Add new CrossEncoder model
Browse files- .gitattributes +1 -0
- README.md +399 -0
- config.json +55 -0
- configuration.py +145 -0
- model.safetensors +3 -0
- modeling.py +1418 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- cross-encoder
|
| 5 |
+
- reranker
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:3200
|
| 8 |
+
- loss:CachedMultipleNegativesRankingLoss
|
| 9 |
+
base_model: Alibaba-NLP/gte-multilingual-reranker-base
|
| 10 |
+
pipeline_tag: text-ranking
|
| 11 |
+
library_name: sentence-transformers
|
| 12 |
+
metrics:
|
| 13 |
+
- map
|
| 14 |
+
- mrr@10
|
| 15 |
+
- ndcg@10
|
| 16 |
+
model-index:
|
| 17 |
+
- name: CrossEncoder based on Alibaba-NLP/gte-multilingual-reranker-base
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: cross-encoder-reranking
|
| 21 |
+
name: Cross Encoder Reranking
|
| 22 |
+
dataset:
|
| 23 |
+
name: gte multilingual reranker base contrastive parl 4 3ep
|
| 24 |
+
type: gte-multilingual-reranker-base-contrastive-parl-4-3ep
|
| 25 |
+
metrics:
|
| 26 |
+
- type: map
|
| 27 |
+
value: 0.0231
|
| 28 |
+
name: Map
|
| 29 |
+
- type: mrr@10
|
| 30 |
+
value: 0.0231
|
| 31 |
+
name: Mrr@10
|
| 32 |
+
- type: ndcg@10
|
| 33 |
+
value: 0.0233
|
| 34 |
+
name: Ndcg@10
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
# CrossEncoder based on Alibaba-NLP/gte-multilingual-reranker-base
|
| 38 |
+
|
| 39 |
+
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [Alibaba-NLP/gte-multilingual-reranker-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
|
| 40 |
+
|
| 41 |
+
## Model Details
|
| 42 |
+
|
| 43 |
+
### Model Description
|
| 44 |
+
- **Model Type:** Cross Encoder
|
| 45 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-reranker-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base) <!-- at revision 8215cf04918ba6f7b6a62bb44238ce2953d8831c -->
|
| 46 |
+
- **Maximum Sequence Length:** 8192 tokens
|
| 47 |
+
- **Number of Output Labels:** 1 label
|
| 48 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 49 |
+
<!-- - **Language:** Unknown -->
|
| 50 |
+
<!-- - **License:** Unknown -->
|
| 51 |
+
|
| 52 |
+
### Model Sources
|
| 53 |
+
|
| 54 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 55 |
+
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
|
| 56 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 57 |
+
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
|
| 58 |
+
|
| 59 |
+
## Usage
|
| 60 |
+
|
| 61 |
+
### Direct Usage (Sentence Transformers)
|
| 62 |
+
|
| 63 |
+
First install the Sentence Transformers library:
|
| 64 |
+
|
| 65 |
+
```bash
|
| 66 |
+
pip install -U sentence-transformers
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
Then you can load this model and run inference.
|
| 70 |
+
```python
|
| 71 |
+
from sentence_transformers import CrossEncoder
|
| 72 |
+
|
| 73 |
+
# Download from the 🤗 Hub
|
| 74 |
+
model = CrossEncoder("cuadron11/gte-multilingual-reranker-base-contrastive-parl-4-3ep")
|
| 75 |
+
# Get scores for pairs of texts
|
| 76 |
+
pairs = [
|
| 77 |
+
['Zer iritzi dute zerbitzu juridikoek Garoñako zentral nuklearraren berrirekitzearen inguruan?', '[TOPIC: Lehenbailehen eztabaidatzeko EH Bildu talde parlamentarioak egindako legez besteko proposamena, Garoñako zentral nuklearraren berrirekitzea ahalbidetzen duen CSNren ebazpenaren eta zentzu horretan etor daitezkeen Energia Ministerioaren erabaki eta aginduen aurrean helegitea ipintzeko beharrari buruz. Eztabaida eta behin betiko ebazpena]\n[ROJO SOLANA, (SV-ES)]:\nzerbitzu juridikoei, eta hori esaten du txosten juridikoak. Horrenbestez, arrazoi horregatik –hori uste dut– azaldu zuen Bilduk ekimen hau. Egia da puntu horietako bik proposatzen dituzten jarrera politikoak gutako bakoitzak jada planteatu ditugula Ganbera honetan, baina egia da Legebiltzarraren jarrera hartzeari dagokion puntua, bada, zerbait berria dela, zerbitzu juridikoen iritzia behar baikenuen. Beraz, esaten ari nintzen bezala, kontua ez da gaur eztabaida berriro irekitzea. Denok dakigu jarrera zein den. Baina (Date: 06.04.2017)'],
|
| 78 |
+
['Noiz amaitu zen epea Eusko Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakundeei hitzarmena sinatzea proposatzeko?', '[TOPIC: Galdera, Antonio Damborenea Basterrechea Euskal Talde Popularreko legebiltzarkideak Ogasun eta Finantzetako sailburuari egina, euskal sektore publikoaren partaidetza duten erakundeen erregimen ekonomikofinantzarioa adosteko beste administrazio batzuekin hitzarmenak egiteari buruz]\n[OGASUN ETA FINANTZETAKO SAILBURUAK (GATZAGAETXEBARRIA BASTIDA), (EA-NV)]:\npartaidetza handiena publikoa duten fundazio eta partzuergoentzat, eta, kapital-elkarteak izan gabe eta administrazioen mende dauden erakundeak izan gabe, gehienbat administrazio publikoek finantzatzen dituzten erakundeentzat. Esan duzunez, kasu horietan araubide ekonomiko-finantzarioa zehaztu behar zen, eta urtebeteko epea ezartzen zen Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakunde horiei hitzarmen bat sinatzea proposatzeko, betiere araubide ekonomiko-finantzarioa zehaztu gabe bazegoen. Bada, urtebeteko epea martxoaren 13an bete zen. Guk ez (Date: 10.05.2013)'],
|
| 79 |
+
['Zein da EH Bilduk unibertsitate-ikasketa ofizialen arauketari buruz duen iritzia?', '[TOPIC: Euskal Sozialistak legebiltzar-taldeak egindako legez besteko proposamena, unibertsitate-ikasketa ofizialen arauketa aldatzen duen 43/2015 Errege Dekretuari buruz. Eztabaida eta behin betiko ebazpena]\n[ISASI BALANZATEGI, (EH Bildu)]:\ndela, oso gutxi aldatu izan dela eta Europako ereduen artean, hegoaldeko unibertsitateen artean, beharbada bere barne-funtzionamenduari begira atzerakoiena. Gu ez gatoz bat. Ez gatoz bat Estatuaren monopolioa izatea unibertsitatea gaur egun. Hori aldatu egin behar da. Sailburu anderea, ondo ezagutzen duzu unibertsitatea. Eta guk eskumenak eskatzea ez da bakarrik independentistak garelako, ez, unibertsitate modernoa nahi dugulako, malguagoa. Gaur egun titulazioak egitea Espainiako unibertsitatean sufrikario bat da, sufrikario bat da (Date: 16.04.2015)'],
|
| 80 |
+
['Zergatik ez du Eusko Jaurlaritzak Hirikoren sustatzaileen aurkako kereilan ustezko eragindako gisa barnean sartu nahi?', '[TOPIC: Mozioa, Gorka Maneiro Labayen Mistoa-UPyD taldeko legebiltzarkideak aurkeztua, Hirikoren sustatzaileen aurkako kereila dela-eta hartuko dituen neurriei buruz. Eztabaida eta behin betiko ebazpena]\n[REYES MARTÍN, (SV-ES)]:\niruzurra eginez erabiltzeaz… Orduan, zer arazo du Eusko Jaurlaritzak barnean sartzeko, inor salatu gabe, ustezko eragindako gisa? Batere ez. Gure ustez, gaur funts publikoen erabileraren defentsan funts publikoak egoki erabiltzea defendatzeko proposamen bat sinatzen dugunok ez dugu zertan azalpenik eman fiskalak argitaratu duenaren gainean. Aitzitik, Jaurlaritzak azaldu behar du zertan ari den. Eskerrik asko. La (Date: 16.04.2015)'],
|
| 81 |
+
['Zein neurri hartuko ditu Eusko Jaurlaritzak azken asteotan iragarritako industria-enpresen itxierak saihesteko?', '[TOPIC: Galdera, Iker Casanova Alonso EH Bildu taldeko legebiltzarkideak Ekonomiaren Garapen eta Lehiakortasuneko sailburuari egina, beren itxiera iragarri duten hainbat industria-enpresaren egoerari buruz]\n[CASANOVA ALONSO, (EH Bildu)]:\nEskerrik asko, eta egun on guztioi. Azken asteotan hainbat enpresa- ren itxieraren iragarpena ezagutu dugu. Itxierarekin batera, lanpostuen galera eta pertsona askoren etorkizun ekonomiko, laboral eta pertsonala kolokan gelditzen da. Baltogar, Mungian, 49 langile. Arkema, Alonsotegi, 60 langile. Cablenor, Gasteiz, 140 langile. Candy, Bergara, 150 langile. Ia 400 langile guztira. Hauek dira krisiaren azken biktimak, arlo industrialean behintzat. Egia da beste sektoretan ere lanpostuak galtzen ari direla azken urteotan, baina enpresa industrialen itxierak, afektatzen duten langilekopuruagatik, bereziki deigarri eta mingarri egiten zaizkigu. Uste dugu Eusko Jaurlaritzaren papera aktiboagoa izan behar dela gure enpresen defentsan, edozein itxieraren aurrean lubakian egon behar duela, lubakian, dena ematen langileekin, langile eta gure enpresen interesak defendatzen. Ikusi nahi dugu Eusko Jaurlaritza enpresen itxierari, mugimendu espekulatiboei eta deslokalizazioei aurre egiten dauzkan tresna guztiekin. Guk ez dugu horrela ikusten, eta jakin izan dugunez, kaltetutako enpresa gehienen langileek ere ez. Honegatik guztiagatik, galdetzen diogu Eusko Jaurlaritzari: azken aste hauetan iragarritako industria enpresen itxieraren aurrean, Baltogar, Arkema, Candy, Cablenor besteak beste, Eusko Jaurlaritzak enpleguaren eta enpresa hauen defentsan neurri proaktiboak hartzeko asmoa du? Eskerrik asko. (Date: 14.11.2014)'],
|
| 82 |
+
]
|
| 83 |
+
scores = model.predict(pairs)
|
| 84 |
+
print(scores.shape)
|
| 85 |
+
# (5,)
|
| 86 |
+
|
| 87 |
+
# Or rank different texts based on similarity to a single text
|
| 88 |
+
ranks = model.rank(
|
| 89 |
+
'Zer iritzi dute zerbitzu juridikoek Garoñako zentral nuklearraren berrirekitzearen inguruan?',
|
| 90 |
+
[
|
| 91 |
+
'[TOPIC: Lehenbailehen eztabaidatzeko EH Bildu talde parlamentarioak egindako legez besteko proposamena, Garoñako zentral nuklearraren berrirekitzea ahalbidetzen duen CSNren ebazpenaren eta zentzu horretan etor daitezkeen Energia Ministerioaren erabaki eta aginduen aurrean helegitea ipintzeko beharrari buruz. Eztabaida eta behin betiko ebazpena]\n[ROJO SOLANA, (SV-ES)]:\nzerbitzu juridikoei, eta hori esaten du txosten juridikoak. Horrenbestez, arrazoi horregatik –hori uste dut– azaldu zuen Bilduk ekimen hau. Egia da puntu horietako bik proposatzen dituzten jarrera politikoak gutako bakoitzak jada planteatu ditugula Ganbera honetan, baina egia da Legebiltzarraren jarrera hartzeari dagokion puntua, bada, zerbait berria dela, zerbitzu juridikoen iritzia behar baikenuen. Beraz, esaten ari nintzen bezala, kontua ez da gaur eztabaida berriro irekitzea. Denok dakigu jarrera zein den. Baina (Date: 06.04.2017)',
|
| 92 |
+
