cuadron11 commited on
Commit
db339bf
·
verified ·
1 Parent(s): 18aaac9

Add new CrossEncoder model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - cross-encoder
5
+ - reranker
6
+ - generated_from_trainer
7
+ - dataset_size:3200
8
+ - loss:CachedMultipleNegativesRankingLoss
9
+ base_model: Alibaba-NLP/gte-multilingual-reranker-base
10
+ pipeline_tag: text-ranking
11
+ library_name: sentence-transformers
12
+ metrics:
13
+ - map
14
+ - mrr@10
15
+ - ndcg@10
16
+ model-index:
17
+ - name: CrossEncoder based on Alibaba-NLP/gte-multilingual-reranker-base
18
+ results:
19
+ - task:
20
+ type: cross-encoder-reranking
21
+ name: Cross Encoder Reranking
22
+ dataset:
23
+ name: gte multilingual reranker base contrastive parl 4 3ep
24
+ type: gte-multilingual-reranker-base-contrastive-parl-4-3ep
25
+ metrics:
26
+ - type: map
27
+ value: 0.0231
28
+ name: Map
29
+ - type: mrr@10
30
+ value: 0.0231
31
+ name: Mrr@10
32
+ - type: ndcg@10
33
+ value: 0.0233
34
+ name: Ndcg@10
35
+ ---
36
+
37
+ # CrossEncoder based on Alibaba-NLP/gte-multilingual-reranker-base
38
+
39
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [Alibaba-NLP/gte-multilingual-reranker-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
40
+
41
+ ## Model Details
42
+
43
+ ### Model Description
44
+ - **Model Type:** Cross Encoder
45
+ - **Base model:** [Alibaba-NLP/gte-multilingual-reranker-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base) <!-- at revision 8215cf04918ba6f7b6a62bb44238ce2953d8831c -->
46
+ - **Maximum Sequence Length:** 8192 tokens
47
+ - **Number of Output Labels:** 1 label
48
+ <!-- - **Training Dataset:** Unknown -->
49
+ <!-- - **Language:** Unknown -->
50
+ <!-- - **License:** Unknown -->
51
+
52
+ ### Model Sources
53
+
54
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
55
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
56
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
57
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
58
+
59
+ ## Usage
60
+
61
+ ### Direct Usage (Sentence Transformers)
62
+
63
+ First install the Sentence Transformers library:
64
+
65
+ ```bash
66
+ pip install -U sentence-transformers
67
+ ```
68
+
69
+ Then you can load this model and run inference.
70
+ ```python
71
+ from sentence_transformers import CrossEncoder
72
+
73
+ # Download from the 🤗 Hub
74
+ model = CrossEncoder("cuadron11/gte-multilingual-reranker-base-contrastive-parl-4-3ep")
75
+ # Get scores for pairs of texts
76
+ pairs = [
77
+ ['Zer iritzi dute zerbitzu juridikoek Garoñako zentral nuklearraren berrirekitzearen inguruan?', '[TOPIC: Lehenbailehen eztabaidatzeko EH Bildu talde parlamentarioak egindako legez besteko proposamena, Garoñako zentral nuklearraren berrirekitzea ahalbidetzen duen CSNren ebazpenaren eta zentzu horretan etor daitezkeen Energia Ministerioaren erabaki eta aginduen aurrean helegitea ipintzeko beharrari buruz. Eztabaida eta behin betiko ebazpena]\n[ROJO SOLANA, (SV-ES)]:\nzerbitzu juridikoei, eta hori esaten du txosten juridikoak. Horrenbestez, arrazoi horregatik –hori uste dut– azaldu zuen Bilduk ekimen hau. Egia da puntu horietako bik proposatzen dituzten jarrera politikoak gutako bakoitzak jada planteatu ditugula Ganbera honetan, baina egia da Legebiltzarraren jarrera hartzeari dagokion puntua, bada, zerbait berria dela, zerbitzu juridikoen iritzia behar baikenuen. Beraz, esaten ari nintzen bezala, kontua ez da gaur eztabaida berriro irekitzea. Denok dakigu jarrera zein den. Baina (Date: 06.04.2017)'],
78
+ ['Noiz amaitu zen epea Eusko Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakundeei hitzarmena sinatzea proposatzeko?', '[TOPIC: Galdera, Antonio Damborenea Basterrechea Euskal Talde Popularreko legebiltzarkideak Ogasun eta Finantzetako sailburuari egina, euskal sektore publikoaren partaidetza duten erakundeen erregimen ekonomikofinantzarioa adosteko beste administrazio batzuekin hitzarmenak egiteari buruz]\n[OGASUN ETA FINANTZETAKO SAILBURUAK (GATZAGAETXEBARRIA BASTIDA), (EA-NV)]:\npartaidetza handiena publikoa duten fundazio eta partzuergoentzat, eta, kapital-elkarteak izan gabe eta administrazioen mende dauden erakundeak izan gabe, gehienbat administrazio publikoek finantzatzen dituzten erakundeentzat. Esan duzunez, kasu horietan araubide ekonomiko-finantzarioa zehaztu behar zen, eta urtebeteko epea ezartzen zen Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakunde horiei hitzarmen bat sinatzea proposatzeko, betiere araubide ekonomiko-finantzarioa zehaztu gabe bazegoen. Bada, urtebeteko epea martxoaren 13an bete zen. Guk ez (Date: 10.05.2013)'],
79
+ ['Zein da EH Bilduk unibertsitate-ikasketa ofizialen arauketari buruz duen iritzia?', '[TOPIC: Euskal Sozialistak legebiltzar-taldeak egindako legez besteko proposamena, unibertsitate-ikasketa ofizialen arauketa aldatzen duen 43/2015 Errege Dekretuari buruz. Eztabaida eta behin betiko ebazpena]\n[ISASI BALANZATEGI, (EH Bildu)]:\ndela, oso gutxi aldatu izan dela eta Europako ereduen artean, hegoaldeko unibertsitateen artean, beharbada bere barne-funtzionamenduari begira atzerakoiena. Gu ez gatoz bat. Ez gatoz bat Estatuaren monopolioa izatea unibertsitatea gaur egun. Hori aldatu egin behar da. Sailburu anderea, ondo ezagutzen duzu unibertsitatea. Eta guk eskumenak eskatzea ez da bakarrik independentistak garelako, ez, unibertsitate modernoa nahi dugulako, malguagoa. Gaur egun titulazioak egitea Espainiako unibertsitatean sufrikario bat da, sufrikario bat da (Date: 16.04.2015)'],
80
+ ['Zergatik ez du Eusko Jaurlaritzak Hirikoren sustatzaileen aurkako kereilan ustezko eragindako gisa barnean sartu nahi?', '[TOPIC: Mozioa, Gorka Maneiro Labayen Mistoa-UPyD taldeko legebiltzarkideak aurkeztua, Hirikoren sustatzaileen aurkako kereila dela-eta hartuko dituen neurriei buruz. Eztabaida eta behin betiko ebazpena]\n[REYES MARTÍN, (SV-ES)]:\niruzurra eginez erabiltzeaz… Orduan, zer arazo du Eusko Jaurlaritzak barnean sartzeko, inor salatu gabe, ustezko eragindako gisa? Batere ez. Gure ustez, gaur funts publikoen erabileraren defentsan funts publikoak egoki erabiltzea defendatzeko proposamen bat sinatzen dugunok ez dugu zertan azalpenik eman fiskalak argitaratu duenaren gainean. Aitzitik, Jaurlaritzak azaldu behar du zertan ari den. Eskerrik asko. La (Date: 16.04.2015)'],
81
+ ['Zein neurri hartuko ditu Eusko Jaurlaritzak azken asteotan iragarritako industria-enpresen itxierak saihesteko?', '[TOPIC: Galdera, Iker Casanova Alonso EH Bildu taldeko legebiltzarkideak Ekonomiaren Garapen eta Lehiakortasuneko sailburuari egina, beren itxiera iragarri duten hainbat industria-enpresaren egoerari buruz]\n[CASANOVA ALONSO, (EH Bildu)]:\nEskerrik asko, eta egun on guztioi. Azken asteotan hainbat enpresa- ren itxieraren iragarpena ezagutu dugu. Itxierarekin batera, lanpostuen galera eta pertsona askoren etorkizun ekonomiko, laboral eta pertsonala kolokan gelditzen da. Baltogar, Mungian, 49 langile. Arkema, Alonsotegi, 60 langile. Cablenor, Gasteiz, 140 langile. Candy, Bergara, 150 langile. Ia 400 langile guztira. Hauek dira krisiaren azken biktimak, arlo industrialean behintzat. Egia da beste sektoretan ere lanpostuak galtzen ari direla azken urteotan, baina enpresa industrialen itxierak, afektatzen duten langilekopuruagatik, bereziki deigarri eta mingarri egiten zaizkigu. Uste dugu Eusko Jaurlaritzaren papera aktiboagoa izan behar dela gure enpresen defentsan, edozein itxieraren aurrean lubakian egon behar duela, lubakian, dena ematen langileekin, langile eta gure enpresen interesak defendatzen. Ikusi nahi dugu Eusko Jaurlaritza enpresen itxierari, mugimendu espekulatiboei eta deslokalizazioei aurre egiten dauzkan tresna guztiekin. Guk ez dugu horrela ikusten, eta jakin izan dugunez, kaltetutako enpresa gehienen langileek ere ez. Honegatik guztiagatik, galdetzen diogu Eusko Jaurlaritzari: azken aste hauetan iragarritako industria enpresen itxieraren aurrean, Baltogar, Arkema, Candy, Cablenor besteak beste, Eusko Jaurlaritzak enpleguaren eta enpresa hauen defentsan neurri proaktiboak hartzeko asmoa du? Eskerrik asko. (Date: 14.11.2014)'],
82
+ ]
83
+ scores = model.predict(pairs)
84
+ print(scores.shape)
85
+ # (5,)
86
+
87
+ # Or rank different texts based on similarity to a single text
88
+ ranks = model.rank(
89
+ 'Zer iritzi dute zerbitzu juridikoek Garoñako zentral nuklearraren berrirekitzearen inguruan?',
90
+ [
91
+ '[TOPIC: Lehenbailehen eztabaidatzeko EH Bildu talde parlamentarioak egindako legez besteko proposamena, Garoñako zentral nuklearraren berrirekitzea ahalbidetzen duen CSNren ebazpenaren eta zentzu horretan etor daitezkeen Energia Ministerioaren erabaki eta aginduen aurrean helegitea ipintzeko beharrari buruz. Eztabaida eta behin betiko ebazpena]\n[ROJO SOLANA, (SV-ES)]:\nzerbitzu juridikoei, eta hori esaten du txosten juridikoak. Horrenbestez, arrazoi horregatik –hori uste dut– azaldu zuen Bilduk ekimen hau. Egia da puntu horietako bik proposatzen dituzten jarrera politikoak gutako bakoitzak jada planteatu ditugula Ganbera honetan, baina egia da Legebiltzarraren jarrera hartzeari dagokion puntua, bada, zerbait berria dela, zerbitzu juridikoen iritzia behar baikenuen. Beraz, esaten ari nintzen bezala, kontua ez da gaur eztabaida berriro irekitzea. Denok dakigu jarrera zein den. Baina (Date: 06.04.2017)',
92
