File size: 18,054 Bytes
0bdb3ea 7a654e0 0bdb3ea 74a5657 0bdb3ea 7a654e0 0012b8d 0bdb3ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
"""Processor class for MarkupDM."""
import math
import re
import shutil
import subprocess
import tempfile
from pathlib import Path
import numpy as np
import torch
from .fonts import FontManager
from PIL import Image, ImageDraw
from transformers import (
ImageProcessingMixin,
PreTrainedModel,
PreTrainedTokenizerBase,
ProcessorMixin,
)
from transformers.utils import logging
logger = logging.get_logger(__name__)
MAXIMUM_DECODE_IMAGE_SIZE = 4096
IMG_FORMAT = "{:03d}.png"
FONT_FORMAT = "{:03d}.ttf"
class MarkupDMProcessor(ProcessorMixin): # type: ignore
attributes = ["tokenizer", "image_processor"]
# The superclass checks if the tokenizer is a subclass of `PreTrainedTokenizerBase`
tokenizer_class = "AutoTokenizer"
tokenizer: PreTrainedTokenizerBase
# and the image_processor is a subclass of `ImageProcessingMixin`.
image_processor_class = "AutoImageProcessor"
image_processor: ImageProcessingMixin
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
image_processor: ImageProcessingMixin,
):
super().__init__(tokenizer, image_processor)
# Extend the tokenizer if it has not been extended yet.
if "<begin_of_image>" not in tokenizer.additional_special_tokens:
self.extend_base_tokenizer(self.tokenizer)
# Regular expressions
boi = "<begin_of_image>"
img_sep = "<image_sep>"
self.re_img_size = re.compile(rf"{boi}(\d+){img_sep}(\d+){img_sep}")
self.re_svg_width = re.compile(r'<svg[^>]*\bwidth="(\d+)"[^>]*>')
self.re_svg_height = re.compile(r'<svg[^>]*\bheight="(\d+)"[^>]*>')
# Font manager
self.font_manager = None
def extend_base_tokenizer(self, tokenizer: PreTrainedTokenizerBase) -> None:
logger.info("Extending tokenizer...")
tokenizer.clean_up_tokenization_spaces = False
# Add special tokens
additional_special_tokens = [
"<begin_of_image>",
"<end_of_image>",
"<image_sep>",
"<image_token>",
]
logger.info(f"Add special tokens: {additional_special_tokens}")
tokenizer.add_special_tokens(
{"additional_special_tokens": additional_special_tokens},
replace_additional_special_tokens=False,
)
def __call__(
self,
svg: str | None = None,
images: list[Image.Image] | None = None,
filenames: list[str] | None = None,
vision_model: PreTrainedModel | None = None,
) -> dict:
# Process images
if not isinstance(images, list):
images = [images] # type: ignore
if len(images) > 0 and images[0] is not None:
output = self.preprocess_images(images)
output = self.encode_images(output, vision_model)
else:
output = {"width": [], "height": [], "image_ids": []}
# Process the entire example
output.update({"svg": svg, "filenames": filenames})
output = self.tokenize_example(output)
return output
def preprocess_images(self, images: list[Image.Image]) -> dict:
assert images is not None, "Images must be provided."
output: dict = {"image": [], "width": [], "height": []}
for image in images:
processed = self.image_processor(image)
for key, value in processed.items():
output[key].append(value)
# Stack tensors
output["image"] = torch.stack(output["image"])
return output
def encode_images(self, example: dict, vision_model: PreTrainedModel) -> dict:
if "images" in example and "width" not in example:
example = self.preprocess_images(example["images"])
assert vision_model is not None, "Vision model must be provided."
image = example.pop("image")
image = image.to(dtype=vision_model.dtype, device=vision_model.device)
with torch.inference_mode():
_, _, (_, _, image_ids) = vision_model.model.encode(image)
example["image_ids"] = list(image_ids.view(image.size(0), -1).cpu())
return example
def tokenize_example(self, example: dict) -> dict:
# Validate the input example
for key in ["svg", "filenames", "width", "height", "image_ids"]:
msg = f"Missing key: {key}."
