clarkkitchen22's picture
Initial GeoBot Forecasting Framework commit
484e3bc
"""
GeoBot 2.0 Analytical Lenses
Four complementary analytical lenses for geopolitical analysis:
- Lens A: Logistics as Power
- Lens B: Governance Structure & Decision Speed
- Lens C: Corruption as Context-Dependent Variable
- Lens D: Non-Western Military Logic
"""
from dataclasses import dataclass, field
from typing import Dict, List, Any, Optional
from enum import Enum
# ============================================================================
# Lens A: Logistics as Power
# ============================================================================
@dataclass
class LogisticsLens:
"""
Lens A: Logistics as Power (Unchanged from GeoBot v1)
Prioritizes supply chains, throughput, maintenance, communications infrastructure.
Logistics remain the ultimate constraint.
"""
name: str = "Logistics as Power"
priority_areas: List[str] = field(default_factory=lambda: [
"Supply chains and throughput",
"Maintenance capacity",
"Communications infrastructure",
"Resource mobilization speed",
"Sustainment capacity"
])
def analyze(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Analyze situation through logistics lens.
Parameters
----------
context : Dict[str, Any]
Situational context
Returns
-------
Dict[str, Any]
Logistics analysis
"""
return {
'lens': self.name,
'priority_areas': self.priority_areas,
'assessment': "Logistics coherence analysis required",
'context': context
}
# ============================================================================
# Lens B: Governance Structure & Decision Speed
# ============================================================================
class GovernanceType(Enum):
"""Types of governance structures."""
AUTHORITARIAN_CENTRALIZED = "authoritarian/centralized"
DEMOCRATIC_CONSENSUS = "democratic/consensus"
HYBRID = "hybrid"
@dataclass
class GovernanceAdvantages:
"""Advantages of a governance type."""
advantages: List[str] = field(default_factory=list)
disadvantages: List[str] = field(default_factory=list)
@dataclass
class GovernanceLens:
"""
Lens B: Governance Structure & Decision Speed
Evaluates institutional agility and decision-making structures.
Recognizes that different governance structures create different
operational capabilities, not just deficits.
"""
name: str = "Governance Structure & Decision Speed"
authoritarian_profile: GovernanceAdvantages = field(default_factory=lambda: GovernanceAdvantages(
advantages=[
"Faster strategic pivots (no legislative/consensus delays)",
"Rapid resource mobilization during crises",
"Unified command structures (fewer veto points)",
"Ability to absorb short-term costs for long-term positioning",
"Less vulnerable to public opinion shifts"
],
disadvantages=[
"Higher corruption risk (less accountability)",
"Information distortion (fear of reporting bad news upward)",
"Brittleness under sustained stress (rigid hierarchies)",
"Lower tactical initiative at junior levels",
"Purge-induced institutional memory loss"
]
))
democratic_profile: GovernanceAdvantages = field(default_factory=lambda: GovernanceAdvantages(
advantages=[
"Better information flow (less fear-based reporting)",
"Higher tactical flexibility (NCO empowerment)",
"More resilient under prolonged strain",
"Transparent procurement (lower corruption)",
"Adaptive learning cultures"
],
disadvantages=[
"Slower strategic decision-making (multiple approval layers)",
"Political constraints on deployment/escalation",
"Public opinion as operational constraint",
"Bureaucratic friction in mobilization",
"Difficulty sustaining unpopular policies"
]
))
def analyze(self, governance_type: GovernanceType, scenario_context: str) -> Dict[str, Any]:
"""
Analyze which governance type has structural advantage for specific scenario.
Parameters
----------
governance_type : GovernanceType
Type of governance structure
scenario_context : str
Description of scenario requiring analysis
Returns
-------
Dict[str, Any]
Governance structure analysis
"""
profile = None
if governance_type == GovernanceType.AUTHORITARIAN_CENTRALIZED:
profile = self.authoritarian_profile
elif governance_type == GovernanceType.DEMOCRATIC_CONSENSUS:
profile = self.democratic_profile
return {
'lens': self.name,
'governance_type': governance_type.value,
'advantages': profile.advantages if profile else [],
'disadvantages': profile.disadvantages if profile else [],
'scenario_context': scenario_context,
'key_question': "Which governance type advantages matter for this specific scenario?"
}
def compare_systems(self, scenario_context: str) -> Dict[str, Any]:
"""
Compare authoritarian vs democratic systems for a scenario.
