--- language: - es license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:14907 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: jinaai/jina-embeddings-v3 widget: - source_sentence: ¿Qué característica especial tenía la escultura del 'Torico' creada por Pedro Blesa? sentences: - 'Después de dorar el conejo en la receta de Conejo escabechado, en la misma sartén se rehogan los ajos, con el laurel y la pimienta. ' - Rafael Barcelón se encargaba del servicio de electricidad en Valdeconejos en 1951. - La escultura del 'Torico' creada por Pedro Blesa era un anaglifo, visible en 3D con gafas especiales. - source_sentence: ¿Por qué cantidad adquirió Francisco Santacruz la mina Escuadra en la subasta pública? sentences: - Después de la temporada 1986-87, el equipo descendió, lo que provocó su desaparición del campeonato en la temporada 1987-88. - '''Al bies'' significa en diagonal.' - Francisco Santacruz adquirió la mina Escuadra por la cantidad de 931 pesetas. - source_sentence: ¿Quién se desempeñaba como fiscal en el ayuntamiento de Escucha en el año 1916? sentences: - El autor mencionado para la receta Sopas de ajo es Teo Martin Lafuente. - En Escucha en 1916, D. Joaquín Latorre del Río se desempeñaba como fiscal. - Felipe Mallén era el farmacéutico en Valdeconejos en 1928. - source_sentence: ¿Qué información transmiten los 'toques' en la caña de un pozo durante las operaciones mineras? sentences: - Juan Pedro Martín encontró fragmentos de carbón de piedra en el paraje de El Horcajo. - Se publicó en 1970 por Ediciones Cultura y Acción. CNT. - 'Los ''toques'' son señales que se hacen en la caña del pozo para las distintas operaciones 1: alto 2: arriba 3: abajo 1+2: despacio arriba 1+3: despacio abajo 4+2: personal arriba 4+3: personal abajo 4+1+2: señalista en jaula arriba 4+1+3: señalista en jaula abajo 5: jaula libre 6: maniobra' - source_sentence: ¿En qué año se demarcó y reconoció la mina 'El Pilar'? sentences: - Según la quinta demanda del SOMM, todas compañías mineras debían entregar a todos sus obreros un libramiento de liquidación mensual - '''Tontiar'' significa cuando dos jóvenes empiezan con un noviazgo.' - La mina 'El Pilar' se demarcó y reconoció en 1857. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: Lampistero results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.7700663850331925 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8925769462884732 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9155099577549789 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9330114665057333 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7700663850331925 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2975256487628244 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.18310199155099577 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09330114665057333 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7700663850331925 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8925769462884732 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9155099577549789 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9330114665057333 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8578914781807897 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8330619976817926 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8343424106284848 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.7694628847314424 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8889559444779722 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9124924562462281 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9330114665057333 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7694628847314424 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.29631864815932407 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1824984912492456 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09330114665057332 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7694628847314424 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8889559444779722 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9124924562462281 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9330114665057333 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8571049923900239 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8320899311243306 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8333457816447034 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.7682558841279421 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8865419432709717 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9112854556427278 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9305974652987327 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7682558841279421 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2955139810903239 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.18225709112854557 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09305974652987326 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7682558841279421 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8865419432709717 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9112854556427278 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9305974652987327 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8555277012951626 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8307227155597702 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8321030396467847 