add reademe
Browse files
README.md
CHANGED
|
@@ -1,3 +1,59 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: gpl-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: gpl-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- anomaly-detection
|
| 5 |
+
- clip
|
| 6 |
+
- zero-shot
|
| 7 |
+
- few-shot
|
| 8 |
+
- industrial-inspection
|
| 9 |
+
- universal-anomaly-detection
|
| 10 |
+
pipeline_tag: anomaly-detection
|
| 11 |
+
library_name: pytorch
|
| 12 |
+
datasets:
|
| 13 |
+
- MVTec-AD
|
| 14 |
+
- VisA
|
| 15 |
+
language:
|
| 16 |
+
- en
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# AdaptCLIP
|
| 20 |
+
|
| 21 |
+
Universal Visual Anomaly Detection model based on CLIP with learnable adapters.
|
| 22 |
+
|
| 23 |
+
## Model Description
|
| 24 |
+
|
| 25 |
+
AdaptCLIP is a universal (zero-shot and few-shot) anomaly detection framework that leverages CLIP's vision-language capabilities with lightweight learnable adapters for open-word industrial and medical anomaly detection.
|
| 26 |
+
|
| 27 |
+
## Model Variants
|
| 28 |
+
|
| 29 |
+
| Checkpoint | Training Dataset | Description |
|
| 30 |
+
|------------|------------------|-------------|
|
| 31 |
+
| `adaptclip_checkpoints/12_4_128_train_on_mvtec_3adapters_batch8/epoch_15.pth` | MVTec-AD | Trained on MVTec-AD dataset |
|
| 32 |
+
| `adaptclip_checkpoints/12_4_128_train_on_visa_3adapters_batch8/epoch_15.pth` | VisA | Trained on VisA dataset |
|
| 33 |
+
|
| 34 |
+
## Usage
|
| 35 |
+
|
| 36 |
+
```python
|
| 37 |
+
# Load checkpoint
|
| 38 |
+
import torch
|
| 39 |
+
checkpoint = torch.load("./adaptclip_checkpoints/12_4_128_train_on_mvtec_3adapters_batch8/epoch_15.pth")
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
## Citation
|
| 43 |
+
|
| 44 |
+
If you find this model useful, please cite our work.
|
| 45 |
+
|
| 46 |
+
```shell
|
| 47 |
+
@inproceedings{adaptclip,
|
| 48 |
+
title={AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection},
|
| 49 |
+
author={Gao, Bin-Bin and Zhou, Yue and Yan, Jiangtao and Cai, Yuezhi and Zhang, Weixi and Wang, Meng and Liu, Jun and Liu, Yong and Wang, Lei and Wang, Chengjie},
|
| 50 |
+
booktitle={AAAI}
|
| 51 |
+
year={2026}
|
| 52 |
+
}
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
## License
|
| 58 |
+
|
| 59 |
+
gpl-2.0
|