File size: 17,249 Bytes
484e3bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
"""
Monte Carlo Simulation Engine

Stochastic simulation for geopolitical forecasting with support for:
- Monte Carlo over causal graphs
- Agent-based Monte Carlo
- Stochastic war-gaming simulations
- Shock Monte Carlo (black swan simulation)

The more structural and stochastic your simulations, the more your engine
resembles a national-security world model.
"""

import numpy as np
import pandas as pd
from typing import Dict, List, Optional, Callable, Tuple, Any
from dataclasses import dataclass, field
from ..models.causal_graph import StructuralCausalModel
from ..core.scenario import Scenario, ScenarioDistribution


@dataclass
class SimulationConfig:
    """
    Configuration for Monte Carlo simulation.

    Attributes
    ----------
    n_simulations : int
        Number of Monte Carlo runs
    time_horizon : int
        Simulation time horizon
    random_seed : int
        Random seed for reproducibility
    parallel : bool
        Run simulations in parallel
    """
    n_simulations: int = 1000
    time_horizon: int = 100
    random_seed: Optional[int] = None
    parallel: bool = False


class MonteCarloEngine:
    """
    Monte Carlo simulation engine for geopolitical forecasting.

    Supports various types of stochastic simulation including:
    - Basic Monte Carlo
    - Causal graph-based simulation
    - Shock simulation
    - Path-dependent simulation
    """

    def __init__(self, config: Optional[SimulationConfig] = None):
        """
        Initialize Monte Carlo engine.

        Parameters
        ----------
        config : SimulationConfig, optional
            Simulation configuration
        """
        self.config = config or SimulationConfig()
        if self.config.random_seed is not None:
            np.random.seed(self.config.random_seed)

    def run_basic_simulation(
        self,
        initial_state: Dict[str, float],
        transition_fn: Callable,
        noise_fn: Optional[Callable] = None
    ) -> List[Dict[str, np.ndarray]]:
        """
        Run basic Monte Carlo simulation.

        Parameters
        ----------
        initial_state : dict
            Initial state of the system
        transition_fn : callable
            State transition function
            Signature: f(state, t, noise) -> new_state
        noise_fn : callable, optional
            Noise generation function
            Signature: f(t) -> noise_dict

        Returns
        -------
        list
            List of simulation trajectories
        """
        trajectories = []

        for sim in range(self.config.n_simulations):
            trajectory = {var: np.zeros(self.config.time_horizon) for var in initial_state}

            # Initialize
            state = initial_state.copy()
            for var, val in state.items():
                trajectory[var][0] = val

            # Simulate forward
            for t in range(1, self.config.time_horizon):
                # Generate noise
                noise = noise_fn(t) if noise_fn else {}

                # Transition
                state = transition_fn(state, t, noise)

                # Record
                for var, val in state.items():
                    trajectory[var][t] = val

            trajectories.append(trajectory)

        return trajectories

    def run_causal_simulation(
        self,
        scm: StructuralCausalModel,
        initial_conditions: Optional[Dict[str, float]] = None,
        interventions: Optional[Dict[str, Dict[str, float]]] = None
    ) -> ScenarioDistribution:
        """
        Run Monte Carlo simulation over causal graph.

        Parameters
        ----------
        scm : StructuralCausalModel
            Structural causal model
        initial_conditions : dict, optional
            Initial conditions for some variables
        interventions : dict, optional
            Time-dependent interventions {time: {var: value}}

        Returns
        -------
        ScenarioDistribution
            Distribution of simulated scenarios
        """
        scenarios = []

        for sim in range(self.config.n_simulations):
            scenario_features = {}

            for t in range(self.config.time_horizon):
                # Get interventions at this time
                interv = interventions.get(t, {}) if interventions else {}

                # Sample from SCM
                samples = scm.sample(n_samples=1, interventions=interv)

                # Store
                for var, val in samples.items():
                    if var not in scenario_features:
                        scenario_features[var] = []
                    scenario_features[var].append(val[0])

            # Convert to arrays
            scenario_features = {k: np.array(v) for k, v in scenario_features.items()}

            # Create scenario
            scenario = Scenario(
                name=f"sim_{sim}",
                features=scenario_features,
                probability=1.0 / self.config.n_simulations
            )
            scenarios.append(scenario)

        return ScenarioDistribution(scenarios)

    def run_path_dependent_simulation(
        self,
        initial_state: Dict[str, float],
        transition_fn: Callable,
        decision_points: List[int],
        decision_fn: Callable
    ) -> Dict[str, Any]:
        """
        Run path-dependent simulation with decision points.

        This is useful for war-gaming and strategic scenarios where
        decisions depend on the current state.