+ '[TOPIC: Galdera, Antonio Damborenea Basterrechea Euskal Talde Popularreko legebiltzarkideak Ogasun eta Finantzetako sailburuari egina, euskal sektore publikoaren partaidetza duten erakundeen erregimen ekonomikofinantzarioa adosteko beste administrazio batzuekin hitzarmenak egiteari buruz]\n[OGASUN ETA FINANTZETAKO SAILBURUAK (GATZAGAETXEBARRIA BASTIDA), (EA-NV)]:\npartaidetza handiena publikoa duten fundazio eta partzuergoentzat, eta, kapital-elkarteak izan gabe eta administrazioen mende dauden erakundeak izan gabe, gehienbat administrazio publikoek finantzatzen dituzten erakundeentzat. Esan duzunez, kasu horietan araubide ekonomiko-finantzarioa zehaztu behar zen, eta urtebeteko epea ezartzen zen Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakunde horiei hitzarmen bat sinatzea proposatzeko, betiere araubide ekonomiko-finantzarioa zehaztu gabe bazegoen. Bada, urtebeteko epea martxoaren 13an bete zen. Guk ez (Date: 10.05.2013)',
93
+ '[TOPIC: Euskal Sozialistak legebiltzar-taldeak egindako legez besteko proposamena, unibertsitate-ikasketa ofizialen arauketa aldatzen duen 43/2015 Errege Dekretuari buruz. Eztabaida eta behin betiko ebazpena]\n[ISASI BALANZATEGI, (EH Bildu)]:\ndela, oso gutxi aldatu izan dela eta Europako ereduen artean, hegoaldeko unibertsitateen artean, beharbada bere barne-funtzionamenduari begira atzerakoiena. Gu ez gatoz bat. Ez gatoz bat Estatuaren monopolioa izatea unibertsitatea gaur egun. Hori aldatu egin behar da. Sailburu anderea, ondo ezagutzen duzu unibertsitatea. Eta guk eskumenak eskatzea ez da bakarrik independentistak garelako, ez, unibertsitate modernoa nahi dugulako, malguagoa. Gaur egun titulazioak egitea Espainiako unibertsitatean sufrikario bat da, sufrikario bat da (Date: 16.04.2015)',
94
+ '[TOPIC: Mozioa, Gorka Maneiro Labayen Mistoa-UPyD taldeko legebiltzarkideak aurkeztua, Hirikoren sustatzaileen aurkako kereila dela-eta hartuko dituen neurriei buruz. Eztabaida eta behin betiko ebazpena]\n[REYES MARTÍN, (SV-ES)]:\niruzurra eginez erabiltzeaz… Orduan, zer arazo du Eusko Jaurlaritzak barnean sartzeko, inor salatu gabe, ustezko eragindako gisa? Batere ez. Gure ustez, gaur funts publikoen erabileraren defentsan funts publikoak egoki erabiltzea defendatzeko proposamen bat sinatzen dugunok ez dugu zertan azalpenik eman fiskalak argitaratu duenaren gainean. Aitzitik, Jaurlaritzak azaldu behar du zertan ari den. Eskerrik asko. La (Date: 16.04.2015)',
95
+ '[TOPIC: Galdera, Iker Casanova Alonso EH Bildu taldeko legebiltzarkideak Ekonomiaren Garapen eta Lehiakortasuneko sailburuari egina, beren itxiera iragarri duten hainbat industria-enpresaren egoerari buruz]\n[CASANOVA ALONSO, (EH Bildu)]:\nEskerrik asko, eta egun on guztioi. Azken asteotan hainbat enpresa- ren itxieraren iragarpena ezagutu dugu. Itxierarekin batera, lanpostuen galera eta pertsona askoren etorkizun ekonomiko, laboral eta pertsonala kolokan gelditzen da. Baltogar, Mungian, 49 langile. Arkema, Alonsotegi, 60 langile. Cablenor, Gasteiz, 140 langile. Candy, Bergara, 150 langile. Ia 400 langile guztira. Hauek dira krisiaren azken biktimak, arlo industrialean behintzat. Egia da beste sektoretan ere lanpostuak galtzen ari direla azken urteotan, baina enpresa industrialen itxierak, afektatzen duten langilekopuruagatik, bereziki deigarri eta mingarri egiten zaizkigu. Uste dugu Eusko Jaurlaritzaren papera aktiboagoa izan behar dela gure enpresen defentsan, edozein itxieraren aurrean lubakian egon behar duela, lubakian, dena ematen langileekin, langile eta gure enpresen interesak defendatzen. Ikusi nahi dugu Eusko Jaurlaritza enpresen itxierari, mugimendu espekulatiboei eta deslokalizazioei aurre egiten dauzkan tresna guztiekin. Guk ez dugu horrela ikusten, eta jakin izan dugunez, kaltetutako enpresa gehienen langileek ere ez. Honegatik guztiagatik, galdetzen diogu Eusko Jaurlaritzari: azken aste hauetan iragarritako industria enpresen itxieraren aurrean, Baltogar, Arkema, Candy, Cablenor besteak beste, Eusko Jaurlaritzak enpleguaren eta enpresa hauen defentsan neurri proaktiboak hartzeko asmoa du? Eskerrik asko. (Date: 14.11.2014)',
96
+ ]
97
+ )
98
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
99
+ ```
100
+
101
+ <!--
102
+ ### Direct Usage (Transformers)
103
+
104
+ <details><summary>Click to see the direct usage in Transformers</summary>
105
+
106
+ </details>
107
+ -->
108
+
109
+ <!--
110
+ ### Downstream Usage (Sentence Transformers)
111
+
112
+ You can finetune this model on your own dataset.
113
+
114
+ <details><summary>Click to expand</summary>
115
+
116
+ </details>
117
+ -->
118
+
119
+ <!--
120
+ ### Out-of-Scope Use
121
+
122
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
123
+ -->
124
+
125
+ ## Evaluation
126
+
127
+ ### Metrics
128
+
129
+ #### Cross Encoder Reranking
130
+
131
+ * Dataset: `gte-multilingual-reranker-base-contrastive-parl-4-3ep`
132
+ * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
133
+ ```json
134
+ {
135
+ "at_k": 10,
136
+ "always_rerank_positives": false
137
+ }
138
+ ```
139
+
140
+ | Metric | Value |
141
+ |:------------|:---------------------|
142
+ | map | 0.0231 (+0.0219) |
143
+ | mrr@10 | 0.0231 (+0.0224) |
144
+ | **ndcg@10** | **0.0233 (+0.0219)** |
145
+
146
+ <!--
147
+ ## Bias, Risks and Limitations
148
+
149
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
150
+ -->
151
+
152
+ <!--
153
+ ### Recommendations
154
+
155
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
156
+ -->
157
+
158
+ ## Training Details
159
+
160
+ ### Training Dataset
161
+
162
+ #### Unnamed Dataset
163
+
164
+ * Size: 3,200 training samples
165
+ * Columns: <code>query</code> and <code>positive</code>
166
+ * Approximate statistics based on the first 1000 samples:
167
+ | | query | positive |
168
+ |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
169
+ | type | string | string |
170
+ | details | <ul><li>min: 30 characters</li><li>mean: 98.98 characters</li><li>max: 202 characters</li></ul> | <ul><li>min: 562 characters</li><li>mean: 982.5 characters</li><li>max: 2102 characters</li></ul> |
171
+ * Samples:
172
+ | query | positive |
173
+ |:--------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
174
+ | <code>Zenbat lokal huts ditu Enplegu, Etxebizitza eta Gizarte Politiketako Sailak?</code> | <code>[TOPIC: Euskal Sozialistak legebiltzar-taldeak egindako legez besteko proposamena, EAEko Administrazio publikoak okupaziorik gabe dauzkan lonja eta lokal komertzialak ekintzailetza eta autoenplegu proiektuetarako erabiltzeari buruz. Eztabaida eta behin betiko ebazpena]<br>[ITXASO GONZÁLEZ, (SV-ES)]:<br>Eskerrik asko, lehendakari andrea. Egun on guztioi. Buenos días, señor lehendakari. Sozialistok, proposamenak egiteko dugun tradizioari jarraikiz, beste ekimen bat dugu gaur goizerako. Ekimen horren bidez, proposatzen dugu Enplegu, Etxebizitza eta Gizarte Politiketako Sailaren esku dauden lokal hutsak –gure taldeari emandako erantzunaren arabera, 131 lokal inguru izango lirateke–... gure ekimenean proposatzen dugu hamabi hilabete baino gehiago hutsik dauden lokalak ekintzailetzaproiektuetarako erabiltzea. Inolako baliabiderik izan gabe ekintzailetzaproiektu batekin amestu duen orok, badaki behar erabakigarrienetariko bat enpresa-proiektua edo ekintzailetasun-proiektu hori gauzatzeko toki bat e...</code> |
175
+ | <code>Zein neurri hartu dira Eusko Legebiltzarrean euskal merkataritza txikia suspertzeko?</code> | <code>[TOPIC: EH Bildu talde parlamentarioak egindako legez besteko proposamena, euskal merkataritza txikia suspertzeko larrialdiko neurri bereziak hartzeari buruz. Eztabaida eta behin betiko ebazpena]<br>[LÓPEZ DE OCARIZ LÓPEZ DE MUNAIN, (PV-ETP)]:<br>Bai, eskerrik asko, presidente andrea. Baimena ematen badidazu, eserlekutik arituko naiz, uste baitut, guztiok jada esan dugun bezala, eztabaida monografiko bat izango dugula, eta eztabaida horretan sakonduko dugu merkataritzari laguntzeko politiketan. Baina, Casanova jauna, aurrekontuaz hitz egin didazu. Begira, guk ekitaldi guztietan aurkezten dizkiegu zuzenketak aurrekontuei, urtero: batzuetan gehitu egin ditzakegu eta beste batzuetan ez, baina hor ez dugu inoiz hutsik egin, eta denbora asko daramagu txikizkako merkataritzaren aldeko apustua egiten. Herri-erabakiaz hitz egin diguzu. Zerbaitek ekarri badu establezimendu eta enpresa txiki batzuk ixtea, eta merkataritzak kalte handia jasatea, izan da lanbidearteko gutxieneko soldata % 22 igotzea; ho...</code> |
176
+ | <code>Zenbat diru bideratzen da gaur egun kontziliazio eta erantzunkidetasun politiketara?</code> | <code>[TOPIC: EH Bildu talde parlamentarioak egindako legez besteko proposamena, kontziliazio eta erantzunkidetasun politika berriak zehaztuko dituen lau urterako plan berezitu bat Legebiltzarrera ekartzeari buruz. Eztabaida eta behin betiko ebazpena]<br>[URRUTIA OIANGUREN, (EA-NV)]:<br>Urkullu jaunak egin ahal izan zuen hauteskunde-promesa hartako zuzkidura ekonomiko hura... Begira, egungo planak 1.700 milioiko zuzkidura du –eskueran ditugun datuen arabera–, 1.700 milioikoa, erakundearteko plan batean; horietatik, Gobernu honetako Gizarte Politiketako Sailari 1.200 milioi dagozkio, eta horietatik, 286 milioi bideratzen dira gaur hizpide dugun gai honetara. Alegia, seguruenera, litekeena balitz ere denbora-epeak bete ez izana, horren gainetik, hala izanda ere, nik uste dut esku artean dugun planarekin... La (Date: 06.06.2019)</code> |
