File size: 15,446 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
"""
Causal Graph Module - DAG Representation

Provides infrastructure for representing and analyzing causal relationships
in geopolitical systems using Directed Acyclic Graphs (DAGs).

This module answers:
- What causes conflict?
- What causes collapse?
- What causes escalation?
- What causes mobilization?
- What causes instability?

Critical for: Real forecasting of interventions, not just correlation-based guessing.
"""

import numpy as np
import networkx as nx
from typing import Dict, List, Set, Optional, Tuple, Any, Callable
from dataclasses import dataclass, field
import json


@dataclass
class CausalEdge:
    """
    Represents a causal edge in the graph.

    Attributes
    ----------
    source : str
        Source node (cause)
    target : str
        Target node (effect)
    strength : float
        Strength of causal relationship (-1 to 1)
    confidence : float
        Confidence in this relationship (0 to 1)
    mechanism : str
        Description of causal mechanism
    """
    source: str
    target: str
    strength: float = 1.0
    confidence: float = 1.0
    mechanism: str = ""


class CausalGraph:
    """
    Directed Acyclic Graph (DAG) for causal relationships.

    This class provides the foundation for causal inference in geopolitical
    forecasting, ensuring that we understand what actually causes events
    rather than just observing correlations.
    """

    def __init__(self, name: str = "geopolitical_dag"):
        """
        Initialize causal graph.

        Parameters
        ----------
        name : str
            Name of the causal graph
        """
        self.name = name
        self.graph = nx.DiGraph()
        self.edges: List[CausalEdge] = []
        self.node_metadata: Dict[str, Dict[str, Any]] = {}

    def add_node(
        self,
        node: str,
        node_type: str = "variable",
        metadata: Optional[Dict[str, Any]] = None
    ) -> None:
        """
        Add a node to the causal graph.

        Parameters
        ----------
        node : str
            Node identifier
        node_type : str
            Type of node ('variable', 'event', 'policy', 'state')
        metadata : dict, optional
            Additional metadata for the node
        """
        self.graph.add_node(node)
        self.node_metadata[node] = {
            'type': node_type,
            'metadata': metadata or {}
        }

    def add_edge(
        self,
        source: str,
        target: str,
        strength: float = 1.0,
        confidence: float = 1.0,
        mechanism: str = ""
    ) -> None:
        """
        Add a causal edge to the graph.

        Parameters
        ----------
        source : str
            Source node (cause)
        target : str
            Target node (effect)
        strength : float
            Strength of causal relationship
        confidence : float
            Confidence in this relationship
        mechanism : str
            Description of causal mechanism
        """
        # Check for cycles
        if not self._would_create_cycle(source, target):
            self.graph.add_edge(source, target)
            edge = CausalEdge(source, target, strength, confidence, mechanism)
            self.edges.append(edge)
        else:
            raise ValueError(f"Adding edge {source} -> {target} would create a cycle")

    def remove_edge(self, source: str, target: str) -> None:
        """
        Remove a causal edge.

        Parameters
        ----------
        source : str
            Source node
        target : str
            Target node
        """
        if self.graph.has_edge(source, target):
            self.graph.remove_edge(source, target)
            self.edges = [e for e in self.edges if not (e.source == source and e.target == target)]

    def _would_create_cycle(self, source: str, target: str) -> bool:
        """
        Check if adding an edge would create a cycle.

        Parameters
        ----------
        source : str
            Source node
        target : str
            Target node

        Returns
        -------
        bool
            True if edge would create cycle
        """
        # Add nodes if they don't exist
        if source not in self.graph:
            self.graph.add_node(source)
        if target not in self.graph:
            self.graph.add_node(target)

        # Temporarily add edge and check for cycles
        self.graph.add_edge(source, target)
        has_cycle = not nx.is_directed_acyclic_graph(self.graph)
        self.graph.remove_edge(source, target)

        return has_cycle

    def get_parents(self, node: str) -> List[str]:
        """
        Get direct parents (causes) of a node.

        Parameters
        ----------
        node : str
            Node identifier

        Returns
        -------
        List[str]
            List of parent nodes
        """
        return list(self.graph.predecessors(node))

    def get_children(self, node: str) -> List[str]:
        """
        Get direct children (effects) of a node.