if key in ["width", "height", "image_ids"]:
msg += " Images must be encoded first using `encode_images`."
assert example.get(key, None) is not None, msg
tokenizer = self.tokenizer
bos_id = tokenizer.bos_token_id
eos_id = tokenizer.eos_token_id
bos_id = bos_id if bos_id is not None else eos_id
boi_id = tokenizer.convert_tokens_to_ids("<begin_of_image>")
eoi_id = tokenizer.convert_tokens_to_ids("<end_of_image>")
img_sep_id = tokenizer.convert_tokens_to_ids("<image_sep>")
# Tokenize images and build a mapping from image filenames to tokens
name2token = {}
for filename, image_ids, width, height in zip(
example["filenames"],
example["image_ids"],
example["width"],
example["height"],
):
_image_ids = (image_ids + len(tokenizer)).tolist()
W_tokens = tokenizer.encode(str(width))
H_tokens = tokenizer.encode(str(height))
# Image tokens
image_tokens = [
boi_id,
*W_tokens,
img_sep_id,
*H_tokens,
img_sep_id,
*_image_ids,
eoi_id,
]
name2token[filename] = image_tokens
# Tokenize SVG
# TODO: remove bos_id as it seems to be not necessary in modern practice
tokens = [bos_id]
svg = example["svg"]
while svg:
# Find the start position of the next image filename
start, end = len(svg), len(svg)
for name in name2token.keys():
_start = svg.find(name)
if -1 < _start and _start < start:
start = _start
end = start + len(name)
# Tokenize the text before the image filename
tokens += tokenizer.encode(svg[:start])
# Append the tokenized image
if start < end:
tokens += name2token[svg[start:end]]
# Update the remaining text
svg = svg[end:]
tokens.append(eos_id)
# Format output data
input_ids = torch.tensor(tokens)
image_mask = input_ids >= len(tokenizer)
# Compute image position ids
image_pos_ids = torch.zeros_like(input_ids)
if len(example["image_ids"]) > 0:
length = example["image_ids"][0].size(0)
num_images = sum(image_mask) // length
image_pos_ids[image_mask] = torch.arange(length).repeat(num_images)
return {
"input_ids": input_ids,
"image_mask": image_mask,
"image_pos_ids": image_pos_ids,
}
def decode(
self,
tokens: torch.Tensor | np.ndarray,
vision_model: PreTrainedModel | None = None,
) -> dict:
tokenizer = self.tokenizer
bos = tokenizer.bos_token
eos = tokenizer.eos_token
bos = bos if bos is not None else eos
# Validate the input tokens
msg = "Should be reverted from FIM format before decoding."
for fim_type in ["prefix", "middle", "suffix"]:
token_id = tokenizer.convert_tokens_to_ids(f"<fim_{fim_type}>")
if token_id is None:
token_id = tokenizer.convert_tokens_to_ids(f"<|fim_{fim_type}|>")
assert token_id is not None, f"{fim_type} token not found"
assert token_id not in tokens, msg
tokens = torch.asarray(tokens).detach().cpu()
assert tokens.ndim == 1, "Tokens must be 1D."
boi_id = tokenizer.convert_tokens_to_ids("<begin_of_image>")
eoi_id = tokenizer.convert_tokens_to_ids("<end_of_image>")
# Decode tokens
svg = ""
images: list = []
filenames: list = []
while len(tokens) > 0:
# Find the start position of the next image filename
boi_idx = torch.where(tokens == boi_id)[0]
eoi_idx = torch.where(tokens == eoi_id)[0]
if boi_idx.size(0) > 0:
start = int(boi_idx[0].item())
end = int(eoi_idx[0].item()) + 1 if eoi_idx.size(0) > 0 else len(tokens)
assert start < end, "Invalid image tokens."