'[TOPIC: Galdera, Antonio Damborenea Basterrechea Euskal Talde Popularreko legebiltzarkideak Ogasun eta Finantzetako sailburuari egina, euskal sektore publikoaren partaidetza duten erakundeen erregimen ekonomikofinantzarioa adosteko beste administrazio batzuekin hitzarmenak egiteari buruz]\n[OGASUN ETA FINANTZETAKO SAILBURUAK (GATZAGAETXEBARRIA BASTIDA), (EA-NV)]:\npartaidetza handiena publikoa duten fundazio eta partzuergoentzat, eta, kapital-elkarteak izan gabe eta administrazioen mende dauden erakundeak izan gabe, gehienbat administrazio publikoek finantzatzen dituzten erakundeentzat. Esan duzunez, kasu horietan araubide ekonomiko-finantzarioa zehaztu behar zen, eta urtebeteko epea ezartzen zen Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakunde horiei hitzarmen bat sinatzea proposatzeko, betiere araubide ekonomiko-finantzarioa zehaztu gabe bazegoen. Bada, urtebeteko epea martxoaren 13an bete zen. Guk ez (Date: 10.05.2013)',
|
| 93 |
+
'[TOPIC: Euskal Sozialistak legebiltzar-taldeak egindako legez besteko proposamena, unibertsitate-ikasketa ofizialen arauketa aldatzen duen 43/2015 Errege Dekretuari buruz. Eztabaida eta behin betiko ebazpena]\n[ISASI BALANZATEGI, (EH Bildu)]:\ndela, oso gutxi aldatu izan dela eta Europako ereduen artean, hegoaldeko unibertsitateen artean, beharbada bere barne-funtzionamenduari begira atzerakoiena. Gu ez gatoz bat. Ez gatoz bat Estatuaren monopolioa izatea unibertsitatea gaur egun. Hori aldatu egin behar da. Sailburu anderea, ondo ezagutzen duzu unibertsitatea. Eta guk eskumenak eskatzea ez da bakarrik independentistak garelako, ez, unibertsitate modernoa nahi dugulako, malguagoa. Gaur egun titulazioak egitea Espainiako unibertsitatean sufrikario bat da, sufrikario bat da (Date: 16.04.2015)',
|
| 94 |
+
'[TOPIC: Mozioa, Gorka Maneiro Labayen Mistoa-UPyD taldeko legebiltzarkideak aurkeztua, Hirikoren sustatzaileen aurkako kereila dela-eta hartuko dituen neurriei buruz. Eztabaida eta behin betiko ebazpena]\n[REYES MARTÍN, (SV-ES)]:\niruzurra eginez erabiltzeaz… Orduan, zer arazo du Eusko Jaurlaritzak barnean sartzeko, inor salatu gabe, ustezko eragindako gisa? Batere ez. Gure ustez, gaur funts publikoen erabileraren defentsan funts publikoak egoki erabiltzea defendatzeko proposamen bat sinatzen dugunok ez dugu zertan azalpenik eman fiskalak argitaratu duenaren gainean. Aitzitik, Jaurlaritzak azaldu behar du zertan ari den. Eskerrik asko. La (Date: 16.04.2015)',
|
| 95 |
+
'[TOPIC: Galdera, Iker Casanova Alonso EH Bildu taldeko legebiltzarkideak Ekonomiaren Garapen eta Lehiakortasuneko sailburuari egina, beren itxiera iragarri duten hainbat industria-enpresaren egoerari buruz]\n[CASANOVA ALONSO, (EH Bildu)]:\nEskerrik asko, eta egun on guztioi. Azken asteotan hainbat enpresa- ren itxieraren iragarpena ezagutu dugu. Itxierarekin batera, lanpostuen galera eta pertsona askoren etorkizun ekonomiko, laboral eta pertsonala kolokan gelditzen da. Baltogar, Mungian, 49 langile. Arkema, Alonsotegi, 60 langile. Cablenor, Gasteiz, 140 langile. Candy, Bergara, 150 langile. Ia 400 langile guztira. Hauek dira krisiaren azken biktimak, arlo industrialean behintzat. Egia da beste sektoretan ere lanpostuak galtzen ari direla azken urteotan, baina enpresa industrialen itxierak, afektatzen duten langilekopuruagatik, bereziki deigarri eta mingarri egiten zaizkigu. Uste dugu Eusko Jaurlaritzaren papera aktiboagoa izan behar dela gure enpresen defentsan, edozein itxieraren aurrean lubakian egon behar duela, lubakian, dena ematen langileekin, langile eta gure enpresen interesak defendatzen. Ikusi nahi dugu Eusko Jaurlaritza enpresen itxierari, mugimendu espekulatiboei eta deslokalizazioei aurre egiten dauzkan tresna guztiekin. Guk ez dugu horrela ikusten, eta jakin izan dugunez, kaltetutako enpresa gehienen langileek ere ez. Honegatik guztiagatik, galdetzen diogu Eusko Jaurlaritzari: azken aste hauetan iragarritako industria enpresen itxieraren aurrean, Baltogar, Arkema, Candy, Cablenor besteak beste, Eusko Jaurlaritzak enpleguaren eta enpresa hauen defentsan neurri proaktiboak hartzeko asmoa du? Eskerrik asko. (Date: 14.11.2014)',
|
| 96 |
+
]
|
| 97 |
+
)
|
| 98 |
+
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
<!--
|
| 102 |
+
### Direct Usage (Transformers)
|
| 103 |
+
|
| 104 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 105 |
+
|
| 106 |
+
</details>
|
| 107 |
+
-->
|
| 108 |
+
|
| 109 |
+
<!--
|
| 110 |
+
### Downstream Usage (Sentence Transformers)
|
| 111 |
+
|
| 112 |
+
You can finetune this model on your own dataset.
|
| 113 |
+
|
| 114 |
+
<details><summary>Click to expand</summary>
|
| 115 |
+
|
| 116 |
+
</details>
|
| 117 |
+
-->
|
| 118 |
+
|
| 119 |
+
<!--
|
| 120 |
+
### Out-of-Scope Use
|
| 121 |
+
|
| 122 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 123 |
+
-->
|
| 124 |
+
|
| 125 |
+
## Evaluation
|
| 126 |
+
|
| 127 |
+
### Metrics
|
| 128 |
+
|
| 129 |
+
#### Cross Encoder Reranking
|
| 130 |
+
|
| 131 |
+
* Dataset: `gte-multilingual-reranker-base-contrastive-parl-4-3ep`
|
| 132 |
+
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
|
| 133 |
+
```json
|
| 134 |
+
{
|
| 135 |
+
"at_k": 10,
|
| 136 |
+
"always_rerank_positives": false
|
| 137 |
+
}
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
| Metric | Value |
|
| 141 |
+
|:------------|:---------------------|
|
| 142 |
+
| map | 0.0231 (+0.0219) |
|
| 143 |
+
| mrr@10 | 0.0231 (+0.0224) |
|
| 144 |
+
| **ndcg@10** | **0.0233 (+0.0219)** |
|
| 145 |
+
|
| 146 |
+
<!--
|
| 147 |
+
## Bias, Risks and Limitations
|
| 148 |
+
|
| 149 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 150 |
+
-->
|
| 151 |
+
|
| 152 |
+
<!--
|
| 153 |
+
### Recommendations
|
| 154 |
+
|
| 155 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 156 |
+
-->
|
| 157 |
+
|
| 158 |
+
## Training Details
|
| 159 |
+
|
| 160 |
+
### Training Dataset
|
| 161 |
+
|
| 162 |
+
#### Unnamed Dataset
|
| 163 |
+
|
| 164 |
+
* Size: 3,200 training samples
|
| 165 |
+
* Columns: <code>query</code> and <code>positive</code>
|
| 166 |
+
* Approximate statistics based on the first 1000 samples:
|
| 167 |
+
| | query | positive |
|
| 168 |
+
|:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
|
| 169 |
+
| type | string | string |
|
| 170 |
+
| details | <ul><li>min: 30 characters</li><li>mean: 98.98 characters</li><li>max: 202 characters</li></ul> | <ul><li>min: 562 characters</li><li>mean: 982.5 characters</li><li>max: 2102 characters</li></ul> |
|
| 171 |
+
* Samples:
|
| 172 |
+
| query | positive |
|
| 173 |
+
|:--------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 174 |
+
| <code>Zenbat lokal huts ditu Enplegu, Etxebizitza eta Gizarte Politiketako Sailak?</code> | <code>[TOPIC: Euskal Sozialistak legebiltzar-taldeak egindako legez besteko proposamena, EAEko Administrazio publikoak okupaziorik gabe dauzkan lonja eta lokal komertzialak ekintzailetza eta autoenplegu proiektuetarako erabiltzeari buruz. Eztabaida eta behin betiko ebazpena]<br>[ITXASO GONZÁLEZ, (SV-ES)]:<br>Eskerrik asko, lehendakari andrea. Egun on guztioi. Buenos días, señor lehendakari. Sozialistok, proposamenak egiteko dugun tradizioari jarraikiz, beste ekimen bat dugu gaur goizerako. Ekimen horren bidez, proposatzen dugu Enplegu, Etxebizitza eta Gizarte Politiketako Sailaren esku dauden lokal hutsak –gure taldeari emandako erantzunaren arabera, 131 lokal inguru izango lirateke–... gure ekimenean proposatzen dugu hamabi hilabete baino gehiago hutsik dauden lokalak ekintzailetzaproiektuetarako erabiltzea. Inolako baliabiderik izan gabe ekintzailetzaproiektu batekin amestu duen orok, badaki behar erabakigarrienetariko bat enpresa-proiektua edo ekintzailetasun-proiektu hori gauzatzeko toki bat e...</code> |
|
| 175 |
+
| <code>Zein neurri hartu dira Eusko Legebiltzarrean euskal merkataritza txikia suspertzeko?</code> | <code>[TOPIC: EH Bildu talde parlamentarioak egindako legez besteko proposamena, euskal merkataritza txikia suspertzeko larrialdiko neurri bereziak hartzeari buruz. Eztabaida eta behin betiko ebazpena]<br>[LÓPEZ DE OCARIZ LÓPEZ DE MUNAIN, (PV-ETP)]:<br>Bai, eskerrik asko, presidente andrea. Baimena ematen badidazu, eserlekutik arituko naiz, uste baitut, guztiok jada esan dugun bezala, eztabaida monografiko bat izango dugula, eta eztabaida horretan sakonduko dugu merkataritzari laguntzeko politiketan. Baina, Casanova jauna, aurrekontuaz hitz egin didazu. Begira, guk ekitaldi guztietan aurkezten dizkiegu zuzenketak aurrekontuei, urtero: batzuetan gehitu egin ditzakegu eta beste batzuetan ez, baina hor ez dugu inoiz hutsik egin, eta denbora asko daramagu txikizkako merkataritzaren aldeko apustua egiten. Herri-erabakiaz hitz egin diguzu. Zerbaitek ekarri badu establezimendu eta enpresa txiki batzuk ixtea, eta merkataritzak kalte handia jasatea, izan da lanbidearteko gutxieneko soldata % 22 igotzea; ho...</code> |
|
| 176 |
+
| <code>Zenbat diru bideratzen da gaur egun kontziliazio eta erantzunkidetasun politiketara?</code> | <code>[TOPIC: EH Bildu talde parlamentarioak egindako legez besteko proposamena, kontziliazio eta erantzunkidetasun politika berriak zehaztuko dituen lau urterako plan berezitu bat Legebiltzarrera ekartzeari buruz. Eztabaida eta behin betiko ebazpena]<br>[URRUTIA OIANGUREN, (EA-NV)]:<br>Urkullu jaunak egin ahal izan zuen hauteskunde-promesa hartako zuzkidura ekonomiko hura... Begira, egungo planak 1.700 milioiko zuzkidura du –eskueran ditugun datuen arabera–, 1.700 milioikoa, erakundearteko plan batean; horietatik, Gobernu honetako Gizarte Politiketako Sailari 1.200 milioi dagozkio, eta horietatik, 286 milioi bideratzen dira gaur hizpide dugun gai honetara. Alegia, seguruenera, litekeena balitz ere denbora-epeak bete ez izana, horren gainetik, hala izanda ere, nik uste dut esku artean dugun planarekin... La (Date: 06.06.2019)</code> |
|
| 177 |
+
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
|
| 178 |
+
```json
|
| 179 |
+
{
|
| 180 |
+
"scale": 10.0,
|
| 181 |
+
"num_negatives": null,
|
| 182 |
+
"activation_fn": "torch.nn.modules.activation.Sigmoid",
|
| 183 |
+
"mini_batch_size": 16