177
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
178
+ ```json
179
+ {
180
+ "scale": 10.0,
181
+ "num_negatives": null,
182
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
183
+ "mini_batch_size": 16
184
+ }
185
+ ```
186
+
187
+ ### Evaluation Dataset
188
+
189
+ #### Unnamed Dataset
190
+
191
+ * Size: 800 evaluation samples
192
+ * Columns: <code>query</code> and <code>positive</code>
193
+ * Approximate statistics based on the first 800 samples:
194
+ | | query | positive |
195
+ |:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
196
+ | type | string | string |
197
+ | details | <ul><li>min: 31 characters</li><li>mean: 99.44 characters</li><li>max: 253 characters</li></ul> | <ul><li>min: 500 characters</li><li>mean: 967.21 characters</li><li>max: 2113 characters</li></ul> |
198
+ * Samples:
199
+ | query | positive |
200
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
201
+ | <code>Zer iritzi dute zerbitzu juridikoek Garoñako zentral nuklearraren berrirekitzearen inguruan?</code> | <code>[TOPIC: Lehenbailehen eztabaidatzeko EH Bildu talde parlamentarioak egindako legez besteko proposamena, Garoñako zentral nuklearraren berrirekitzea ahalbidetzen duen CSNren ebazpenaren eta zentzu horretan etor daitezkeen Energia Ministerioaren erabaki eta aginduen aurrean helegitea ipintzeko beharrari buruz. Eztabaida eta behin betiko ebazpena]<br>[ROJO SOLANA, (SV-ES)]:<br>zerbitzu juridikoei, eta hori esaten du txosten juridikoak. Horrenbestez, arrazoi horregatik –hori uste dut– azaldu zuen Bilduk ekimen hau. Egia da puntu horietako bik proposatzen dituzten jarrera politikoak gutako bakoitzak jada planteatu ditugula Ganbera honetan, baina egia da Legebiltzarraren jarrera hartzeari dagokion puntua, bada, zerbait berria dela, zerbitzu juridikoen iritzia behar baikenuen. Beraz, esaten ari nintzen bezala, kontua ez da gaur eztabaida berriro irekitzea. Denok dakigu jarrera zein den. Baina (Date: 06.04.2017)</code> |
202
+ | <code>Noiz amaitu zen epea Eusko Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakundeei hitzarmena sinatzea proposatzeko?</code> | <code>[TOPIC: Galdera, Antonio Damborenea Basterrechea Euskal Talde Popularreko legebiltzarkideak Ogasun eta Finantzetako sailburuari egina, euskal sektore publikoaren partaidetza duten erakundeen erregimen ekonomikofinantzarioa adosteko beste administrazio batzuekin hitzarmenak egiteari buruz]<br>[OGASUN ETA FINANTZETAKO SAILBURUAK (GATZAGAETXEBARRIA BASTIDA), (EA-NV)]:<br>partaidetza handiena publikoa duten fundazio eta partzuergoentzat, eta, kapital-elkarteak izan gabe eta administrazioen mende dauden erakundeak izan gabe, gehienbat administrazio publikoek finantzatzen dituzten erakundeentzat. Esan duzunez, kasu horietan araubide ekonomiko-finantzarioa zehaztu behar zen, eta urtebeteko epea ezartzen zen Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakunde horiei hitzarmen bat sinatzea proposatzeko, betiere araubide ekonomiko-finantzarioa zehaztu gabe bazegoen. Bada, urtebeteko epea martxoaren 13an bete zen. Guk ez (Date: 10.05.2013)</code> |
203
+ | <code>Zein da EH Bilduk unibertsitate-ikasketa ofizialen arauketari buruz duen iritzia?</code> | <code>[TOPIC: Euskal Sozialistak legebiltzar-taldeak egindako legez besteko proposamena, unibertsitate-ikasketa ofizialen arauketa aldatzen duen 43/2015 Errege Dekretuari buruz. Eztabaida eta behin betiko ebazpena]<br>[ISASI BALANZATEGI, (EH Bildu)]:<br>dela, oso gutxi aldatu izan dela eta Europako ereduen artean, hegoaldeko unibertsitateen artean, beharbada bere barne-funtzionamenduari begira atzerakoiena. Gu ez gatoz bat. Ez gatoz bat Estatuaren monopolioa izatea unibertsitatea gaur egun. Hori aldatu egin behar da. Sailburu anderea, ondo ezagutzen duzu unibertsitatea. Eta guk eskumenak eskatzea ez da bakarrik independentistak garelako, ez, unibertsitate modernoa nahi dugulako, malguagoa. Gaur egun titulazioak egitea Espainiako unibertsitatean sufrikario bat da, sufrikario bat da (Date: 16.04.2015)</code> |
204
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
205
+ ```json
206
+ {
207
+ "scale": 10.0,
208
+ "num_negatives": null,
209
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
210
+ "mini_batch_size": 16
211
+ }
212
+ ```
213
+
214
+ ### Training Hyperparameters
215
+ #### Non-Default Hyperparameters
216
+
217
+ - `eval_strategy`: steps
218
+ - `per_device_train_batch_size`: 16
219
+ - `per_device_eval_batch_size`: 16
220
+ - `learning_rate`: 2e-05
221
+ - `num_train_epochs`: 1
222
+ - `warmup_ratio`: 0.1
223
+ - `load_best_model_at_end`: True
224
+ - `batch_sampler`: no_duplicates
225
+
226
+ #### All Hyperparameters
227
+ <details><summary>Click to expand</summary>
228
+
229
+ - `overwrite_output_dir`: False
230
+ - `do_predict`: False
231
+ - `eval_strategy`: steps
232
+ - `prediction_loss_only`: True
233
+ - `per_device_train_batch_size`: 16
234
+ - `per_device_eval_batch_size`: 16
235
+ - `per_gpu_train_batch_size`: None
236
+ - `per_gpu_eval_batch_size`: None
237
+ - `gradient_accumulation_steps`: 1
238
+ - `eval_accumulation_steps`: None
239
+ - `torch_empty_cache_steps`: None
240
+ - `learning_rate`: 2e-05
241
+ - `weight_decay`: 0.0
242
+ - `adam_beta1`: 0.9
243
+ - `adam_beta2`: 0.999
244
+ - `adam_epsilon`: 1e-08
245
+ - `max_grad_norm`: 1.0
246
+ - `num_train_epochs`: 1
247
+ - `max_steps`: -1
248
+ - `lr_scheduler_type`: linear
249
+ - `lr_scheduler_kwargs`: {}
250
+ - `warmup_ratio`: 0.1
251
+ - `warmup_steps`: 0
252
+ - `log_level`: passive
253
+ - `log_level_replica`: warning
254
+ - `log_on_each_node`: True
255
+ - `logging_nan_inf_filter`: True
256
+ - `save_safetensors`: True
257
+ - `save_on_each_node`: False
258
+ - `save_only_model`: False
259
+ - `restore_callback_states_from_checkpoint`: False
260
+ - `no_cuda`: False
261
+ - `use_cpu`: False
262
+ - `use_mps_device`: False
263
+ - `seed`: 42
264
+ - `data_seed`: None
265
+ - `jit_mode_eval`: False
266
+ - `use_ipex`: False
267
+ - `bf16`: False
268
+ - `fp16`: False
269
+ - `fp16_opt_level`: O1
270
+ - `half_precision_backend`: auto
271
+ - `bf16_full_eval`: False
272
+ - `fp16_full_eval`: False
273
+ - `tf32`: None
274
+ - `local_rank`: 0
275
+ - `ddp_backend`: None
276
+ - `tpu_num_cores`: None
277
+ - `tpu_metrics_debug`: False
278
+ - `debug`: []
279
+ - `dataloader_drop_last`: False
280
+ - `dataloader_num_workers`: 0
281
+ - `dataloader_prefetch_factor`: None
282
+ - `past_index`: -1
283
+ - `disable_tqdm`: False
284
+ - `remove_unused_columns`: True
285
+ - `label_names`: None
286
+ - `load_best_model_at_end`: True
287
+ - `ignore_data_skip`: False
288
+ - `fsdp`: []
289
+ - `fsdp_min_num_params`: 0
290
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
291
+ - `fsdp_transformer_layer_cls_to_wrap`: None
292
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
293
+ - `parallelism_config`: None
294
+ - `deepspeed`: None
295
+ - `label_smoothing_factor`: 0.0
296
+ - `optim`: adamw_torch
297
+ - `optim_args`: None
298
+ - `adafactor`: False
299
+ - `group_by_length`: False
300
+ - `length_column_name`: length
301
+ - `ddp_find_unused_parameters`: None
302
+ - `ddp_bucket_cap_mb`: None
303
+ - `ddp_broadcast_buffers`: False
304
+ - `dataloader_pin_memory`: True
305
+ - `dataloader_persistent_workers`: False
306
+ - `skip_memory_metrics`: True
307
+ - `use_legacy_prediction_loop`: False
308
+ - `push_to_hub`: False
309
+ - `resume_from_checkpoint`: None
310
+ - `hub_model_id`: None
311
+ - `hub_strategy`: every_save
312
+ - `hub_private_repo`: None
313
+ - `hub_always_push`: False
314
+ - `hub_revision`: None
315
+ - `gradient_checkpointing`: False
316
+ - `gradient_checkpointing_kwargs`: None
317
+ - `include_inputs_for_metrics`: False
318
+ - `include_for_metrics`: []
319
+ - `eval_do_concat_batches`: True
320
+ - `fp16_backend`: auto
321
+ - `push_to_hub_model_id`: None
322
+ - `push_to_hub_organization`: None
323
+ - `mp_parameters`:
324
+ - `auto_find_batch_size`: False
325
+ - `full_determinism`: False
326
+ - `torchdynamo`: None
327
+ - `ray_scope`: last
328
+ - `ddp_timeout`: 1800
329
+ - `torch_compile`: False
330
+ - `torch_compile_backend`: None
331
+ - `torch_compile_mode`: None
332
+ - `include_tokens_per_second`: False
333
+ - `include_num_input_tokens_seen`: False
334
+ - `neftune_noise_alpha`: None
335
+ - `optim_target_modules`: None
336
+ - `batch_eval_metrics`: False
337
+ - `eval_on_start`: False
338
+ - `use_liger_kernel`: False
339
+ - `liger_kernel_config`: None
340
+ - `eval_use_gather_object`: False
341
+ - `average_tokens_across_devices`: False
342
+ - `prompts`: None
343
+ - `batch_sampler`: no_duplicates
344
+ - `multi_dataset_batch_sampler`: proportional
345
+ - `router_mapping`: {}
346
+ - `learning_rate_mapping`: {}
347
+
348
+ </details>
349
+
350
+ ### Training Logs
351
+ | Epoch | Step | Training Loss | Validation Loss | gte-multilingual-reranker-base-contrastive-parl-4-3ep_ndcg@10 |
352
+ |:-------:|:-------:|:-------------:|:---------------:|:-------------------------------------------------------------:|
353
+ | **1.0** | **200** | **0.0569** | **0.035** | **0.0233 (+0.0219)** |
354
+
355
+ * The bold row denotes the saved checkpoint.
