Create handler.py
Browse files- handler.py +33 -0
handler.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Any
|
| 2 |
+
import numpy as np
|
| 3 |
+
import joblib
|
| 4 |
+
|
| 5 |
+
class EndpointHandler():
|
| 6 |
+
def __init__(self, path: str = ""):
|
| 7 |
+
"""
|
| 8 |
+
Initialize the model and encoder when the endpoint starts.
|
| 9 |
+
"""
|
| 10 |
+
self.model = joblib.load(f"{path}/soil.pkl")
|
| 11 |
+
self.label_encoder = joblib.load(f"{path}/label_encoder.pkl")
|
| 12 |
+
|
| 13 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 14 |
+
"""
|
| 15 |
+
Perform prediction using the trained model.
|
| 16 |
+
Expects input data in the format:
|
| 17 |
+
{
|
| 18 |
+
"inputs": [N, P, K, temperature, humidity, ph, rainfall]
|
| 19 |
+
}
|
| 20 |
+
Returns:
|
| 21 |
+
{
|
| 22 |
+
"crop": predicted_crop_name
|
| 23 |
+
}
|
| 24 |
+
"""
|
| 25 |
+
inputs = data.get("inputs")
|
| 26 |
+
if inputs is None:
|
| 27 |
+
return {"error": "No input data provided."}
|
| 28 |
+
|
| 29 |
+
inputs = np.array(inputs).reshape(1, -1)
|
| 30 |
+
prediction = self.model.predict(inputs)
|
| 31 |
+
crop = self.label_encoder.inverse_transform(prediction)
|
| 32 |
+
|
| 33 |
+
return {"crop": crop[0]}
|