File size: 25,014 Bytes
484e3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
"""
Quasi-Experimental Causal Inference Methods
When randomized experiments are impossible, quasi-experimental designs
provide credible causal identification under weaker assumptions.
Core methods:
1. Synthetic Control Method (SCM): Construct counterfactual from weighted controls
2. Difference-in-Differences (DiD): Compare treatment vs control before/after
3. Regression Discontinuity Design (RDD): Exploit threshold-based treatment assignment
4. Instrumental Variables (IV): Use exogenous variation to identify causal effects
5. Causal Forests: Machine learning for heterogeneous treatment effects
Applications in geopolitics:
- SCM: Effect of sanctions on target country (compare to synthetic control)
- DiD: Impact of regime change (compare neighboring countries before/after)
- RDD: Effect of election outcomes (winners vs losers near threshold)
- IV: Effect of trade on conflict (use geographic instruments)
"""
import numpy as np
from scipy import optimize, stats
from typing import Dict, List, Tuple, Optional, Union
from dataclasses import dataclass
import warnings
@dataclass
class SyntheticControlResult:
"""Results from Synthetic Control Method."""
weights: np.ndarray # Weights on control units
treated_outcome: np.ndarray # Actual treated unit outcomes
synthetic_outcome: np.ndarray # Synthetic control outcomes
treatment_effect: np.ndarray # Difference (post-treatment)
pre_treatment_fit: float # RMSPE in pre-treatment period
control_units: List[str] # Names of control units
treatment_time: int # Index where treatment starts
p_value: Optional[float] = None # From permutation test
@dataclass
class DIDResult:
"""Results from Difference-in-Differences."""
att: float # Average Treatment effect on Treated
se: float # Standard error
t_stat: float
p_value: float
pre_treatment_diff: float # Check parallel trends
post_treatment_diff: float
n_treated: int
n_control: int
@dataclass
class RDDResult:
"""Results from Regression Discontinuity Design."""
treatment_effect: float # Local Average Treatment Effect (LATE)
se: float
t_stat: float
p_value: float
bandwidth: float
n_left: int # Observations below cutoff
n_right: int # Observations above cutoff
@dataclass
class IVResult:
"""Results from Instrumental Variables estimation."""
beta_iv: np.ndarray # IV estimates
beta_ols: np.ndarray # OLS estimates (for comparison)
se_iv: np.ndarray # Standard errors
first_stage_f: float # First stage F-statistic
weak_instrument: bool # True if F < 10
class SyntheticControlMethod:
"""
Synthetic Control Method (Abadie, Diamond, Hainmueller 2010, 2015)
Creates a synthetic version of the treated unit as a weighted average
of control units to estimate counterfactual outcomes.
Key idea: If we can match pre-treatment outcomes and covariates perfectly,
the synthetic control provides a valid counterfactual.
Example:
>>> # Effect of sanctions on Iran's GDP
>>> scm = SyntheticControlMethod()
>>> result = scm.fit(
... treated_outcome=iran_gdp, # (T,)
... control_outcomes=other_countries_gdp, # (T, J)
... treatment_time=20, # Sanctions imposed at t=20
... treated_covariates=iran_covariates, # (K,)
... control_covariates=other_covariates # (J, K)
... )
>>> print(f"Average treatment effect: {np.mean(result.treatment_effect):.2f}")
"""
def __init__(self, loss: str = 'l2'):
"""
Initialize SCM.
Args:
loss: Loss function for matching ('l2' or 'l1')
"""
self.loss = loss
def fit(self, treated_outcome: np.ndarray, control_outcomes: np.ndarray,
treatment_time: int,
treated_covariates: Optional[np.ndarray] = None,
control_covariates: Optional[np.ndarray] = None,
control_names: Optional[List[str]] = None,
custom_weights: Optional[np.ndarray] = None) -> SyntheticControlResult:
"""
Fit synthetic control model.
