""" Agent-Based Modeling for Geopolitical Simulation Models individual actors (states, organizations, leaders) and their interactions. """ import numpy as np from typing import Dict, List, Optional, Any, Tuple from dataclasses import dataclass, field from enum import Enum class AgentType(Enum): """Types of geopolitical agents.""" STATE = "state" ORGANIZATION = "organization" LEADER = "leader" ALLIANCE = "alliance" @dataclass class AgentState: """State variables for an agent.""" position: np.ndarray # Position in feature space resources: float = 1.0 power: float = 1.0 hostility: float = 0.0 cooperation: float = 0.5 stability: float = 1.0 custom: Dict[str, float] = field(default_factory=dict) class GeopoliticalAgent: """ Represents a geopolitical actor. Agents have internal state, decision-making logic, and interact with other agents and the environment. """ def __init__( self, agent_id: str, agent_type: AgentType, initial_state: AgentState ): """ Initialize agent. Parameters ---------- agent_id : str Unique agent identifier agent_type : AgentType Type of agent initial_state : AgentState Initial state """ self.agent_id = agent_id self.agent_type = agent_type self.state = initial_state self.history: List[AgentState] = [initial_state] self.relationships: Dict[str, float] = {} # {agent_id: relationship_strength} def update_state(self, **kwargs) -> None: """Update agent state variables.""" for key, value in kwargs.items(): if hasattr(self.state, key): setattr(self.state, key, value) else: self.state.custom[key] = value def decide_action( self, environment: Dict[str, Any], other_agents: List['GeopoliticalAgent'] ) -> Dict[str, Any]: """ Decide on action based on current state and environment. Parameters ---------- environment : dict Environmental factors other_agents : list Other agents in the system Returns ------- dict Chosen action """ # Simple decision logic (can be made more sophisticated) action = { 'type': 'none', 'target': None, 'intensity': 0.0 } # Check for threats threats = [ agent for agent in other_agents if self.relationships.get(agent.agent_id, 0) < -0.5 and agent.state.power > self.state.power * 0.8 ] if threats and self.state.hostility > 0.5: # Consider conflict action = { 'type': 'escalate', 'target': threats[0].agent_id, 'intensity': self.state.hostility } elif self.state.cooperation > 0.7: # Seek cooperation potential_partners = [ agent for agent in other_agents if self.relationships.get(agent.agent_id, 0) > 0.3 ] if potential_partners: action = { 'type': 'cooperate', 'target': potential_partners[0].agent_id, 'intensity': self.state.cooperation } return action def interact(self, other_agent: 'GeopoliticalAgent', action: Dict[str, Any]) -> None: """ Interact with another agent. Parameters ---------- other_agent : GeopoliticalAgent Other agent action : dict Action to perform """ action_type = action['type'] intensity = action['intensity'] if action_type == 'cooperate': # Strengthen relationship current_rel = self.relationships.get(other_agent.agent_id, 0) self.relationships[other_agent.agent_id] = min(1.0, current_rel + 0.1 * intensity) # Mutual benefit self.state.resources += 0.05 * intensity other_agent.state.resources += 0.05 * intensity elif action_type == 'escalate': # Weaken relationship current_rel = self.relationships.get(other_agent.agent_id, 0) self.relationships[other_agent.agent_id] = max(-1.0, current_rel - 0.2 * intensity) # Conflict effects power_ratio = self.state.power / (other_agent.state.power + 1e-6) if power_ratio > 1: self.state.resources += 0.1 * intensity other_agent.state.resources -= 0.15 * intensity other_agent.state.stability -= 0.1 * intensity else: self.state.resources -= 0.1 * intensity self.state.stability -= 0.05 * intensity def save_state(self) -> None: """Save current state to history.""" self.history.append(AgentState( position=self.state.position.copy(), resources=self.state.resources, power=self.state.power, hostility=self.state.hostility, cooperation=self.state.cooperation, stability=self.state.stability, custom=self.state.custom.copy() )) class AgentBasedModel: """ Agent-based model for geopolitical simulation. Manages multiple agents and their interactions over time. """ def __init__(self): """Initialize agent-based model.""" self.agents: Dict[str, GeopoliticalAgent] = {} self.environment: Dict[str, Any] = {} self.time: int = 0 def add_agent(self, agent: GeopoliticalAgent) -> None: """ Add agent to model. Parameters ---------- agent : GeopoliticalAgent Agent to add """ self.agents[agent.agent_id] = agent def remove_agent(self, agent_id: str) -> None: """ Remove agent from model. Parameters ---------- agent_id : str Agent ID to remove """ if agent_id in self.agents: del self.agents[agent_id] def set_environment(self, **kwargs) -> None: """Set environmental variables.""" self.environment.update(kwargs) def step(self) -> None: """ Execute one time step of simulation. All agents make decisions and interact. """ self.time += 1 # Phase 1: All agents decide actions actions = {} other_agents_list = list(self.agents.values()) for agent in self.agents.values(): action = agent.decide_action(self.environment, other_agents_list) actions[agent.agent_id] = action # Phase 2: Execute actions for agent_id, action in actions.items(): agent = self.agents[agent_id] if action['type'] != 'none' and action['target'] is not None: if action['target'] in self.agents: target = self.agents[action['target']] agent.interact(target, action) # Phase 3: Environmental updates for agent in self.agents.values(): # Resource growth agent.state.resources *= (1 + 0.01 * agent.state.stability) # Power calculation agent.state.power = agent.state.resources * agent.state.stability # Add noise agent.state.hostility += np.random.normal(0, 0.05) agent.state.hostility = np.clip(agent.state.hostility, 0, 1) agent.state.cooperation += np.random.normal(0, 0.05) agent.state.cooperation = np.clip(agent.state.cooperation, 0, 1) # Save state agent.save_state() def run(self, n_steps: int) -> None: """ Run simulation for multiple steps. Parameters ---------- n_steps : int Number of time steps """ for _ in range(n_steps): self.step() def get_agent_trajectories(self, agent_id: str) -> Dict[str, List[float]]: """ Get historical trajectories for an agent. Parameters ---------- agent_id : str Agent ID Returns ------- dict Trajectories of state variables """ if agent_id not in self.agents: return {} agent = self.agents[agent_id] history = agent.history return { 'resources': [s.resources for s in history], 'power': [s.power for s in history], 'hostility': [s.hostility for s in history], 'cooperation': [s.cooperation for s in history], 'stability': [s.stability for s in history] } def get_system_state(self) -> Dict[str, Any]: """ Get current state of entire system. Returns ------- dict System state """ return { 'time': self.time, 'n_agents': len(self.agents), 'total_resources': sum(a.state.resources for a in self.agents.values()), 'mean_hostility': np.mean([a.state.hostility for a in self.agents.values()]), 'mean_cooperation': np.mean([a.state.cooperation for a in self.agents.values()]), 'mean_stability': np.mean([a.state.stability for a in self.agents.values()]) } def analyze_network(self) -> Dict[str, Any]: """ Analyze the network of relationships. Returns ------- dict Network metrics """ import networkx as nx # Build network G = nx.Graph() for agent in self.agents.values(): G.add_node(agent.agent_id) for agent in self.agents.values(): for other_id, strength in agent.relationships.items(): if strength > 0.1: # Only positive relationships G.add_edge(agent.agent_id, other_id, weight=strength) # Compute metrics return { 'n_nodes': G.number_of_nodes(), 'n_edges': G.number_of_edges(), 'density': nx.density(G), 'average_clustering': nx.average_clustering(G) if G.number_of_edges() > 0 else 0, 'connected_components': nx.number_connected_components(G) }