File size: 7,300 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""
Hawkes Process Wrapper for GeoBotv1

Provides convenient access to Hawkes processes for conflict dynamics
and event contagion modeling. This module re-exports functionality from
geobot.timeseries.point_processes for easier discoverability.

Hawkes processes are self-exciting point processes that model how
events cluster in time and how they can trigger subsequent events,
making them ideal for modeling:
- Conflict escalation dynamics
- Contagion between countries/regions
- Cascading geopolitical events
"""

# Import from timeseries.point_processes
from ..timeseries.point_processes import (
    UnivariateHawkesProcess,
    MultivariateHawkesProcess,
    ConflictContagionModel,
    HawkesParameters,
    HawkesFitResult,
    estimate_branching_ratio,
    detect_explosive_regime
)

__all__ = [
    "UnivariateHawkesProcess",
    "MultivariateHawkesProcess",
    "ConflictContagionModel",
    "HawkesParameters",
    "HawkesFitResult",
    "estimate_branching_ratio",
    "detect_explosive_regime",
    "HawkesSimulator",  # Additional convenience class below
]


class HawkesSimulator:
    """
    High-level interface for Hawkes process simulation.

    Provides simplified API for common Hawkes process use cases
    in geopolitical modeling.
    """

    def __init__(self, n_dimensions: int = 1):
        """
        Initialize Hawkes simulator.

        Parameters
        ----------
        n_dimensions : int
            Number of dimensions (countries, regions, etc.)
        """
        self.n_dimensions = n_dimensions

        if n_dimensions == 1:
            self.process = UnivariateHawkesProcess()
        else:
            self.process = MultivariateHawkesProcess(n_dimensions=n_dimensions)

    def fit(self, events, T: float = None, **kwargs):
        """
        Fit Hawkes process to event data.

        Parameters
        ----------
        events : Union[np.ndarray, Dict[str, np.ndarray], List[np.ndarray]]
            Event times
        T : float
            Observation window
        **kwargs
            Additional arguments passed to fit method

        Returns
        -------
        HawkesFitResult
            Fit results
        """
        return self.process.fit(events, T=T, **kwargs)

    def simulate(
        self,
        T: float,
        params: HawkesParameters,
        random_state: int = None,
        **kwargs
    ):
        """
        Simulate Hawkes process.

        Parameters
        ----------
        T : float
            Simulation time horizon
        params : HawkesParameters
            Process parameters
        random_state : int
            Random seed
        **kwargs
            Additional arguments

        Returns
        -------
        Union[np.ndarray, List[np.ndarray]]
            Simulated event times
        """
        return self.process.simulate(T, params, random_state=random_state, **kwargs)

    def predict_intensity(self, events, t: float, params: HawkesParameters):
        """
        Predict intensity at time t given past events.

        Parameters
        ----------
        events : Union[np.ndarray, List[np.ndarray]]
            Past event times
        t : float
            Time at which to predict
        params : HawkesParameters
            Process parameters

        Returns
        -------
        Union[float, np.ndarray]
            Predicted intensity
        """
        return self.process.intensity(events, t, params)

    def assess_stability(self, params: HawkesParameters) -> dict:
        """
        Assess stability of Hawkes process.

        Parameters
        ----------
        params : HawkesParameters
            Process parameters

        Returns
        -------
        dict
            Stability assessment with branching ratio and regime
        """
        branching_ratio = estimate_branching_ratio(params)
        is_explosive = detect_explosive_regime(params)

        return {
            'branching_ratio': branching_ratio,
            'is_explosive': is_explosive,
            'is_stable': branching_ratio < 1.0,
            'regime': 'supercritical (explosive)' if is_explosive else 'subcritical (stable)',
            'interpretation': (
                'Process is stable - events will not cascade indefinitely'
                if branching_ratio < 1.0
                else 'Process is explosive - events can trigger cascading escalation'
            )
        }


# ============================================================================
# Convenience Functions
# ============================================================================

def quick_conflict_contagion_analysis(
    events_by_country: dict,
    T: float,
    country_names: list = None
) -> dict:
    """
    Quick analysis of conflict contagion between countries.

    Parameters
    ----------
    events_by_country : dict
        Dictionary mapping country names to event times
    T : float
        Observation window
    country_names : list
        List of country names (if None, use dict keys)

    Returns
    -------
    dict
        Contagion analysis results
    """
    if country_names is None:
        country_names = list(events_by_country.keys())

    model = ConflictContagionModel(countries=country_names)
    result = model.fit(events_by_country, T=T)

    return {
        'fit_result': result,
        'most_contagious': result['most_contagious_source'],
        'most_vulnerable': result['most_vulnerable_target'],
        'total_events': {
            country: len(events_by_country[country])
            for country in country_names
        },
        'contagion_matrix': result['alpha_matrix'],
        'baseline_rates': result['mu'],
        'branching_ratio': estimate_branching_ratio(result['parameters']),
    }


def simulate_conflict_scenario(
    n_countries: int,
    baseline_rates: list,
    contagion_strength: float,
    T: float,
    random_state: int = None
) -> dict:
    """
    Simulate conflict scenario with specified parameters.

    Parameters
    ----------
    n_countries : int
        Number of countries
    baseline_rates : list
        Baseline conflict rates for each country
    contagion_strength : float
        Strength of cross-country contagion
    T : float
        Simulation horizon
    random_state : int
        Random seed

    Returns
    -------
    dict
        Simulation results
    """
    import numpy as np

    # Create contagion matrix
    alpha_matrix = np.full((n_countries, n_countries), contagion_strength)
    np.fill_diagonal(alpha_matrix, contagion_strength * 1.5)  # Self-excitation stronger

    # Create parameters
    params = HawkesParameters(
        mu=np.array(baseline_rates),
        alpha=alpha_matrix,
        beta=np.ones((n_countries, n_countries)) * 2.0  # Decay rate
    )

    # Simulate
    simulator = HawkesSimulator(n_dimensions=n_countries)
    events = simulator.simulate(T, params, random_state=random_state)

    # Assess stability
    stability = simulator.assess_stability(params)

    return {
        'events': events,
        'parameters': params,
        'stability': stability,
        'event_counts': [len(e) for e in events],
        'total_events': sum(len(e) for e in events),
        'average_rate': sum(len(e) for e in events) / T / n_countries,
    }