Args:
treated_outcome: Outcome for treated unit, shape (T,)
control_outcomes: Outcomes for control units, shape (T, J)
treatment_time: Time index when treatment begins
treated_covariates: Covariates for treated unit, shape (K,)
control_covariates: Covariates for controls, shape (J, K)
control_names: Names of control units
custom_weights: Optional custom weights for different predictors
Returns:
SyntheticControlResult with estimated effects
"""
T, J = control_outcomes.shape
if control_names is None:
control_names = [f"control_{j}" for j in range(J)]
# Pre-treatment period
Y1_pre = treated_outcome[:treatment_time]
Y0_pre = control_outcomes[:treatment_time, :]
# Construct predictors matrix
if treated_covariates is not None and control_covariates is not None:
# Include both outcomes and covariates
X1 = np.concatenate([Y1_pre, treated_covariates])
X0 = np.vstack([Y0_pre.T, control_covariates.T]) # Shape: (J, T_pre + K)
else:
# Use only pre-treatment outcomes
X1 = Y1_pre
X0 = Y0_pre.T # Shape: (J, T_pre)
# Find weights that minimize ||X1 - X0 w||
weights = self._optimize_weights(X1, X0, custom_weights)
# Construct synthetic control
synthetic_outcome = control_outcomes @ weights
# Compute treatment effects (post-treatment)
treatment_effect = np.zeros(T)
treatment_effect[treatment_time:] = (
treated_outcome[treatment_time:] - synthetic_outcome[treatment_time:]
)
# Pre-treatment fit quality
pre_treatment_fit = np.sqrt(np.mean((Y1_pre - synthetic_outcome[:treatment_time]) ** 2))
return SyntheticControlResult(
weights=weights,
treated_outcome=treated_outcome,
synthetic_outcome=synthetic_outcome,
treatment_effect=treatment_effect,
pre_treatment_fit=pre_treatment_fit,
control_units=control_names,
treatment_time=treatment_time
)
def _optimize_weights(self, X1: np.ndarray, X0: np.ndarray,
V: Optional[np.ndarray] = None) -> np.ndarray:
"""
Optimize weights to minimize prediction error.
min_w ||X1 - X0 w||_V^2
s.t. w >= 0, sum(w) = 1
Args:
X1: Target predictors, shape (K,)
X0: Control predictors, shape (J, K)
V: Optional weighting matrix
Returns:
Optimal weights, shape (J,)
"""
J = X0.shape[0]
if V is None:
V = np.eye(len(X1))
# Objective function
def objective(w):
diff = X1 - X0.T @ w
return diff.T @ V @ diff
# Constraints: w >= 0, sum(w) = 1
constraints = {'type': 'eq', 'fun': lambda w: np.sum(w) - 1}
bounds = [(0, 1) for _ in range(J)]
# Initial guess: equal weights
w0 = np.ones(J) / J
# Optimize
result = optimize.minimize(
objective,
x0=w0,
method='SLSQP',
bounds=bounds,
constraints=constraints
)
if not result.success:
warnings.warn("Optimization did not fully converge")
return result.x
def placebo_test(self, treated_outcome: np.ndarray, control_outcomes: np.ndarray,
treatment_time: int, n_permutations: int = 100) -> float:
"""
Conduct placebo test by applying SCM to control units.
Tests whether the observed treatment effect is unusually large
compared to effects from placebo treatments on controls.
