Lampistero
This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: jinaai/jina-embeddings-v3
- Maximum Sequence Length: 8194 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: es
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(transformer): Transformer(
(auto_model): XLMRobertaLoRA(
(roberta): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): ParametrizedEmbedding(
250002, 1024, padding_idx=1
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(token_type_embeddings): ParametrizedEmbedding(
1, 1024
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(emb_drop): Dropout(p=0.1, inplace=False)
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(encoder): XLMRobertaEncoder(
(layers): ModuleList(
(0-23): 24 x Block(
(mixer): MHA(
(rotary_emb): RotaryEmbedding()
(Wqkv): ParametrizedLinearResidual(
in_features=1024, out_features=3072, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(inner_attn): FlashSelfAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(inner_cross_attn): FlashCrossAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(out_proj): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout1): Dropout(p=0.1, inplace=False)
(drop_path1): StochasticDepth(p=0.0, mode=row)
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): ParametrizedLinear(
in_features=1024, out_features=4096, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(fc2): ParametrizedLinear(
in_features=4096, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout2): Dropout(p=0.1, inplace=False)
(drop_path2): StochasticDepth(p=0.0, mode=row)
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
(pooler): XLMRobertaPooler(
(dense): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(activation): Tanh()
)
)
)
)
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(normalizer): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("csanz91/lampistero_rag_embeddings_2")
sentences = [
"¿En qué año se demarcó y reconoció la mina 'El Pilar'?",
"La mina 'El Pilar' se demarcó y reconoció en 1857.",
'Según la quinta demanda del SOMM, todas compañías mineras debían entregar a todos sus obreros un libramiento de liquidación mensual',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7701 |
| cosine_accuracy@3 |
0.8926 |
| cosine_accuracy@5 |
0.9155 |
| cosine_accuracy@10 |
0.933 |
| cosine_precision@1 |
0.7701 |
| cosine_precision@3 |
0.2975 |
| cosine_precision@5 |
0.1831 |
| cosine_precision@10 |
0.0933 |
| cosine_recall@1 |
0.7701 |
| cosine_recall@3 |
0.8926 |
| cosine_recall@5 |
0.9155 |
| cosine_recall@10 |
0.933 |
| cosine_ndcg@10 |
0.8579 |
| cosine_mrr@10 |
0.8331 |
| cosine_map@100 |
0.8343 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7695 |
| cosine_accuracy@3 |
0.889 |
| cosine_accuracy@5 |
0.9125 |
| cosine_accuracy@10 |
0.933 |
| cosine_precision@1 |
0.7695 |
| cosine_precision@3 |
0.2963 |
| cosine_precision@5 |
0.1825 |
| cosine_precision@10 |
0.0933 |
| cosine_recall@1 |
0.7695 |
| cosine_recall@3 |
0.889 |
| cosine_recall@5 |
0.9125 |
| cosine_recall@10 |
0.933 |
| cosine_ndcg@10 |
0.8571 |
| cosine_mrr@10 |
0.8321 |
| cosine_map@100 |
0.8333 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7683 |
| cosine_accuracy@3 |
0.8865 |
| cosine_accuracy@5 |
0.9113 |
| cosine_accuracy@10 |
0.9306 |
| cosine_precision@1 |
0.7683 |
| cosine_precision@3 |
0.2955 |
| cosine_precision@5 |
0.1823 |
| cosine_precision@10 |
0.0931 |
| cosine_recall@1 |
0.7683 |
| cosine_recall@3 |
0.8865 |
| cosine_recall@5 |
0.9113 |
| cosine_recall@10 |
0.9306 |
| cosine_ndcg@10 |
0.8555 |
| cosine_mrr@10 |
0.8307 |
| cosine_map@100 |
0.8321 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.764 |
| cosine_accuracy@3 |
0.8902 |
| cosine_accuracy@5 |
