File size: 22,435 Bytes
484e3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
"""
Hawkes Processes and Point Process Models for Conflict Modeling
Hawkes processes are self-exciting point processes where past events increase
the probability of future events. Critical for modeling:
- Conflict contagion and escalation dynamics
- Terrorist attack clustering
- Diplomatic incident cascades
- Arms race dynamics
- Protest contagion
Mathematical foundation:
λ(t) = μ + ∫_{-∞}^t φ(t - s) dN(s)
where:
- λ(t): instantaneous event rate (intensity)
- μ: baseline rate
- φ(t): excitation kernel (how past events affect current rate)
- N(s): counting process of past events
Key concepts:
- Branching ratio: Expected number of offspring events per parent
- If branching ratio < 1: process is stable (subcritical)
- If branching ratio ≥ 1: process is explosive (supercritical)
"""
import numpy as np
from scipy import optimize, stats, integrate
from typing import List, Tuple, Optional, Callable, Dict
from dataclasses import dataclass
import warnings
@dataclass
class HawkesParameters:
"""Parameters for a Hawkes process."""
mu: float # Baseline intensity
alpha: float # Excitation amplitude
beta: float # Decay rate
@property
def branching_ratio(self) -> float:
"""Expected number of offspring per event."""
return self.alpha / self.beta
@property
def is_stable(self) -> bool:
"""Check if process is subcritical (stable)."""
return self.branching_ratio < 1.0
@dataclass
class HawkesFitResult:
"""Results from fitting a Hawkes process."""
params: HawkesParameters
log_likelihood: float
aic: float
bic: float
n_events: int
time_span: float
intensity_trace: Optional[np.ndarray] = None
times: Optional[np.ndarray] = None
class UnivariateHawkesProcess:
"""
Univariate (1-dimensional) Hawkes Process.
Intensity function:
λ(t) = μ + α ∑_{t_i < t} exp(-β(t - t_i))
This is a self-exciting process where each event increases future intensity.
Example:
>>> hawkes = UnivariateHawkesProcess()
>>> events = hawkes.simulate(mu=0.5, alpha=0.8, beta=1.5, T=100.0)
>>> result = hawkes.fit(events, T=100.0)
>>> print(f"Branching ratio: {result.params.branching_ratio:.3f}")
>>> prediction = hawkes.predict_intensity(events, result.params, t=105.0)
"""
def __init__(self, kernel: str = 'exponential'):
"""
Initialize Hawkes process.
Args:
kernel: Excitation kernel type ('exponential', 'power_law')
"""
self.kernel = kernel
def simulate(self, mu: float, alpha: float, beta: float, T: float,
max_events: int = 10000) -> np.ndarray:
"""
Simulate Hawkes process using Ogata's thinning algorithm.
Args:
mu: Baseline intensity
alpha: Excitation amplitude
beta: Decay rate
T: Time horizon
max_events: Maximum number of events to generate
Returns:
Array of event times
"""
events = []
t = 0.0
lambda_star = mu # Upper bound on intensity
while t < T and len(events) < max_events:
# Generate candidate event
lambda_star = self._compute_intensity(t, events, mu, alpha, beta)
# Add safety margin
lambda_star = lambda_star * 1.1 + 0.01
# Draw inter-event time from exponential
u = np.random.uniform()
if lambda_star <= 0:
break
t = t - np.log(u) / lambda_star
if t > T:
break
# Acceptance-rejection
lambda_t = self._compute_intensity(t, events, mu, alpha, beta)
D = np.random.uniform()
if D * lambda_star <= lambda_t:
events.append(t)
return np.array(events)
def fit(self, events: np.ndarray, T: float,
initial_guess: Optional[Tuple[float, float, float]] = None) -> HawkesFitResult:
"""
Fit Hawkes process parameters using maximum likelihood.