|
| 184 |
+
}
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
### Evaluation Dataset
|
| 188 |
+
|
| 189 |
+
#### Unnamed Dataset
|
| 190 |
+
|
| 191 |
+
* Size: 800 evaluation samples
|
| 192 |
+
* Columns: <code>query</code> and <code>positive</code>
|
| 193 |
+
* Approximate statistics based on the first 800 samples:
|
| 194 |
+
| | query | positive |
|
| 195 |
+
|:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|
|
| 196 |
+
| type | string | string |
|
| 197 |
+
| details | <ul><li>min: 31 characters</li><li>mean: 99.44 characters</li><li>max: 253 characters</li></ul> | <ul><li>min: 500 characters</li><li>mean: 967.21 characters</li><li>max: 2113 characters</li></ul> |
|
| 198 |
+
* Samples:
|
| 199 |
+
| query | positive |
|
| 200 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 201 |
+
| <code>Zer iritzi dute zerbitzu juridikoek Garoñako zentral nuklearraren berrirekitzearen inguruan?</code> | <code>[TOPIC: Lehenbailehen eztabaidatzeko EH Bildu talde parlamentarioak egindako legez besteko proposamena, Garoñako zentral nuklearraren berrirekitzea ahalbidetzen duen CSNren ebazpenaren eta zentzu horretan etor daitezkeen Energia Ministerioaren erabaki eta aginduen aurrean helegitea ipintzeko beharrari buruz. Eztabaida eta behin betiko ebazpena]<br>[ROJO SOLANA, (SV-ES)]:<br>zerbitzu juridikoei, eta hori esaten du txosten juridikoak. Horrenbestez, arrazoi horregatik –hori uste dut– azaldu zuen Bilduk ekimen hau. Egia da puntu horietako bik proposatzen dituzten jarrera politikoak gutako bakoitzak jada planteatu ditugula Ganbera honetan, baina egia da Legebiltzarraren jarrera hartzeari dagokion puntua, bada, zerbait berria dela, zerbitzu juridikoen iritzia behar baikenuen. Beraz, esaten ari nintzen bezala, kontua ez da gaur eztabaida berriro irekitzea. Denok dakigu jarrera zein den. Baina (Date: 06.04.2017)</code> |
|
| 202 |
+
| <code>Noiz amaitu zen epea Eusko Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakundeei hitzarmena sinatzea proposatzeko?</code> | <code>[TOPIC: Galdera, Antonio Damborenea Basterrechea Euskal Talde Popularreko legebiltzarkideak Ogasun eta Finantzetako sailburuari egina, euskal sektore publikoaren partaidetza duten erakundeen erregimen ekonomikofinantzarioa adosteko beste administrazio batzuekin hitzarmenak egiteari buruz]<br>[OGASUN ETA FINANTZETAKO SAILBURUAK (GATZAGAETXEBARRIA BASTIDA), (EA-NV)]:<br>partaidetza handiena publikoa duten fundazio eta partzuergoentzat, eta, kapital-elkarteak izan gabe eta administrazioen mende dauden erakundeak izan gabe, gehienbat administrazio publikoek finantzatzen dituzten erakundeentzat. Esan duzunez, kasu horietan araubide ekonomiko-finantzarioa zehaztu behar zen, eta urtebeteko epea ezartzen zen Jaurlaritzak erakunde, kapital-elkarte edo kapitalik ez duten erakunde horiei hitzarmen bat sinatzea proposatzeko, betiere araubide ekonomiko-finantzarioa zehaztu gabe bazegoen. Bada, urtebeteko epea martxoaren 13an bete zen. Guk ez (Date: 10.05.2013)</code> |
|
| 203 |
+
| <code>Zein da EH Bilduk unibertsitate-ikasketa ofizialen arauketari buruz duen iritzia?</code> | <code>[TOPIC: Euskal Sozialistak legebiltzar-taldeak egindako legez besteko proposamena, unibertsitate-ikasketa ofizialen arauketa aldatzen duen 43/2015 Errege Dekretuari buruz. Eztabaida eta behin betiko ebazpena]<br>[ISASI BALANZATEGI, (EH Bildu)]:<br>dela, oso gutxi aldatu izan dela eta Europako ereduen artean, hegoaldeko unibertsitateen artean, beharbada bere barne-funtzionamenduari begira atzerakoiena. Gu ez gatoz bat. Ez gatoz bat Estatuaren monopolioa izatea unibertsitatea gaur egun. Hori aldatu egin behar da. Sailburu anderea, ondo ezagutzen duzu unibertsitatea. Eta guk eskumenak eskatzea ez da bakarrik independentistak garelako, ez, unibertsitate modernoa nahi dugulako, malguagoa. Gaur egun titulazioak egitea Espainiako unibertsitatean sufrikario bat da, sufrikario bat da (Date: 16.04.2015)</code> |
|
| 204 |
+
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
|
| 205 |
+
```json
|
| 206 |
+
{
|
| 207 |
+
"scale": 10.0,
|
| 208 |
+
"num_negatives": null,
|
| 209 |
+
"activation_fn": "torch.nn.modules.activation.Sigmoid",
|
| 210 |
+
"mini_batch_size": 16
|
| 211 |
+
}
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
+
### Training Hyperparameters
|
| 215 |
+
#### Non-Default Hyperparameters
|
| 216 |
+
|
| 217 |
+
- `eval_strategy`: steps
|
| 218 |
+
- `per_device_train_batch_size`: 16
|
| 219 |
+
- `per_device_eval_batch_size`: 16
|
| 220 |
+
- `learning_rate`: 2e-05
|
| 221 |
+
- `num_train_epochs`: 1
|
| 222 |
+
- `warmup_ratio`: 0.1
|
| 223 |
+
- `load_best_model_at_end`: True
|
| 224 |
+
- `batch_sampler`: no_duplicates
|
| 225 |
+
|
| 226 |
+
#### All Hyperparameters
|
| 227 |
+
<details><summary>Click to expand</summary>
|
| 228 |
+
|
| 229 |
+
- `overwrite_output_dir`: False
|
| 230 |
+
- `do_predict`: False
|
| 231 |
+
- `eval_strategy`: steps
|
| 232 |
+
- `prediction_loss_only`: True
|
| 233 |
+
- `per_device_train_batch_size`: 16
|
| 234 |
+
- `per_device_eval_batch_size`: 16
|
| 235 |
+
- `per_gpu_train_batch_size`: None
|
| 236 |
+
- `per_gpu_eval_batch_size`: None
|
| 237 |
+
- `gradient_accumulation_steps`: 1
|
| 238 |
+
- `eval_accumulation_steps`: None
|
| 239 |
+
- `torch_empty_cache_steps`: None
|
| 240 |
+
- `learning_rate`: 2e-05
|
| 241 |
+
- `weight_decay`: 0.0
|
| 242 |
+
- `adam_beta1`: 0.9
|
| 243 |
+
- `adam_beta2`: 0.999
|
| 244 |
+
- `adam_epsilon`: 1e-08
|
| 245 |
+
- `max_grad_norm`: 1.0
|
| 246 |
+
- `num_train_epochs`: 1
|
| 247 |
+
- `max_steps`: -1
|
| 248 |
+
- `lr_scheduler_type`: linear
|
| 249 |
+
- `lr_scheduler_kwargs`: {}
|
| 250 |
+
- `warmup_ratio`: 0.1
|
| 251 |
+
- `warmup_steps`: 0
|
| 252 |
+
- `log_level`: passive
|
| 253 |
+
- `log_level_replica`: warning
|
| 254 |
+
- `log_on_each_node`: True
|
| 255 |
+
- `logging_nan_inf_filter`: True
|
| 256 |
+
- `save_safetensors`: True
|
| 257 |
+
- `save_on_each_node`: False
|
| 258 |
+
- `save_only_model`: False
|
| 259 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 260 |
+
- `no_cuda`: False
|
| 261 |
+
- `use_cpu`: False
|
| 262 |
+
- `use_mps_device`: False
|
| 263 |
+
- `seed`: 42
|
| 264 |
+
- `data_seed`: None
|
| 265 |
+
- `jit_mode_eval`: False
|
| 266 |
+
- `use_ipex`: False
|
| 267 |
+
- `bf16`: False
|
| 268 |
+
- `fp16`: False
|
| 269 |
+
- `fp16_opt_level`: O1
|
| 270 |
+
- `half_precision_backend`: auto
|
| 271 |
+
- `bf16_full_eval`: False
|
| 272 |
+
- `fp16_full_eval`: False
|
| 273 |
+
- `tf32`: None
|
| 274 |
+
- `local_rank`: 0
|
| 275 |
+
- `ddp_backend`: None
|
| 276 |
+
- `tpu_num_cores`: None
|
| 277 |
+
- `tpu_metrics_debug`: False
|
| 278 |
+
- `debug`: []
|
| 279 |
+
- `dataloader_drop_last`: False
|
| 280 |
+
- `dataloader_num_workers`: 0
|
| 281 |
+
- `dataloader_prefetch_factor`: None
|
| 282 |
+
- `past_index`: -1
|
| 283 |
+
- `disable_tqdm`: False
|
| 284 |
+
- `remove_unused_columns`: True
|
| 285 |
+
- `label_names`: None
|
| 286 |
+
- `load_best_model_at_end`: True
|
| 287 |
+
- `ignore_data_skip`: False
|
| 288 |
+
- `fsdp`: []
|
| 289 |
+
- `fsdp_min_num_params`: 0
|
| 290 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 291 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 292 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 293 |
+
- `parallelism_config`: None
|
| 294 |
+
- `deepspeed`: None
|
| 295 |
+
- `label_smoothing_factor`: 0.0
|
| 296 |
+
- `optim`: adamw_torch
|
| 297 |
+
- `optim_args`: None
|
| 298 |
+
- `adafactor`: False
|
| 299 |
+
- `group_by_length`: False
|
| 300 |
+
- `length_column_name`: length
|
| 301 |
+
- `ddp_find_unused_parameters`: None
|
| 302 |
+
- `ddp_bucket_cap_mb`: None
|
| 303 |
+
- `ddp_broadcast_buffers`: False
|
| 304 |
+
- `dataloader_pin_memory`: True
|
| 305 |
+
- `dataloader_persistent_workers`: False
|
| 306 |
+
- `skip_memory_metrics`: True
|
| 307 |
+
- `use_legacy_prediction_loop`: False
|
| 308 |
+
- `push_to_hub`: False
|
| 309 |
+
- `resume_from_checkpoint`: None
|
| 310 |
+
- `hub_model_id`: None
|
| 311 |
+
- `hub_strategy`: every_save
|
| 312 |
+
- `hub_private_repo`: None
|
| 313 |
+
- `hub_always_push`: False
|
| 314 |
+
- `hub_revision`: None
|
| 315 |
+
- `gradient_checkpointing`: False
|
| 316 |
+
- `gradient_checkpointing_kwargs`: None
|
| 317 |
+
- `include_inputs_for_metrics`: False
|
| 318 |
+
- `include_for_metrics`: []
|
| 319 |
+
- `eval_do_concat_batches`: True
|
| 320 |
+
- `fp16_backend`: auto
|
| 321 |
+
- `push_to_hub_model_id`: None
|
| 322 |
+
- `push_to_hub_organization`: None
|
| 323 |
+
- `mp_parameters`:
|
| 324 |
+
- `auto_find_batch_size`: False
|
| 325 |
+
- `full_determinism`: False
|
| 326 |
+
- `torchdynamo`: None
|
| 327 |
+
- `ray_scope`: last
|
| 328 |
+
- `ddp_timeout`: 1800
|
| 329 |
+
- `torch_compile`: False
|
| 330 |
+
- `torch_compile_backend`: None
|
| 331 |
+
- `torch_compile_mode`: None
|
| 332 |
+
- `include_tokens_per_second`: False
|
| 333 |
+
- `include_num_input_tokens_seen`: False
|
| 334 |
+
- `neftune_noise_alpha`: None
|
| 335 |
+
- `optim_target_modules`: None
|
| 336 |
+
- `batch_eval_metrics`: False
|
| 337 |
+
- `eval_on_start`: False
|
| 338 |
+
- `use_liger_kernel`: False
|
| 339 |
+
- `liger_kernel_config`: None
|
| 340 |
+
- `eval_use_gather_object`: False
|
| 341 |
+
- `average_tokens_across_devices`: False
|
| 342 |
+
- `prompts`: None
|
| 343 |
+
- `batch_sampler`: no_duplicates
|
| 344 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 345 |
+
- `router_mapping`: {}
|
| 346 |
+
- `learning_rate_mapping`: {}
|
| 347 |
+
|
| 348 |
+
</details>
|
| 349 |
+
|
| 350 |
+
### Training Logs
|
| 351 |
+
| Epoch | Step | Training Loss | Validation Loss | gte-multilingual-reranker-base-contrastive-parl-4-3ep_ndcg@10 |
|
| 352 |
+
|:-------:|:-------:|:-------------:|:---------------:|:-------------------------------------------------------------:|
|
| 353 |
+
| **1.0** | **200** | **0.0569** | **0.035** | **0.0233 (+0.0219)** |
|
| 354 |
+
|
| 355 |
+
* The bold row denotes the saved checkpoint.