        Parameters
        ----------
        node : str
            Node identifier

        Returns
        -------
        List[str]
            List of child nodes
        """
        return list(self.graph.successors(node))

    def get_ancestors(self, node: str) -> Set[str]:
        """
        Get all ancestors (causes) of a node.

        Parameters
        ----------
        node : str
            Node identifier

        Returns
        -------
        Set[str]
            Set of ancestor nodes
        """
        return nx.ancestors(self.graph, node)

    def get_descendants(self, node: str) -> Set[str]:
        """
        Get all descendants (effects) of a node.

        Parameters
        ----------
        node : str
            Node identifier

        Returns
        -------
        Set[str]
            Set of descendant nodes
        """
        return nx.descendants(self.graph, node)

    def get_topological_order(self) -> List[str]:
        """
        Get topological ordering of nodes.

        This is useful for computing values in causal order.

        Returns
        -------
        List[str]
            Nodes in topological order
        """
        return list(nx.topological_sort(self.graph))

    def is_ancestor(self, node1: str, node2: str) -> bool:
        """
        Check if node1 is an ancestor of node2.

        Parameters
        ----------
        node1 : str
            Potential ancestor
        node2 : str
            Potential descendant

        Returns
        -------
        bool
            True if node1 is ancestor of node2
        """
        return node1 in self.get_ancestors(node2)

    def is_descendant(self, node1: str, node2: str) -> bool:
        """
        Check if node1 is a descendant of node2.

        Parameters
        ----------
        node1 : str
            Potential descendant
        node2 : str
            Potential ancestor

        Returns
        -------
        bool
            True if node1 is descendant of node2
        """
        return node1 in self.get_descendants(node2)

    def get_markov_blanket(self, node: str) -> Set[str]:
        """
        Get Markov blanket of a node.

        The Markov blanket includes: parents, children, and co-parents
        (other parents of children).

        Parameters
        ----------
        node : str
            Node identifier

        Returns
        -------
        Set[str]
            Markov blanket nodes
        """
        parents = set(self.get_parents(node))
        children = set(self.get_children(node))

        # Get co-parents (parents of children)
        co_parents = set()
        for child in children:
            co_parents.update(self.get_parents(child))

        co_parents.discard(node)

        return parents | children | co_parents

    def d_separated(self, X: Set[str], Y: Set[str], Z: Set[str]) -> bool:
        """
        Test if X and Y are d-separated given Z.

        This is fundamental for determining conditional independence.

        Parameters
        ----------
        X : Set[str]
            First set of nodes
        Y : Set[str]
            Second set of nodes
        Z : Set[str]
            Conditioning set

        Returns
        -------
        bool
            True if X and Y are d-separated given Z
        """
        return nx.d_separated(self.graph, X, Y, Z)

    def visualize(self, output_path: Optional[str] = None) -> None:
        """
        Visualize the causal graph.

        Parameters
        ----------
        output_path : str, optional
            Path to save visualization
        """
        try:
            import matplotlib.pyplot as plt

            pos = nx.spring_layout(self.graph)
            plt.figure(figsize=(12, 8))

            nx.draw(
                self.graph,
                pos,
                with_labels=True,
                node_color='lightblue',
                node_size=3000,
                font_size=10,
                font_weight='bold',
                arrows=True,
                arrowsize=20,
                edge_color='gray'
            )

            plt.title(f"Causal Graph: {self.name}")

            if output_path:
                plt.savefig(output_path)
            else:
                plt.show()

        except ImportError:
            print("Matplotlib required for visualization")

    def to_dict(self) -> Dict[str, Any]:
        """
        Convert graph to dictionary representation.

        Returns
        -------
        dict
            Dictionary representation
        """
        return {
            'name': self.name,
            'nodes': [
                {'id': node, **self.node_metadata.get(node, {})}
                for node in self.graph.nodes()
            ],
            'edges': [
                {
                    'source': edge.source,
                    'target': edge.target,
                    'strength': edge.strength,
                    'confidence': edge.confidence,
                    'mechanism': edge.mechanism
                }
                for edge in self.edges
            ]
        }

    def to_json(self, path: str) -> None:
        """
        Save graph to JSON file.