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.764031382015691 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8901629450814725 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9082679541339771 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9299939649969825 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.764031382015691 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2967209816938242 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1816535908267954 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09299939649969825 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.764031382015691 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8901629450814725 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9082679541339771 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9299939649969825 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8535167149096011 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8282907530342651 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8296119986031772 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.7447193723596862 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8768859384429692 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9028364514182257 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9215449607724804 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7447193723596862 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2922953128143231 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1805672902836451 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09215449607724803 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7447193723596862 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8768859384429692 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9028364514182257 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9215449607724804 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8402664516336745 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8133905221714518 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8148588407289652 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.7103198551599276 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8491249245624622 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8780929390464696 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.899818949909475 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7103198551599276 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2830416415208208 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1756185878092939 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08998189499094747 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7103198551599276 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8491249245624622 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8780929390464696 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.899818949909475 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8119294706592789 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7829293234091058 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7850878407159746 name: Cosine Map@100 --- # Lampistero This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) - **Maximum Sequence Length:** 8194 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** es - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (transformer): Transformer( (auto_model): XLMRobertaLoRA( (roberta): XLMRobertaModel( (embeddings): XLMRobertaEmbeddings( (word_embeddings): ParametrizedEmbedding( 250002, 1024, padding_idx=1 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (token_type_embeddings): ParametrizedEmbedding( 1, 1024 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (emb_drop): Dropout(p=0.1, inplace=False) (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (encoder): XLMRobertaEncoder( (layers): ModuleList( (0-23): 24 x Block( (mixer): MHA( (rotary_emb): RotaryEmbedding() (Wqkv): ParametrizedLinearResidual( in_features=1024, out_features=3072, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (inner_attn): FlashSelfAttention( (drop): Dropout(p=0.1, inplace=False) ) (inner_cross_attn): FlashCrossAttention( (drop): Dropout(p=0.1, inplace=False) ) (out_proj): ParametrizedLinear( in_features=1024, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (dropout1): Dropout(p=0.1, inplace=False) (drop_path1): StochasticDepth(p=0.0, mode=row) (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (mlp): Mlp( (fc1): ParametrizedLinear( in_features=1024, out_features=4096, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (fc2): ParametrizedLinear( in_features=4096, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (dropout2): Dropout(p=0.1, inplace=False) (drop_path2): StochasticDepth(p=0.0, mode=row) (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) ) ) (pooler): XLMRobertaPooler( (dense): ParametrizedLinear( in_features=1024, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (activation): Tanh() ) ) ) ) (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (normalizer): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("csanz91/lampistero_rag_embeddings_2") # Run inference sentences = [ "¿En qué año se demarcó y reconoció la mina 'El Pilar'?", "La mina 'El Pilar' se demarcó y reconoció en 1857.", 'Según la quinta demanda del SOMM, todas compañías mineras debían entregar a todos sus obreros un libramiento de liquidación