FP8 Model with Low-Rank LoRA
- Source:
https://huggingface.co/Kijai/WanVideo_comfy - File:
Wan2_1_VAE_bf16.safetensors - FP8 Format:
E5M2 - LoRA Rank: 32
- LoRA File:
Wan2_1_VAE_bf16-lora-r32.safetensors
Usage (Inference)
from safetensors.torch import load_file
import torch
# Load FP8 model
fp8_state = load_file("Wan2_1_VAE_bf16-fp8-e5m2.safetensors")
lora_state = load_file("Wan2_1_VAE_bf16-lora-r32.safetensors")
# Reconstruct approximate original weights
reconstructed = {}
for key in fp8_state:
if f"lora_A.{key}" in lora_state and f"lora_B.{key}" in lora_state:
A = lora_state[f"lora_A.{key}"].to(torch.float32)
B = lora_state[f"lora_B.{key}"].to(torch.float32)
lora_weight = B @ A # (rank, out) @ (in, rank) -> (out, in)
fp8_weight = fp8_state[key].to(torch.float32)
reconstructed[key] = fp8_weight + lora_weight
else:
reconstructed[key] = fp8_state[key].to(torch.float32)
Requires PyTorch โฅ 2.1 for FP8 support.
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support