Args:
events: Array of event times
T: Time horizon (observation period end)
initial_guess: Initial parameter guess (mu, alpha, beta)
Returns:
HawkesFitResult with estimated parameters
"""
events = np.asarray(events)
events = np.sort(events)
n_events = len(events)
if initial_guess is None:
# Initialize with reasonable defaults
mu_init = n_events / T # Average rate
alpha_init = mu_init * 0.5 # Conservative excitation
beta_init = 1.0
initial_guess = (mu_init, alpha_init, beta_init)
# Define negative log-likelihood
def neg_log_likelihood(params):
mu, alpha, beta = params
# Constrain to positive values
if mu <= 0 or alpha <= 0 or beta <= 0:
return 1e10
# Check stability
if alpha / beta >= 1.0:
return 1e10 # Penalize explosive processes
return -self._log_likelihood(events, T, mu, alpha, beta)
# Optimize
bounds = [(1e-6, None), (1e-6, None), (1e-6, None)]
result = optimize.minimize(
neg_log_likelihood,
x0=initial_guess,
method='L-BFGS-B',
bounds=bounds
)
if not result.success:
warnings.warn(f"Optimization did not converge: {result.message}")
mu_opt, alpha_opt, beta_opt = result.x
log_likelihood = -result.fun
# Compute information criteria
n_params = 3
aic = -2 * log_likelihood + 2 * n_params
bic = -2 * log_likelihood + np.log(n_events) * n_params
params = HawkesParameters(mu=mu_opt, alpha=alpha_opt, beta=beta_opt)
return HawkesFitResult(
params=params,
log_likelihood=log_likelihood,
aic=aic,
bic=bic,
n_events=n_events,
time_span=T
)
def predict_intensity(self, events: np.ndarray, params: HawkesParameters,
t: float) -> float:
"""
Predict intensity at time t given past events.
Args:
events: Past event times (must be < t)
params: Hawkes parameters
t: Time to predict intensity
Returns:
Intensity λ(t)
"""
return self._compute_intensity(t, events, params.mu, params.alpha, params.beta)
def _compute_intensity(self, t: float, events: List[float],
mu: float, alpha: float, beta: float) -> float:
"""Compute intensity at time t."""
if len(events) == 0:
return mu
events_array = np.asarray(events)
past_events = events_array[events_array < t]
if len(past_events) == 0:
return mu
# Exponential kernel
excitation = alpha * np.sum(np.exp(-beta * (t - past_events)))
return mu + excitation
def _log_likelihood(self, events: np.ndarray, T: float,
mu: float, alpha: float, beta: float) -> float:
"""
Compute log-likelihood for Hawkes process.
LL = ∑_i log(λ(t_i)) - ∫_0^T λ(s) ds
"""
n_events = len(events)
if n_events == 0:
return -mu * T
# First term: ∑ log(λ(t_i))
log_sum = 0.0
for i, t_i in enumerate(events):
lambda_i = self._compute_intensity(t_i, events[:i], mu, alpha, beta)
if lambda_i <= 0:
return -np.inf
log_sum += np.log(lambda_i)
# Second term: ∫_0^T λ(s) ds
# For exponential kernel, this has closed form:
# ∫_0^T λ(s) ds = μT + α ∑_i (1 - exp(-β(T - t_i))) / β
integral = mu * T
integral += alpha * np.sum(1 - np.exp(-beta * (T - events))) / beta
return log_sum - integral
class MultivariateHawkesProcess:
"""
Multivariate Hawkes Process for multiple interacting event streams.
For K event types, the intensity of type k is:
λ_k(t) = μ_k + ∑_{j=1}^K α_{kj} ∑_{t_i^j < t} φ_{kj}(t - t_i^j)
This captures cross-excitation between different event types.
Example: Conflict in country A affects conflict probability in country B.