        Parameters
        ----------
        path : str
            Output file path
        """
        with open(path, 'w') as f:
            json.dump(self.to_dict(), f, indent=2)

    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> 'CausalGraph':
        """
        Load graph from dictionary.

        Parameters
        ----------
        data : dict
            Dictionary representation

        Returns
        -------
        CausalGraph
            Loaded graph
        """
        graph = cls(name=data['name'])

        # Add nodes
        for node_data in data['nodes']:
            graph.add_node(
                node_data['id'],
                node_type=node_data.get('type', 'variable'),
                metadata=node_data.get('metadata', {})
            )

        # Add edges
        for edge_data in data['edges']:
            graph.add_edge(
                edge_data['source'],
                edge_data['target'],
                strength=edge_data.get('strength', 1.0),
                confidence=edge_data.get('confidence', 1.0),
                mechanism=edge_data.get('mechanism', '')
            )

        return graph

    @classmethod
    def from_json(cls, path: str) -> 'CausalGraph':
        """
        Load graph from JSON file.

        Parameters
        ----------
        path : str
            Input file path

        Returns
        -------
        CausalGraph
            Loaded graph
        """
        with open(path, 'r') as f:
            data = json.load(f)
        return cls.from_dict(data)


class StructuralCausalModel:
    """
    Structural Causal Model (SCM) with functional equations.

    An SCM defines how each variable is generated from its parents
    and exogenous noise.
    """

    def __init__(self, causal_graph: CausalGraph):
        """
        Initialize structural causal model.

        Parameters
        ----------
        causal_graph : CausalGraph
            Underlying causal graph
        """
        self.graph = causal_graph
        self.functions: Dict[str, Callable] = {}
        self.noise_distributions: Dict[str, Any] = {}

    def set_function(
        self,
        node: str,
        function: Callable,
        noise_dist: Optional[Any] = None
    ) -> None:
        """
        Set structural equation for a node.

        Parameters
        ----------
        node : str
            Node identifier
        function : callable
            Function that computes node value from parents
            Signature: f(parent_values, noise) -> value
        noise_dist : optional
            Noise distribution for this variable
        """
        self.functions[node] = function
        if noise_dist is not None:
            self.noise_distributions[node] = noise_dist

    def sample(
        self,
        n_samples: int = 1,
        interventions: Optional[Dict[str, float]] = None
    ) -> Dict[str, np.ndarray]:
        """
        Sample from the structural causal model.

        Parameters
        ----------
        n_samples : int
            Number of samples to generate
        interventions : dict, optional
            Dictionary of interventions {node: value}

        Returns
        -------
        dict
            Dictionary of samples for each variable
        """
        samples = {node: np.zeros(n_samples) for node in self.graph.graph.nodes()}

        # Sample in topological order
        for node in self.graph.get_topological_order():
            # Check if this node is intervened upon
            if interventions and node in interventions:
                samples[node] = np.full(n_samples, interventions[node])
            else:
                # Get parent values
                parents = self.graph.get_parents(node)
                parent_values = {p: samples[p] for p in parents}

                # Sample noise
                if node in self.noise_distributions:
                    noise = self.noise_distributions[node].rvs(n_samples)
                else:
                    noise = np.zeros(n_samples)

                # Compute value using structural equation
                if node in self.functions:
                    samples[node] = self.functions[node](parent_values, noise)
                else:
                    # Default: just use noise
                    samples[node] = noise

        return samples

    def compute_counterfactual(
        self,
        observed: Dict[str, float],
        interventions: Dict[str, float]
    ) -> Dict[str, float]:
        """
        Compute counterfactual: What would happen if we intervened?

        Parameters
        ----------
        observed : dict
            Observed values
        interventions : dict
            Interventions to apply

        Returns
        -------
        dict
            Counterfactual values
        """
        # This is a simplified version
        # Full counterfactual computation requires abduction-action-prediction

        # For now, we sample with interventions
        samples = self.sample(n_samples=1000, interventions=interventions)

        # Return means
        return {node: np.mean(values) for node, values in samples.items()}