Args:
treated_outcome: Treated unit outcome
control_outcomes: Control units outcomes
treatment_time: Treatment time
n_permutations: Number of placebo tests
Returns:
p-value: Proportion of placebos with larger effect
"""
# Fit actual SCM
actual_result = self.fit(treated_outcome, control_outcomes, treatment_time)
actual_effect = np.abs(np.mean(actual_result.treatment_effect[treatment_time:]))
# Run placebo tests
placebo_effects = []
J = control_outcomes.shape[1]
for j in range(min(J, n_permutations)):
# Treat control j as if it were treated
placebo_treated = control_outcomes[:, j]
placebo_controls = np.delete(control_outcomes, j, axis=1)
try:
placebo_result = self.fit(placebo_treated, placebo_controls, treatment_time)
placebo_effect = np.abs(np.mean(placebo_result.treatment_effect[treatment_time:]))
placebo_effects.append(placebo_effect)
except:
continue
# p-value: proportion of placebos with larger effect
placebo_effects = np.array(placebo_effects)
p_value = np.mean(placebo_effects >= actual_effect)
return p_value
class DifferenceinDifferences:
"""
Difference-in-Differences (DiD) Estimation
Compares changes over time between treatment and control groups.
Model:
Y_it = β_0 + β_1 * Treated_i + β_2 * Post_t + β_3 * (Treated_i × Post_t) + ε_it
where β_3 is the DiD estimate (Average Treatment effect on Treated).
Key assumption: Parallel trends (treatment and control would have
followed same trend absent treatment).
Example:
>>> # Effect of regime change in country A
>>> did = DifferenceinDifferences()
>>> result = did.estimate(
... treated_pre=country_a_gdp_before,
... treated_post=country_a_gdp_after,
... control_pre=neighbors_gdp_before,
... control_post=neighbors_gdp_after
... )
>>> print(f"ATT: {result.att:.3f} (p={result.p_value:.3f})")
"""
def estimate(self, treated_pre: np.ndarray, treated_post: np.ndarray,
control_pre: np.ndarray, control_post: np.ndarray,
cluster_robust: bool = False) -> DIDResult:
"""
Estimate DiD effect.
Args:
treated_pre: Treated group pre-treatment, shape (n_treated,)
treated_post: Treated group post-treatment, shape (n_treated,)
control_pre: Control group pre-treatment, shape (n_control,)
control_post: Control group post-treatment, shape (n_control,)
cluster_robust: Use cluster-robust standard errors
Returns:
DIDResult with ATT estimate
"""
# Convert to arrays
treated_pre = np.asarray(treated_pre)
treated_post = np.asarray(treated_post)
control_pre = np.asarray(control_pre)
control_post = np.asarray(control_post)
# Sample sizes
n_treated = len(treated_pre)
n_control = len(control_pre)
# Mean outcomes
y_treated_pre = np.mean(treated_pre)
y_treated_post = np.mean(treated_post)
y_control_pre = np.mean(control_pre)
y_control_post = np.mean(control_post)
# DiD estimate
diff_treated = y_treated_post - y_treated_pre
diff_control = y_control_post - y_control_pre
att = diff_treated - diff_control
# Standard error (assuming homoskedasticity)
var_treated_pre = np.var(treated_pre, ddof=1)
var_treated_post = np.var(treated_post, ddof=1)
var_control_pre = np.var(control_pre, ddof=1)
var_control_post = np.var(control_post, ddof=1)
se = np.sqrt(
var_treated_post / n_treated +
var_treated_pre / n_treated +
var_control_post / n_control +
var_control_pre / n_control
)
# Test statistic
t_stat = att / se
p_value = 2 * (1 - stats.t.cdf(np.abs(t_stat), df=n_treated + n_control - 2))
return DIDResult(
att=att,
se=se,
t_stat=t_stat,
p_value=p_value,
pre_treatment_diff=y_treated_pre - y_control_pre,
post_treatment_diff=y_treated_post - y_control_post,
n_treated=n_treated,
n_control=n_control
)
def panel_did(self, panel_data: np.ndarray, treatment_indicator: np.ndarray,
time_indicator: np.ndarray, unit_ids: np.ndarray) -> DIDResult:
"""
Estimate DiD with panel data and fixed effects.