Parameters
----------
scenario_context : str
Description of scenario
Returns
-------
Dict[str, Any]
Comparative analysis
"""
return {
'lens': self.name,
'scenario': scenario_context,
'authoritarian': {
'advantages': self.authoritarian_profile.advantages,
'disadvantages': self.authoritarian_profile.disadvantages
},
'democratic': {
'advantages': self.democratic_profile.advantages,
'disadvantages': self.democratic_profile.disadvantages
},
'key_insight': "Governance structure creates operational trade-offs, not universal superiority"
}
# ============================================================================
# Lens C: Corruption as Context-Dependent Variable
# ============================================================================
class CorruptionType(Enum):
"""Types of corruption and their operational impacts."""
PARASITIC = "parasitic" # Hollows readiness, predictably degrades performance
MANAGED_BOUNDED = "managed/bounded" # Limited by periodic purges
INSTITUTIONALIZED_PATRONAGE = "institutionalized patronage" # Loyalty networks
LOW_CORRUPTION = "low corruption" # Western militaries, Singapore
@dataclass
class CorruptionProfile:
"""Profile of corruption type and its impacts."""
corruption_type: CorruptionType
characteristics: List[str] = field(default_factory=list)
operational_impact: str = ""
examples: List[str] = field(default_factory=list)
@dataclass
class CorruptionLens:
"""
Lens C: Corruption as Context-Dependent Variable
Corruption is no longer assumed to be universally crippling.
Instead, analyzes corruption type and its context-specific impacts.
"""
name: str = "Corruption as Context-Dependent Variable"
corruption_profiles: Dict[CorruptionType, CorruptionProfile] = field(default_factory=lambda: {
CorruptionType.PARASITIC: CorruptionProfile(
corruption_type=CorruptionType.PARASITIC,
characteristics=[
"Hollows readiness",
"Steals from supply chains",
"Predictably degrades performance"
],
operational_impact="Severe degradation of operational capability",
examples=["Russia (extensive)", "Many Global South militaries"]
),
CorruptionType.MANAGED_BOUNDED: CorruptionProfile(
corruption_type=CorruptionType.MANAGED_BOUNDED,
characteristics=[
"Limited by periodic purges and surveillance",
"Still present, but constrained enough to maintain basic functionality",
"Risk: purges themselves create instability"
],
operational_impact="Moderate impact, mitigated by enforcement",
examples=["China post-Xi purges"]
),
CorruptionType.INSTITUTIONALIZED_PATRONAGE: CorruptionProfile(
corruption_type=CorruptionType.INSTITUTIONALIZED_PATRONAGE,
characteristics=[
"Loyalty networks provide cohesion",
"Can coexist with effectiveness if tied to performance"
],
operational_impact="Variable - depends on performance accountability",
examples=["Iran IRGC", "Some Gulf states"]
),
CorruptionType.LOW_CORRUPTION: CorruptionProfile(
corruption_type=CorruptionType.LOW_CORRUPTION,
characteristics=[
"Advantage in sustained operations",
"Can be slower to mobilize"
],
operational_impact="Minimal negative impact, enables sustained operations",
examples=["Western militaries", "Singapore"]
)
})
def analyze(self, corruption_type: CorruptionType, operational_context: str) -> Dict[str, Any]:
"""
Analyze corruption impact in specific operational context.
Parameters
----------
corruption_type : CorruptionType
Type of corruption present
operational_context : str
Operational context for assessment
Returns
-------
Dict[str, Any]
Corruption impact analysis
"""
profile = self.corruption_profiles[corruption_type]
return {
'lens': self.name,
'corruption_type': corruption_type.value,
'characteristics': profile.characteristics,
'operational_impact': profile.operational_impact,
'examples': profile.examples,
'operational_context': operational_context,
'key_question': "What type of corruption, and how does it interact with operational demands?"
}
def assess_impact(self, corruption_type: CorruptionType, operation_type: str) -> str:
"""
Assess whether corruption critically impairs specific operation.