356
+
357
+ ### Framework Versions
358
+ - Python: 3.9.7
359
+ - Sentence Transformers: 5.0.0
360
+ - Transformers: 4.56.0
361
+ - PyTorch: 2.7.1+cu126
362
+ - Accelerate: 1.5.2
363
+ - Datasets: 4.0.0
364
+ - Tokenizers: 0.22.0
365
+
366
+ ## Citation
367
+
368
+ ### BibTeX
369
+
370
+ #### Sentence Transformers
371
+ ```bibtex
372
+ @inproceedings{reimers-2019-sentence-bert,
373
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
374
+ author = "Reimers, Nils and Gurevych, Iryna",
375
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
376
+ month = "11",
377
+ year = "2019",
378
+ publisher = "Association for Computational Linguistics",
379
+ url = "https://arxiv.org/abs/1908.10084",
380
+ }
381
+ ```
382
+
383
+ <!--
384
+ ## Glossary
385
+
386
+ *Clearly define terms in order to be accessible across audiences.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Authors
391
+
392
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
393
+ -->
394
+
395
+ <!--
396
+ ## Model Card Contact
397
+
398
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
399
+ -->
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NewForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration.NewConfig",
8
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
9
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
10
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
11
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
12
+ "AutoModelForSequenceClassification": "modeling.NewForSequenceClassification",
13
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
14
+ },
15
+ "bos_token_id": 0,
16
+ "classifier_dropout": 0.0,
17
+ "dtype": "float32",
18
+ "eos_token_id": 2,
19
+ "hidden_act": "gelu",
20
+ "hidden_dropout_prob": 0.1,
21
+ "hidden_size": 768,
22
+ "id2label": {
23
+ "0": "LABEL_0"
24
+ },
25
+ "initializer_range": 0.02,
26
+ "intermediate_size": 3072,
27
+ "label2id": {
28
+ "LABEL_0": 0
29
+ },
30
+ "layer_norm_eps": 1e-12,
31
+ "layer_norm_type": "layer_norm",
32
+ "logn_attention_clip1": false,
33
+ "logn_attention_scale": false,
34
+ "max_position_embeddings": 8192,
35
+ "model_type": "new",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "pack_qkv": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "rope",
41
+ "rope_scaling": {
42
+ "factor": 8.0,
43
+ "type": "ntk"
44
+ },
45
+ "rope_theta": 20000,
46
+ "sentence_transformers": {
47
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
48
+ "version": "5.0.0"
49
+ },
50
+ "transformers_version": "4.56.0",
51
+ "type_vocab_size": 1,
52
+ "unpad_inputs": false,
53
+ "use_memory_efficient_attention": false,
54
+ "vocab_size": 250048
55
+ }
configuration.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The GTE Team Authors and Alibaba Group.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ NEW model configuration"""
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class NewConfig(PretrainedConfig):
24
+ r"""
25
+ This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
26
+ instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
27
+ configuration with the defaults will yield a similar configuration to that of the NEW
28
+ [izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
29
+
30
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
31
+ documentation from [`PretrainedConfig`] for more information.
32
+
33
+
34
+ Args:
35
+ vocab_size (`int`, *optional*, defaults to 30522):
36
+ Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
37
+ `inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
38
+ hidden_size (`int`, *optional*, defaults to 768):
39
+ Dimensionality of the encoder layers and the pooler layer.
40
+ num_hidden_layers (`int`, *optional*, defaults to 12):
41
+ Number of hidden layers in the Transformer encoder.
42
+ num_attention_heads (`int`, *optional*, defaults to 12):
43
+ Number of attention heads for each attention layer in the Transformer encoder.
44
+ intermediate_size (`int`, *optional*, defaults to 3072):
45
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
46
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
47
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
48
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
49
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
52
+ The dropout ratio for the attention probabilities.
53
+ max_position_embeddings (`int`, *optional*, defaults to 512):
54
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
55
+ just in case (e.g., 512 or 1024 or 2048).
56
+ type_vocab_size (`int`, *optional*, defaults to 2):
57
+ The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
61
+ The epsilon used by the layer normalization layers.
62
+ position_embedding_type (`str`, *optional*, defaults to `"rope"`):
63
+ Type of position embedding. Choose one of `"absolute"`, `"rope"`.
64
+ rope_theta (`float`, *optional*, defaults to 10000.0):
65
+ The base period of the RoPE embeddings.
66
+ rope_scaling (`Dict`, *optional*):
67
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
68
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
69
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
70
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
71
+ these scaling strategies behave:
72
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
73
+ experimental feature, subject to breaking API changes in future versions.
74
+ classifier_dropout (`float`, *optional*):
75
+ The dropout ratio for the classification head.
76
+
77
+ Examples:
78
+
79
+ ```python
80
+ >>> from transformers import NewConfig, NewModel
81
+
82
+ >>> # Initializing a NEW izhx/new-base-en style configuration
83
+ >>> configuration = NewConfig()
84
+
85
+ >>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
86
+ >>> model = NewModel(configuration)
87
+
88
+ >>> # Accessing the model configuration
89
+ >>> configuration = model.config
90
+ ```"""
91
+
92
+ model_type = "new"
93
+
94
+ def __init__(
95
+ self,
96
+ vocab_size=30528,
97
+ hidden_size=768,
98
+ num_hidden_layers=12,
99
+ num_attention_heads=12,
100
+ intermediate_size=3072,
101
+ hidden_act="gelu",
102
+ hidden_dropout_prob=0.1,
103
+ attention_probs_dropout_prob=0.0,
104
+ max_position_embeddings=2048,
105
+ type_vocab_size=1,
106
+ initializer_range=0.02,
107
+ layer_norm_type='layer_norm',
108
+ layer_norm_eps=1e-12,
109
+ # pad_token_id=0,
110
+ position_embedding_type="rope",
111
+ rope_theta=10000.0,
112
+ rope_scaling=None,
113
+ classifier_dropout=None,
114
+ pack_qkv=True,
115
+ unpad_inputs=False,
116
+ use_memory_efficient_attention=False,
117
+ logn_attention_scale=False,
118
+ logn_attention_clip1=False,
119
+ **kwargs,
120
+ ):
121
+ super().__init__(**kwargs)
122
+
123
+ self.vocab_size = vocab_size
124
+ self.hidden_size = hidden_size
125
+ self.num_hidden_layers = num_hidden_layers
126
+ self.num_attention_heads = num_attention_heads
127
+ self.hidden_act = hidden_act
128
+ self.intermediate_size = intermediate_size
129
+ self.hidden_dropout_prob = hidden_dropout_prob
130
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
131
+ self.max_position_embeddings = max_position_embeddings
132
+ self.type_vocab_size = type_vocab_size
133
+ self.initializer_range = initializer_range
134
+ self.layer_norm_type = layer_norm_type
135
+ self.layer_norm_eps = layer_norm_eps
136
+ self.position_embedding_type = position_embedding_type
137
+ self.rope_theta = rope_theta
138
+ self.rope_scaling = rope_scaling
139
+ self.classifier_dropout = classifier_dropout
140
+
141
+ self.pack_qkv = pack_qkv
142
+ self.unpad_inputs = unpad_inputs
143
+ self.use_memory_efficient_attention = use_memory_efficient_attention
144
+ self.logn_attention_scale = logn_attention_scale
145
+ self.logn_attention_clip1 = logn_attention_clip1
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e1cce08ab47e9e1e30b41d13dfac7409ed254ff00474b7ffdc79148cfded292
3
+ size 1223854204
modeling.py ADDED
@@ -0,0 +1,1418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The GTE Team Authors and Alibaba Group.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch NEW model."""
17
+
18
+ import math
19
+ from dataclasses import dataclass
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from transformers.activations import ACT2FN
27
+ from transformers.modeling_outputs import (
28
+ BaseModelOutput,
29
+ BaseModelOutputWithPooling,
30
+ MaskedLMOutput,
31
+ MultipleChoiceModelOutput,
32
+ QuestionAnsweringModelOutput,
33
+ SequenceClassifierOutput,
34
+ ModelOutput,
35
+ )
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import logging
38
+
39
+ try:
40
+ import xformers.ops as xops
41
+ except ImportError as e:
42
+ xops = None
43
+
44
+ from .configuration import NewConfig
45
+
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+
50
+ # Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
51
+ # Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
52
+ class IndexFirstAxis(torch.autograd.Function):
53
+ @staticmethod
54
+ def forward(ctx, input, indices):
55
+ ctx.save_for_backward(indices)
56
+ assert input.ndim >= 2
57
+ ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
58
+ second_dim = other_shape.numel()
59
+ # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
60
+ # return input[indices]
61
+ # return torch.gather(
62
+ # rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
63
+ # ).reshape(-1, *other_shape)
64
+ return torch.gather(
65
+ input.view(ctx.first_axis_dim, second_dim),
66
+ 0,
67
+ indices.unsqueeze(-1).expand(indices.size(0), second_dim)
68
+ ).reshape(-1, *other_shape)
69
+
70
+ @staticmethod
71
+ def backward(ctx, grad_output):
72
+ (indices,) = ctx.saved_tensors
73
+ assert grad_output.ndim >= 2
74
+ other_shape = grad_output.shape[1:]
75
+ # grad_output = rearrange(grad_output, "b ... -> b (...)")
76
+ grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
77
+ grad_input = torch.zeros(
78
+ [ctx.first_axis_dim, grad_output.shape[1]],
79
+ device=grad_output.device,
80
+ dtype=grad_output.dtype,
81
+ )
82
+ # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
83
+ # grad_input[indices] = grad_output
84
+ # grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
85
+ grad_input.scatter_(
86
+ 0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
87
+ )
88
+ return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
89
+
90
+
91
+ index_first_axis = IndexFirstAxis.apply
92
+
93
+
94
+ def unpad_input(hidden_states, attention_mask=None, indices=None):
95
+ """
96
+ Arguments:
97
+ hidden_states: (batch, seqlen, ...)
98
+ attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
99
+ indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
100
+ Return:
101
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
102
+ """
103
+ if indices is None:
104
+ assert attention_mask is not None
105
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
106
+
107
+ # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
108
+ # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
109
+ # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
110
+ # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
111
+ # so we write custom forward and backward to make it a bit faster.
112
+ hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
113
+ return index_first_axis(hidden_states, indices)
114
+
115
+
116
+ class IndexPutFirstAxis(torch.autograd.Function):
117
+ @staticmethod
118
+ def forward(
119
+ ctx,
120
+ values: torch.Tensor,
121
+ indices: torch.Tensor,
122
+ first_axis_dim
123
+ ) -> torch.Tensor:
124
+ ctx.save_for_backward(indices)
125
+ assert indices.ndim == 1
126
+ assert values.ndim >= 2
127
+ output = torch.zeros(
128
+ first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
129
+ )
130
+ output[indices] = values
131
+ return output
132
+
133
+ @staticmethod
134
+ def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
135
+ indices, = ctx.saved_tensors
136
+ grad_values = grad_output[indices]
137
+ return grad_values, None, None
138
+
139
+
140
+ index_put_first_axis = IndexPutFirstAxis.apply
141
+
142
+
143
+ def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
144
+ """Add padding to sequences.