|
| 356 |
+
|
| 357 |
+
### Framework Versions
|
| 358 |
+
- Python: 3.9.7
|
| 359 |
+
- Sentence Transformers: 5.0.0
|
| 360 |
+
- Transformers: 4.56.0
|
| 361 |
+
- PyTorch: 2.7.1+cu126
|
| 362 |
+
- Accelerate: 1.5.2
|
| 363 |
+
- Datasets: 4.0.0
|
| 364 |
+
- Tokenizers: 0.22.0
|
| 365 |
+
|
| 366 |
+
## Citation
|
| 367 |
+
|
| 368 |
+
### BibTeX
|
| 369 |
+
|
| 370 |
+
#### Sentence Transformers
|
| 371 |
+
```bibtex
|
| 372 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 373 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 374 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 375 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 376 |
+
month = "11",
|
| 377 |
+
year = "2019",
|
| 378 |
+
publisher = "Association for Computational Linguistics",
|
| 379 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 380 |
+
}
|
| 381 |
+
```
|
| 382 |
+
|
| 383 |
+
<!--
|
| 384 |
+
## Glossary
|
| 385 |
+
|
| 386 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 387 |
+
-->
|
| 388 |
+
|
| 389 |
+
<!--
|
| 390 |
+
## Model Card Authors
|
| 391 |
+
|
| 392 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 393 |
+
-->
|
| 394 |
+
|
| 395 |
+
<!--
|
| 396 |
+
## Model Card Contact
|
| 397 |
+
|
| 398 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 399 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"NewForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration.NewConfig",
|
| 8 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
| 9 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
| 10 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
| 11 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
| 12 |
+
"AutoModelForSequenceClassification": "modeling.NewForSequenceClassification",
|
| 13 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
| 14 |
+
},
|
| 15 |
+
"bos_token_id": 0,
|
| 16 |
+
"classifier_dropout": 0.0,
|
| 17 |
+
"dtype": "float32",
|
| 18 |
+
"eos_token_id": 2,
|
| 19 |
+
"hidden_act": "gelu",
|
| 20 |
+
"hidden_dropout_prob": 0.1,
|
| 21 |
+
"hidden_size": 768,
|
| 22 |
+
"id2label": {
|
| 23 |
+
"0": "LABEL_0"
|
| 24 |
+
},
|
| 25 |
+
"initializer_range": 0.02,
|
| 26 |
+
"intermediate_size": 3072,
|
| 27 |
+
"label2id": {
|
| 28 |
+
"LABEL_0": 0
|
| 29 |
+
},
|
| 30 |
+
"layer_norm_eps": 1e-12,
|
| 31 |
+
"layer_norm_type": "layer_norm",
|
| 32 |
+
"logn_attention_clip1": false,
|
| 33 |
+
"logn_attention_scale": false,
|
| 34 |
+
"max_position_embeddings": 8192,
|
| 35 |
+
"model_type": "new",
|
| 36 |
+
"num_attention_heads": 12,
|
| 37 |
+
"num_hidden_layers": 12,
|
| 38 |
+
"pack_qkv": true,
|
| 39 |
+
"pad_token_id": 1,
|
| 40 |
+
"position_embedding_type": "rope",
|
| 41 |
+
"rope_scaling": {
|
| 42 |
+
"factor": 8.0,
|
| 43 |
+
"type": "ntk"
|
| 44 |
+
},
|
| 45 |
+
"rope_theta": 20000,
|
| 46 |
+
"sentence_transformers": {
|
| 47 |
+
"activation_fn": "torch.nn.modules.activation.Sigmoid",
|
| 48 |
+
"version": "5.0.0"
|
| 49 |
+
},
|
| 50 |
+
"transformers_version": "4.56.0",
|
| 51 |
+
"type_vocab_size": 1,
|
| 52 |
+
"unpad_inputs": false,
|
| 53 |
+
"use_memory_efficient_attention": false,
|
| 54 |
+
"vocab_size": 250048
|
| 55 |
+
}
|
configuration.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" NEW model configuration"""
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class NewConfig(PretrainedConfig):
|
| 24 |
+
r"""
|
| 25 |
+
This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
|
| 26 |
+
instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
|
| 27 |
+
configuration with the defaults will yield a similar configuration to that of the NEW
|
| 28 |
+
[izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
|
| 29 |
+
|
| 30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
| 36 |
+
Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
|
| 37 |
+
`inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
| 38 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 39 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 40 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 41 |
+
Number of hidden layers in the Transformer encoder.
|
| 42 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 43 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 44 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 45 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
| 46 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
| 47 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 48 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
| 49 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 51 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 52 |
+
The dropout ratio for the attention probabilities.
|
| 53 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
| 54 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 55 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 56 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
| 57 |
+
The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
| 58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 61 |
+
The epsilon used by the layer normalization layers.
|
| 62 |
+
position_embedding_type (`str`, *optional*, defaults to `"rope"`):
|
| 63 |
+
Type of position embedding. Choose one of `"absolute"`, `"rope"`.
|
| 64 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 65 |
+
The base period of the RoPE embeddings.
|
| 66 |
+
rope_scaling (`Dict`, *optional*):
|
| 67 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 68 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 69 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 70 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 71 |
+
these scaling strategies behave:
|
| 72 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 73 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 74 |
+
classifier_dropout (`float`, *optional*):
|
| 75 |
+
The dropout ratio for the classification head.
|
| 76 |
+
|
| 77 |
+
Examples:
|
| 78 |
+
|
| 79 |
+
```python
|
| 80 |
+
>>> from transformers import NewConfig, NewModel
|
| 81 |
+
|
| 82 |
+
>>> # Initializing a NEW izhx/new-base-en style configuration
|
| 83 |
+
>>> configuration = NewConfig()
|
| 84 |
+
|
| 85 |
+
>>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
|
| 86 |
+
>>> model = NewModel(configuration)
|
| 87 |
+
|
| 88 |
+
>>> # Accessing the model configuration
|
| 89 |
+
>>> configuration = model.config
|
| 90 |
+
```"""
|
| 91 |
+
|
| 92 |
+
model_type = "new"
|
| 93 |
+
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
vocab_size=30528,
|
| 97 |
+
hidden_size=768,
|
| 98 |
+
num_hidden_layers=12,
|
| 99 |
+
num_attention_heads=12,
|
| 100 |
+
intermediate_size=3072,
|
| 101 |
+
hidden_act="gelu",
|
| 102 |
+
hidden_dropout_prob=0.1,
|
| 103 |
+
attention_probs_dropout_prob=0.0,
|
| 104 |
+
max_position_embeddings=2048,
|
| 105 |
+
type_vocab_size=1,
|
| 106 |
+
initializer_range=0.02,
|
| 107 |
+
layer_norm_type='layer_norm',
|
| 108 |
+
layer_norm_eps=1e-12,
|
| 109 |
+
# pad_token_id=0,
|
| 110 |
+
position_embedding_type="rope",
|
| 111 |
+
rope_theta=10000.0,
|
| 112 |
+
rope_scaling=None,
|
| 113 |
+
classifier_dropout=None,
|
| 114 |
+
pack_qkv=True,
|
| 115 |
+
unpad_inputs=False,
|
| 116 |
+
use_memory_efficient_attention=False,
|
| 117 |
+
logn_attention_scale=False,
|
| 118 |
+
logn_attention_clip1=False,
|
| 119 |
+
**kwargs,
|
| 120 |
+
):
|
| 121 |
+
super().__init__(**kwargs)
|
| 122 |
+
|
| 123 |
+
self.vocab_size = vocab_size
|
| 124 |
+
self.hidden_size = hidden_size
|
| 125 |
+
self.num_hidden_layers = num_hidden_layers
|
| 126 |
+
self.num_attention_heads = num_attention_heads
|
| 127 |
+
self.hidden_act = hidden_act
|
| 128 |
+
self.intermediate_size = intermediate_size
|
| 129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 131 |
+
self.max_position_embeddings = max_position_embeddings
|
| 132 |
+
self.type_vocab_size = type_vocab_size
|
| 133 |
+
self.initializer_range = initializer_range
|
| 134 |
+
self.layer_norm_type = layer_norm_type
|
| 135 |
+
self.layer_norm_eps = layer_norm_eps
|
| 136 |
+
self.position_embedding_type = position_embedding_type
|
| 137 |
+
self.rope_theta = rope_theta
|
| 138 |
+
self.rope_scaling = rope_scaling
|
| 139 |
+
self.classifier_dropout = classifier_dropout
|
| 140 |
+
|
| 141 |
+
self.pack_qkv = pack_qkv
|
| 142 |
+
self.unpad_inputs = unpad_inputs
|
| 143 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
| 144 |
+
self.logn_attention_scale = logn_attention_scale
|
| 145 |
+
self.logn_attention_clip1 = logn_attention_clip1
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6e1cce08ab47e9e1e30b41d13dfac7409ed254ff00474b7ffdc79148cfded292
|
| 3 |
+
size 1223854204
|
modeling.py
ADDED
|
@@ -0,0 +1,1418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""PyTorch NEW model."""
|
| 17 |
+
|
| 18 |
+
import math
|
| 19 |
+
from dataclasses import dataclass
|
| 20 |
+
from typing import List, Optional, Tuple, Union
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
import torch.utils.checkpoint
|
| 24 |
+
from torch import nn
|
| 25 |
+
|
| 26 |
+
from transformers.activations import ACT2FN
|
| 27 |
+
from transformers.modeling_outputs import (
|
| 28 |
+
BaseModelOutput,
|
| 29 |
+
BaseModelOutputWithPooling,
|
| 30 |
+
MaskedLMOutput,
|
| 31 |
+
MultipleChoiceModelOutput,
|
| 32 |
+
QuestionAnsweringModelOutput,
|
| 33 |
+
SequenceClassifierOutput,
|
| 34 |
+
ModelOutput,
|
| 35 |
+
)
|
| 36 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 37 |
+
from transformers.utils import logging
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
import xformers.ops as xops
|
| 41 |
+
except ImportError as e:
|
| 42 |
+
xops = None
|
| 43 |
+
|
| 44 |
+
from .configuration import NewConfig
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
logger = logging.get_logger(__name__)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
|
| 51 |
+
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
| 52 |
+
class IndexFirstAxis(torch.autograd.Function):
|
| 53 |
+
@staticmethod
|
| 54 |
+
def forward(ctx, input, indices):
|
| 55 |
+
ctx.save_for_backward(indices)
|
| 56 |
+
assert input.ndim >= 2
|
| 57 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
| 58 |
+
second_dim = other_shape.numel()
|
| 59 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
| 60 |
+
# return input[indices]
|
| 61 |
+
# return torch.gather(
|
| 62 |
+
# rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
|
| 63 |
+
# ).reshape(-1, *other_shape)
|
| 64 |
+
return torch.gather(
|
| 65 |
+
input.view(ctx.first_axis_dim, second_dim),
|
| 66 |
+
0,
|
| 67 |
+
indices.unsqueeze(-1).expand(indices.size(0), second_dim)
|
| 68 |
+
).reshape(-1, *other_shape)
|
| 69 |
+
|
| 70 |
+
@staticmethod
|
| 71 |
+
def backward(ctx, grad_output):
|
| 72 |
+
(indices,) = ctx.saved_tensors
|
| 73 |
+
assert grad_output.ndim >= 2
|
| 74 |
+
other_shape = grad_output.shape[1:]
|
| 75 |
+
# grad_output = rearrange(grad_output, "b ... -> b (...)")
|
| 76 |
+
grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
|
| 77 |
+
grad_input = torch.zeros(
|
| 78 |
+
[ctx.first_axis_dim, grad_output.shape[1]],
|
| 79 |
+
device=grad_output.device,
|
| 80 |
+
dtype=grad_output.dtype,
|
| 81 |
+
)
|
| 82 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
| 83 |
+
# grad_input[indices] = grad_output
|
| 84 |
+
# grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
|
| 85 |
+
grad_input.scatter_(
|
| 86 |
+
0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
|
| 87 |
+
)
|
| 88 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
index_first_axis = IndexFirstAxis.apply
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def unpad_input(hidden_states, attention_mask=None, indices=None):
|
| 95 |
+
"""
|
| 96 |
+
Arguments:
|
| 97 |
+
hidden_states: (batch, seqlen, ...)
|
| 98 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
| 99 |
+
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
| 100 |
+
Return:
|
| 101 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
| 102 |
+
"""
|
| 103 |
+
if indices is None:
|
| 104 |
+
assert attention_mask is not None
|
| 105 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 106 |
+
|
| 107 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
| 108 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
| 109 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
| 110 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
| 111 |
+
# so we write custom forward and backward to make it a bit faster.
|
| 112 |
+
hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
|
| 113 |
+
return index_first_axis(hidden_states, indices)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
| 117 |
+
@staticmethod
|
| 118 |
+
def forward(
|
| 119 |
+
ctx,
|
| 120 |
+
values: torch.Tensor,
|
| 121 |
+
indices: torch.Tensor,
|
| 122 |
+
first_axis_dim
|
| 123 |
+
) -> torch.Tensor:
|
| 124 |
+
ctx.save_for_backward(indices)
|
| 125 |
+
assert indices.ndim == 1
|
| 126 |
+
assert values.ndim >= 2
|
| 127 |
+
output = torch.zeros(
|
| 128 |
+
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
|
| 129 |
+
)
|
| 130 |
+
output[indices] = values
|
| 131 |
+
return output
|
| 132 |
+
|
| 133 |
+
@staticmethod
|
| 134 |
+
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
|
| 135 |
+
indices, = ctx.saved_tensors
|
| 136 |
+
grad_values = grad_output[indices]
|
| 137 |
+
return grad_values, None, None
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
|
| 144 |
+
"""Add padding to sequences.