Parameters
----------
corruption_type : CorruptionType
Type of corruption
operation_type : str
Type of military operation
Returns
-------
str
Impact assessment
"""
profile = self.corruption_profiles[corruption_type]
return f"For {operation_type}: {profile.operational_impact}"
# ============================================================================
# Lens D: Non-Western Military Logic
# ============================================================================
@dataclass
class MilitaryProfile:
"""Profile of a military system's strengths and weaknesses."""
strengths: List[str] = field(default_factory=list)
weaknesses: List[str] = field(default_factory=list)
operational_culture: str = ""
@dataclass
class NonWesternLens:
"""
Lens D: Non-Western Military Logic
Incorporates indigenous operational cultures rather than measuring
everything against NATO standards. Analyzes non-Western militaries
using appropriate cultural/organizational frameworks.
"""
name: str = "Non-Western Military Logic"
military_profiles: Dict[str, MilitaryProfile] = field(default_factory=lambda: {
"Chinese PLA": MilitaryProfile(
strengths=[
"Rapid infrastructure mobilization (civil-military fusion)",
"Industrial base integration",
"Coastal defense asymmetric advantages",
"Improving joint operations capability",
"Long-term strategic patience"
],
weaknesses=[
"Limited expeditionary experience",
"Unproven complex joint operations",
"NCO corps still developing",
"Logistics for sustained high-intensity operations"
],
operational_culture="Centralized strategic planning with improving tactical adaptation"
),
"Russian Military": MilitaryProfile(
strengths=[
"Artillery coordination",
"Tactical adaptation under fire (demonstrated in Ukraine)",
"Willingness to accept casualties",
"Deep fires integration"
],
weaknesses=[
"Logistics corruption (confirmed)",
"Poor junior leadership initiative",
"Industrial base constraints under sanctions"
],
operational_culture="Heavy firepower doctrine with rigid tactical execution"
),
"Iranian Systems": MilitaryProfile(
strengths=[
"Proxy warfare coordination",
"Missile/drone saturation tactics",
"Strategic patience",
"Asymmetric warfare effectiveness"
],
weaknesses=[
"Air force decay",
"Sanctions-induced technology gaps",
"Conventional forces limitations"
],
operational_culture="Asymmetric focus with strategic depth through proxies"
)
})
def analyze(self, military: str) -> Dict[str, Any]:
"""
Analyze military using appropriate cultural/organizational framework.
Parameters
----------
military : str
Military system to analyze
Returns
-------
Dict[str, Any]
Non-Western perspective analysis
"""
if military not in self.military_profiles:
return {
'lens': self.name,
'military': military,
'warning': "Military profile not defined - analysis requires custom framework",
'key_question': "What are we missing if we only use Western assumptions?"
}
profile = self.military_profiles[military]
return {
'lens': self.name,
'military': military,
'strengths': profile.strengths,
'weaknesses': profile.weaknesses,
'operational_culture': profile.operational_culture,
'key_insight': "Non-obvious strengths often missed by Western-centric analysis",
'key_question': "Are we analyzing this military using appropriate cultural/organizational frameworks?"
}
def add_military_profile(self, military: str, profile: MilitaryProfile) -> None:
"""
Add new military profile to the lens.
Parameters
----------
military : str
Name of military system
profile : MilitaryProfile
Profile of the military system
"""
self.military_profiles[military] = profile
# ============================================================================
# Combined Analytical Lenses
# ============================================================================
@dataclass
class AnalyticalLenses:
"""
Combined analytical lenses for comprehensive GeoBot 2.0 analysis.
"""
logistics: LogisticsLens = field(default_factory=LogisticsLens)
governance: GovernanceLens = field(default_factory=GovernanceLens)
corruption: CorruptionLens = field(default_factory=CorruptionLens)
non_western: NonWesternLens = field(default_factory=NonWesternLens)
def get_all_lenses(self) -> Dict[str, Any]:
"""
Get all analytical lenses.
Returns
-------
Dict[str, Any]
All lenses
"""
return {
'Lens A': self.logistics,
'Lens B': self.governance,
'Lens C': self.corruption,
'Lens D': self.non_western
}
def apply_all_lenses(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Apply all lenses to a given context.
Parameters
----------
context : Dict[str, Any]
Context to analyze
Returns
-------
Dict[str, Any]
Multi-lens analysis
"""
return {
'logistics_analysis': self.logistics.analyze(context),
'governance_analysis': self.governance.compare_systems(
context.get('scenario', 'General scenario')
),
'corruption_analysis': "Requires corruption type specification",
'non_western_analysis': "Requires military system specification",
'integrated_assessment': "Apply all lenses for comprehensive analysis"
}