')
        return self.engine.get_posterior_summary(belief)

    def update_from_event(
        self,
        belief: str,
        event_impact: float,
        event_certainty: float = 1.0
    ) -> Dict[str, float]:
        """
        Update belief from observed event.

        Parameters
        ----------
        belief : str
            Belief name
        event_impact : float
            Impact of event (shift in belief)
        event_certainty : float
            Certainty that event occurred (0-1)

        Returns
        -------
        dict
            Posterior summary
        """
        # Get current belief
        if belief not in self.engine.posteriors:
            # Use prior
            current_samples = self.engine.priors[belief].sample(10000)
        else:
            current_samples = self.engine.posteriors[belief]

        current_mean = np.mean(current_samples)

        # Create shifted observation
        observation = current_mean + event_impact

        def likelihood_fn(x, obs):
            return stats.norm.pdf(x, loc=obs, scale=abs(event_impact) * 0.1)

        evidence = Evidence(
            observation=observation,
            likelihood_fn=likelihood_fn,
            timestamp=pd.Timestamp.now().timestamp(),
            confidence=event_certainty
        )

        self.engine.update(belief, evidence, method='grid')
        return self.engine.get_posterior_summary(belief)

    def get_belief_probability(
        self,
        belief: str,
        threshold: float,
        direction: str = 'greater'
    ) -> float:
        """
        Get probability that belief exceeds threshold.

        Parameters
        ----------
        belief : str
            Belief name
        threshold : float
            Threshold value
        direction : str
            'greater' or 'less'

        Returns
        -------
        float
            Probability
        """
        if belief not in self.engine.posteriors:
            samples = self.engine.priors[belief].sample(10000)
        else:
            samples = self.engine.posteriors[belief]

        if direction == 'greater':
            return np.mean(samples > threshold)
        else:
            return np.mean(samples < threshold)

    def compare_beliefs(self, belief1: str, belief2: str) -> Dict[str, float]:
        """
        Compare two beliefs.

        Parameters
        ----------
        belief1 : str
            First belief
        belief2 : str
            Second belief

        Returns
        -------
        dict
            Comparison results
        """
        if belief1 not in self.engine.posteriors:
            samples1 = self.engine.priors[belief1].sample(10000)
        else:
            samples1 = self.engine.posteriors[belief1]

        if belief2 not in self.engine.posteriors:
            samples2 = self.engine.priors[belief2].sample(10000)
        else:
            samples2 = self.engine.posteriors[belief2]

        return {
            'p_belief1_greater': np.mean(samples1 > samples2),
            'mean_difference': np.mean(samples1 - samples2),
            'correlation': np.corrcoef(samples1, samples2)[0, 1]
        }