|
| 145 |
+
|
| 146 |
+
Arguments:
|
| 147 |
+
inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
| 148 |
+
indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
|
| 149 |
+
batch: int batch_size
|
| 150 |
+
seqlen: int max sequence length
|
| 151 |
+
|
| 152 |
+
Returns:
|
| 153 |
+
inputs: (batch, seqlen, ...)
|
| 154 |
+
"""
|
| 155 |
+
output = index_put_first_axis(inputs, indices, batch * seqlen)
|
| 156 |
+
return output.view(batch, seqlen, *inputs.shape[1:])
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def rotate_half(x):
|
| 160 |
+
"""Rotates half the hidden dims of the input."""
|
| 161 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 162 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 163 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
| 167 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
q (`torch.Tensor`): The query tensor.
|
| 171 |
+
k (`torch.Tensor`): The key tensor.
|
| 172 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 173 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 174 |
+
Returns:
|
| 175 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 176 |
+
"""
|
| 177 |
+
cos, sin = cos.to(q.dtype), sin.to(q.dtype)
|
| 178 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 179 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 180 |
+
return q_embed, k_embed
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 184 |
+
def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
|
| 185 |
+
super().__init__()
|
| 186 |
+
|
| 187 |
+
self.dim = dim
|
| 188 |
+
self.max_position_embeddings = max_position_embeddings
|
| 189 |
+
self.base = base
|
| 190 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 191 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 192 |
+
|
| 193 |
+
# Build here to make `torch.jit.trace` work.
|
| 194 |
+
self._set_cos_sin_cache(
|
| 195 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 199 |
+
self.max_seq_len_cached = seq_len
|
| 200 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
| 201 |
+
|
| 202 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 203 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 204 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 205 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 206 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 207 |
+
|
| 208 |
+
def forward(self, x, seq_len=None):
|
| 209 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 210 |
+
if seq_len > self.max_seq_len_cached:
|
| 211 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 212 |
+
|
| 213 |
+
return (
|
| 214 |
+
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
|
| 215 |
+
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
class NTKScalingRotaryEmbedding(RotaryEmbedding):
|
| 220 |
+
"""RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
|
| 221 |
+
|
| 222 |
+
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
|
| 223 |
+
self.scaling_factor = scaling_factor
|
| 224 |
+
self.mixed_b = mixed_b
|
| 225 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 226 |
+
max_position_embeddings = max_position_embeddings * self.scaling_factor
|
| 227 |
+
self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
|
| 228 |
+
|
| 229 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 230 |
+
self.max_seq_len_cached = seq_len
|
| 231 |
+
|
| 232 |
+
if seq_len > self.max_position_embeddings:
|
| 233 |
+
base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
|
| 234 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 235 |
+
|
| 236 |
+
if self.mixed_b is None:
|
| 237 |
+
inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
|
| 238 |
+
else:
|
| 239 |
+
a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
|
| 240 |
+
lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
|
| 241 |
+
inv_freq = inv_freq / lambda_1_m # (10)
|
| 242 |
+
|
| 243 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 244 |
+
|
| 245 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
| 246 |
+
|
| 247 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 248 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 249 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 250 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 251 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
class RMSNorm(nn.Module):
|
| 255 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 256 |
+
"""
|
| 257 |
+
RMSNorm is equivalent to T5LayerNorm
|
| 258 |
+
"""
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 261 |
+
self.variance_epsilon = eps
|
| 262 |
+
|
| 263 |
+
def forward(self, hidden_states):
|
| 264 |
+
input_dtype = hidden_states.dtype
|
| 265 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 266 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 267 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 268 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
LAYER_NORM = {
|
| 272 |
+
'layer_norm': nn.LayerNorm,
|
| 273 |
+
'rms_norm': RMSNorm
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class NewEmbeddings(nn.Module):
|
| 278 |
+
"""
|
| 279 |
+
Embedding and Unpadding.
|
| 280 |
+
"""
|
| 281 |
+
|
| 282 |
+
def __init__(self, config: NewConfig):
|
| 283 |
+
super().__init__()
|
| 284 |
+
self.padding_idx = config.pad_token_id
|
| 285 |
+
self.word_embeddings = nn.Embedding(
|
| 286 |
+
config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
self.position_embedding_type = config.position_embedding_type
|
| 290 |
+
if self.position_embedding_type == 'absolute':
|
| 291 |
+
self.position_embeddings = nn.Embedding(
|
| 292 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
| 293 |
+
)
|
| 294 |
+
elif self.position_embedding_type == 'rope':
|
| 295 |
+
self._init_rope(config)
|
| 296 |
+
else:
|
| 297 |
+
raise ValueError
|
| 298 |
+
|
| 299 |
+
self.type_vocab_size = config.type_vocab_size
|
| 300 |
+
if self.type_vocab_size > 0:
|
| 301 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 302 |
+
|
| 303 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 304 |
+
# any TensorFlow checkpoint file
|
| 305 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 306 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 307 |
+
# position_ids is contiguous in memory and excluded when serialized
|
| 308 |
+
self.register_buffer(
|
| 309 |
+
"position_ids", torch.arange(config.max_position_embeddings), persistent=False
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
def _init_rope(self, config):
|
| 313 |
+
kwargs = dict(
|
| 314 |
+
dim=int(config.hidden_size / config.num_attention_heads),
|
| 315 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 316 |
+
base=config.rope_theta
|
| 317 |
+
)
|
| 318 |
+
if config.rope_scaling is None:
|
| 319 |
+
self.rotary_emb = RotaryEmbedding(**kwargs)
|
| 320 |
+
else:
|
| 321 |
+
kwargs.update(scaling_factor=config.rope_scaling["factor"])
|
| 322 |
+
scaling_type = config.rope_scaling["type"]
|
| 323 |
+
if scaling_type == 'ntk':
|
| 324 |
+
kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
|
| 325 |
+
self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
|
| 326 |
+
# elif scaling_type == "linear":
|
| 327 |
+
# self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
|
| 328 |
+
# elif scaling_type == "dynamic":
|
| 329 |
+
# self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
|
| 330 |
+
else:
|
| 331 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 332 |
+
|
| 333 |
+
def forward(
|
| 334 |
+
self,
|
| 335 |
+
unpad_inputs: bool,
|
| 336 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 337 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 338 |
+
length: Optional[List[int]] = None,
|
| 339 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 340 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 341 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 342 |
+
) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
|
| 343 |
+
"""
|
| 344 |
+
"""
|
| 345 |
+
if inputs_embeds is None:
|
| 346 |
+
device, input_shape = input_ids.device, input_ids.shape
|
| 347 |
+
else:
|
| 348 |
+
device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
|
| 349 |
+
batch_size, seq_length = input_shape
|
| 350 |
+
|
| 351 |
+
# Set attention_mask if it's None
|
| 352 |
+
if attention_mask is None:
|
| 353 |
+
attention_mask = torch.ones(input_shape, device=device)
|
| 354 |
+
if length is not None:
|
| 355 |
+
for i, l in enumerate(length):
|
| 356 |
+
attention_mask[i, l:] = 0
|
| 357 |
+
|
| 358 |
+
# Set attention_mask_bool for unpadding
|
| 359 |
+
if unpad_inputs:
|
| 360 |
+
attention_mask_bool = attention_mask.bool()
|
| 361 |
+
if length is None:
|
| 362 |
+
length = attention_mask.sum(-1).tolist()
|
| 363 |
+
|
| 364 |
+
# Get word embeddings
|
| 365 |
+
if inputs_embeds is None:
|
| 366 |
+
if unpad_inputs:
|
| 367 |
+
input_ids = input_ids[attention_mask_bool].unsqueeze(0)
|
| 368 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 369 |
+
else:
|
| 370 |
+
if unpad_inputs:
|
| 371 |
+
inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
|
| 372 |
+
embeddings = inputs_embeds
|
| 373 |
+
|
| 374 |
+
# Set and unpad position_ids
|
| 375 |
+
if position_ids is None:
|
| 376 |
+
if seq_length > self.position_ids.size(0):
|
| 377 |
+
self.register_buffer(
|
| 378 |
+
"position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
|
| 379 |
+
)
|
| 380 |
+
if unpad_inputs:
|
| 381 |
+
# [1, cumsum_seq_len]
|
| 382 |
+
position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
|
| 383 |
+
else:
|
| 384 |
+
# [bs, seq_len]
|
| 385 |
+
position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
|
| 386 |
+
elif unpad_inputs:
|
| 387 |
+
position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
|
| 388 |
+
|
| 389 |
+
# Compute rotary embedding
|
| 390 |
+
if self.position_embedding_type == 'rope':
|
| 391 |
+
rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
|
| 392 |
+
rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
|
| 393 |
+
rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
|
| 394 |
+
rope_embeds = rope_cos, rope_sin
|
| 395 |
+
else:
|
| 396 |
+
rope_embeds = None
|
| 397 |
+
|
| 398 |
+
if self.type_vocab_size > 0:
|
| 399 |
+
if token_type_ids is None:
|
| 400 |
+
token_type_ids = position_ids.mul(0)
|
| 401 |
+
else:
|
| 402 |
+
if self.type_vocab_size < 2:
|
| 403 |
+
token_type_ids.mul_(0)
|
| 404 |
+
if unpad_inputs:
|
| 405 |
+
token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
|
| 406 |
+
|
| 407 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 408 |
+
embeddings = embeddings + token_type_embeddings
|
| 409 |
+
|
| 410 |
+
# BERT position
|
| 411 |
+
if self.position_embedding_type == "absolute":
|
| 412 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 413 |
+
embeddings = embeddings + position_embeddings
|
| 414 |
+
|
| 415 |
+
embeddings = self.LayerNorm(embeddings)
|
| 416 |
+
embeddings = self.dropout(embeddings)
|
| 417 |
+
|
| 418 |
+
return embeddings, attention_mask, rope_embeds, length
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
class NewAttention(nn.Module):
|
| 422 |
+
def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
|
| 423 |
+
super().__init__()
|
| 424 |
+
self.config = config
|
| 425 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
| 426 |
+
raise ValueError(
|
| 427 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 428 |
+
f"heads ({config.num_attention_heads})"
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
self.hidden_size = config.hidden_size
|
| 432 |
+
self.num_attention_heads = config.num_attention_heads
|
| 433 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 434 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 435 |
+
|
| 436 |
+
if pack_qkv is None:
|
| 437 |
+
pack_qkv = config.pack_qkv
|
| 438 |
+
self.pack_qkv = pack_qkv
|
| 439 |
+
|
| 440 |
+
if self.pack_qkv:
|
| 441 |
+
self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
|
| 442 |
+
else:
|
| 443 |
+
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 444 |
+
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 445 |
+
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 446 |
+
|
| 447 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 448 |
+
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
| 449 |
+
|
| 450 |
+
if use_memory_efficient_attention is None:
|
| 451 |
+
use_memory_efficient_attention = self.config.use_memory_efficient_attention
|
| 452 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
| 453 |
+
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
|
| 454 |
+
if self.use_memory_efficient_attention:
|
| 455 |
+
assert self.memory_efficient_attention is not None, 'please install xformers'
|
| 456 |
+
|
| 457 |
+
def forward(
|
| 458 |
+
self,
|
| 459 |
+
hidden_states: torch.Tensor,
|
| 460 |
+
attention_bias: torch.FloatTensor,
|
| 461 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
| 462 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
| 463 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
| 464 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 465 |
+
output_attentions: Optional[bool] = False,
|
| 466 |
+
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
| 467 |
+
) -> Tuple[torch.Tensor, ...]:
|
| 468 |
+
shape_hd = (self.num_attention_heads, self.attention_head_size)
|
| 469 |
+
# qkv
|
| 470 |
+
if self.pack_qkv and qkv_inputs is None:
|
| 471 |
+
qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
|
| 472 |
+
else:
|
| 473 |
+
if qkv_inputs is None:
|
| 474 |
+
qkv_inputs = (hidden_states, hidden_states, hidden_states)
|
| 475 |
+
qkv_pack = [
|
| 476 |
+
getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
|
| 477 |
+
]
|
| 478 |
+
query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
|
| 479 |
+
|
| 480 |
+
if self.config.position_embedding_type == 'rope':
|
| 481 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
|
| 482 |
+
|
| 483 |
+
dtype = query_states.dtype
|
| 484 |
+
|
| 485 |
+
if self.config.logn_attention_scale and attention_scale is not None:
|
| 486 |
+
# https://kexue.fm/archives/8823
|
| 487 |
+
query_states = query_states * attention_scale.to(dtype)
|
| 488 |
+
|
| 489 |
+
if padding_inputs is not None:
|
| 490 |
+
query_states = pad_input(query_states.squeeze(), *padding_inputs)
|
| 491 |
+
key_states = pad_input(key_states.squeeze(), *padding_inputs)
|
| 492 |
+
value_states = pad_input(value_states.squeeze(), *padding_inputs)
|
| 493 |
+
|
| 494 |
+
if self.use_memory_efficient_attention:
|
| 495 |
+
assert self.memory_efficient_attention is not None, "xformers is not loaded"
|
| 496 |
+
assert output_attentions is False, "memory_efficient_attention do not output attentions"
|
| 497 |
+
assert head_mask is None, "Not support yet"
|
| 498 |
+
attention_probs = None
|
| 499 |
+
if torch.is_tensor(attention_bias):
|
| 500 |
+
attention_bias = attention_bias.to(dtype)
|
| 501 |
+
context_layer = self.memory_efficient_attention(
|
| 502 |
+
query_states,
|
| 503 |
+
key_states,
|
| 504 |
+
value_states,
|
| 505 |
+
attn_bias=attention_bias,
|
| 506 |
+
p=self.dropout.p
|
| 507 |
+
)
|
| 508 |
+
else:
|
| 509 |
+
if output_attentions and isinstance(self, NewSdpaAttention):
|
| 510 |
+
raise RuntimeError("SDPA do not output attentions")
|
| 511 |
+
context_layer, attention_probs = self._attention(
|
| 512 |
+
query_states, key_states, value_states, attention_bias, head_mask
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
if padding_inputs is not None:
|
| 516 |
+
context_layer = unpad_input(context_layer, indices=padding_inputs[0])
|
| 517 |
+
|
| 518 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 519 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 520 |
+
|
| 521 |
+
# output proj
|
| 522 |
+
attn_output = self.o_proj(context_layer)
|
| 523 |
+
|
| 524 |
+
# add attentions if we output them
|
| 525 |
+
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
|
| 526 |
+
return outputs
|
| 527 |
+
|
| 528 |
+
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
| 529 |
+
"""
|
| 530 |
+
Args:
|
| 531 |
+
q/k/v: (B, L, n_head, head_dim),
|
| 532 |
+
Returns:
|
| 533 |
+
attn_output: (B L, n_head, head_dim)
|
| 534 |
+
"""
|
| 535 |
+
query_states = query_states.transpose(1, 2)
|
| 536 |
+
key_states = key_states.transpose(1, 2)
|
| 537 |
+
value_states = value_states.transpose(1, 2)
|
| 538 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 539 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
| 540 |
+
|
| 541 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 542 |
+
if attention_bias is not None:
|
| 543 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 544 |
+
attention_scores = attention_scores + attention_bias
|
| 545 |
+
|
| 546 |
+
# Normalize the attention scores to probabilities.
|
| 547 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 548 |
+
|
| 549 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 550 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 551 |
+
if self.dropout.p > 0:
|
| 552 |
+
attention_probs = self.dropout(attention_probs)
|
| 553 |
+
|
| 554 |
+
# Mask heads if we want to
|
| 555 |
+
if head_mask is not None:
|
| 556 |
+
attention_probs = attention_probs * head_mask
|
| 557 |
+
|
| 558 |
+
context_layer = torch.matmul(attention_probs, value_states)
|
| 559 |
+
|
| 560 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 561 |
+
return context_layer, attention_probs
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
class NewSdpaAttention(NewAttention):
|
| 565 |
+
"""
|
| 566 |
+
New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 567 |
+
`NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 568 |
+
SDPA API.
|
| 569 |
+
"""
|
| 570 |
+
def __init__(self, config: NewConfig, **kwargs):
|
| 571 |
+
super().__init__(config, **kwargs)
|
| 572 |
+
# torch.backends.cuda.enable_mem_efficient_sdp(False)
|
| 573 |
+
# logger.warning(
|
| 574 |
+
# "Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
|
| 575 |
+
# "`use_memory_efficient_attention=True` if it expected to use."
|
| 576 |
+
# )
|
| 577 |
+
|
| 578 |
+
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
| 579 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 580 |
+
query_states.transpose(1, 2),
|
| 581 |
+
key_states.transpose(1, 2),
|
| 582 |
+
value_states.transpose(1, 2),
|
| 583 |
+
attn_mask=attention_bias,
|
| 584 |
+
dropout_p=self.dropout.p if self.training else 0.0,
|
| 585 |
+
)
|
| 586 |
+
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
|
| 587 |
+
return attn_output, None
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
NEW_ATTENTION_CLASSES = {
|
| 591 |
+
"eager": NewAttention,
|
| 592 |
+
# "flash_attention_2": , # TODO
|
| 593 |
+
"sdpa": NewSdpaAttention,
|
| 594 |
+
}
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
class NewGatedMLP(nn.Module):
|
| 598 |
+
"""
|
| 599 |
+
GLU Variants Improve Transformer.
|
| 600 |
+
"""
|
| 601 |
+
|
| 602 |
+
def __init__(self, config: NewConfig):
|
| 603 |
+
super().__init__()
|
| 604 |
+
self.intermediate_size = config.intermediate_size
|
| 605 |
+
self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
|
| 606 |
+
self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
|
| 607 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 608 |
+
if config.hidden_dropout_prob > 0:
|
| 609 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 610 |
+
else:
|
| 611 |
+
self.hidden_dropout = None
|
| 612 |
+
|
| 613 |
+
def forward(self, hidden_states):
|
| 614 |
+
up_gate = self.up_gate_proj(hidden_states)
|
| 615 |
+
up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
|
| 616 |
+
gate = self.act_fn(gate)
|
| 617 |
+
gated_states = gate * up_states
|
| 618 |
+
if self.hidden_dropout is not None:
|
| 619 |
+
gated_states = self.hidden_dropout(gated_states)
|
| 620 |
+
down_states = self.down_proj(gated_states)
|
| 621 |
+
return down_states
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
class NewLayer(nn.Module):
|
| 625 |
+
def __init__(
|
| 626 |
+
self,
|
| 627 |
+
config: NewConfig,
|
| 628 |
+
pack_qkv=None,
|
| 629 |
+
use_memory_efficient_attention=None,
|
| 630 |
+
attn_implementation=None
|
| 631 |
+
):
|
| 632 |
+
super().__init__()
|
| 633 |
+
if attn_implementation is None:
|
| 634 |
+
attn_implementation = config._attn_implementation
|
| 635 |
+
if use_memory_efficient_attention is None:
|
| 636 |
+
use_memory_efficient_attention = config.use_memory_efficient_attention
|
| 637 |
+
if use_memory_efficient_attention:
|
| 638 |
+
if attn_implementation != 'eager':
|
| 639 |
+
logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
|
| 640 |
+
attn_implementation = 'eager' # Since it will be SDPA by default for torch>=2.1.1
|
| 641 |
+
self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
|
| 642 |
+
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
|
| 643 |
+
)
|
| 644 |
+
self.mlp = NewGatedMLP(config)
|
| 645 |
+
|
| 646 |
+
ln_class = LAYER_NORM[config.layer_norm_type]
|
| 647 |
+
self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
|
| 648 |
+
self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
|
| 649 |
+
|
| 650 |
+
if config.hidden_dropout_prob > 0:
|
| 651 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 652 |
+
else:
|
| 653 |
+
self.hidden_dropout = None
|
| 654 |
+
|
| 655 |
+
def forward(
|
| 656 |
+
self,
|
| 657 |
+
hidden_states: torch.Tensor,
|
| 658 |
+
attention_bias: torch.FloatTensor,
|
| 659 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
| 660 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
| 661 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
| 662 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
| 663 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 664 |
+
output_attentions: Optional[bool] = False,
|
| 665 |
+
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
| 666 |
+
) -> Tuple[torch.Tensor, ...]:
|
| 667 |
+
# Multi head self attention
|
| 668 |
+
residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
|
| 669 |
+
attention_outputs = self.attention(
|
| 670 |
+
hidden_states,
|
| 671 |
+
attention_bias,
|
| 672 |
+
rope_embeds,
|
| 673 |
+
padding_inputs,
|
| 674 |
+
attention_scale,
|
| 675 |
+
head_mask,
|
| 676 |
+
output_attentions=output_attentions,
|
| 677 |
+
qkv_inputs=qkv_inputs,
|
| 678 |
+
)
|
| 679 |
+
hidden_states = attention_outputs[0]
|
| 680 |
+
if self.hidden_dropout is not None:
|
| 681 |
+
hidden_states = self.hidden_dropout(hidden_states)
|
| 682 |
+
hidden_states = residual + hidden_states
|
| 683 |
+
|
| 684 |
+
# In pretraining, after the attention of last layer, we only need the masked tokens.
|
| 685 |
+
if subset_indices is not None:
|
| 686 |
+
hidden_states = hidden_states[subset_indices]
|
| 687 |
+
|
| 688 |
+
hidden_states = self.attn_ln(hidden_states)
|
| 689 |
+
|
| 690 |
+
# Fully Connected
|
| 691 |
+
residual = hidden_states
|
| 692 |
+
hidden_states = self.mlp(hidden_states)
|
| 693 |
+
if self.hidden_dropout is not None:
|
| 694 |
+
hidden_states = self.hidden_dropout(hidden_states)
|
| 695 |
+
hidden_states = residual + hidden_states
|
| 696 |
+
hidden_states = self.mlp_ln(hidden_states)
|
| 697 |
+
|
| 698 |
+
# add self attentions if we output attention weights
|
| 699 |
+
outputs = (hidden_states,) + attention_outputs[1:]
|
| 700 |
+
return outputs
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
class NewEncoder(nn.Module):
|
| 704 |
+
def __init__(self, config):
|
| 705 |
+
super().__init__()
|
| 706 |
+
self.config = config
|
| 707 |
+
self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
|
| 708 |
+
self.gradient_checkpointing = False
|
| 709 |
+
|
| 710 |
+
def forward(
|
| 711 |
+
self,
|
| 712 |
+
hidden_states: torch.Tensor,
|
| 713 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
| 714 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
| 715 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
| 716 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
| 717 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
| 718 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 719 |
+
output_attentions: Optional[bool] = False,
|
| 720 |
+
output_hidden_states: Optional[bool] = False,
|
| 721 |
+
return_dict: Optional[bool] = True,
|
| 722 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 723 |
+
all_hidden_states = () if output_hidden_states else None
|
| 724 |
+
all_self_attentions = () if output_attentions else None
|
| 725 |
+
|
| 726 |
+
for i, layer_module in enumerate(self.layer):
|
| 727 |
+
if output_hidden_states:
|
| 728 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 729 |
+
|
| 730 |
+
if i >= len(self.layer) - 1:
|
| 731 |
+
layer_subset_indices = subset_indices
|
| 732 |
+
else:
|
| 733 |
+
layer_subset_indices = None
|
| 734 |
+
|
| 735 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 736 |
+
|
| 737 |
+
if self.gradient_checkpointing and self.training:
|
| 738 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 739 |
+
layer_module.__call__,
|
| 740 |
+
hidden_states,
|
| 741 |
+
attention_bias,
|
| 742 |
+
rope_embeds,
|
| 743 |
+
padding_inputs,
|
| 744 |
+
attention_scale,
|
| 745 |
+
layer_subset_indices,
|
| 746 |
+
layer_head_mask,
|
| 747 |
+
)
|
| 748 |
+
else:
|
| 749 |
+
layer_outputs = layer_module(
|
| 750 |
+
hidden_states,
|
| 751 |
+
attention_bias,
|
| 752 |
+
rope_embeds,
|
| 753 |
+
padding_inputs,
|
| 754 |
+
attention_scale,
|
| 755 |
+
layer_subset_indices,
|
| 756 |
+
layer_head_mask,
|
| 757 |
+
output_attentions,
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
hidden_states = layer_outputs[0]
|
| 761 |
+
if output_attentions:
|
| 762 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 763 |
+
|
| 764 |
+
if output_hidden_states:
|
| 765 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 766 |
+
|
| 767 |
+
if not return_dict:
|
| 768 |
+
return tuple(
|
| 769 |
+
v
|
| 770 |
+
for v in [
|
| 771 |
+
hidden_states,
|
| 772 |
+
all_hidden_states,
|
| 773 |
+
all_self_attentions,
|
| 774 |
+
]
|
| 775 |
+
if v is not None
|
| 776 |
+
)
|
| 777 |
+
return BaseModelOutput(
|
| 778 |
+
last_hidden_state=hidden_states,
|
| 779 |
+
hidden_states=all_hidden_states,
|
| 780 |
+
attentions=all_self_attentions,
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
|
| 785 |
+
class NewPooler(nn.Module):
|
| 786 |
+
def __init__(self, config):
|
| 787 |
+
super().__init__()
|
| 788 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 789 |
+
self.activation = nn.Tanh()
|
| 790 |
+
|
| 791 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 792 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 793 |
+
# to the first token.
|
| 794 |
+
first_token_tensor = hidden_states[:, 0]
|
| 795 |
+
pooled_output = self.dense(first_token_tensor)
|
| 796 |
+
pooled_output = self.activation(pooled_output)
|
| 797 |
+
return pooled_output
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
class NewPreTrainedModel(PreTrainedModel):
|
| 801 |
+
"""
|
| 802 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 803 |
+
models.