        Parameters
        ----------
        initial_state : dict
            Initial state
        transition_fn : callable
            State transition function
        decision_points : list
            Time steps where decisions are made
        decision_fn : callable
            Decision function
            Signature: f(state, t) -> decision_dict

        Returns
        -------
        dict
            Simulation results with decision branches
        """
        trajectories = []
        decisions = []

        for sim in range(self.config.n_simulations):
            trajectory = {var: np.zeros(self.config.time_horizon) for var in initial_state}
            sim_decisions = []

            state = initial_state.copy()
            for var, val in state.items():
                trajectory[var][0] = val

            for t in range(1, self.config.time_horizon):
                # Check for decision point
                if t in decision_points:
                    decision = decision_fn(state, t)
                    sim_decisions.append((t, decision))
                    # Apply decision effects
                    for var, change in decision.items():
                        state[var] = state.get(var, 0) + change

                # Transition
                noise = {var: np.random.normal(0, 0.1) for var in state}
                state = transition_fn(state, t, noise)

                # Record
                for var, val in state.items():
                    trajectory[var][t] = val

            trajectories.append(trajectory)
            decisions.append(sim_decisions)

        return {
            'trajectories': trajectories,
            'decisions': decisions
        }

    def compute_statistics(
        self,
        trajectories: List[Dict[str, np.ndarray]]
    ) -> Dict[str, Dict[str, np.ndarray]]:
        """
        Compute statistics across Monte Carlo trajectories.

        Parameters
        ----------
        trajectories : list
            List of simulation trajectories

        Returns
        -------
        dict
            Statistics for each variable
        """
        if len(trajectories) == 0:
            return {}

        variables = list(trajectories[0].keys())
        stats = {}

        for var in variables:
            # Stack trajectories
            data = np.array([traj[var] for traj in trajectories])

            stats[var] = {
                'mean': np.mean(data, axis=0),
                'median': np.median(data, axis=0),
                'std': np.std(data, axis=0),
                'q5': np.percentile(data, 5, axis=0),
                'q25': np.percentile(data, 25, axis=0),
                'q75': np.percentile(data, 75, axis=0),
                'q95': np.percentile(data, 95, axis=0),
                'min': np.min(data, axis=0),
                'max': np.max(data, axis=0)
            }

        return stats

    def analyze_convergence(
        self,
        trajectories: List[Dict[str, np.ndarray]],
        variable: str
    ) -> Dict[str, Any]:
        """
        Analyze convergence of Monte Carlo simulation.

        Parameters
        ----------
        trajectories : list
            Simulation trajectories
        variable : str
            Variable to analyze

        Returns
        -------
        dict
            Convergence metrics
        """
        data = np.array([traj[variable] for traj in trajectories])

        # Compute running mean
        n_sims = len(trajectories)
        running_means = []

        for n in range(10, n_sims, 10):
            running_means.append(np.mean(data[:n], axis=0))

        # Compute standard error
        se = np.std(data, axis=0) / np.sqrt(n_sims)

        return {
            'running_means': running_means,
            'standard_error': se,
            'converged': np.all(se < 0.01)  # Arbitrary threshold
        }


class ShockSimulator:
    """
    Simulate black swan events and shocks in geopolitical scenarios.

    This class specializes in modeling rare, high-impact events
    that are critical for risk assessment.
    """

    def __init__(self, mc_engine: Optional[MonteCarloEngine] = None):
        """
        Initialize shock simulator.

        Parameters
        ----------
        mc_engine : MonteCarloEngine, optional
            Monte Carlo engine to use
        """
        self.mc_engine = mc_engine or MonteCarloEngine()

    def generate_shock_scenarios(
        self,
        baseline_scenario: Dict[str, float],
        shock_types: List[Dict[str, Any]],
        shock_probabilities: List[float]
    ) -> ScenarioDistribution:
        """
        Generate scenarios including shock events.

        Parameters
        ----------
        baseline_scenario : dict
            Baseline scenario without shocks
        shock_types : list
            List of shock specifications
        shock_probabilities : list
            Probability of each shock type

        Returns
        -------
        ScenarioDistribution
            Distribution including shock scenarios
        """
        scenarios = []

        for sim in range(self.mc_engine.config.n_simulations):
            # Check if shock occurs
            shock_occurred = np.random.random() < sum(shock_probabilities)

            if shock_occurred:
                # Sample shock type
                shock_idx = np.random.choice(len(shock_types), p=np.array(shock_probabilities) / sum(shock_probabilities))
                shock = shock_types[shock_idx]

                # Apply shock
                scenario_state = baseline_scenario.copy()
                for var, impact in shock['impacts'].items():
                    scenario_state[var] = scenario_state.get(var, 0) + impact

                prob = shock_probabilities[shock_idx]
            else:
                scenario_state = baseline_scenario.copy()
                prob = 1.0 - sum(shock_probabilities)

            # Create scenario
            scenario = Scenario(
                name=f"shock_sim_{sim}",
                features={k: np.array([v]) for k, v in scenario_state.items()},
                probability=prob / self.mc_engine.config.n_simulations
            )
            scenarios.append(scenario)

        return ScenarioDistribution(scenarios)

    def simulate_cascading_failure(
        self,
        initial_failure: str,
        dependency_graph: Dict[str, List[str]],
        failure_probabilities: Dict[str, float],
        n_simulations: int = 1000
    ) -> Dict[str, Any]:
        """
        Simulate cascading failures in interconnected systems.

