cubis commited on
Commit
f3f45a4
·
verified ·
1 Parent(s): e79c041

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,15 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ track_prediction_ensemble_model_0_best.keras filter=lfs diff=lfs merge=lfs -text
37
+ track_prediction_ensemble_model_0_final.keras filter=lfs diff=lfs merge=lfs -text
38
+ track_prediction_ensemble_model_1_best.keras filter=lfs diff=lfs merge=lfs -text
39
+ track_prediction_ensemble_model_1_final.keras filter=lfs diff=lfs merge=lfs -text
40
+ track_prediction_ensemble_model_2_best.keras filter=lfs diff=lfs merge=lfs -text
41
+ track_prediction_ensemble_model_2_final.keras filter=lfs diff=lfs merge=lfs -text
42
+ track_prediction_ensemble_model_3_best.keras filter=lfs diff=lfs merge=lfs -text
43
+ track_prediction_ensemble_model_3_final.keras filter=lfs diff=lfs merge=lfs -text
44
+ track_prediction_ensemble_model_4_best.keras filter=lfs diff=lfs merge=lfs -text
45
+ track_prediction_ensemble_model_4_final.keras filter=lfs diff=lfs merge=lfs -text
46
+ track_prediction_ensemble_model_5_best.keras filter=lfs diff=lfs merge=lfs -text
47
+ track_prediction_ensemble_model_5_final.keras filter=lfs diff=lfs merge=lfs -text
track_prediction_ensemble_model_0_best.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1c81cefb79e6e31dd6e3c30a976736e56ba11a8eaeaec5475dfeb83d05e15f0
3
+ size 761521
track_prediction_ensemble_model_0_final.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b054e487bfc09fd121bcf5df5f588807f49ff731b6b04571499df41bea5c43ad
3
+ size 761521
track_prediction_ensemble_model_1_best.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3dba932503dd9231087e6e810b1a3206561aa6680fd9c4815594d0a5718e540
3
+ size 1981033
track_prediction_ensemble_model_1_final.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43f1d14ff8613391ec29485e20935bf3b7b30234d70bf65e3f50e6052fd1ada1
3
+ size 1981034
track_prediction_ensemble_model_2_best.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d37a3eb7669bacfda464826494c8fd78d6952652337dc2b263892b9647ccd58
3
+ size 289867
track_prediction_ensemble_model_2_final.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:942da85d8ee131ba5443d90640b84d51afd83629ebc78c8dc4e07eb8b73acaaa
3
+ size 289869
track_prediction_ensemble_model_3_best.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07387e4c74e932c499549f8fe3ba5d7e1019aaf1fddcedab5582abe63f085605
3
+ size 289898
track_prediction_ensemble_model_3_final.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5562331bb575645f0c3c1994cfdbb44a8648dae4803dba17effe9309dee0976a
3
+ size 289898
track_prediction_ensemble_model_4_best.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:479d3c6727c0c16c8ab9762fae3fffd6871131bd4d4fb3f5d0dff0b19351b777
3
+ size 289908
track_prediction_ensemble_model_4_final.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d7be80e3d0e00ed28875ee4b21dfb3f36f4047b43752749314cf4e8fe40555
3
+ size 289907
track_prediction_ensemble_model_5_best.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77e213baa613dc9b16387dfd54ec9a31a7fdb925a3fcb238d426faa3082e0e3b
3
+ size 289910
track_prediction_ensemble_model_5_final.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ff988aff13661d299e694d11e7d3dcba0118b4de3542995d72bfc3f2e6cf1d7
3
+ size 289910
training_report.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Training Report - Ensemble
2
+
3
+ Generated: 2025-09-06 13:15:26
4
+
5
+ ## Overview
6
+ - **Command**: `ensemble`
7
+ - **Training Duration**: 1651.54 seconds (27.5 minutes)
8
+ - **Output Directory**: `output/ensemble_20250906_124755`
9
+
10
+ ## Dataset Information
11
+ - **Total Records**: 24,832
12
+ - **Training Steps per Epoch**: 310
13
+ - **Validation Steps per Epoch**: 77
14
+
15
+ ### Vocabulary Sizes
16
+ - **Stations**: 6 unique stations
17
+ - **Routes**: 13 unique routes
18
+ - **Tracks**: 13 unique tracks (prediction targets)
19
+
20
+ ## Training Configuration
21
+ - **Num Models**: 6
22
+ - **Epochs**: 150
23
+ - **Batch Size**: 64
24
+ - **Base Learning Rate**: 0.001
25
+ - **Dataset Size**: 24832
26
+
27
+
28
+ ## Final Performance Metrics
29
+ - **Average Validation Loss**: 1.2251
30
+ - **Average Validation Accuracy**: 0.5957
31
+ - **Best Individual Accuracy**: 0.6049
32
+ - **Worst Individual Accuracy**: 0.5812
33
+ - **Ensemble Std Accuracy**: 0.0087
34
+
35
+ ## Additional Information
36
+ - **Individual Model Metrics**: {'model_index': 0, 'validation_loss': 1.2142382860183716, 'validation_accuracy': 0.5909090638160706, 'learning_rate': 0.000896730883132793, 'parameters': 53384}, {'model_index': 1, 'validation_loss': 1.2308698892593384, 'validation_accuracy': 0.6049107313156128, 'learning_rate': 0.0011035837511110408, 'parameters': 156552}, {'model_index': 2, 'validation_loss': 1.2147506475448608, 'validation_accuracy': 0.6022727489471436, 'learning_rate': 0.0011871558720145028, 'parameters': 14856}, {'model_index': 3, 'validation_loss': 1.2401705980300903, 'validation_accuracy': 0.5911120176315308, 'learning_rate': 0.0008334328623039442, 'parameters': 14856}, {'model_index': 4, 'validation_loss': 1.2382102012634277, 'validation_accuracy': 0.5811688303947449, 'learning_rate': 0.0009118210339513598, 'parameters': 14856}, {'model_index': 5, 'validation_loss': 1.2121498584747314, 'validation_accuracy': 0.6038960814476013, 'learning_rate': 0.001173992747183349, 'parameters': 14856}
37
+ - **Ensemble Strategy**: Diverse architectures (deep, wide, standard)
38
+ - **Learning Rate Variation**: 0.8x to 1.2x base rate with random variation
39
+ - **Total Parameters**: 269360
40
+
41
+
42
+ ## Dataset Schema
43
+ The model was trained on MBTA track assignment data with the following features:
44
+ - **Categorical Features**: station_id, route_id, direction_id
45
+ - **Temporal Features**: hour, minute, day_of_week (cyclically encoded)
46
+ - **Target**: track_number (classification with 13 classes)
47
+
48
+ ## Model Architecture
49
+ - Embedding layers for categorical features
50
+ - Cyclical time encoding (sin/cos) for temporal patterns
51
+ - Dense layers with dropout regularization
52
+ - Softmax output for multi-class track prediction
53
+
54
+ ## Usage
55
+ To load and use this model:
56
+
57
+ ```python
58
+ import keras
59
+ # Load for inference (optimizer not saved):
60
+ model = keras.models.load_model('track_prediction_ensemble_final.keras', compile=False)
61
+ ```
62
+
63
+ ---
64
+ *Report generated by imt-ml training pipeline*
65
+