Example:
>>> # Model 3 countries with mutual excitation
>>> hawkes = MultivariateHawkesProcess(n_dimensions=3)
>>> events = hawkes.simulate(
... mu=np.array([0.5, 0.3, 0.4]),
... alpha=np.array([[0.2, 0.1, 0.05],
... [0.15, 0.3, 0.1],
... [0.1, 0.1, 0.25]]),
... beta=np.ones((3, 3)),
... T=100.0
... )
>>> result = hawkes.fit(events, T=100.0)
"""
def __init__(self, n_dimensions: int, kernel: str = 'exponential'):
"""
Initialize multivariate Hawkes process.
Args:
n_dimensions: Number of event types (dimensions)
kernel: Excitation kernel type
"""
self.n_dimensions = n_dimensions
self.kernel = kernel
def simulate(self, mu: np.ndarray, alpha: np.ndarray, beta: np.ndarray,
T: float, max_events: int = 10000) -> List[List[float]]:
"""
Simulate multivariate Hawkes process.
Args:
mu: Baseline intensities, shape (K,)
alpha: Excitation matrix, shape (K, K)
alpha[i,j] = effect of event type j on type i
beta: Decay rates, shape (K, K)
T: Time horizon
max_events: Maximum total events
Returns:
List of event lists, one per dimension
"""
K = self.n_dimensions
events = [[] for _ in range(K)]
total_events = 0
t = 0.0
lambda_star = np.sum(mu) * 2 # Initial upper bound
while t < T and total_events < max_events:
# Compute current intensities
intensities = self._compute_intensities(t, events, mu, alpha, beta)
lambda_star = max(np.sum(intensities) * 1.5, 0.01)
# Generate candidate event
u = np.random.uniform()
t = t - np.log(u) / lambda_star
if t > T:
break
# Which process?
intensities_t = self._compute_intensities(t, events, mu, alpha, beta)
total_intensity = np.sum(intensities_t)
D = np.random.uniform()
if D * lambda_star <= total_intensity:
# Accept event, determine which dimension
probs = intensities_t / total_intensity
dimension = np.random.choice(K, p=probs)
events[dimension].append(t)
total_events += 1
return events
def fit(self, events: List[List[float]], T: float) -> Dict:
"""
Fit multivariate Hawkes process.
Args:
events: List of event lists, one per dimension
T: Time horizon
Returns:
Dictionary with estimated parameters
"""
K = self.n_dimensions
# Convert to arrays
events_arrays = [np.asarray(e) for e in events]
# Initialize parameters
n_events = [len(e) for e in events_arrays]
mu_init = np.array([n / T for n in n_events])
# Simple initialization: assume weak cross-excitation
alpha_init = np.zeros((K, K))
for i in range(K):
alpha_init[i, i] = mu_init[i] * 0.3 # Self-excitation
for j in range(K):
if i != j:
alpha_init[i, j] = mu_init[i] * 0.1 # Cross-excitation
beta_init = np.ones((K, K))
# Flatten parameters for optimization
def pack_params(mu, alpha, beta):
return np.concatenate([mu.flatten(), alpha.flatten(), beta.flatten()])
def unpack_params(x):
mu = x[:K]
alpha = x[K:K + K*K].reshape(K, K)
beta = x[K + K*K:].reshape(K, K)
return mu, alpha, beta
# Negative log-likelihood
def neg_log_likelihood(x):
mu, alpha, beta = unpack_params(x)
# Constraints
if np.any(mu <= 0) or np.any(alpha < 0) or np.any(beta <= 0):
return 1e10
# Stability check (approximate)
branching_ratios = alpha / beta
if np.max(np.linalg.eigvals(branching_ratios).real) >= 0.99:
return 1e10
return -self._log_likelihood(events_arrays, T, mu, alpha, beta)
# Optimize
x0 = pack_params(mu_init, alpha_init, beta_init)
bounds = [(1e-6, None)] * len(x0) # All positive
result = optimize.minimize(
neg_log_likelihood,
x0=x0,
method='L-BFGS-B',
bounds=bounds
)
mu_opt, alpha_opt, beta_opt = unpack_params(result.x)
log_likelihood = -result.fun
# Information criteria
n_params = len(x0)
total_events = sum(n_events)
aic = -2 * log_likelihood + 2 * n_params
bic = -2 * log_likelihood + np.log(total_events) * n_params
return {
'mu': mu_opt,
'alpha': alpha_opt,
'beta': beta_opt,
'branching_matrix': alpha_opt / beta_opt,
'spectral_radius': np.max(np.abs(np.linalg.eigvals(alpha_opt / beta_opt))),
'log_likelihood': log_likelihood,
'aic': aic,
'bic': bic,
'n_events': n_events,
'converged': result.success
}
def predict_intensities(self, events: List[List[float]],
mu: np.ndarray, alpha: np.ndarray, beta: np.ndarray,
t: float) -> np.ndarray:
"""
Predict intensities for all dimensions at time t.