Model:
Y_it = α_i + γ_t + δ * (Treatment_i × Post_t) + ε_it
Args:
panel_data: Outcome variable, shape (N*T,)
treatment_indicator: 1 if unit is treated, 0 otherwise, shape (N*T,)
time_indicator: 1 if post-treatment, 0 if pre, shape (N*T,)
unit_ids: Unit identifiers, shape (N*T,)
Returns:
DIDResult
"""
# Create interaction term
did_term = treatment_indicator * time_indicator
# Demean for fixed effects (within transformation)
n_obs = len(panel_data)
unique_units = np.unique(unit_ids)
unique_times = np.unique(time_indicator)
# Demean by unit (removes α_i)
y_demeaned = np.zeros(n_obs)
did_demeaned = np.zeros(n_obs)
for unit in unique_units:
mask = unit_ids == unit
y_demeaned[mask] = panel_data[mask] - np.mean(panel_data[mask])
did_demeaned[mask] = did_term[mask] - np.mean(did_term[mask])
# Regression: y_demeaned ~ did_demeaned (absorbs time FE implicitly)
# Simple OLS
att = np.sum(did_demeaned * y_demeaned) / np.sum(did_demeaned ** 2)
# Standard error
residuals = y_demeaned - att * did_demeaned
rss = np.sum(residuals ** 2)
se = np.sqrt(rss / (n_obs - 2) / np.sum(did_demeaned ** 2))
t_stat = att / se
p_value = 2 * (1 - stats.t.cdf(np.abs(t_stat), df=n_obs - 2))
n_treated = np.sum(treatment_indicator > 0)
n_control = n_obs - n_treated
return DIDResult(
att=att,
se=se,
t_stat=t_stat,
p_value=p_value,
pre_treatment_diff=0.0, # Not directly computed
post_treatment_diff=0.0,
n_treated=n_treated,
n_control=n_control
)
class RegressionDiscontinuity:
"""
Regression Discontinuity Design (RDD)
Estimates treatment effects when treatment assignment is determined
by whether a running variable crosses a threshold.
Sharp RDD: Treatment deterministically assigned at cutoff
Fuzzy RDD: Probability of treatment jumps at cutoff
Example: Effect of election victory on policy outcomes
- Running variable: Vote margin
- Cutoff: 50%
- Treatment: Winning election
Example:
>>> # Effect of election victory on military spending
>>> rdd = RegressionDiscontinuity(cutoff=0.5) # 50% vote share
>>> result = rdd.estimate_sharp(
... running_var=vote_share, # Vote percentage
... outcome=military_spending,
... bandwidth=0.1 # 10% bandwidth
... )
"""
def __init__(self, cutoff: float = 0.0):
"""
Initialize RDD.
Args:
cutoff: Threshold value for treatment assignment
"""
self.cutoff = cutoff
def estimate_sharp(self, running_var: np.ndarray, outcome: np.ndarray,
bandwidth: Optional[float] = None,
kernel: str = 'triangular',
polynomial_order: int = 1) -> RDDResult:
"""
Estimate sharp RDD effect.
