File size: 10,017 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
"""
Causal Discovery Module

Discover causal relationships from observational data using various algorithms.
"""

import numpy as np
import pandas as pd
from typing import Optional, Dict, List, Tuple
from .causal_graph import CausalGraph


class CausalDiscovery:
    """
    Discover causal structures from data.

    Implements various causal discovery algorithms to learn
    causal graphs from observational data.
    """

    def __init__(self, method: str = 'pc'):
        """
        Initialize causal discovery.

        Parameters
        ----------
        method : str
            Discovery method ('pc', 'ges', 'lingam')
        """
        self.method = method

    def discover_from_data(
        self,
        data: pd.DataFrame,
        alpha: float = 0.05,
        max_cond_vars: int = 3
    ) -> CausalGraph:
        """
        Discover causal graph from data.

        Parameters
        ----------
        data : pd.DataFrame
            Observational data
        alpha : float
            Significance level for independence tests
        max_cond_vars : int
            Maximum number of conditioning variables

        Returns
        -------
        CausalGraph
            Discovered causal graph
        """
        if self.method == 'pc':
            return self._pc_algorithm(data, alpha, max_cond_vars)
        elif self.method == 'ges':
            return self._ges_algorithm(data)
        elif self.method == 'lingam':
            return self._lingam_algorithm(data)
        else:
            raise ValueError(f"Unknown method: {self.method}")

    def _pc_algorithm(
        self,
        data: pd.DataFrame,
        alpha: float,
        max_cond_vars: int
    ) -> CausalGraph:
        """
        PC (Peter-Clark) algorithm for causal discovery.

        This is a constraint-based algorithm that uses conditional
        independence tests to discover causal structure.

        Parameters
        ----------
        data : pd.DataFrame
            Observational data
        alpha : float
            Significance level
        max_cond_vars : int
            Maximum conditioning set size

        Returns
        -------
        CausalGraph
            Discovered graph
        """
        try:
            from pgmpy.estimators import PC
            from pgmpy.independence_tests import ChiSquareTest

            # PC algorithm
            pc = PC(data=data)
            model = pc.estimate(
                significance_level=alpha,
                max_cond_vars=max_cond_vars
            )

            # Convert to CausalGraph
            graph = CausalGraph(name="pc_discovered")

            # Add nodes
            for node in model.nodes():
                graph.add_node(node)

            # Add edges
            for edge in model.edges():
                graph.add_edge(edge[0], edge[1])

            return graph

        except ImportError:
            print("pgmpy required for PC algorithm")
            return self._simple_correlation_graph(data)

    def _ges_algorithm(self, data: pd.DataFrame) -> CausalGraph:
        """
        GES (Greedy Equivalence Search) algorithm.

        Score-based causal discovery algorithm.

        Parameters
        ----------
        data : pd.DataFrame
            Observational data

        Returns
        -------
        CausalGraph
            Discovered graph
        """
        # Placeholder - requires causal-learn or similar
        print("GES algorithm not fully implemented yet")
        return self._simple_correlation_graph(data)

    def _lingam_algorithm(self, data: pd.DataFrame) -> CausalGraph:
        """
        LiNGAM (Linear Non-Gaussian Acyclic Model) algorithm.

        Assumes linear relationships and non-Gaussian noise.

        Parameters
        ----------
        data : pd.DataFrame
            Observational data

        Returns
        -------
        CausalGraph
            Discovered graph
        """
        # Placeholder - requires lingam package
        print("LiNGAM algorithm not fully implemented yet")
        return self._simple_correlation_graph(data)

    def _simple_correlation_graph(
        self,
        data: pd.DataFrame,
        threshold: float = 0.3
    ) -> CausalGraph:
        """
        Create a simple graph based on correlations.

        This is a fallback method and does NOT imply causation.