145
+
146
+ Arguments:
147
+ inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
148
+ indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
149
+ batch: int batch_size
150
+ seqlen: int max sequence length
151
+
152
+ Returns:
153
+ inputs: (batch, seqlen, ...)
154
+ """
155
+ output = index_put_first_axis(inputs, indices, batch * seqlen)
156
+ return output.view(batch, seqlen, *inputs.shape[1:])
157
+
158
+
159
+ def rotate_half(x):
160
+ """Rotates half the hidden dims of the input."""
161
+ x1 = x[..., : x.shape[-1] // 2]
162
+ x2 = x[..., x.shape[-1] // 2 :]
163
+ return torch.cat((-x2, x1), dim=-1)
164
+
165
+
166
+ def apply_rotary_pos_emb(q, k, cos, sin):
167
+ """Applies Rotary Position Embedding to the query and key tensors.
168
+
169
+ Args:
170
+ q (`torch.Tensor`): The query tensor.
171
+ k (`torch.Tensor`): The key tensor.
172
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
173
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
174
+ Returns:
175
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
176
+ """
177
+ cos, sin = cos.to(q.dtype), sin.to(q.dtype)
178
+ q_embed = (q * cos) + (rotate_half(q) * sin)
179
+ k_embed = (k * cos) + (rotate_half(k) * sin)
180
+ return q_embed, k_embed
181
+
182
+
183
+ class RotaryEmbedding(torch.nn.Module):
184
+ def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
185
+ super().__init__()
186
+
187
+ self.dim = dim
188
+ self.max_position_embeddings = max_position_embeddings
189
+ self.base = base
190
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
191
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
192
+
193
+ # Build here to make `torch.jit.trace` work.
194
+ self._set_cos_sin_cache(
195
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
196
+ )
197
+
198
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
199
+ self.max_seq_len_cached = seq_len
200
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
201
+
202
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
203
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
204
+ emb = torch.cat((freqs, freqs), dim=-1)
205
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
206
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
207
+
208
+ def forward(self, x, seq_len=None):
209
+ # x: [bs, num_attention_heads, seq_len, head_size]
210
+ if seq_len > self.max_seq_len_cached:
211
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
212
+
213
+ return (
214
+ self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
215
+ self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
216
+ )
217
+
218
+
219
+ class NTKScalingRotaryEmbedding(RotaryEmbedding):
220
+ """RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
221
+
222
+ def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
223
+ self.scaling_factor = scaling_factor
224
+ self.mixed_b = mixed_b
225
+ super().__init__(dim, max_position_embeddings, base, device)
226
+ max_position_embeddings = max_position_embeddings * self.scaling_factor
227
+ self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
228
+
229
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
230
+ self.max_seq_len_cached = seq_len
231
+
232
+ if seq_len > self.max_position_embeddings:
233
+ base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
234
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
235
+
236
+ if self.mixed_b is None:
237
+ inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
238
+ else:
239
+ a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
240
+ lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
241
+ inv_freq = inv_freq / lambda_1_m # (10)
242
+
243
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
244
+
245
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
246
+
247
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
248
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
249
+ emb = torch.cat((freqs, freqs), dim=-1)
250
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
251
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
252
+
253
+
254
+ class RMSNorm(nn.Module):
255
+ def __init__(self, hidden_size, eps=1e-6):
256
+ """
257
+ RMSNorm is equivalent to T5LayerNorm
258
+ """
259
+ super().__init__()
260
+ self.weight = nn.Parameter(torch.ones(hidden_size))
261
+ self.variance_epsilon = eps
262
+
263
+ def forward(self, hidden_states):
264
+ input_dtype = hidden_states.dtype
265
+ hidden_states = hidden_states.to(torch.float32)
266
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
267
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
268
+ return self.weight * hidden_states.to(input_dtype)
269
+
270
+
271
+ LAYER_NORM = {
272
+ 'layer_norm': nn.LayerNorm,
273
+ 'rms_norm': RMSNorm
274
+ }
275
+
276
+
277
+ class NewEmbeddings(nn.Module):
278
+ """
279
+ Embedding and Unpadding.
280
+ """
281
+
282
+ def __init__(self, config: NewConfig):
283
+ super().__init__()
284
+ self.padding_idx = config.pad_token_id
285
+ self.word_embeddings = nn.Embedding(
286
+ config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
287
+ )
288
+
289
+ self.position_embedding_type = config.position_embedding_type
290
+ if self.position_embedding_type == 'absolute':
291
+ self.position_embeddings = nn.Embedding(
292
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
293
+ )
294
+ elif self.position_embedding_type == 'rope':
295
+ self._init_rope(config)
296
+ else:
297
+ raise ValueError
298
+
299
+ self.type_vocab_size = config.type_vocab_size
300
+ if self.type_vocab_size > 0:
301
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
302
+
303
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
304
+ # any TensorFlow checkpoint file
305
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
306
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
307
+ # position_ids is contiguous in memory and excluded when serialized
308
+ self.register_buffer(
309
+ "position_ids", torch.arange(config.max_position_embeddings), persistent=False
310
+ )
311
+
312
+ def _init_rope(self, config):
313
+ kwargs = dict(
314
+ dim=int(config.hidden_size / config.num_attention_heads),
315
+ max_position_embeddings=config.max_position_embeddings,
316
+ base=config.rope_theta
317
+ )
318
+ if config.rope_scaling is None:
319
+ self.rotary_emb = RotaryEmbedding(**kwargs)
320
+ else:
321
+ kwargs.update(scaling_factor=config.rope_scaling["factor"])
322
+ scaling_type = config.rope_scaling["type"]
323
+ if scaling_type == 'ntk':
324
+ kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
325
+ self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
326
+ # elif scaling_type == "linear":
327
+ # self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
328
+ # elif scaling_type == "dynamic":
329
+ # self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
330
+ else:
331
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
332
+
333
+ def forward(
334
+ self,
335
+ unpad_inputs: bool,
336
+ input_ids: Optional[torch.Tensor] = None,
337
+ attention_mask: Optional[torch.Tensor] = None,
338
+ length: Optional[List[int]] = None,
339
+ token_type_ids: Optional[torch.Tensor] = None,
340
+ position_ids: Optional[torch.Tensor] = None,
341
+ inputs_embeds: Optional[torch.Tensor] = None,
342
+ ) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
343
+ """
344
+ """
345
+ if inputs_embeds is None:
346
+ device, input_shape = input_ids.device, input_ids.shape
347
+ else:
348
+ device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
349
+ batch_size, seq_length = input_shape
350
+
351
+ # Set attention_mask if it's None
352
+ if attention_mask is None:
353
+ attention_mask = torch.ones(input_shape, device=device)
354
+ if length is not None:
355
+ for i, l in enumerate(length):
356
+ attention_mask[i, l:] = 0
357
+
358
+ # Set attention_mask_bool for unpadding
359
+ if unpad_inputs:
360
+ attention_mask_bool = attention_mask.bool()
361
+ if length is None:
362
+ length = attention_mask.sum(-1).tolist()
363
+
364
+ # Get word embeddings
365
+ if inputs_embeds is None:
366
+ if unpad_inputs:
367
+ input_ids = input_ids[attention_mask_bool].unsqueeze(0)
368
+ inputs_embeds = self.word_embeddings(input_ids)
369
+ else:
370
+ if unpad_inputs:
371
+ inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
372
+ embeddings = inputs_embeds
373
+
374
+ # Set and unpad position_ids
375
+ if position_ids is None:
376
+ if seq_length > self.position_ids.size(0):
377
+ self.register_buffer(
378
+ "position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
379
+ )
380
+ if unpad_inputs:
381
+ # [1, cumsum_seq_len]
382
+ position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
383
+ else:
384
+ # [bs, seq_len]
385
+ position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
386
+ elif unpad_inputs:
387
+ position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
388
+
389
+ # Compute rotary embedding
390
+ if self.position_embedding_type == 'rope':
391
+ rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
392
+ rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
393
+ rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
394
+ rope_embeds = rope_cos, rope_sin
395
+ else:
396
+ rope_embeds = None
397
+
398
+ if self.type_vocab_size > 0:
399
+ if token_type_ids is None:
400
+ token_type_ids = position_ids.mul(0)
401
+ else:
402
+ if self.type_vocab_size < 2:
403
+ token_type_ids.mul_(0)
404
+ if unpad_inputs:
405
+ token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
406
+
407
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
408
+ embeddings = embeddings + token_type_embeddings
409
+
410
+ # BERT position
411
+ if self.position_embedding_type == "absolute":
412
+ position_embeddings = self.position_embeddings(position_ids)
413
+ embeddings = embeddings + position_embeddings
414
+
415
+ embeddings = self.LayerNorm(embeddings)
416
+ embeddings = self.dropout(embeddings)
417
+
418
+ return embeddings, attention_mask, rope_embeds, length
419
+
420
+
421
+ class NewAttention(nn.Module):
422
+ def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
423
+ super().__init__()
424
+ self.config = config
425
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
426
+ raise ValueError(
427
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
428
+ f"heads ({config.num_attention_heads})"
429
+ )
430
+
431
+ self.hidden_size = config.hidden_size
432
+ self.num_attention_heads = config.num_attention_heads
433
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
434
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
435
+
436
+ if pack_qkv is None:
437
+ pack_qkv = config.pack_qkv
438
+ self.pack_qkv = pack_qkv
439
+
440
+ if self.pack_qkv:
441
+ self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
442
+ else:
443
+ self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
444
+ self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
445
+ self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
446
+
447
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
448
+ self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
449
+
450
+ if use_memory_efficient_attention is None:
451
+ use_memory_efficient_attention = self.config.use_memory_efficient_attention
452
+ self.use_memory_efficient_attention = use_memory_efficient_attention
453
+ self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
454
+ if self.use_memory_efficient_attention:
455
+ assert self.memory_efficient_attention is not None, 'please install xformers'
456
+
457
+ def forward(
458
+ self,
459
+ hidden_states: torch.Tensor,
460
+ attention_bias: torch.FloatTensor,
461
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
462
+ padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
463
+ attention_scale: Optional[torch.FloatTensor] = None,
464
+ head_mask: Optional[torch.FloatTensor] = None,
465
+ output_attentions: Optional[bool] = False,
466
+ qkv_inputs: Optional[Tuple] = None, # For RetroMAE
467
+ ) -> Tuple[torch.Tensor, ...]:
468
+ shape_hd = (self.num_attention_heads, self.attention_head_size)
469
+ # qkv
470
+ if self.pack_qkv and qkv_inputs is None:
471
+ qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
472
+ else:
473
+ if qkv_inputs is None:
474
+ qkv_inputs = (hidden_states, hidden_states, hidden_states)
475
+ qkv_pack = [
476
+ getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
477
+ ]
478
+ query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
479
+
480
+ if self.config.position_embedding_type == 'rope':
481
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
482
+
483
+ dtype = query_states.dtype
484
+
485
+ if self.config.logn_attention_scale and attention_scale is not None:
486
+ # https://kexue.fm/archives/8823
487
+ query_states = query_states * attention_scale.to(dtype)
488
+
489
+ if padding_inputs is not None:
490
+ query_states = pad_input(query_states.squeeze(), *padding_inputs)
491
+ key_states = pad_input(key_states.squeeze(), *padding_inputs)
492
+ value_states = pad_input(value_states.squeeze(), *padding_inputs)
493
+
494
+ if self.use_memory_efficient_attention:
495
+ assert self.memory_efficient_attention is not None, "xformers is not loaded"
496
+ assert output_attentions is False, "memory_efficient_attention do not output attentions"
497
+ assert head_mask is None, "Not support yet"
498
+ attention_probs = None
499
+ if torch.is_tensor(attention_bias):
500
+ attention_bias = attention_bias.to(dtype)
501
+ context_layer = self.memory_efficient_attention(
502
+ query_states,
503
+ key_states,
504
+ value_states,
505
+ attn_bias=attention_bias,
506
+ p=self.dropout.p
507
+ )
508
+ else:
509
+ if output_attentions and isinstance(self, NewSdpaAttention):
510
+ raise RuntimeError("SDPA do not output attentions")
511
+ context_layer, attention_probs = self._attention(
512
+ query_states, key_states, value_states, attention_bias, head_mask
513
+ )
514
+
515
+ if padding_inputs is not None:
516
+ context_layer = unpad_input(context_layer, indices=padding_inputs[0])
517
+
518
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
519
+ context_layer = context_layer.view(new_context_layer_shape)
520
+
521
+ # output proj
522
+ attn_output = self.o_proj(context_layer)
523
+
524
+ # add attentions if we output them
525
+ outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
526
+ return outputs
527
+
528
+ def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
529
+ """
530
+ Args:
531
+ q/k/v: (B, L, n_head, head_dim),
532
+ Returns:
533
+ attn_output: (B L, n_head, head_dim)
534
+ """
535
+ query_states = query_states.transpose(1, 2)
536
+ key_states = key_states.transpose(1, 2)
537
+ value_states = value_states.transpose(1, 2)
538
+ # Take the dot product between "query" and "key" to get the raw attention scores.
