Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: vllm
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- fr
|
| 6 |
+
- es
|
| 7 |
+
- de
|
| 8 |
+
- it
|
| 9 |
+
- pt
|
| 10 |
+
- nl
|
| 11 |
+
- zh
|
| 12 |
+
- ja
|
| 13 |
+
- ko
|
| 14 |
+
- ar
|
| 15 |
+
license: apache-2.0
|
| 16 |
+
inference: false
|
| 17 |
+
base_model:
|
| 18 |
+
- mistralai/Ministral-3-3B-Instruct-2512
|
| 19 |
+
extra_gated_description: >-
|
| 20 |
+
If you want to learn more about how we process your personal data, please read
|
| 21 |
+
our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
|
| 22 |
+
tags:
|
| 23 |
+
- mistral-common
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
# Ministral 3 3B Instruct 2512 BF16
|
| 27 |
+
|
| 28 |
+
The smallest model in the Ministral 3 family, **Ministral 3 3B** is a powerful, efficient tiny language model with vision capabilities.
|
| 29 |
+
|
| 30 |
+
This model is the instruct post-trained version, fine-tuned for instruction tasks, making it ideal for chat and instruction based use cases.
|
| 31 |
+
|
| 32 |
+
The Ministral 3 family is designed for edge deployment, capable of running on a wide range of hardware. Ministral 3 3B can even be deployed locally, capable of fitting in 16GB of VRAM in BF16, and less than 8GB of RAM/VRAM when quantized.
|
| 33 |
+
|
| 34 |
+
We provide a no-loss FP8 version [here](https://huggingface.co/mistralai/Ministral-3-3B-Instruct-2512), you can find other formats and quantizations in the [Ministral 3 - Additional Checkpoints](https://huggingface.co/collections/mistralai/ministral-3-additional-checkpoints) collection.
|
| 35 |
+
|
| 36 |
+
## Key Features
|
| 37 |
+
Ministral 3 3B consists of two main architectural components:
|
| 38 |
+
- **3.4B Language Model**
|
| 39 |
+
- **0.4B Vision Encoder**
|
| 40 |
+
|
| 41 |
+
The Ministral 3 3B Instruct model offers the following capabilities:
|
| 42 |
+
- **Vision**: Enables the model to analyze images and provide insights based on visual content, in addition to text.
|
| 43 |
+
- **Multilingual**: Supports dozens of languages, including English, French, Spanish, German, Italian, Portuguese, Dutch, Chinese, Japanese, Korean, Arabic.
|
| 44 |
+
- **System Prompt**: Maintains strong adherence and support for system prompts.
|
| 45 |
+
- **Agentic**: Offers best-in-class agentic capabilities with native function calling and JSON outputting.
|
| 46 |
+
- **Edge-Optimized**: Delivers best-in-class performance at a small scale, deployable anywhere.
|
| 47 |
+
- **Apache 2.0 License**: Open-source license allowing usage and modification for both commercial and non-commercial purposes.
|
| 48 |
+
- **Large Context Window**: Supports a 256k context window.
|
| 49 |
+
|
| 50 |
+
### Use Cases
|
| 51 |
+
Ideal for lightweight, real-time applications on edge or low-resource devices, such as:
|
| 52 |
+
- Image captioning
|
| 53 |
+
- Text classification
|
| 54 |
+
- Real-time efficient translation
|
| 55 |
+
- Data extraction
|
| 56 |
+
- Short content generation
|
| 57 |
+
- Fine-tuning and specialization
|
| 58 |
+
- And more...
|
| 59 |
+
|
| 60 |
+
Bringing advanced AI capabilities to edge and distributed environments for embedded systems.
|
| 61 |
+
|
| 62 |
+
## Ministral 3 Family
|
| 63 |
+
|
| 64 |
+
| Model Name | Type | Precision | Link |
|
| 65 |
+
|--------------------------------|--------------------|-----------|------------------------------------------------------------------------------------------|
|
| 66 |
+
| Ministral 3 3B Base 2512 | Base pre-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-3B-Base-2512) |
|
| 67 |
+
| **Ministral 3 3B Instruct 2512** | **Instruct post-trained** | **BF16** | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-3B-Instruct-2512) |
|
| 68 |
+
| Ministral 3 3B Reasoning 2512 | Reasoning capable | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-3B-Reasoning-2512) |
|
| 69 |
+
| Ministral 3 8B Base 2512 | Base pre-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-8B-Base-2512) |
|
| 70 |
+
| Ministral 3 8B Instruct 2512 | Instruct post-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-8B-Instruct-2512) |
|
| 71 |
+
| Ministral 3 8B Reasoning 2512 | Reasoning capable | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-8B-Reasoning-2512) |
|
| 72 |
+
| Ministral 3 14B Base 2512 | Base pre-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-14B-Base-2512) |
|
| 73 |
+
| Ministral 3 14B Instruct 2512 | Instruct post-trained | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512) |
|
| 74 |
+
| Ministral 3 14B Reasoning 2512 | Reasoning capable | BF16 | [Hugging Face](https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512) |
|
| 75 |
+
|
| 76 |
+
Other formats available [here](https://huggingface.co/collections/mistralai/ministral-3-additional-checkpoints).