Args:
events: Past events
mu, alpha, beta: Parameters
t: Time to predict
Returns:
Intensity vector, shape (K,)
"""
return self._compute_intensities(t, events, mu, alpha, beta)
def _compute_intensities(self, t: float, events: List[List[float]],
mu: np.ndarray, alpha: np.ndarray,
beta: np.ndarray) -> np.ndarray:
"""Compute intensity vector at time t."""
K = self.n_dimensions
intensities = mu.copy()
for k in range(K):
for j in range(K):
if len(events[j]) > 0:
events_j = np.asarray(events[j])
past_events = events_j[events_j < t]
if len(past_events) > 0:
excitation = alpha[k, j] * np.sum(
np.exp(-beta[k, j] * (t - past_events))
)
intensities[k] += excitation
return intensities
def _log_likelihood(self, events: List[np.ndarray], T: float,
mu: np.ndarray, alpha: np.ndarray,
beta: np.ndarray) -> float:
"""Compute log-likelihood for multivariate process."""
K = self.n_dimensions
log_sum = 0.0
# First term: ∑_k ∑_i log(λ_k(t_i^k))
for k in range(K):
if len(events[k]) == 0:
continue
for i, t_i in enumerate(events[k]):
# Need to compute λ_k(t_i) considering all past events
events_up_to_i = [[] for _ in range(K)]
for j in range(K):
events_up_to_i[j] = events[j][events[j] < t_i].tolist()
intensities = self._compute_intensities(t_i, events_up_to_i, mu, alpha, beta)
lambda_k = intensities[k]
if lambda_k <= 0:
return -np.inf
log_sum += np.log(lambda_k)
# Second term: -∫_0^T ∑_k λ_k(s) ds
integral = np.sum(mu) * T
for k in range(K):
for j in range(K):
if len(events[j]) > 0:
integral += alpha[k, j] * np.sum(
(1 - np.exp(-beta[k, j] * (T - events[j]))) / beta[k, j]
)
return log_sum - integral
class ConflictContagionModel:
"""
Specialized Hawkes model for geopolitical conflict contagion.
Features:
- Models both self-excitation (conflict escalation within a country)
- Models cross-excitation (conflict spreading between countries)
- Incorporates spatial/network structure
- Estimates contagion risk and early warning indicators
Example:
>>> countries = ['Syria', 'Iraq', 'Turkey']
>>> model = ConflictContagionModel(countries=countries)
>>>
>>> # Fit to historical conflict events
>>> events = {
... 'Syria': [1.2, 5.3, 10.1, ...],
... 'Iraq': [3.4, 8.9, ...],
... 'Turkey': [12.3, ...]
... }
>>> result = model.fit(events, T=365.0) # 1 year
>>>
>>> # Predict contagion risk
>>> risk = model.contagion_risk(events, result, t=370.0)
>>> print(f"Syria conflict risk in next 5 days: {risk['Syria']:.2%}")
"""
def __init__(self, countries: List[str]):
"""
Initialize conflict contagion model.