539
+ attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
540
+
541
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
542
+ if attention_bias is not None:
543
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
544
+ attention_scores = attention_scores + attention_bias
545
+
546
+ # Normalize the attention scores to probabilities.
547
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
548
+
549
+ # This is actually dropping out entire tokens to attend to, which might
550
+ # seem a bit unusual, but is taken from the original Transformer paper.
551
+ if self.dropout.p > 0:
552
+ attention_probs = self.dropout(attention_probs)
553
+
554
+ # Mask heads if we want to
555
+ if head_mask is not None:
556
+ attention_probs = attention_probs * head_mask
557
+
558
+ context_layer = torch.matmul(attention_probs, value_states)
559
+
560
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
561
+ return context_layer, attention_probs
562
+
563
+
564
+ class NewSdpaAttention(NewAttention):
565
+ """
566
+ New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
567
+ `NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
568
+ SDPA API.
569
+ """
570
+ def __init__(self, config: NewConfig, **kwargs):
571
+ super().__init__(config, **kwargs)
572
+ # torch.backends.cuda.enable_mem_efficient_sdp(False)
573
+ # logger.warning(
574
+ # "Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
575
+ # "`use_memory_efficient_attention=True` if it expected to use."
576
+ # )
577
+
578
+ def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
579
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
580
+ query_states.transpose(1, 2),
581
+ key_states.transpose(1, 2),
582
+ value_states.transpose(1, 2),
583
+ attn_mask=attention_bias,
584
+ dropout_p=self.dropout.p if self.training else 0.0,
585
+ )
586
+ attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
587
+ return attn_output, None
588
+
589
+
590
+ NEW_ATTENTION_CLASSES = {
591
+ "eager": NewAttention,
592
+ # "flash_attention_2": , # TODO
593
+ "sdpa": NewSdpaAttention,
594
+ }
595
+
596
+
597
+ class NewGatedMLP(nn.Module):
598
+ """
599
+ GLU Variants Improve Transformer.
600
+ """
601
+
602
+ def __init__(self, config: NewConfig):
603
+ super().__init__()
604
+ self.intermediate_size = config.intermediate_size
605
+ self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
606
+ self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
607
+ self.act_fn = ACT2FN[config.hidden_act]
608
+ if config.hidden_dropout_prob > 0:
609
+ self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
610
+ else:
611
+ self.hidden_dropout = None
612
+
613
+ def forward(self, hidden_states):
614
+ up_gate = self.up_gate_proj(hidden_states)
615
+ up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
616
+ gate = self.act_fn(gate)
617
+ gated_states = gate * up_states
618
+ if self.hidden_dropout is not None:
619
+ gated_states = self.hidden_dropout(gated_states)
620
+ down_states = self.down_proj(gated_states)
621
+ return down_states
622
+
623
+
624
+ class NewLayer(nn.Module):
625
+ def __init__(
626
+ self,
627
+ config: NewConfig,
628
+ pack_qkv=None,
629
+ use_memory_efficient_attention=None,
630
+ attn_implementation=None
631
+ ):
632
+ super().__init__()
633
+ if attn_implementation is None:
634
+ attn_implementation = config._attn_implementation
635
+ if use_memory_efficient_attention is None:
636
+ use_memory_efficient_attention = config.use_memory_efficient_attention
637
+ if use_memory_efficient_attention:
638
+ if attn_implementation != 'eager':
639
+ logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
640
+ attn_implementation = 'eager' # Since it will be SDPA by default for torch>=2.1.1
641
+ self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
642
+ config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
643
+ )
644
+ self.mlp = NewGatedMLP(config)
645
+
646
+ ln_class = LAYER_NORM[config.layer_norm_type]
647
+ self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
648
+ self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
649
+
650
+ if config.hidden_dropout_prob > 0:
651
+ self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
652
+ else:
653
+ self.hidden_dropout = None
654
+
655
+ def forward(
656
+ self,
657
+ hidden_states: torch.Tensor,
658
+ attention_bias: torch.FloatTensor,
659
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
660
+ padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
661
+ attention_scale: Optional[torch.FloatTensor] = None,
662
+ subset_indices: Optional[torch.LongTensor] = None,
663
+ head_mask: Optional[torch.FloatTensor] = None,
664
+ output_attentions: Optional[bool] = False,
665
+ qkv_inputs: Optional[Tuple] = None, # For RetroMAE
666
+ ) -> Tuple[torch.Tensor, ...]:
667
+ # Multi head self attention
668
+ residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
669
+ attention_outputs = self.attention(
670
+ hidden_states,
671
+ attention_bias,
672
+ rope_embeds,
673
+ padding_inputs,
674
+ attention_scale,
675
+ head_mask,
676
+ output_attentions=output_attentions,
677
+ qkv_inputs=qkv_inputs,
678
+ )
679
+ hidden_states = attention_outputs[0]
680
+ if self.hidden_dropout is not None:
681
+ hidden_states = self.hidden_dropout(hidden_states)
682
+ hidden_states = residual + hidden_states
683
+
684
+ # In pretraining, after the attention of last layer, we only need the masked tokens.
685
+ if subset_indices is not None:
686
+ hidden_states = hidden_states[subset_indices]
687
+
688
+ hidden_states = self.attn_ln(hidden_states)
689
+
690
+ # Fully Connected
691
+ residual = hidden_states
692
+ hidden_states = self.mlp(hidden_states)
693
+ if self.hidden_dropout is not None:
694
+ hidden_states = self.hidden_dropout(hidden_states)
695
+ hidden_states = residual + hidden_states
696
+ hidden_states = self.mlp_ln(hidden_states)
697
+
698
+ # add self attentions if we output attention weights
699
+ outputs = (hidden_states,) + attention_outputs[1:]
700
+ return outputs
701
+
702
+
703
+ class NewEncoder(nn.Module):
704
+ def __init__(self, config):
705
+ super().__init__()
706
+ self.config = config
707
+ self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
708
+ self.gradient_checkpointing = False
709
+
710
+ def forward(
711
+ self,
712
+ hidden_states: torch.Tensor,
713
+ attention_bias: Optional[torch.FloatTensor] = None,
714
+ rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
715
+ padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
716
+ attention_scale: Optional[torch.FloatTensor] = None,
717
+ subset_indices: Optional[torch.LongTensor] = None,
718
+ head_mask: Optional[torch.FloatTensor] = None,
719
+ output_attentions: Optional[bool] = False,
720
+ output_hidden_states: Optional[bool] = False,
721
+ return_dict: Optional[bool] = True,
722
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
723
+ all_hidden_states = () if output_hidden_states else None
724
+ all_self_attentions = () if output_attentions else None
725
+
726
+ for i, layer_module in enumerate(self.layer):
727
+ if output_hidden_states:
728
+ all_hidden_states = all_hidden_states + (hidden_states,)
729
+
730
+ if i >= len(self.layer) - 1:
731
+ layer_subset_indices = subset_indices
732
+ else:
733
+ layer_subset_indices = None
734
+
735
+ layer_head_mask = head_mask[i] if head_mask is not None else None
736
+
737
+ if self.gradient_checkpointing and self.training:
738
+ layer_outputs = self._gradient_checkpointing_func(
739
+ layer_module.__call__,
740
+ hidden_states,
741
+ attention_bias,
742
+ rope_embeds,
743
+ padding_inputs,
744
+ attention_scale,
745
+ layer_subset_indices,
746
+ layer_head_mask,
747
+ )
748
+ else:
749
+ layer_outputs = layer_module(
750
+ hidden_states,
751
+ attention_bias,
752
+ rope_embeds,
753
+ padding_inputs,
754
+ attention_scale,
755
+ layer_subset_indices,
756
+ layer_head_mask,
757
+ output_attentions,
758
+ )
759
+
760
+ hidden_states = layer_outputs[0]
761
+ if output_attentions:
762
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
763
+
764
+ if output_hidden_states:
765
+ all_hidden_states = all_hidden_states + (hidden_states,)
766
+
767
+ if not return_dict:
768
+ return tuple(
769
+ v
770
+ for v in [
771
+ hidden_states,
772
+ all_hidden_states,
773
+ all_self_attentions,
774
+ ]
775
+ if v is not None
776
+ )
777
+ return BaseModelOutput(
778
+ last_hidden_state=hidden_states,
779
+ hidden_states=all_hidden_states,
780
+ attentions=all_self_attentions,
781
+ )
782
+
783
+
784
+ # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
785
+ class NewPooler(nn.Module):
786
+ def __init__(self, config):
787
+ super().__init__()
788
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
789
+ self.activation = nn.Tanh()
790
+
791
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
792
+ # We "pool" the model by simply taking the hidden state corresponding
793
+ # to the first token.
794
+ first_token_tensor = hidden_states[:, 0]
795
+ pooled_output = self.dense(first_token_tensor)
796
+ pooled_output = self.activation(pooled_output)
797
+ return pooled_output
798
+
799
+
800
+ class NewPreTrainedModel(PreTrainedModel):
801
+ """
802
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
803
+ models.