else:
start, end = len(tokens), len(tokens)
# Decode the tokens before the image tokens
svg += tokenizer.decode(tokens[:start])
# Decode the image tokens
if start < end:
# Extract image size
image_tokens = tokens[start:end]
image_text = tokenizer.decode(image_tokens)
matched = self.re_img_size.match(image_text)
if matched is not None:
width, height = map(int, matched.groups())
else:
width = self.image_processor.size
height = self.image_processor.size
# Decode tokens to PIL image
image_mask = image_tokens >= len(tokenizer)
image_ids = image_tokens[image_mask] - len(tokenizer)
image = self.decode_image(vision_model, image_ids, width, height)
filename = IMG_FORMAT.format(len(images))
svg += filename
images.append(image)
filenames.append(filename)
# Update the remaining tokens
tokens = tokens[end:]
# Remove consecutive <bos> and <eos>
svg = re.sub(rf"({re.escape(bos)})+", bos, svg)
svg = re.sub(rf"({re.escape(eos)})+", eos, svg)
# Extract the text between <bos> and <eos>
i_bos = svg.find(bos)
svg = svg[i_bos + len(bos) :] if i_bos > -1 else svg
i_eos = svg.find(eos, i_bos + 1)
svg = svg[:i_eos] if i_eos > -1 else svg
return {"svg": svg, "images": images, "filenames": filenames}
def decode_image(
self,
vision_model: PreTrainedModel | None = None,
image_ids: torch.Tensor | np.ndarray | None = None,
width: int | None = None,
height: int | None = None,
dummy_color: tuple[int, int, int, int] = (200,) * 4,
pad_value: int = 0,
) -> Image.Image:
# Prepare image size
width = width or self.image_processor.size
height = height or self.image_processor.size
width, height = self.compute_safe_image_size(width, height)
if vision_model is None and image_ids is None:
# Return a dummy image
return Image.new("RGBA", (width, height), dummy_color)
# Compute required length
assert vision_model is not None, "Vision model must be provided."
scale_factor = 2 ** (vision_model.model.encoder.num_resolutions - 1)
latent_size = self.image_processor.size // scale_factor
required_length = latent_size**2
# Pad image ids if necessary
image_ids = torch.asarray(image_ids, device=vision_model.device)
code_length = image_ids.shape[0] # type: ignore
if code_length < required_length:
pad_size = required_length - code_length
pad = torch.full((pad_size,), pad_value).to(image_ids)
image_ids = torch.cat([image_ids, pad])
# Decode image
with torch.inference_mode():
codebook_entry = vision_model.model.quantize.get_codebook_entry(
image_ids, (1, latent_size, latent_size, -1)
)
recon = vision_model.model.decode(codebook_entry)[0].float()
# Postprocess image
img = self.image_processor.postprocess(
recon, self.image_processor.size, self.image_processor.size
)
# Mask the padded area
if code_length < required_length:
img = self.mask_padded_area(img, code_length, scale_factor)
# Resize the image to the original size
img = img.resize((width, height), resample=self.image_processor.resample)
return img # type: ignore
def compute_safe_image_size(self, width: int, height: int) -> tuple[int, int]:
long_edge = max(width, height)
if MAXIMUM_DECODE_IMAGE_SIZE < long_edge:
scale = MAXIMUM_DECODE_IMAGE_SIZE / long_edge
width = min(max(int(width * scale), 1), MAXIMUM_DECODE_IMAGE_SIZE)
height = min(max(int(height * scale), 1), MAXIMUM_DECODE_IMAGE_SIZE)
return width, height
def mask_padded_area(
self,
img: Image.Image,
code_length: int,
scale_factor: int,
fill: tuple[int, int, int, int] = (200, 200, 200, 255),
) -> Image.Image:
draw = ImageDraw.Draw(img, mode="RGBA")
width, height = img.size
zw = math.ceil(width / scale_factor)
cw = code_length % zw
ch = code_length // zw
draw.polygon(
[
(cw * scale_factor, ch * scale_factor),
(width, ch * scale_factor),
(width, height),
(0, height),
(0, (ch + 1) * scale_factor),
(cw * scale_factor, (ch + 1) * scale_factor),
],
fill=fill,
)
return img
def set_font_manager(self, fonts_path: str | None = None) -> None:
self.font_manager = FontManager(fonts_path)
def render_preprocess(self, example: dict, out_dir: str | Path) -> None:
msg = "Font manager is not set. Call `set_font_manager` first."