Args:
running_var: Running variable (e.g., vote share)
outcome: Outcome variable
bandwidth: Bandwidth around cutoff (if None, use data-driven selection)
kernel: Weighting kernel ('triangular', 'uniform', 'epanechnikov')
polynomial_order: Order of local polynomial
Returns:
RDDResult with treatment effect estimate
"""
running_var = np.asarray(running_var)
outcome = np.asarray(outcome)
# Center running variable at cutoff
X = running_var - self.cutoff
# Select bandwidth if not provided
if bandwidth is None:
bandwidth = self._select_bandwidth(X, outcome)
# Restrict to bandwidth
in_bandwidth = np.abs(X) <= bandwidth
X_bw = X[in_bandwidth]
Y_bw = outcome[in_bandwidth]
# Treatment indicator (above cutoff)
D = (X_bw >= 0).astype(float)
# Create weights
weights = self._kernel_weights(X_bw, bandwidth, kernel)
# Fit local polynomial separately on each side
# Model: Y = α + β*D + γ*X + δ*(D*X) + higher order terms
# Design matrix
Z = np.column_stack([
np.ones(len(X_bw)), # Intercept
D, # Treatment
X_bw, # Running variable
D * X_bw # Interaction
])
# Weighted least squares
W = np.diag(weights)
try:
beta = np.linalg.solve(Z.T @ W @ Z, Z.T @ W @ Y_bw)
except np.linalg.LinAlgError:
beta = np.linalg.lstsq(Z.T @ W @ Z, Z.T @ W @ Y_bw, rcond=None)[0]
# Treatment effect is coefficient on D
treatment_effect = beta[1]
# Standard error (heteroskedasticity-robust)
residuals = Y_bw - Z @ beta
meat = Z.T @ W @ np.diag(residuals ** 2) @ W @ Z
bread_inv = np.linalg.inv(Z.T @ W @ Z)
vcov = bread_inv @ meat @ bread_inv
se = np.sqrt(vcov[1, 1])
# Test statistic
t_stat = treatment_effect / se
n_left = np.sum(X_bw < 0)
n_right = np.sum(X_bw >= 0)
df = len(X_bw) - Z.shape[1]
p_value = 2 * (1 - stats.t.cdf(np.abs(t_stat), df=df))
return RDDResult(
treatment_effect=treatment_effect,
se=se,
t_stat=t_stat,
p_value=p_value,
bandwidth=bandwidth,
n_left=n_left,
n_right=n_right
)
def _select_bandwidth(self, X: np.ndarray, Y: np.ndarray) -> float:
"""
Select bandwidth using Imbens-Kalyanaraman method (simplified).
Args:
X: Centered running variable
Y: Outcome
Returns:
Optimal bandwidth
"""
# Simplified: use rule of thumb
# h = C * σ * n^{-1/5}
sigma = np.std(Y)
n = len(Y)
bandwidth = 1.06 * sigma * (n ** (-1 / 5))
# Ensure reasonable range
bandwidth = np.clip(bandwidth, 0.1 * np.std(X), 2.0 * np.std(X))
return bandwidth
def _kernel_weights(self, X: np.ndarray, bandwidth: float, kernel: str) -> np.ndarray:
"""Compute kernel weights."""
u = X / bandwidth
if kernel == 'triangular':
weights = np.maximum(1 - np.abs(u), 0)
elif kernel == 'uniform':
weights = (np.abs(u) <= 1).astype(float)
elif kernel == 'epanechnikov':
weights = np.maximum(0.75 * (1 - u ** 2), 0)
else:
weights = np.ones(len(X))
return weights
class InstrumentalVariables:
"""
Instrumental Variables (IV) Estimation
Addresses endogeneity (omitted variable bias, reverse causality)
using exogenous variation from an instrument.
Model:
Y = β_0 + β_1 * X + ε (Structural equation)
X = γ_0 + γ_1 * Z + η (First stage)
where:
- X: Endogenous variable
- Z: Instrument (exogenous, correlated with X, affects Y only through X)
- β_1: Causal effect of X on Y
Estimation: Two-Stage Least Squares (2SLS)
Example:
>>> # Effect of trade on conflict (trade is endogenous)
>>> # Instrument: Geographic distance to major ports
>>> iv = InstrumentalVariables()
>>> result = iv.estimate_2sls(
... outcome=conflict_intensity,
... endogenous=trade_volume,
... instrument=distance_to_port,
... exogenous_controls=other_covariates
... )
>>> print(f"IV estimate: {result.beta_iv[0]:.3f}")
>>> print(f"First stage F: {result.first_stage_f:.1f}")
"""
def estimate_2sls(self, outcome: np.ndarray, endogenous: np.ndarray,
instrument: np.ndarray,
exogenous_controls: Optional[np.ndarray] = None) -> IVResult:
"""
Two-Stage Least Squares estimation.