|
| 77 |
+
|
| 78 |
+
## Benchmark Results
|
| 79 |
+
|
| 80 |
+
We compare Ministral 3 to similar sized models.
|
| 81 |
+
|
| 82 |
+
### Reasoning
|
| 83 |
+
|
| 84 |
+
| Model | AIME25 | AIME24 | GPQA Diamond | LiveCodeBench |
|
| 85 |
+
|---------------------------|-------------|-------------|--------------|---------------|
|
| 86 |
+
| **Ministral 3 14B** | <u>0.850</u>| <u>0.898</u>| <u>0.712</u> | <u>0.646</u> |
|
| 87 |
+
| Qwen3-14B (Thinking) | 0.737 | 0.837 | 0.663 | 0.593 |
|
| 88 |
+
| | | | | |
|
| 89 |
+
| **Ministral 3 8B** | 0.787 | <u>0.860</u>| 0.668 | <u>0.616</u> |
|
| 90 |
+
| Qwen3-VL-8B-Thinking | <u>0.798</u>| <u>0.860</u>| <u>0.671</u> | 0.580 |
|
| 91 |
+
| | | | | |
|
| 92 |
+
| **Ministral 3 3B** | <u>0.721</u>| <u>0.775</u>| 0.534 | <u>0.548</u> |
|
| 93 |
+
| Qwen3-VL-4B-Thinking | 0.697 | 0.729 | <u>0.601</u> | 0.513 |
|
| 94 |
+
|
| 95 |
+
### Instruct
|
| 96 |
+
|
| 97 |
+
| Model | Arena Hard | WildBench | MATH Maj@1 | MM MTBench |
|
| 98 |
+
|---------------------------|-------------|------------|-------------|------------------|
|
| 99 |
+
| **Ministral 3 14B** | <u>0.551</u>| <u>68.5</u>| <u>0.904</u>| <u>8.49</u> |
|
| 100 |
+
| Qwen3 14B (Non-Thinking) | 0.427 | 65.1 | 0.870 | NOT MULTIMODAL |
|
| 101 |
+
| Gemma3-12B-Instruct | 0.436 | 63.2 | 0.854 | 6.70 |
|
| 102 |
+
| | | | | |
|
| 103 |
+
| **Ministral 3 8B** | 0.509 | <u>66.8</u>| 0.876 | <u>8.08</u> |
|
| 104 |
+
| Qwen3-VL-8B-Instruct | <u>0.528</u>| 66.3 | <u>0.946</u>| 8.00 |
|
| 105 |
+
| | | | | |
|
| 106 |
+
| **Ministral 3 3B** | 0.305 | <u>56.8</u>| 0.830 | 7.83 |
|
| 107 |
+
| Qwen3-VL-4B-Instruct | <u>0.438</u>| <u>56.8</u>| <u>0.900</u>| <u>8.01</u> |
|
| 108 |
+
| Qwen3-VL-2B-Instruct | 0.163 | 42.2 | 0.786 | 6.36 |
|
| 109 |
+
| Gemma3-4B-Instruct | 0.318 | 49.1 | 0.759 | 5.23 |
|
| 110 |
+
|
| 111 |
+
### Base
|
| 112 |
+
|
| 113 |
+
| Model | Multilingual MMLU | MATH CoT 2-Shot | AGIEval 5-shot | MMLU Redux 5-shot | MMLU 5-shot | TriviaQA 5-shot |
|
| 114 |
+
|---------------------|-------------------|-----------------|----------------|-------------------|-------------|-----------------|
|
| 115 |
+
| **Ministral 3 14B** | 0.742 | <u>0.676</u> | 0.648 | 0.820 | 0.794 | 0.749 |
|
| 116 |
+
| Qwen3 14B Base | <u>0.754</u> | 0.620 | <u>0.661</u> | <u>0.837</u> | <u>0.804</u>| 0.703 |
|
| 117 |
+
| Gemma 3 12B Base | 0.690 | 0.487 | 0.587 | 0.766 | 0.745 | <u>0.788</u> |
|
| 118 |
+
| | | | | | | |
|
| 119 |
+
| **Ministral 3 8B** | <u>0.706</u> | <u>0.626</u> | 0.591 | 0.793 | <u>0.761</u>| <u>0.681</u> |
|
| 120 |
+
| Qwen 3 8B Base | 0.700 | 0.576 | <u>0.596</u> | <u>0.794</u> | 0.760 | 0.639 |
|
| 121 |
+
| | | | | | | |
|
| 122 |
+
| **Ministral 3 3B** | 0.652 | <u>0.601</u> | 0.511 | 0.735 | 0.707 | 0.592 |
|
| 123 |
+
| Qwen 3 4B Base | <u>0.677</u> | 0.405 | <u>0.570</u> | <u>0.759</u> | <u>0.713</u>| 0.530 |
|
| 124 |
+
| Gemma 3 4B Base | 0.516 | 0.294 | 0.430 | 0.626 | 0.589 | <u>0.640</u> |
|
| 125 |
+
|
| 126 |
+
## License
|
| 127 |
+
|
| 128 |
+
This model is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0.txt).
|
| 129 |
+
|
| 130 |
+
*You must not use this model in a manner that infringes, misappropriates, or otherwise violates any third party’s rights, including intellectual property rights.*
|