        Parameters
        ----------
        data : pd.DataFrame
            Data
        threshold : float
            Correlation threshold

        Returns
        -------
        CausalGraph
            Correlation-based graph
        """
        graph = CausalGraph(name="correlation_based")

        # Add nodes
        for col in data.columns:
            graph.add_node(col)

        # Add edges based on correlation
        corr_matrix = data.corr()

        for i, col1 in enumerate(data.columns):
            for j, col2 in enumerate(data.columns):
                if i < j:  # Avoid duplicates
                    corr = abs(corr_matrix.loc[col1, col2])
                    if corr > threshold:
                        # Arbitrary direction - this is NOT causal
                        try:
                            graph.add_edge(
                                col1, col2,
                                strength=corr,
                                confidence=0.5,
                                mechanism="correlation (not causal)"
                            )
                        except ValueError:
                            # Would create cycle, try other direction
                            try:
                                graph.add_edge(
                                    col2, col1,
                                    strength=corr,
                                    confidence=0.5,
                                    mechanism="correlation (not causal)"
                                )
                            except ValueError:
                                # Both directions create cycles, skip
                                pass

        return graph

    def test_conditional_independence(
        self,
        data: pd.DataFrame,
        X: str,
        Y: str,
        Z: Optional[List[str]] = None,
        method: str = 'fisherz'
    ) -> Tuple[float, float]:
        """
        Test conditional independence X ⊥ Y | Z.

        Parameters
        ----------
        data : pd.DataFrame
            Data
        X : str
            First variable
        Y : str
            Second variable
        Z : List[str], optional
            Conditioning variables
        method : str
            Test method ('fisherz', 'chi_square')

        Returns
        -------
        tuple
            (test_statistic, p_value)
        """
        if Z is None:
            Z = []

        if method == 'fisherz':
            return self._fisherz_test(data, X, Y, Z)
        elif method == 'chi_square':
            return self._chi_square_test(data, X, Y, Z)
        else:
            raise ValueError(f"Unknown test method: {method}")

    def _fisherz_test(
        self,
        data: pd.DataFrame,
        X: str,
        Y: str,
        Z: List[str]
    ) -> Tuple[float, float]:
        """
        Fisher's Z test for conditional independence.

        Parameters
        ----------
        data : pd.DataFrame
            Data
        X : str
            First variable
        Y : str
            Second variable
        Z : List[str]
            Conditioning variables

        Returns
        -------
        tuple
            (test_statistic, p_value)
        """
        from scipy.stats import norm

        n = len(data)

        if len(Z) == 0:
            # Unconditional correlation
            corr = data[[X, Y]].corr().loc[X, Y]
        else:
            # Partial correlation
            all_vars = [X, Y] + Z
            corr_matrix = data[all_vars].corr()

            # Compute partial correlation
            # This is a simplified version
            corr_XY = corr_matrix.loc[X, Y]
            corr = corr_XY  # Placeholder

        # Fisher's Z transformation
        if abs(corr) >= 0.9999:
            corr = 0.9999 * np.sign(corr)

        z = 0.5 * np.log((1 + corr) / (1 - corr))
        test_stat = np.sqrt(n - len(Z) - 3) * z

        # Two-tailed p-value
        p_value = 2 * (1 - norm.cdf(abs(test_stat)))

        return test_stat, p_value

    def _chi_square_test(
        self,
        data: pd.DataFrame,
        X: str,
        Y: str,
        Z: List[str]
    ) -> Tuple[float, float]:
        """
        Chi-square test for conditional independence.

        Parameters
        ----------
        data : pd.DataFrame
            Data
        X : str
            First variable
        Y : str
            Second variable
        Z : List[str]
            Conditioning variables

        Returns
        -------
        tuple
            (test_statistic, p_value)
        """
        from scipy.stats import chi2_contingency

        if len(Z) == 0:
            # Unconditional test
            contingency_table = pd.crosstab(data[X], data[Y])
            chi2, p_value, dof, expected = chi2_contingency(contingency_table)
            return chi2, p_value
        else:
            # Conditional test - stratify by Z
            # This is simplified
            chi2_sum = 0
            dof_sum = 0

            for z_value in data[Z[0]].unique():
                subset = data[data[Z[0]] == z_value]
                if len(subset) > 1:
                    contingency_table = pd.crosstab(subset[X], subset[Y])
                    if contingency_table.shape[0] > 1 and contingency_table.shape[1] > 1:
                        chi2, _, dof, _ = chi2_contingency(contingency_table)
                        chi2_sum += chi2
                        dof_sum += dof

            # Approximate p-value
            from scipy.stats import chi2
            p_value = 1 - chi2.cdf(chi2_sum, dof_sum) if dof_sum > 0 else 1.0

            return chi2_sum, p_value