Args:
outcome: Dependent variable Y, shape (n,)
endogenous: Endogenous variable X, shape (n,) or (n, k)
instrument: Instrument Z, shape (n,) or (n, m)
exogenous_controls: Additional exogenous controls, shape (n, p)
Returns:
IVResult with IV estimates
"""
outcome = np.asarray(outcome).reshape(-1, 1)
endogenous = np.atleast_2d(endogenous)
if endogenous.ndim == 1:
endogenous = endogenous.reshape(-1, 1)
instrument = np.atleast_2d(instrument)
if instrument.ndim == 1:
instrument = instrument.reshape(-1, 1)
n = len(outcome)
# Construct design matrices
if exogenous_controls is not None:
exogenous_controls = np.atleast_2d(exogenous_controls)
W = np.column_stack([np.ones((n, 1)), exogenous_controls])
else:
W = np.ones((n, 1))
# Full instrument matrix: [W, Z]
Z_full = np.column_stack([W, instrument])
# STAGE 1: Regress endogenous on instruments
# X = Z_full @ γ + residuals
first_stage_coef = np.linalg.lstsq(Z_full, endogenous, rcond=None)[0]
X_hat = Z_full @ first_stage_coef # Fitted values
# First stage F-statistic
residuals_first = endogenous - X_hat
rss_first = np.sum(residuals_first ** 2, axis=0)
tss_first = np.sum((endogenous - np.mean(endogenous, axis=0)) ** 2, axis=0)
r_squared_first = 1 - rss_first / tss_first
k_instruments = instrument.shape[1]
k_exogenous = W.shape[1]
first_stage_f = (r_squared_first / k_instruments) / ((1 - r_squared_first) / (n - k_exogenous - k_instruments))
first_stage_f = float(np.mean(first_stage_f)) # Average if multiple endogenous
# STAGE 2: Regress Y on X_hat and W
X_full = np.column_stack([W, X_hat])
beta_iv = np.linalg.lstsq(X_full, outcome, rcond=None)[0]
# Standard errors (2SLS requires special formula)
Y_hat = X_full @ beta_iv
residuals_second = outcome - Y_hat
sigma_sq = np.sum(residuals_second ** 2) / (n - X_full.shape[1])
# Variance: σ^2 (X_hat' X_hat)^{-1}
vcov = sigma_sq * np.linalg.inv(X_full.T @ X_full)
se_iv = np.sqrt(np.diag(vcov)).reshape(-1, 1)
# OLS for comparison (biased but often smaller SE)
X_full_ols = np.column_stack([W, endogenous])
beta_ols = np.linalg.lstsq(X_full_ols, outcome, rcond=None)[0]
# Weak instrument warning
weak_instrument = first_stage_f < 10
return IVResult(
beta_iv=beta_iv[k_exogenous:, 0], # Exclude intercept/controls
beta_ols=beta_ols[k_exogenous:, 0],
se_iv=se_iv[k_exogenous:, 0],
first_stage_f=first_stage_f,
weak_instrument=weak_instrument
)
def estimate_treatment_effect_bounds(outcome_treated: np.ndarray,
outcome_control: np.ndarray,
selection_probability: float = 0.5) -> Tuple[float, float]:
"""
Estimate bounds on treatment effect under selection on unobservables.
When treatment assignment is not random, the true effect lies within bounds.
This implements Manski bounds (worst-case bounds).
Args:
outcome_treated: Outcomes for treated group
outcome_control: Outcomes for control group
selection_probability: P(Treatment | unobservables)
Returns:
(lower_bound, upper_bound) on average treatment effect
"""
# Observed means
y_treated = np.mean(outcome_treated)
y_control = np.mean(outcome_control)
# Range of outcomes
y_min = min(np.min(outcome_treated), np.min(outcome_control))
y_max = max(np.max(outcome_treated), np.max(outcome_control))
# Worst-case bounds
# Lower bound: assume best outcomes for control in unobserved potential outcomes
lower_bound = y_treated - y_max
# Upper bound: assume worst outcomes for control in unobserved potential outcomes
upper_bound = y_treated - y_min
return (lower_bound, upper_bound)
|