        Parameters
        ----------
        initial_failure : str
            Initial component that fails
        dependency_graph : dict
            Dependency relationships {component: [dependent_components]}
        failure_probabilities : dict
            Conditional failure probabilities
        n_simulations : int
            Number of simulations

        Returns
        -------
        dict
            Cascading failure analysis
        """
        cascade_results = []

        for _ in range(n_simulations):
            failed = {initial_failure}
            newly_failed = {initial_failure}

            # Simulate cascade
            max_iterations = 100
            for iteration in range(max_iterations):
                if len(newly_failed) == 0:
                    break

                current_newly_failed = set()

                for failed_component in newly_failed:
                    # Get dependent components
                    dependents = dependency_graph.get(failed_component, [])

                    for dependent in dependents:
                        if dependent not in failed:
                            # Check if it fails
                            p_fail = failure_probabilities.get(dependent, 0.5)
                            if np.random.random() < p_fail:
                                current_newly_failed.add(dependent)
                                failed.add(dependent)

                newly_failed = current_newly_failed

            cascade_results.append({
                'total_failures': len(failed),
                'failed_components': failed,
                'iterations': iteration + 1
            })

        return {
            'simulations': cascade_results,
            'mean_failures': np.mean([r['total_failures'] for r in cascade_results]),
            'max_failures': max([r['total_failures'] for r in cascade_results]),
            'failure_probability': {
                comp: np.mean([comp in r['failed_components'] for r in cascade_results])
                for comp in set().union(*[r['failed_components'] for r in cascade_results])
            }
        }

    def simulate_tail_risk(
        self,
        distribution: Callable,
        threshold: float,
        n_samples: int = 100000
    ) -> Dict[str, float]:
        """
        Simulate and analyze tail risk.

        Parameters
        ----------
        distribution : callable
            Distribution to sample from
        threshold : float
            Threshold for tail event
        n_samples : int
            Number of samples

        Returns
        -------
        dict
            Tail risk metrics
        """
        samples = distribution(n_samples)

        # Compute tail metrics
        exceed_threshold = samples > threshold
        tail_probability = np.mean(exceed_threshold)

        if tail_probability > 0:
            tail_samples = samples[exceed_threshold]
            conditional_mean = np.mean(tail_samples)
            conditional_std = np.std(tail_samples)
        else:
            conditional_mean = None
            conditional_std = None

        return {
            'tail_probability': tail_probability,
            'var_95': np.percentile(samples, 95),
            'var_99': np.percentile(samples, 99),
            'cvar_95': np.mean(samples[samples > np.percentile(samples, 95)]),
            'cvar_99': np.mean(samples[samples > np.percentile(samples, 99)]),
            'conditional_mean': conditional_mean,
            'conditional_std': conditional_std,
            'max_loss': np.max(samples)
        }

    def stress_test(
        self,
        baseline_state: Dict[str, float],
        transition_fn: Callable,
        stress_scenarios: List[Dict[str, float]],
        time_horizon: int = 50
    ) -> Dict[str, Any]:
        """
        Perform stress testing under extreme scenarios.

        Parameters
        ----------
        baseline_state : dict
            Baseline state
        transition_fn : callable
            State transition function
        stress_scenarios : list
            List of stress scenarios to test
        time_horizon : int
            Simulation horizon

        Returns
        -------
        dict
            Stress test results
        """
        results = {}

        for i, stress in enumerate(stress_scenarios):
            # Simulate under stress
            state = baseline_state.copy()

            # Apply stress shock at t=0
            for var, shock in stress.items():
                state[var] = state.get(var, 0) + shock

            # Simulate forward
            trajectory = {var: [val] for var, val in state.items()}

            for t in range(1, time_horizon):
                noise = {var: np.random.normal(0, 0.05) for var in state}
                state = transition_fn(state, t, noise)

                for var, val in state.items():
                    trajectory[var].append(val)

            results[f'stress_{i}'] = {
                'scenario': stress,
                'trajectory': trajectory,
                'final_state': {var: vals[-1] for var, vals in trajectory.items()}
            }

        return results