0.9083 |
| cosine_accuracy@10 |
0.93 |
| cosine_precision@1 |
0.764 |
| cosine_precision@3 |
0.2967 |
| cosine_precision@5 |
0.1817 |
| cosine_precision@10 |
0.093 |
| cosine_recall@1 |
0.764 |
| cosine_recall@3 |
0.8902 |
| cosine_recall@5 |
0.9083 |
| cosine_recall@10 |
0.93 |
| cosine_ndcg@10 |
0.8535 |
| cosine_mrr@10 |
0.8283 |
| cosine_map@100 |
0.8296 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7447 |
| cosine_accuracy@3 |
0.8769 |
| cosine_accuracy@5 |
0.9028 |
| cosine_accuracy@10 |
0.9215 |
| cosine_precision@1 |
0.7447 |
| cosine_precision@3 |
0.2923 |
| cosine_precision@5 |
0.1806 |
| cosine_precision@10 |
0.0922 |
| cosine_recall@1 |
0.7447 |
| cosine_recall@3 |
0.8769 |
| cosine_recall@5 |
0.9028 |
| cosine_recall@10 |
0.9215 |
| cosine_ndcg@10 |
0.8403 |
| cosine_mrr@10 |
0.8134 |
| cosine_map@100 |
0.8149 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.7103 |
| cosine_accuracy@3 |
0.8491 |
| cosine_accuracy@5 |
0.8781 |
| cosine_accuracy@10 |
0.8998 |
| cosine_precision@1 |
0.7103 |
| cosine_precision@3 |
0.283 |
| cosine_precision@5 |
0.1756 |
| cosine_precision@10 |
0.09 |
| cosine_recall@1 |
0.7103 |
| cosine_recall@3 |
0.8491 |
| cosine_recall@5 |
0.8781 |
| cosine_recall@10 |
0.8998 |
| cosine_ndcg@10 |
0.8119 |
| cosine_mrr@10 |
0.7829 |
| cosine_map@100 |
0.7851 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 14,907 training samples
- Columns:
query and answer
- Approximate statistics based on the first 1000 samples:
|
query |
answer |
| type |
string |
string |
| details |
- min: 9 tokens
- mean: 26.09 tokens
- max: 66 tokens
|
- min: 4 tokens
- mean: 34.02 tokens
- max: 405 tokens
|
- Samples:
| query |
answer |
¿Qué tipos de palas se utilizan para cargar el carbón y el mineral? |
Se utiliza una pala convencional y una pala hidráulica, esta última descarga sobre un páncer, puede hacerlo lateralmente y se desplaza sobre ruedas u oruga. |
Tras el cierre de la tejería de Florencio Salvador, ¿de dónde procedieron finalmente los ladrillos para las doscientas diez viviendas construidas en Utrillas? |
Los ladrillos y material para las doscientas diez viviendas construidas en Utrillas procedieron finalmente de Letux, Zaragoza . |
¿Cuál es el formato de los juegos infantiles que se están preparando para el verano en Escucha en 2021? |
Los juegos infantiles que se están preparando para el verano en Escucha en 2021 están en formato revista. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 64
per_device_eval_batch_size: 16
gradient_accumulation_steps: 32
learning_rate: 2e-05
num_train_epochs: 8
lr_scheduler_type: cosine
warmup_ratio: 0.1
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 64
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 32
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 8
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_1024_cosine_ndcg@10 |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
| 1.0 |
8 |
- |
0.7841 |
0.7835 |
0.7836 |
0.7791 |
0.7665 |
0.7226 |
| 1.2747 |
10 |
58.1187 |
- |
- |
- |
- |
- |
- |
| 2.0 |
16 |
- |
0.8348 |
0.8366 |
0.8345 |
0.8301 |
0.8184 |
0.7861 |
| 2.5494 |
20 |
24.4181 |
- |
- |
- |
- |
- |
- |
| 3.0 |
24 |
- |
0.8521 |
0.8504 |
0.8503 |
0.8457 |
0.8319 |
0.8007 |
| 3.8240 |
30 |
16.1488 |
- |
- |
- |
- |
- |
- |
| 4.0 |
32 |
- |
0.8561 |
0.8548 |
0.8555 |
0.8509 |
0.8387 |
0.8073 |
| 5.0 |
40 |
13.4897 |
0.8585 |
0.8556 |
0.8545 |
0.8528 |
0.8397 |
0.8111 |
| 6.0 |
48 |
- |
0.8578 |
0.8563 |
0.8550 |
0.8535 |
0.8410 |
0.8110 |
| 6.2747 |
50 |
13.7469 |
- |
- |
- |
- |
- |
- |
| 7.0 |
56 |
- |
0.8579 |
0.8571 |
0.8555 |
0.8535 |
0.8403 |
0.8119 |
Framework Versions
- Python: 3.12.10
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}