mensual', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 1024 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7701 | | cosine_accuracy@3 | 0.8926 | | cosine_accuracy@5 | 0.9155 | | cosine_accuracy@10 | 0.933 | | cosine_precision@1 | 0.7701 | | cosine_precision@3 | 0.2975 | | cosine_precision@5 | 0.1831 | | cosine_precision@10 | 0.0933 | | cosine_recall@1 | 0.7701 | | cosine_recall@3 | 0.8926 | | cosine_recall@5 | 0.9155 | | cosine_recall@10 | 0.933 | | **cosine_ndcg@10** | **0.8579** | | cosine_mrr@10 | 0.8331 | | cosine_map@100 | 0.8343 | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 768 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7695 | | cosine_accuracy@3 | 0.889 | | cosine_accuracy@5 | 0.9125 | | cosine_accuracy@10 | 0.933 | | cosine_precision@1 | 0.7695 | | cosine_precision@3 | 0.2963 | | cosine_precision@5 | 0.1825 | | cosine_precision@10 | 0.0933 | | cosine_recall@1 | 0.7695 | | cosine_recall@3 | 0.889 | | cosine_recall@5 | 0.9125 | | cosine_recall@10 | 0.933 | | **cosine_ndcg@10** | **0.8571** | | cosine_mrr@10 | 0.8321 | | cosine_map@100 | 0.8333 | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 512 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7683 | | cosine_accuracy@3 | 0.8865 | | cosine_accuracy@5 | 0.9113 | | cosine_accuracy@10 | 0.9306 | | cosine_precision@1 | 0.7683 | | cosine_precision@3 | 0.2955 | | cosine_precision@5 | 0.1823 | | cosine_precision@10 | 0.0931 | | cosine_recall@1 | 0.7683 | | cosine_recall@3 | 0.8865 | | cosine_recall@5 | 0.9113 | | cosine_recall@10 | 0.9306 | | **cosine_ndcg@10** | **0.8555** | | cosine_mrr@10 | 0.8307 | | cosine_map@100 | 0.8321 | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 256 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.764 | | cosine_accuracy@3 | 0.8902 | | cosine_accuracy@5 | 0.9083 | | cosine_accuracy@10 | 0.93 | | cosine_precision@1 | 0.764 | | cosine_precision@3 | 0.2967 | | cosine_precision@5 | 0.1817 | | cosine_precision@10 | 0.093 | | cosine_recall@1 | 0.764 | | cosine_recall@3 | 0.8902 | | cosine_recall@5 | 0.9083 | | cosine_recall@10 | 0.93 | | **cosine_ndcg@10** | **0.8535** | | cosine_mrr@10 | 0.8283 | | cosine_map@100 | 0.8296 | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 128 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7447 | | cosine_accuracy@3 | 0.8769 | | cosine_accuracy@5 | 0.9028 | | cosine_accuracy@10 | 0.9215 | | cosine_precision@1 | 0.7447 | | cosine_precision@3 | 0.2923 | | cosine_precision@5 | 0.1806 | | cosine_precision@10 | 0.0922 | | cosine_recall@1 | 0.7447 | | cosine_recall@3 | 0.8769 | | cosine_recall@5 | 0.9028 | | cosine_recall@10 | 0.9215 | | **cosine_ndcg@10** | **0.8403** | | cosine_mrr@10 | 0.8134 | | cosine_map@100 | 0.8149 | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 64 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7103 | | cosine_accuracy@3 | 0.8491 | | cosine_accuracy@5 | 0.8781 | | cosine_accuracy@10 | 0.8998 | | cosine_precision@1 | 0.7103 | | cosine_precision@3 | 0.283 | | cosine_precision@5 | 0.1756 | | cosine_precision@10 | 0.09 | | cosine_recall@1 | 0.7103 | | cosine_recall@3 | 0.8491 | | cosine_recall@5 | 0.8781 | | cosine_recall@10 | 0.8998 | | **cosine_ndcg@10** | **0.8119** | | cosine_mrr@10 | 0.7829 | | cosine_map@100 | 0.7851 | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 14,907 training samples * Columns: query and answer * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | query | answer | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ¿Qué tipos de palas se utilizan para cargar el carbón y el mineral? | Se utiliza una pala convencional y una pala hidráulica, esta última descarga sobre un páncer, puede hacerlo lateralmente y se desplaza sobre ruedas u oruga. | | Tras el cierre de la tejería de Florencio Salvador, ¿de dónde procedieron finalmente los ladrillos para las doscientas diez viviendas construidas en Utrillas? | Los ladrillos y material para las doscientas diez viviendas construidas en Utrillas procedieron finalmente de Letux, Zaragoza . | | ¿Cuál es el formato de los juegos infantiles que se están preparando para el verano en Escucha en 2021? | Los juegos infantiles que se están preparando para el verano en Escucha en 2021 están en formato revista. | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 32 - `learning_rate`: 2e-05 - `num_train_epochs`: 8 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 32 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 8 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:------:|:----:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 1.0 | 8 | - | 0.7841 | 0.7835 | 0.7836 | 0.7791 | 0.7665 | 0.7226 | | 1.2747 | 10 | 58.1187 | - | - | - | - | - | - | | 2.0 | 16 | - | 0.8348 | 0.8366 | 0.8345 | 0.8301 | 0.8184 | 0.7861 | | 2.5494 | 20 | 24.4181 | - | - | - | - | - | - | | 3.0 | 24 | - | 0.8521 | 0.8504 | 0.8503 | 0.8457 | 0.8319 | 0.8007 | | 3.8240 | 30 | 16.1488 | - | - | - | - | - | - | | 4.0 | 32 | - | 0.8561 | 0.8548 | 0.8555 | 0.8509 | 0.8387 | 0.8073 | | 5.0 | 40 | 13.4897 | 0.8585 | 0.8556 | 0.8545 | 0.8528 | 0.8397 | 0.8111 | | 6.0 | 48 | - | 0.8578 | 0.8563 | 0.8550 | 0.8535 | 0.8410 | 0.8110 | | 6.2747 | 50 | 13.7469 | - | - | - | - | - | - | | 7.0 | 56 | - | 0.8579 | 0.8571 | 0.8555 | 0.8535 | 0.8403 | 0.8119 | ### Framework Versions - Python: 3.12.10 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.7.0+cu126 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```