b8ef1c83e42c037d93c7964a42a8e13a

This model is a fine-tuned version of google-bert/bert-large-uncased on the contemmcm/cls_20newsgroups dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5226
  • Data Size: 1.0
  • Epoch Runtime: 70.6120
  • Accuracy: 0.8818
  • F1 Macro: 0.8789

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 3.2835 0 4.6108 0.0426 0.0045
No log 1 499 3.0752 0.0078 5.3027 0.0572 0.0116
0.0321 2 998 2.7700 0.0156 6.0473 0.2674 0.2060
0.0522 3 1497 2.0658 0.0312 7.5209 0.4662 0.4078
0.0793 4 1996 1.1344 0.0625 10.7138 0.6615 0.6463
1.0675 5 2495 0.7983 0.125 14.1706 0.7503 0.7333
0.6505 6 2994 0.6495 0.25 22.2204 0.7949 0.7856
0.4902 7 3493 0.4933 0.5 38.3982 0.8445 0.8449
0.3522 8.0 3992 0.3947 1.0 70.7934 0.8805 0.8797
0.3043 9.0 4491 0.4096 1.0 70.7686 0.8773 0.8754
0.1788 10.0 4990 0.4094 1.0 70.4774 0.8889 0.8868
0.1806 11.0 5489 0.4507 1.0 70.7006 0.8828 0.8812
0.1565 12.0 5988 0.5226 1.0 70.6120 0.8818 0.8789

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
11
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/b8ef1c83e42c037d93c7964a42a8e13a

Finetuned
(164)
this model

Evaluation results