|
| 804 |
+
"""
|
| 805 |
+
|
| 806 |
+
config_class = NewConfig
|
| 807 |
+
base_model_prefix = "new"
|
| 808 |
+
supports_gradient_checkpointing = True
|
| 809 |
+
_supports_sdpa = True
|
| 810 |
+
|
| 811 |
+
def _init_weights(self, module):
|
| 812 |
+
"""Initialize the weights"""
|
| 813 |
+
if isinstance(module, nn.Linear):
|
| 814 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 815 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 816 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 817 |
+
if module.bias is not None:
|
| 818 |
+
module.bias.data.zero_()
|
| 819 |
+
elif isinstance(module, nn.Embedding):
|
| 820 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 821 |
+
if module.padding_idx is not None:
|
| 822 |
+
module.weight.data[module.padding_idx].zero_()
|
| 823 |
+
elif isinstance(module, nn.LayerNorm):
|
| 824 |
+
module.bias.data.zero_()
|
| 825 |
+
module.weight.data.fill_(1.0)
|
| 826 |
+
|
| 827 |
+
|
| 828 |
+
class NewModel(NewPreTrainedModel):
|
| 829 |
+
"""
|
| 830 |
+
The bare New Model transformer outputting raw hidden-states without any specific head on top.
|
| 831 |
+
"""
|
| 832 |
+
|
| 833 |
+
def __init__(self, config: NewConfig, add_pooling_layer=False):
|
| 834 |
+
super().__init__(config)
|
| 835 |
+
self.config = config
|
| 836 |
+
|
| 837 |
+
self.embeddings = NewEmbeddings(config)
|
| 838 |
+
self.encoder = NewEncoder(config)
|
| 839 |
+
|
| 840 |
+
self.pooler = NewPooler(config) if add_pooling_layer else None
|
| 841 |
+
|
| 842 |
+
# Initialize weights and apply final processing
|
| 843 |
+
self.post_init()
|
| 844 |
+
|
| 845 |
+
def get_input_embeddings(self):
|
| 846 |
+
return self.embeddings.word_embeddings
|
| 847 |
+
|
| 848 |
+
def set_input_embeddings(self, value):
|
| 849 |
+
self.embeddings.word_embeddings = value
|
| 850 |
+
|
| 851 |
+
def forward(
|
| 852 |
+
self,
|
| 853 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 854 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 855 |
+
length: Optional[List[int]] = None,
|
| 856 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
| 857 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 858 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 859 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 860 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 861 |
+
output_attentions: Optional[bool] = None,
|
| 862 |
+
output_hidden_states: Optional[bool] = None,
|
| 863 |
+
return_dict: Optional[bool] = None,
|
| 864 |
+
unpad_inputs: Optional[bool] = None,
|
| 865 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
|
| 866 |
+
r"""
|
| 867 |
+
length (`list` of length `batch_size`, *optional*):
|
| 868 |
+
If is `None`, return padded `last_hidden_state`.
|
| 869 |
+
subset_indices ():
|
| 870 |
+
pass
|
| 871 |
+
unpad_inputs (`bool`, *optional*):
|
| 872 |
+
pass
|
| 873 |
+
"""
|
| 874 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 875 |
+
output_hidden_states = (
|
| 876 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 877 |
+
)
|
| 878 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 879 |
+
unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
|
| 880 |
+
output_padded = length is None
|
| 881 |
+
|
| 882 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 883 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 884 |
+
elif input_ids is not None:
|
| 885 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
| 886 |
+
input_shape = input_ids.size()
|
| 887 |
+
elif inputs_embeds is not None:
|
| 888 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 889 |
+
else:
|
| 890 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 891 |
+
|
| 892 |
+
# TODO: not used
|
| 893 |
+
# # Prepare head mask if needed
|
| 894 |
+
# # 1.0 in head_mask indicate we keep the head
|
| 895 |
+
# # attention_probs has shape bsz x n_heads x N x N
|
| 896 |
+
# # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 897 |
+
# # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 898 |
+
# head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 899 |
+
|
| 900 |
+
# Get embeddings, may unpad them
|
| 901 |
+
(embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
|
| 902 |
+
unpad_inputs,
|
| 903 |
+
input_ids=input_ids,
|
| 904 |
+
attention_mask=attention_mask,
|
| 905 |
+
length=length,
|
| 906 |
+
token_type_ids=token_type_ids,
|
| 907 |
+
position_ids=position_ids,
|
| 908 |
+
inputs_embeds=inputs_embeds
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
batch_size, seq_length = input_shape
|
| 912 |
+
if unpad_inputs and self.config.use_memory_efficient_attention:
|
| 913 |
+
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
|
| 914 |
+
else:
|
| 915 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 916 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 917 |
+
attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
|
| 918 |
+
if self.config.use_memory_efficient_attention:
|
| 919 |
+
# Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
|
| 920 |
+
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
|
| 921 |
+
|
| 922 |
+
padding_inputs = None
|
| 923 |
+
if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
|
| 924 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 925 |
+
if not self.config.use_memory_efficient_attention:
|
| 926 |
+
padding_inputs = (indices, *input_shape)
|
| 927 |
+
|
| 928 |
+
attention_scale = None
|
| 929 |
+
if self.config.logn_attention_scale:
|
| 930 |
+
logger.warning_once("TODO: logn_attention_scale")
|
| 931 |
+
# # attention scale log_512(input_len)
|
| 932 |
+
# attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
|
| 933 |
+
# # inference-time logn scale need clip 1
|
| 934 |
+
# if self.config.logn_attention_clip1:
|
| 935 |
+
# attention_scale.clip_(1)
|
| 936 |
+
# attention_scale = attention_scale[:, None, None, None]
|
| 937 |
+
# else:
|
| 938 |
+
# attention_scale = None
|
| 939 |
+
|
| 940 |
+
encoder_outputs = self.encoder(
|
| 941 |
+
embedding_output,
|
| 942 |
+
attention_bias=attention_bias,
|
| 943 |
+
rope_embeds=rope_embeds,
|
| 944 |
+
padding_inputs=padding_inputs,
|
| 945 |
+
attention_scale=attention_scale,
|
| 946 |
+
subset_indices=subset_indices,
|
| 947 |
+
head_mask=head_mask,
|
| 948 |
+
output_attentions=output_attentions,
|
| 949 |
+
output_hidden_states=output_hidden_states,
|
| 950 |
+
return_dict=return_dict,
|
| 951 |
+
)
|
| 952 |
+
sequence_output = encoder_outputs[0]
|
| 953 |
+
if unpad_inputs and output_padded:
|
| 954 |
+
sequence_output = pad_input(
|
| 955 |
+
sequence_output.squeeze(), indices, batch_size, seq_length
|
| 956 |
+
)
|
| 957 |
+
|
| 958 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 959 |
+
|
| 960 |
+
if not return_dict:
|
| 961 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 962 |
+
|
| 963 |
+
return BaseModelOutputWithPooling(
|
| 964 |
+
last_hidden_state=sequence_output,
|
| 965 |
+
pooler_output=pooled_output,
|
| 966 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 967 |
+
attentions=encoder_outputs.attentions,
|
| 968 |
+
)
|
| 969 |
+
|
| 970 |
+
|
| 971 |
+
class NewLMPredictionHead(nn.Module):
|
| 972 |
+
def __init__(self, config):
|
| 973 |
+
super().__init__()
|
| 974 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 975 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
| 976 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 977 |
+
|
| 978 |
+
# The output weights are the same as the input embeddings, but there is
|
| 979 |
+
# an output-only bias for each token.
|
| 980 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
| 981 |
+
|
| 982 |
+
def forward(self, hidden_states):
|
| 983 |
+
hidden_states = self.dense(hidden_states)
|
| 984 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 985 |
+
hidden_states = self.norm(hidden_states)
|
| 986 |
+
hidden_states = self.decoder(hidden_states)
|
| 987 |
+
return hidden_states
|
| 988 |
+
|
| 989 |
+
|
| 990 |
+
class NewForMaskedLM(NewPreTrainedModel):
|
| 991 |
+
_tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
|
| 992 |
+
|
| 993 |
+
def __init__(self, config: NewConfig):
|
| 994 |
+
super().__init__(config)
|
| 995 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
| 996 |
+
self.lm_head = NewLMPredictionHead(config)
|
| 997 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
| 998 |
+
|
| 999 |
+
# Initialize weights and apply final processing
|
| 1000 |
+
self.post_init()
|
| 1001 |
+
|
| 1002 |
+
def get_output_embeddings(self):
|
| 1003 |
+
return self.lm_head.decoder
|
| 1004 |
+
|
| 1005 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1006 |
+
self.lm_head.decoder = new_embeddings
|
| 1007 |
+
|
| 1008 |
+
def forward(
|
| 1009 |
+
self,
|
| 1010 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1011 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1012 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1013 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1014 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1015 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1016 |
+
labels: Optional[torch.Tensor] = None,
|
| 1017 |
+
output_attentions: Optional[bool] = None,
|
| 1018 |
+
output_hidden_states: Optional[bool] = None,
|
| 1019 |
+
return_dict: Optional[bool] = None,
|
| 1020 |
+
unpad_inputs: Optional[bool] = None,
|
| 1021 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 1022 |
+
r"""
|
| 1023 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1024 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1025 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1026 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1027 |
+
"""
|
| 1028 |
+
|
| 1029 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1030 |
+
|
| 1031 |
+
if labels is None or not self.new.config.unpad_inputs:
|
| 1032 |
+
length = None
|
| 1033 |
+
subset_indices = None
|
| 1034 |
+
else:
|
| 1035 |
+
length = attention_mask.sum(-1).tolist()
|
| 1036 |
+
labels = labels[attention_mask.bool()].unsqueeze(0)
|
| 1037 |
+
subset_indices = labels > -100
|
| 1038 |
+
|
| 1039 |
+
outputs = self.new(
|
| 1040 |
+
input_ids,
|
| 1041 |
+
attention_mask=attention_mask,
|
| 1042 |
+
length=length,
|
| 1043 |
+
subset_indices=subset_indices,
|
| 1044 |
+
token_type_ids=token_type_ids,
|
| 1045 |
+
position_ids=position_ids,
|
| 1046 |
+
head_mask=head_mask,
|
| 1047 |
+
inputs_embeds=inputs_embeds,
|
| 1048 |
+
output_attentions=output_attentions,
|
| 1049 |
+
output_hidden_states=output_hidden_states,
|
| 1050 |
+
return_dict=return_dict,
|
| 1051 |
+
unpad_inputs=unpad_inputs,
|
| 1052 |
+
)
|
| 1053 |
+
|
| 1054 |
+
sequence_output = outputs[0]
|
| 1055 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 1056 |
+
|
| 1057 |
+
masked_lm_loss = None
|
| 1058 |
+
if labels is not None:
|
| 1059 |
+
if subset_indices is None:
|
| 1060 |
+
mask = attention_mask.bool()
|
| 1061 |
+
prediction_scores = prediction_scores[mask]
|
| 1062 |
+
labels = labels[mask]
|
| 1063 |
+
else:
|
| 1064 |
+
labels = labels[subset_indices]
|
| 1065 |
+
masked_lm_loss = self.loss_fct(prediction_scores, labels)
|
| 1066 |
+
|
| 1067 |
+
if not return_dict:
|
| 1068 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1069 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1070 |
+
|
| 1071 |
+
return MaskedLMOutput(
|
| 1072 |
+
loss=masked_lm_loss,
|
| 1073 |
+
logits=prediction_scores,
|
| 1074 |
+
hidden_states=outputs.hidden_states,
|
| 1075 |
+
attentions=outputs.attentions,
|
| 1076 |
+
)
|
| 1077 |
+
|
| 1078 |
+
|
| 1079 |
+
class NewForSequenceClassification(NewPreTrainedModel):
|
| 1080 |
+
def __init__(self, config):
|
| 1081 |
+
super().__init__(config)
|
| 1082 |
+
self.num_labels = config.num_labels
|
| 1083 |
+
self.config = config
|
| 1084 |
+
|
| 1085 |
+
self.new = NewModel(config, add_pooling_layer=True)
|
| 1086 |
+
classifier_dropout = (
|
| 1087 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1088 |
+
)
|
| 1089 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1090 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1091 |
+
|
| 1092 |
+
# Initialize weights and apply final processing
|
| 1093 |
+
self.post_init()
|
| 1094 |
+
|
| 1095 |
+
def forward(
|
| 1096 |
+
self,
|
| 1097 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1098 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1099 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1100 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1101 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1102 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1103 |
+
labels: Optional[torch.Tensor] = None,
|
| 1104 |
+
output_attentions: Optional[bool] = None,
|
| 1105 |
+
output_hidden_states: Optional[bool] = None,
|
| 1106 |
+
return_dict: Optional[bool] = None,
|
| 1107 |
+
unpad_inputs: Optional[bool] = None,
|
| 1108 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 1109 |
+
r"""
|
| 1110 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1111 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1112 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1113 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1114 |
+
"""
|