assert self.font_manager is not None, msg
out_dir = Path(out_dir)
out_dir.mkdir(parents=True, exist_ok=True)
svg = example["svg"]
# Costruct style tag
found = set()
style_text = "text{dominant-baseline:text-before-edge}"
for i, text_str in enumerate(re.findall("<text[^>]*>", svg)):
matched = re.search('font-family="([^"]*)"', text_str)
if matched is None:
logger.warning(f"Font family not found in {text_str}")
continue
# Parse font attributes
font_family = matched.group(1)
is_bold = 'font-weight="bold"' in text_str
is_italic = 'font-style="italic"' in text_str
font_weight = "bold" if is_bold else "regular"
if is_italic:
font_style = "bolditalic" if is_bold else "italic"
else:
font_style = font_weight
key = (font_family, font_weight, font_style)
if key in found:
continue
font_bytes = self.font_manager.lookup(
font_family=font_family,
font_weight=font_weight,
font_style=font_style,
)
# @font-face
font_path = FONT_FORMAT.format(i)
font_face = "@font-face{"
font_face += f"font-family:'{font_family}';"
font_face += f"font-weight:{font_weight};"
font_face += f"font-style:{font_style};"
font_face += f"src:url('{font_path}');"
font_face += "}"
style_text += font_face
# Save font
Path(f"{out_dir}/{font_path}").write_bytes(font_bytes)
found.add(key)
# Insert style tag
matched = re.search("<svg[^>]*>", svg)
assert matched is not None, "SVG tag not found"
i = matched.span()[1]
style = f"<style>{style_text}</style>"
example["svg"] = svg[:i] + style + svg[i:]
def render(self, example: dict, save_dir: str | Path | None = None) -> Image.Image:
with tempfile.TemporaryDirectory() as tmp_dir:
self.render_preprocess(example, tmp_dir)
# Parse the SVG size
matched = self.re_svg_width.search(example["svg"])
assert matched is not None, "Width not found in SVG."
width = int(matched.group(1))
matched = self.re_svg_height.search(example["svg"])
assert matched is not None, "Height not found in SVG."
height = int(matched.group(1))
# Convert SVG to HTML
html = '<!DOCTYPE html><html><body style="margin: 0px">'
html += f"{example['svg']}</body></html>"
# Save HTML
Path(f"{tmp_dir}/index.html").write_text(html, encoding="utf-8")
# Save images
for img, filename in zip(example["images"], example["filenames"]):
Path(f"{tmp_dir}/{filename}").parent.mkdir(parents=True, exist_ok=True)
img.save(f"{tmp_dir}/{filename}")
# Take screenshot
command = [
"google-chrome",
"--headless",
"--disable-web-security",
"--allow-running-insecure-content",
"--no-sandbox",
"--disable-infobars",
"--hide-scrollbars",
"--disable-dev-shm-usage",
"--no-zygote",
f"--window-size={width},{height}",
f"--screenshot={tmp_dir}/screenshot.png",
f"{tmp_dir}/index.html",
]
subprocess.run(command, check=True, stderr=subprocess.DEVNULL)
# Load the screenshot as PIL image
out = Image.open(f"{tmp_dir}/screenshot.png")
size = (width, height)
out = out.resize(size, resample=Image.Resampling.LANCZOS) # type: ignore
# Copy the result if save_dir is specified
if save_dir is not None:
shutil.copytree(tmp_dir, save_dir, dirs_exist_ok=True)
return out
|