804
+ """
805
+
806
+ config_class = NewConfig
807
+ base_model_prefix = "new"
808
+ supports_gradient_checkpointing = True
809
+ _supports_sdpa = True
810
+
811
+ def _init_weights(self, module):
812
+ """Initialize the weights"""
813
+ if isinstance(module, nn.Linear):
814
+ # Slightly different from the TF version which uses truncated_normal for initialization
815
+ # cf https://github.com/pytorch/pytorch/pull/5617
816
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
817
+ if module.bias is not None:
818
+ module.bias.data.zero_()
819
+ elif isinstance(module, nn.Embedding):
820
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
821
+ if module.padding_idx is not None:
822
+ module.weight.data[module.padding_idx].zero_()
823
+ elif isinstance(module, nn.LayerNorm):
824
+ module.bias.data.zero_()
825
+ module.weight.data.fill_(1.0)
826
+
827
+
828
+ class NewModel(NewPreTrainedModel):
829
+ """
830
+ The bare New Model transformer outputting raw hidden-states without any specific head on top.
831
+ """
832
+
833
+ def __init__(self, config: NewConfig, add_pooling_layer=False):
834
+ super().__init__(config)
835
+ self.config = config
836
+
837
+ self.embeddings = NewEmbeddings(config)
838
+ self.encoder = NewEncoder(config)
839
+
840
+ self.pooler = NewPooler(config) if add_pooling_layer else None
841
+
842
+ # Initialize weights and apply final processing
843
+ self.post_init()
844
+
845
+ def get_input_embeddings(self):
846
+ return self.embeddings.word_embeddings
847
+
848
+ def set_input_embeddings(self, value):
849
+ self.embeddings.word_embeddings = value
850
+
851
+ def forward(
852
+ self,
853
+ input_ids: Optional[torch.Tensor] = None,
854
+ attention_mask: Optional[torch.Tensor] = None,
855
+ length: Optional[List[int]] = None,
856
+ subset_indices: Optional[torch.LongTensor] = None,
857
+ token_type_ids: Optional[torch.Tensor] = None,
858
+ position_ids: Optional[torch.Tensor] = None,
859
+ head_mask: Optional[torch.Tensor] = None,
860
+ inputs_embeds: Optional[torch.Tensor] = None,
861
+ output_attentions: Optional[bool] = None,
862
+ output_hidden_states: Optional[bool] = None,
863
+ return_dict: Optional[bool] = None,
864
+ unpad_inputs: Optional[bool] = None,
865
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
866
+ r"""
867
+ length (`list` of length `batch_size`, *optional*):
868
+ If is `None`, return padded `last_hidden_state`.
869
+ subset_indices ():
870
+ pass
871
+ unpad_inputs (`bool`, *optional*):
872
+ pass
873
+ """
874
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
875
+ output_hidden_states = (
876
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
877
+ )
878
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
879
+ unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
880
+ output_padded = length is None
881
+
882
+ if input_ids is not None and inputs_embeds is not None:
883
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
884
+ elif input_ids is not None:
885
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
886
+ input_shape = input_ids.size()
887
+ elif inputs_embeds is not None:
888
+ input_shape = inputs_embeds.size()[:-1]
889
+ else:
890
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
891
+
892
+ # TODO: not used
893
+ # # Prepare head mask if needed
894
+ # # 1.0 in head_mask indicate we keep the head
895
+ # # attention_probs has shape bsz x n_heads x N x N
896
+ # # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
897
+ # # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
898
+ # head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
899
+
900
+ # Get embeddings, may unpad them
901
+ (embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
902
+ unpad_inputs,
903
+ input_ids=input_ids,
904
+ attention_mask=attention_mask,
905
+ length=length,
906
+ token_type_ids=token_type_ids,
907
+ position_ids=position_ids,
908
+ inputs_embeds=inputs_embeds
909
+ )
910
+
911
+ batch_size, seq_length = input_shape
912
+ if unpad_inputs and self.config.use_memory_efficient_attention:
913
+ attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
914
+ else:
915
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
916
+ # ourselves in which case we just need to make it broadcastable to all heads.
917
+ attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
918
+ if self.config.use_memory_efficient_attention:
919
+ # Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
920
+ attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
921
+
922
+ padding_inputs = None
923
+ if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
924
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
925
+ if not self.config.use_memory_efficient_attention:
926
+ padding_inputs = (indices, *input_shape)
927
+
928
+ attention_scale = None
929
+ if self.config.logn_attention_scale:
930
+ logger.warning_once("TODO: logn_attention_scale")
931
+ # # attention scale log_512(input_len)
932
+ # attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
933
+ # # inference-time logn scale need clip 1
934
+ # if self.config.logn_attention_clip1:
935
+ # attention_scale.clip_(1)
936
+ # attention_scale = attention_scale[:, None, None, None]
937
+ # else:
938
+ # attention_scale = None
939
+
940
+ encoder_outputs = self.encoder(
941
+ embedding_output,
942
+ attention_bias=attention_bias,
943
+ rope_embeds=rope_embeds,
944
+ padding_inputs=padding_inputs,
945
+ attention_scale=attention_scale,
946
+ subset_indices=subset_indices,
947
+ head_mask=head_mask,
948
+ output_attentions=output_attentions,
949
+ output_hidden_states=output_hidden_states,
950
+ return_dict=return_dict,
951
+ )
952
+ sequence_output = encoder_outputs[0]
953
+ if unpad_inputs and output_padded:
954
+ sequence_output = pad_input(
955
+ sequence_output.squeeze(), indices, batch_size, seq_length
956
+ )
957
+
958
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
959
+
960
+ if not return_dict:
961
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
962
+
963
+ return BaseModelOutputWithPooling(
964
+ last_hidden_state=sequence_output,
965
+ pooler_output=pooled_output,
966
+ hidden_states=encoder_outputs.hidden_states,
967
+ attentions=encoder_outputs.attentions,
968
+ )
969
+
970
+
971
+ class NewLMPredictionHead(nn.Module):
972
+ def __init__(self, config):
973
+ super().__init__()
974
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
975
+ self.transform_act_fn = ACT2FN[config.hidden_act]
976
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
977
+
978
+ # The output weights are the same as the input embeddings, but there is
979
+ # an output-only bias for each token.
980
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
981
+
982
+ def forward(self, hidden_states):
983
+ hidden_states = self.dense(hidden_states)
984
+ hidden_states = self.transform_act_fn(hidden_states)
985
+ hidden_states = self.norm(hidden_states)
986
+ hidden_states = self.decoder(hidden_states)
987
+ return hidden_states
988
+
989
+
990
+ class NewForMaskedLM(NewPreTrainedModel):
991
+ _tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
992
+
993
+ def __init__(self, config: NewConfig):
994
+ super().__init__(config)
995
+ self.new = NewModel(config, add_pooling_layer=False)
996
+ self.lm_head = NewLMPredictionHead(config)
997
+ self.loss_fct = nn.CrossEntropyLoss()
998
+
999
+ # Initialize weights and apply final processing
1000
+ self.post_init()
1001
+
1002
+ def get_output_embeddings(self):
1003
+ return self.lm_head.decoder
1004
+
1005
+ def set_output_embeddings(self, new_embeddings):
1006
+ self.lm_head.decoder = new_embeddings
1007
+
1008
+ def forward(
1009
+ self,
1010
+ input_ids: Optional[torch.Tensor] = None,
1011
+ attention_mask: Optional[torch.Tensor] = None,
1012
+ token_type_ids: Optional[torch.Tensor] = None,
1013
+ position_ids: Optional[torch.Tensor] = None,
1014
+ head_mask: Optional[torch.Tensor] = None,
1015
+ inputs_embeds: Optional[torch.Tensor] = None,
1016
+ labels: Optional[torch.Tensor] = None,
1017
+ output_attentions: Optional[bool] = None,
1018
+ output_hidden_states: Optional[bool] = None,
1019
+ return_dict: Optional[bool] = None,
1020
+ unpad_inputs: Optional[bool] = None,
1021
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
1022
+ r"""
1023
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1024
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
1025
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
1026
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
1027
+ """
1028
+
1029
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1030
+
1031
+ if labels is None or not self.new.config.unpad_inputs:
1032
+ length = None
1033
+ subset_indices = None
1034
+ else:
1035
+ length = attention_mask.sum(-1).tolist()
1036
+ labels = labels[attention_mask.bool()].unsqueeze(0)
1037
+ subset_indices = labels > -100
1038
+
1039
+ outputs = self.new(
1040
+ input_ids,
1041
+ attention_mask=attention_mask,
1042
+ length=length,
1043
+ subset_indices=subset_indices,
1044
+ token_type_ids=token_type_ids,
1045
+ position_ids=position_ids,
1046
+ head_mask=head_mask,
1047
+ inputs_embeds=inputs_embeds,
1048
+ output_attentions=output_attentions,
1049
+ output_hidden_states=output_hidden_states,
1050
+ return_dict=return_dict,
1051
+ unpad_inputs=unpad_inputs,
1052
+ )
1053
+
1054
+ sequence_output = outputs[0]
1055
+ prediction_scores = self.lm_head(sequence_output)
1056
+
1057
+ masked_lm_loss = None
1058
+ if labels is not None:
1059
+ if subset_indices is None:
1060
+ mask = attention_mask.bool()
1061
+ prediction_scores = prediction_scores[mask]
1062
+ labels = labels[mask]
1063
+ else:
1064
+ labels = labels[subset_indices]
1065
+ masked_lm_loss = self.loss_fct(prediction_scores, labels)
1066
+
1067
+ if not return_dict:
1068
+ output = (prediction_scores,) + outputs[2:]
1069
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1070
+
1071
+ return MaskedLMOutput(
1072
+ loss=masked_lm_loss,
1073
+ logits=prediction_scores,
1074
+ hidden_states=outputs.hidden_states,
1075
+ attentions=outputs.attentions,
1076
+ )
1077
+
1078
+
1079
+ class NewForSequenceClassification(NewPreTrainedModel):
1080
+ def __init__(self, config):
1081
+ super().__init__(config)
1082
+ self.num_labels = config.num_labels
1083
+ self.config = config
1084
+
1085
+ self.new = NewModel(config, add_pooling_layer=True)
1086
+ classifier_dropout = (
1087
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1088
+ )
1089
+ self.dropout = nn.Dropout(classifier_dropout)
1090
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1091
+
1092
+ # Initialize weights and apply final processing
1093
+ self.post_init()
1094
+
1095
+ def forward(
1096
+ self,
1097
+ input_ids: Optional[torch.Tensor] = None,
1098
+ attention_mask: Optional[torch.Tensor] = None,
1099
+ token_type_ids: Optional[torch.Tensor] = None,
1100
+ position_ids: Optional[torch.Tensor] = None,
1101
+ head_mask: Optional[torch.Tensor] = None,
1102
+ inputs_embeds: Optional[torch.Tensor] = None,
1103
+ labels: Optional[torch.Tensor] = None,
1104
+ output_attentions: Optional[bool] = None,
1105
+ output_hidden_states: Optional[bool] = None,
1106
+ return_dict: Optional[bool] = None,
1107
+ unpad_inputs: Optional[bool] = None,
1108
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
1109
+ r"""
1110
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1111
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1112
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1113