| 1115 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1116 |
+
|
| 1117 |
+
outputs = self.new(
|
| 1118 |
+
input_ids,
|
| 1119 |
+
attention_mask=attention_mask,
|
| 1120 |
+
token_type_ids=token_type_ids,
|
| 1121 |
+
position_ids=position_ids,
|
| 1122 |
+
head_mask=head_mask,
|
| 1123 |
+
inputs_embeds=inputs_embeds,
|
| 1124 |
+
output_attentions=output_attentions,
|
| 1125 |
+
output_hidden_states=output_hidden_states,
|
| 1126 |
+
return_dict=return_dict,
|
| 1127 |
+
unpad_inputs=unpad_inputs,
|
| 1128 |
+
)
|
| 1129 |
+
|
| 1130 |
+
pooled_output = outputs[1]
|
| 1131 |
+
|
| 1132 |
+
pooled_output = self.dropout(pooled_output)
|
| 1133 |
+
logits = self.classifier(pooled_output)
|
| 1134 |
+
|
| 1135 |
+
loss = None
|
| 1136 |
+
if labels is not None:
|
| 1137 |
+
if self.config.problem_type is None:
|
| 1138 |
+
if self.num_labels == 1:
|
| 1139 |
+
self.config.problem_type = "regression"
|
| 1140 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1141 |
+
self.config.problem_type = "single_label_classification"
|
| 1142 |
+
else:
|
| 1143 |
+
self.config.problem_type = "multi_label_classification"
|
| 1144 |
+
|
| 1145 |
+
if self.config.problem_type == "regression":
|
| 1146 |
+
loss_fct = nn.MSELoss()
|
| 1147 |
+
if self.num_labels == 1:
|
| 1148 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1149 |
+
else:
|
| 1150 |
+
loss = loss_fct(logits, labels)
|
| 1151 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1152 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1153 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1154 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1155 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 1156 |
+
loss = loss_fct(logits, labels)
|
| 1157 |
+
|
| 1158 |
+
if not return_dict:
|
| 1159 |
+
output = (logits,) + outputs[2:]
|
| 1160 |
+
return ((loss,) + output) if loss is not None else output
|
| 1161 |
+
|
| 1162 |
+
return SequenceClassifierOutput(
|
| 1163 |
+
loss=loss,
|
| 1164 |
+
logits=logits,
|
| 1165 |
+
hidden_states=outputs.hidden_states,
|
| 1166 |
+
attentions=outputs.attentions,
|
| 1167 |
+
)
|
| 1168 |
+
|
| 1169 |
+
|
| 1170 |
+
class NewForMultipleChoice(NewPreTrainedModel):
|
| 1171 |
+
def __init__(self, config):
|
| 1172 |
+
super().__init__(config)
|
| 1173 |
+
|
| 1174 |
+
self.new = NewModel(config, add_pooling_layer=True)
|
| 1175 |
+
classifier_dropout = (
|
| 1176 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1177 |
+
)
|
| 1178 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1179 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 1180 |
+
|
| 1181 |
+
# Initialize weights and apply final processing
|
| 1182 |
+
self.post_init()
|
| 1183 |
+
|
| 1184 |
+
def forward(
|
| 1185 |
+
self,
|
| 1186 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1187 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1188 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1189 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1190 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1191 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1192 |
+
labels: Optional[torch.Tensor] = None,
|
| 1193 |
+
output_attentions: Optional[bool] = None,
|
| 1194 |
+
output_hidden_states: Optional[bool] = None,
|
| 1195 |
+
return_dict: Optional[bool] = None,
|
| 1196 |
+
unpad_inputs: Optional[bool] = None,
|
| 1197 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
| 1198 |
+
r"""
|
| 1199 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1200 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 1201 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 1202 |
+
`input_ids` above)
|
| 1203 |
+
"""
|
| 1204 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1205 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 1206 |
+
|
| 1207 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 1208 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1209 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 1210 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 1211 |
+
inputs_embeds = (
|
| 1212 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 1213 |
+
if inputs_embeds is not None
|
| 1214 |
+
else None
|
| 1215 |
+
)
|
| 1216 |
+
|
| 1217 |
+
outputs = self.new(
|
| 1218 |
+
input_ids,
|
| 1219 |
+
attention_mask=attention_mask,
|
| 1220 |
+
token_type_ids=token_type_ids,
|
| 1221 |
+
position_ids=position_ids,
|
| 1222 |
+
head_mask=head_mask,
|
| 1223 |
+
inputs_embeds=inputs_embeds,
|
| 1224 |
+
output_attentions=output_attentions,
|
| 1225 |
+
output_hidden_states=output_hidden_states,
|
| 1226 |
+
return_dict=return_dict,
|
| 1227 |
+
unpad_inputs=unpad_inputs,
|
| 1228 |
+
)
|
| 1229 |
+
|
| 1230 |
+
pooled_output = outputs[1]
|
| 1231 |
+
|
| 1232 |
+
pooled_output = self.dropout(pooled_output)
|
| 1233 |
+
logits = self.classifier(pooled_output)
|
| 1234 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 1235 |
+
|
| 1236 |
+
loss = None
|
| 1237 |
+
if labels is not None:
|
| 1238 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1239 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 1240 |
+
|
| 1241 |
+
if not return_dict:
|
| 1242 |
+
output = (reshaped_logits,) + outputs[2:]
|
| 1243 |
+
return ((loss,) + output) if loss is not None else output
|
| 1244 |
+
|
| 1245 |
+
return MultipleChoiceModelOutput(
|
| 1246 |
+
loss=loss,
|
| 1247 |
+
logits=reshaped_logits,
|
| 1248 |
+
hidden_states=outputs.hidden_states,
|
| 1249 |
+
attentions=outputs.attentions,
|
| 1250 |
+
)
|
| 1251 |
+
|
| 1252 |
+
|
| 1253 |
+
@dataclass
|
| 1254 |
+
class NewTokenClassifierOutput(ModelOutput):
|
| 1255 |
+
loss: Optional[torch.FloatTensor] = None
|
| 1256 |
+
logits: torch.FloatTensor = None
|
| 1257 |
+
last_hidden_state: torch.FloatTensor = None
|
| 1258 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 1259 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 1260 |
+
|
| 1261 |
+
|
| 1262 |
+
class NewForTokenClassification(NewPreTrainedModel):
|
| 1263 |
+
def __init__(self, config):
|
| 1264 |
+
super().__init__(config)
|
| 1265 |
+
self.num_labels = config.num_labels
|
| 1266 |
+
|
| 1267 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
| 1268 |
+
classifier_dropout = (
|
| 1269 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1270 |
+
)
|
| 1271 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1272 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1273 |
+
|
| 1274 |
+
# Initialize weights and apply final processing
|
| 1275 |
+
self.post_init()
|
| 1276 |
+
|
| 1277 |
+
def forward(
|
| 1278 |
+
self,
|
| 1279 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1280 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1281 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1282 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1283 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1284 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1285 |
+
labels: Optional[torch.Tensor] = None,
|
| 1286 |
+
output_attentions: Optional[bool] = None,
|
| 1287 |
+
output_hidden_states: Optional[bool] = None,
|
| 1288 |
+
return_dict: Optional[bool] = None,
|
| 1289 |
+
unpad_inputs: Optional[bool] = None,
|
| 1290 |
+
) -> Union[Tuple[torch.Tensor], NewTokenClassifierOutput]:
|
| 1291 |
+
r"""
|
| 1292 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1293 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 1294 |
+
"""
|
| 1295 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1296 |
+
|
| 1297 |
+
outputs = self.new(
|
| 1298 |
+
input_ids,
|
| 1299 |
+
attention_mask=attention_mask,
|
| 1300 |
+
token_type_ids=token_type_ids,
|
| 1301 |
+
position_ids=position_ids,
|
| 1302 |
+
head_mask=head_mask,
|
| 1303 |
+
inputs_embeds=inputs_embeds,
|
| 1304 |
+
output_attentions=output_attentions,
|
| 1305 |
+
output_hidden_states=output_hidden_states,
|
| 1306 |
+
return_dict=return_dict,
|
| 1307 |
+
unpad_inputs=unpad_inputs,
|
| 1308 |
+
)
|
| 1309 |
+
|
| 1310 |
+
sequence_output = outputs[0]
|
| 1311 |
+
|
| 1312 |
+
sequence_output = self.dropout(sequence_output)
|
| 1313 |
+
logits = self.classifier(sequence_output)
|
| 1314 |
+
|
| 1315 |
+
loss = None
|
| 1316 |
+
if labels is not None:
|
| 1317 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1318 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1319 |
+
|
| 1320 |
+
if not return_dict:
|
| 1321 |
+
output = (logits,) + outputs[2:]
|
| 1322 |
+
return ((loss,) + output) if loss is not None else output
|
| 1323 |
+
|
| 1324 |
+
return NewTokenClassifierOutput(
|
| 1325 |
+
loss=loss,
|
| 1326 |
+
logits=logits,
|
| 1327 |
+
last_hidden_state=sequence_output,
|
| 1328 |
+
hidden_states=outputs.hidden_states,
|
| 1329 |
+
attentions=outputs.attentions,
|
| 1330 |
+
)
|
| 1331 |
+
|
| 1332 |
+
|
| 1333 |
+
class NewForQuestionAnswering(NewPreTrainedModel):
|
| 1334 |
+
def __init__(self, config):
|
| 1335 |
+
super().__init__(config)
|
| 1336 |
+
self.num_labels = config.num_labels
|
| 1337 |
+
|
| 1338 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
| 1339 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
| 1340 |
+
|
| 1341 |
+
# Initialize weights and apply final processing
|
| 1342 |
+
self.post_init()
|
| 1343 |
+
|
| 1344 |
+
def forward(
|
| 1345 |
+
self,
|
| 1346 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1347 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1348 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1349 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1350 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1351 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1352 |
+
start_positions: Optional[torch.Tensor] = None,
|
| 1353 |
+
end_positions: Optional[torch.Tensor] = None,
|
| 1354 |
+
output_attentions: Optional[bool] = None,
|
| 1355 |
+
output_hidden_states: Optional[bool] = None,
|
| 1356 |
+
return_dict: Optional[bool] = None,
|
| 1357 |
+
unpad_inputs: Optional[bool] = None,
|
| 1358 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 1359 |
+
r"""
|
| 1360 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1361 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1362 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1363 |
+
are not taken into account for computing the loss.
|
| 1364 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1365 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1366 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1367 |
+
are not taken into account for computing the loss.
|
| 1368 |
+
"""
|
| 1369 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1370 |
+
|
| 1371 |
+
outputs = self.new(
|
| 1372 |
+
input_ids,
|
| 1373 |
+
attention_mask=attention_mask,
|
| 1374 |
+
token_type_ids=token_type_ids,
|
| 1375 |
+
position_ids=position_ids,
|
| 1376 |
+
head_mask=head_mask,
|
| 1377 |
+
inputs_embeds=inputs_embeds,
|
| 1378 |
+
output_attentions=output_attentions,
|
| 1379 |
+
output_hidden_states=output_hidden_states,
|
| 1380 |
+
return_dict=return_dict,
|
| 1381 |
+
unpad_inputs=unpad_inputs,
|
| 1382 |
+
)
|
| 1383 |
+
|
| 1384 |
+
sequence_output = outputs[0]
|
| 1385 |
+
|
| 1386 |
+
logits = self.qa_outputs(sequence_output)
|
| 1387 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1388 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1389 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1390 |
+
|
| 1391 |
+
total_loss = None
|
| 1392 |
+
if start_positions is not None and end_positions is not None:
|
| 1393 |
+
# If we are on multi-GPU, split add a dimension
|
| 1394 |
+
if len(start_positions.size()) > 1:
|
| 1395 |
+
start_positions = start_positions.squeeze(-1)
|
| 1396 |
+
if len(end_positions.size()) > 1:
|
| 1397 |
+
end_positions = end_positions.squeeze(-1)
|
| 1398 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1399 |
+
ignored_index = start_logits.size(1)
|
| 1400 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1401 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1402 |
+
|
| 1403 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
| 1404 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1405 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1406 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1407 |
+
|
| 1408 |
+
if not return_dict:
|
| 1409 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1410 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1411 |
+
|
| 1412 |
+
return QuestionAnsweringModelOutput(
|
| 1413 |
+
loss=total_loss,
|
| 1414 |
+
start_logits=start_logits,
|
| 1415 |
+
end_logits=end_logits,
|
| 1416 |
+
hidden_states=outputs.hidden_states,
|
| 1417 |
+
attentions=outputs.attentions,
|
| 1418 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
|
| 3 |
+
size 17082988
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"max_length": 512,
|
| 51 |
+
"model_max_length": 8192,
|
| 52 |
+
"pad_to_multiple_of": null,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"pad_token_type_id": 0,
|
| 55 |
+
"padding_side": "right",
|
| 56 |
+
"sep_token": "</s>",
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 59 |
+
"truncation_side": "right",
|
| 60 |
+
"truncation_strategy": "longest_first",
|
| 61 |
+
"unk_token": "<unk>"
|
| 62 |
+
}
|