Args:
countries: List of country names
"""
self.countries = countries
self.n_countries = len(countries)
self.hawkes = MultivariateHawkesProcess(n_dimensions=self.n_countries)
def fit(self, events: Dict[str, List[float]], T: float) -> Dict:
"""
Fit contagion model to conflict events.
Args:
events: Dictionary mapping country name to list of event times
T: Observation period
Returns:
Fitted parameters with interpretation
"""
# Convert to list format
events_list = [events[country] for country in self.countries]
# Fit multivariate Hawkes
result = self.hawkes.fit(events_list, T)
# Add interpretations
result['countries'] = self.countries
result['self_excitation'] = np.diag(result['alpha'])
result['cross_excitation_mean'] = np.mean(
result['alpha'][~np.eye(self.n_countries, dtype=bool)]
)
# Identify most contagious countries
outgoing_contagion = np.sum(result['alpha'], axis=0) - np.diag(result['alpha'])
incoming_contagion = np.sum(result['alpha'], axis=1) - np.diag(result['alpha'])
result['most_contagious_source'] = self.countries[np.argmax(outgoing_contagion)]
result['most_vulnerable_target'] = self.countries[np.argmax(incoming_contagion)]
return result
def contagion_risk(self, events: Dict[str, List[float]],
params: Dict, t: float, horizon: float = 5.0) -> Dict[str, float]:
"""
Estimate contagion risk over next time period.
Args:
events: Historical events
params: Fitted parameters
t: Current time
horizon: Risk horizon (time units)
Returns:
Dictionary mapping country to probability of conflict
"""
events_list = [events[country] for country in self.countries]
# Compute current intensities
intensities = self.hawkes.predict_intensities(
events_list, params['mu'], params['alpha'], params['beta'], t
)
# Probability of at least one event in [t, t+horizon]
# P(N(t+h) - N(t) ≥ 1) = 1 - P(N(t+h) - N(t) = 0)
# Approximate with constant intensity
risks = {}
for i, country in enumerate(self.countries):
# Poisson approximation
expected_events = intensities[i] * horizon
prob_no_event = np.exp(-expected_events)
prob_at_least_one = 1 - prob_no_event
risks[country] = prob_at_least_one
return risks
def identify_contagion_pathways(self, params: Dict, threshold: float = 0.1) -> List[Tuple[str, str, float]]:
"""
Identify significant contagion pathways between countries.
Args:
params: Fitted parameters
threshold: Minimum branching ratio to report
Returns:
List of (source, target, branching_ratio) tuples
"""
alpha = params['alpha']
beta = params['beta']
branching = alpha / beta
pathways = []
for i in range(self.n_countries):
for j in range(self.n_countries):
if i != j and branching[i, j] > threshold:
pathways.append((
self.countries[j], # Source
self.countries[i], # Target
branching[i, j]
))
# Sort by strength
pathways.sort(key=lambda x: x[2], reverse=True)
return pathways
def estimate_branching_ratio(events: np.ndarray, T: float) -> float:
"""
Quick estimate of branching ratio for stability assessment.
Args:
events: Event times
T: Time horizon
Returns:
Estimated branching ratio
"""
hawkes = UnivariateHawkesProcess()
result = hawkes.fit(events, T)
return result.params.branching_ratio
def detect_explosive_regime(events: np.ndarray, T: float, window: float = 10.0) -> List[Tuple[float, float]]:
"""
Detect time periods where process became explosive (supercritical).
Args:
events: Event times
T: Total time horizon
window: Rolling window size
Returns:
List of (start_time, branching_ratio) for explosive periods
"""
events = np.sort(events)
explosive_periods = []
t = window
while t <= T:
# Events in window [t-window, t]
window_events = events[(events >= t - window) & (events <= t)]
if len(window_events) > 5: # Need minimum events
br = estimate_branching_ratio(window_events - (t - window), window)
if br >= 0.9: # Near or above critical
explosive_periods.append((t, br))
t += window / 2 # Overlapping windows
return explosive_periods
|