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1114
+ """
1115
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1116
+
1117
+ outputs = self.new(
1118
+ input_ids,
1119
+ attention_mask=attention_mask,
1120
+ token_type_ids=token_type_ids,
1121
+ position_ids=position_ids,
1122
+ head_mask=head_mask,
1123
+ inputs_embeds=inputs_embeds,
1124
+ output_attentions=output_attentions,
1125
+ output_hidden_states=output_hidden_states,
1126
+ return_dict=return_dict,
1127
+ unpad_inputs=unpad_inputs,
1128
+ )
1129
+
1130
+ pooled_output = outputs[1]
1131
+
1132
+ pooled_output = self.dropout(pooled_output)
1133
+ logits = self.classifier(pooled_output)
1134
+
1135
+ loss = None
1136
+ if labels is not None:
1137
+ if self.config.problem_type is None:
1138
+ if self.num_labels == 1:
1139
+ self.config.problem_type = "regression"
1140
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1141
+ self.config.problem_type = "single_label_classification"
1142
+ else:
1143
+ self.config.problem_type = "multi_label_classification"
1144
+
1145
+ if self.config.problem_type == "regression":
1146
+ loss_fct = nn.MSELoss()
1147
+ if self.num_labels == 1:
1148
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1149
+ else:
1150
+ loss = loss_fct(logits, labels)
1151
+ elif self.config.problem_type == "single_label_classification":
1152
+ loss_fct = nn.CrossEntropyLoss()
1153
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1154
+ elif self.config.problem_type == "multi_label_classification":
1155
+ loss_fct = nn.BCEWithLogitsLoss()
1156
+ loss = loss_fct(logits, labels)
1157
+
1158
+ if not return_dict:
1159
+ output = (logits,) + outputs[2:]
1160
+ return ((loss,) + output) if loss is not None else output
1161
+
1162
+ return SequenceClassifierOutput(
1163
+ loss=loss,
1164
+ logits=logits,
1165
+ hidden_states=outputs.hidden_states,
1166
+ attentions=outputs.attentions,
1167
+ )
1168
+
1169
+
1170
+ class NewForMultipleChoice(NewPreTrainedModel):
1171
+ def __init__(self, config):
1172
+ super().__init__(config)
1173
+
1174
+ self.new = NewModel(config, add_pooling_layer=True)
1175
+ classifier_dropout = (
1176
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1177
+ )
1178
+ self.dropout = nn.Dropout(classifier_dropout)
1179
+ self.classifier = nn.Linear(config.hidden_size, 1)
1180
+
1181
+ # Initialize weights and apply final processing
1182
+ self.post_init()
1183
+
1184
+ def forward(
1185
+ self,
1186
+ input_ids: Optional[torch.Tensor] = None,
1187
+ attention_mask: Optional[torch.Tensor] = None,
1188
+ token_type_ids: Optional[torch.Tensor] = None,
1189
+ position_ids: Optional[torch.Tensor] = None,
1190
+ head_mask: Optional[torch.Tensor] = None,
1191
+ inputs_embeds: Optional[torch.Tensor] = None,
1192
+ labels: Optional[torch.Tensor] = None,
1193
+ output_attentions: Optional[bool] = None,
1194
+ output_hidden_states: Optional[bool] = None,
1195
+ return_dict: Optional[bool] = None,
1196
+ unpad_inputs: Optional[bool] = None,
1197
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
1198
+ r"""
1199
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1200
+ Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
1201
+ num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
1202
+ `input_ids` above)
1203
+ """
1204
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1205
+ num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
1206
+
1207
+ input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1208
+ attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1209
+ token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
1210
+ position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1211
+ inputs_embeds = (
1212
+ inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
1213
+ if inputs_embeds is not None
1214
+ else None
1215
+ )
1216
+
1217
+ outputs = self.new(
1218
+ input_ids,
1219
+ attention_mask=attention_mask,
1220
+ token_type_ids=token_type_ids,
1221
+ position_ids=position_ids,
1222
+ head_mask=head_mask,
1223
+ inputs_embeds=inputs_embeds,
1224
+ output_attentions=output_attentions,
1225
+ output_hidden_states=output_hidden_states,
1226
+ return_dict=return_dict,
1227
+ unpad_inputs=unpad_inputs,
1228
+ )
1229
+
1230
+ pooled_output = outputs[1]
1231
+
1232
+ pooled_output = self.dropout(pooled_output)
1233
+ logits = self.classifier(pooled_output)
1234
+ reshaped_logits = logits.view(-1, num_choices)
1235
+
1236
+ loss = None
1237
+ if labels is not None:
1238
+ loss_fct = nn.CrossEntropyLoss()
1239
+ loss = loss_fct(reshaped_logits, labels)
1240
+
1241
+ if not return_dict:
1242
+ output = (reshaped_logits,) + outputs[2:]
1243
+ return ((loss,) + output) if loss is not None else output
1244
+
1245
+ return MultipleChoiceModelOutput(
1246
+ loss=loss,
1247
+ logits=reshaped_logits,
1248
+ hidden_states=outputs.hidden_states,
1249
+ attentions=outputs.attentions,
1250
+ )
1251
+
1252
+
1253
+ @dataclass
1254
+ class NewTokenClassifierOutput(ModelOutput):
1255
+ loss: Optional[torch.FloatTensor] = None
1256
+ logits: torch.FloatTensor = None
1257
+ last_hidden_state: torch.FloatTensor = None
1258
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
1259
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
1260
+
1261
+
1262
+ class NewForTokenClassification(NewPreTrainedModel):
1263
+ def __init__(self, config):
1264
+ super().__init__(config)
1265
+ self.num_labels = config.num_labels
1266
+
1267
+ self.new = NewModel(config, add_pooling_layer=False)
1268
+ classifier_dropout = (
1269
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1270
+ )
1271
+ self.dropout = nn.Dropout(classifier_dropout)
1272
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1273
+
1274
+ # Initialize weights and apply final processing
1275
+ self.post_init()
1276
+
1277
+ def forward(
1278
+ self,
1279
+ input_ids: Optional[torch.Tensor] = None,
1280
+ attention_mask: Optional[torch.Tensor] = None,
1281
+ token_type_ids: Optional[torch.Tensor] = None,
1282
+ position_ids: Optional[torch.Tensor] = None,
1283
+ head_mask: Optional[torch.Tensor] = None,
1284
+ inputs_embeds: Optional[torch.Tensor] = None,
1285
+ labels: Optional[torch.Tensor] = None,
1286
+ output_attentions: Optional[bool] = None,
1287
+ output_hidden_states: Optional[bool] = None,
1288
+ return_dict: Optional[bool] = None,
1289
+ unpad_inputs: Optional[bool] = None,
1290
+ ) -> Union[Tuple[torch.Tensor], NewTokenClassifierOutput]:
1291
+ r"""
1292
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1293
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
1294
+ """
1295
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1296
+
1297
+ outputs = self.new(
1298
+ input_ids,
1299
+ attention_mask=attention_mask,
1300
+ token_type_ids=token_type_ids,
1301
+ position_ids=position_ids,
1302
+ head_mask=head_mask,
1303
+ inputs_embeds=inputs_embeds,
1304
+ output_attentions=output_attentions,
1305
+ output_hidden_states=output_hidden_states,
1306
+ return_dict=return_dict,
1307
+ unpad_inputs=unpad_inputs,
1308
+ )
1309
+
1310
+ sequence_output = outputs[0]
1311
+
1312
+ sequence_output = self.dropout(sequence_output)
1313
+ logits = self.classifier(sequence_output)
1314
+
1315
+ loss = None
1316
+ if labels is not None:
1317
+ loss_fct = nn.CrossEntropyLoss()
1318
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1319
+
1320
+ if not return_dict:
1321
+ output = (logits,) + outputs[2:]
1322
+ return ((loss,) + output) if loss is not None else output
1323
+
1324
+ return NewTokenClassifierOutput(
1325
+ loss=loss,
1326
+ logits=logits,
1327
+ last_hidden_state=sequence_output,
1328
+ hidden_states=outputs.hidden_states,
1329
+ attentions=outputs.attentions,
1330
+ )
1331
+
1332
+
1333
+ class NewForQuestionAnswering(NewPreTrainedModel):
1334
+ def __init__(self, config):
1335
+ super().__init__(config)
1336
+ self.num_labels = config.num_labels
1337
+
1338
+ self.new = NewModel(config, add_pooling_layer=False)
1339
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1340
+
1341
+ # Initialize weights and apply final processing
1342
+ self.post_init()
1343
+
1344
+ def forward(
1345
+ self,
1346
+ input_ids: Optional[torch.Tensor] = None,
1347
+ attention_mask: Optional[torch.Tensor] = None,
1348
+ token_type_ids: Optional[torch.Tensor] = None,
1349
+ position_ids: Optional[torch.Tensor] = None,
1350
+ head_mask: Optional[torch.Tensor] = None,
1351
+ inputs_embeds: Optional[torch.Tensor] = None,
1352
+ start_positions: Optional[torch.Tensor] = None,
1353
+ end_positions: Optional[torch.Tensor] = None,
1354
+ output_attentions: Optional[bool] = None,
1355
+ output_hidden_states: Optional[bool] = None,
1356
+ return_dict: Optional[bool] = None,
1357
+ unpad_inputs: Optional[bool] = None,
1358
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
1359
+ r"""
1360
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1361
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1362
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1363
+ are not taken into account for computing the loss.
1364
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1365
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1366
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1367
+ are not taken into account for computing the loss.
1368
+ """
1369
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1370
+
1371
+ outputs = self.new(
1372
+ input_ids,
1373
+ attention_mask=attention_mask,
1374
+ token_type_ids=token_type_ids,
1375
+ position_ids=position_ids,
1376
+ head_mask=head_mask,
1377
+ inputs_embeds=inputs_embeds,
1378
+ output_attentions=output_attentions,
1379
+ output_hidden_states=output_hidden_states,
1380
+ return_dict=return_dict,
1381
+ unpad_inputs=unpad_inputs,
1382
+ )
1383
+
1384
+ sequence_output = outputs[0]
1385
+
1386
+ logits = self.qa_outputs(sequence_output)
1387
+ start_logits, end_logits = logits.split(1, dim=-1)
1388
+ start_logits = start_logits.squeeze(-1).contiguous()
1389
+ end_logits = end_logits.squeeze(-1).contiguous()
1390
+
1391
+ total_loss = None
1392
+ if start_positions is not None and end_positions is not None:
1393
+ # If we are on multi-GPU, split add a dimension
1394
+ if len(start_positions.size()) > 1:
1395
+ start_positions = start_positions.squeeze(-1)
1396
+ if len(end_positions.size()) > 1:
1397
+ end_positions = end_positions.squeeze(-1)
1398
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1399
+ ignored_index = start_logits.size(1)
1400
+ start_positions = start_positions.clamp(0, ignored_index)
1401
+ end_positions = end_positions.clamp(0, ignored_index)
1402
+
1403
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
1404
+ start_loss = loss_fct(start_logits, start_positions)
1405
+ end_loss = loss_fct(end_logits, end_positions)
1406
+ total_loss = (start_loss + end_loss) / 2
1407
+
1408
+ if not return_dict:
1409
+ output = (start_logits, end_logits) + outputs[2:]
1410
+ return ((total_loss,) + output) if total_loss is not None else output
1411
+
1412
+ return QuestionAnsweringModelOutput(
1413
+ loss=total_loss,
1414
+ start_logits=start_logits,
1415
+ end_logits=end_logits,
1416
+ hidden_states=outputs.hidden_states,
1417
+ attentions=outputs.attentions,
1418
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
3
+ size 17082988
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 8192,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizerFast",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }