id
stringlengths 10
10
| title
stringlengths 23
131
| pdf_path
stringlengths 58
58
| num_references_total
int64 14
144
| num_references_related_work
int64 0
60
| bibliography_related_work
listlengths 0
60
| bibliography_all
listlengths 14
144
| related_work_ids
listlengths 0
60
| bibliography_all_ids
listlengths 14
144
|
|---|---|---|---|---|---|---|---|---|
ayBKRjGDEI
|
Differentially Private Hierarchical Clustering with Provable Approximation Guarantees
|
data/openreview_paper/ICML_2023_oral/ayBKRjGDEI//paper.pdf
| 61
| 27
|
[
{
"authors": [
"Shiva Prasad Kasiviswanathan",
"Kobbi Nissim",
"Sofya Raskhodnikova",
"Adam Smith"
],
"doi": "10.1007/978-3-642-36594-2_26",
"ref_id": "b37",
"title": "Analyzing Graphs with Node Differential Privacy",
"year": "2013"
},
{
"authors": [
"Anil K Jain"
],
"doi": "10.1016/j.patrec.2009.09.011",
"ref_id": "b34",
"title": "Data clustering: 50 years beyond K-means",
"year": "2010"
},
{
"authors": [
"Aditya Hegde",
"Helen Möllering",
"Thomas Schneider",
"Hossein Yalame"
],
"doi": "10.2478/popets-2021-0068",
"ref_id": "b33",
"title": "SoK: Efficient Privacy-preserving Clustering",
"year": "2021. 2021"
},
{
"authors": [
"Úlfar Erlingsson",
"Vasyl Pihur",
"Aleksandra Korolova"
],
"doi": "10.1145/2660267.2660348",
"ref_id": "b28",
"title": "RAPPOR",
"year": "2014"
},
{
"authors": [
"Fionn Murtagh",
"Pedro Contreras"
],
"doi": "10.1002/widm.53",
"ref_id": "b49",
"title": "Algorithms for hierarchical clustering: an overview",
"year": "2012"
},
{
"authors": [
"Qian Xiao",
"Rui Chen",
"Kian-Lee Tan"
],
"doi": "10.1145/2623330.2623642",
"ref_id": "b60",
"title": "Differentially private network data release via structural inference",
"year": "2014"
},
{
"authors": [
"Moses Charikar",
"Vaggos Chatziafratis"
],
"doi": "10.1137/1.9781611974782.53",
"ref_id": "b8",
"title": "Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics",
"year": "2017"
},
{
"authors": [
"A Epasto",
"V Mirrokni",
"B Perozzi",
"A Tsitsulin",
"P Zhong"
],
"doi": "",
"ref_id": "b27",
"title": "Differentially private graph learning via sensitivity-bounded personalized pagerank",
"year": "2022"
},
{
"authors": [
"M Bun",
"M Elias",
"J Kulkarni"
],
"doi": "",
"ref_id": "b7",
"title": "Differentially private correlation clustering",
"year": "2021"
},
{
"authors": [
"Vincent Cohen-Addad",
"Varun Kanade",
"Frederik Mallmann-Trenn",
"Claire Mathieu"
],
"doi": "10.1145/3321386",
"ref_id": "b12",
"title": "Hierarchical Clustering",
"year": "2017"
},
{
"authors": [
"A Agarwal",
"S Khanna",
"H Li",
"P Patil"
],
"doi": "",
"ref_id": "b0",
"title": "Sublinear algorithms for hierarchical clustering",
"year": "2022"
},
{
"authors": [
"M Eliáš",
"M Kapralov",
"J Kulkarni",
"Y T Lee"
],
"doi": "",
"ref_id": "b26",
"title": "Differentially private release of synthetic graphs",
"year": "2020"
},
{
"authors": [
"R Arora",
"J Upadhyay"
],
"doi": "",
"ref_id": "b1",
"title": "On differentially private graph sparsification and applications",
"year": "2019"
},
{
"authors": [
"Cynthia Dwork",
"Frank Mcsherry",
"Kobbi Nissim",
"Adam Smith"
],
"doi": "10.1007/11681878_14",
"ref_id": "b22",
"title": "Calibrating Noise to Sensitivity in Private Data Analysis",
"year": "2006"
},
{
"authors": [
"Badih Ghazi",
"Cristóbal Guzmán",
"Pritish Kamath",
"Ravi Kumar",
"Pasin Manurangsi"
],
"doi": "10.52202/079017-2025",
"ref_id": "b30",
"title": "Differentially Private Optimization with Sparse Gradients",
"year": "2020"
},
{
"authors": [
"K Chaudhuri",
"C Monteleoni",
"A D Sarwate"
],
"doi": "",
"ref_id": "b10",
"title": "Differentially private empirical risk minimization",
"year": "2011"
},
{
"authors": [
"V Chatziafratis",
"G Yaroslavtsev",
"E Lee",
"K Makarychev",
"S Ahmadian",
"A Epasto",
"M Mahdian"
],
"doi": "",
"ref_id": "b9",
"title": "Bisect and conquer: Hierarchical clustering via max-uncut bisection",
"year": "2020"
},
{
"authors": [
"M.-F Balcan",
"T Dick",
"Y Liang",
"W Mou",
"H Zhang"
],
"doi": "",
"ref_id": "b2",
"title": "Differentially private clustering in high-dimensional euclidean spaces",
"year": "2017"
},
{
"authors": [
"Aashish Kolluri",
"Teodora Baluta",
"Prateek Saxena"
],
"doi": "10.1145/3460120.3484822",
"ref_id": "b38",
"title": "Private Hierarchical Clustering in Federated Networks",
"year": "2021"
},
{
"authors": [
"Cynthia Dwork",
"Kunal Talwar",
"Abhradeep Thakurta",
"Li Zhang"
],
"doi": "10.1145/2591796.2591883",
"ref_id": "b24",
"title": "Analyze gauss",
"year": "2014b"
},
{
"authors": [
"Agus Santoso",
"Siti Nurhayati"
],
"doi": "10.55640/ijidml-v02i02-02",
"ref_id": "b48",
"title": "ALGORITHMIC GUARANTEES FOR HIERARCHICAL DATA GROUPING: INSIGHTS FROM AVERAGE LINKAGE, BISECTING K-MEANS, AND LOCAL SEARCH HEURISTICS",
"year": "2017"
},
{
"authors": [
"Ashwin Machanavajjhala",
"Xi He",
"Michael Hay"
],
"doi": "10.1145/3035918.3054779",
"ref_id": "b42",
"title": "Differential Privacy in the Wild",
"year": "2017"
},
{
"authors": [
"Cynthia Dwork"
],
"doi": "10.1145/3294052.3322188",
"ref_id": "b21",
"title": "Differential Privacy and the US Census",
"year": "2019"
},
{
"authors": [
"J Blocki",
"A Blum",
"A Datta",
"O Sheffet"
],
"doi": "",
"ref_id": "b6",
"title": "The johnsonlindenstrauss transform itself preserves differential privacy",
"year": "2012. 2012"
},
{
"authors": [
"Frank Mcsherry",
"Kunal Talwar"
],
"doi": "10.1109/focs.2007.66",
"ref_id": "b45",
"title": "Mechanism Design via Differential Privacy",
"year": "2007"
},
{
"authors": [
"Sanjoy Dasgupta"
],
"doi": "10.1145/2897518.2897527",
"ref_id": "b17",
"title": "A cost function for similarity-based hierarchical clustering",
"year": "2016"
},
{
"authors": [
"Amrita Roy Chowdhury",
"Chenghong Wang",
"Xi He",
"Ashwin Machanavajjhala",
"Somesh Jha"
],
"doi": "10.1145/3318464.3380596",
"ref_id": "b51",
"title": "Cryptϵ",
"year": "2020"
}
] |
[
{
"authors": [
"A Agarwal",
"S Khanna",
"H Li",
"P Patil"
],
"doi": "",
"ref_id": "b0",
"title": "Sublinear algorithms for hierarchical clustering",
"year": "2022"
},
{
"authors": [
"R Arora",
"J Upadhyay"
],
"doi": "",
"ref_id": "b1",
"title": "On differentially private graph sparsification and applications",
"year": "2019"
},
{
"authors": [
"M.-F Balcan",
"T Dick",
"Y Liang",
"W Mou",
"H Zhang"
],
"doi": "",
"ref_id": "b2",
"title": "Differentially private clustering in high-dimensional euclidean spaces",
"year": "2017"
},
{
"authors": [
"M Bateni",
"S Behnezhad",
"M Derakhshan",
"M Hajiaghayi",
"R Kiveris",
"S Lattanzi",
"V Mirrokni"
],
"doi": "",
"ref_id": "b3",
"title": "Affinity clustering: Hierarchical clustering at scale",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b4",
"title": "",
"year": "2017"
},
{
"authors": [
"Rajendra Bhatia"
],
"doi": "10.1007/978-1-4612-0653-8",
"ref_id": "b5",
"title": "Matrix Analysis",
"year": "1997"
},
{
"authors": [
"J Blocki",
"A Blum",
"A Datta",
"O Sheffet"
],
"doi": "",
"ref_id": "b6",
"title": "The johnsonlindenstrauss transform itself preserves differential privacy",
"year": "2012. 2012"
},
{
"authors": [
"M Bun",
"M Elias",
"J Kulkarni"
],
"doi": "",
"ref_id": "b7",
"title": "Differentially private correlation clustering",
"year": "2021"
},
{
"authors": [
"Moses Charikar",
"Vaggos Chatziafratis"
],
"doi": "10.1137/1.9781611974782.53",
"ref_id": "b8",
"title": "Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics",
"year": "2017"
},
{
"authors": [
"V Chatziafratis",
"G Yaroslavtsev",
"E Lee",
"K Makarychev",
"S Ahmadian",
"A Epasto",
"M Mahdian"
],
"doi": "",
"ref_id": "b9",
"title": "Bisect and conquer: Hierarchical clustering via max-uncut bisection",
"year": "2020"
},
{
"authors": [
"K Chaudhuri",
"C Monteleoni",
"A D Sarwate"
],
"doi": "",
"ref_id": "b10",
"title": "Differentially private empirical risk minimization",
"year": "2011"
},
{
"authors": [
"H Chen",
"V Cohen-Addad",
"T Orsi",
"A Epasto",
"J Imola",
"D Steurer",
"S Tiegel"
],
"doi": "",
"ref_id": "b11",
"title": "Private estimation algorithms for stochastic block models and mixture models",
"year": "2023"
},
{
"authors": [
"Vincent Cohen-Addad",
"Varun Kanade",
"Frederik Mallmann-Trenn",
"Claire Mathieu"
],
"doi": "10.1145/3321386",
"ref_id": "b12",
"title": "Hierarchical Clustering",
"year": "2017"
},
{
"authors": [
"Vincent Cohen-Addad",
"Varun Kanade",
"Frederik Mallmann-Trenn",
"Claire Mathieu"
],
"doi": "10.1145/3321386",
"ref_id": "b13",
"title": "Hierarchical Clustering",
"year": "2019"
},
{
"authors": [
"Vincent Cohen-Addad",
"Alessandro Epasto",
"Silvio Lattanzi",
"Vahab Mirrokni",
"Andres Munoz Medina",
"David Saulpic",
"Chris Schwiegelshohn",
"Sergei Vassilvitskii"
],
"doi": "10.1145/3534678.3539409",
"ref_id": "b14",
"title": "Scalable Differentially Private Clustering via Hierarchically Separated Trees",
"year": "2022"
},
{
"authors": [
"V Cohen-Addad",
"A Epasto",
"V Mirrokni",
"S Narayanan",
"P Zhong"
],
"doi": "",
"ref_id": "b15",
"title": "Near-optimal private and scalable kclustering",
"year": "2022"
},
{
"authors": [
"V Cohen-Addad",
"C Fan",
"S Lattanzi",
"S Mitrović",
"A Norouzi-Fard",
"N Parotsidis",
"J Tarnawski"
],
"doi": "",
"ref_id": "b16",
"title": "Nearoptimal correlation clustering with privacy",
"year": "2022"
},
{
"authors": [
"Sanjoy Dasgupta"
],
"doi": "10.1145/2897518.2897527",
"ref_id": "b17",
"title": "A cost function for similarity-based hierarchical clustering",
"year": "2016"
},
{
"authors": [
"L Dhulipala",
"D Eisenstat",
"J Łacki",
"V Mirronki",
"J Shi"
],
"doi": "",
"ref_id": "b18",
"title": "Hierarchical agglomerative graph clustering in poly-logarithmic depth",
"year": "2022"
},
{
"authors": [
"Ibai Diez",
"Paolo Bonifazi",
"Iñaki Escudero",
"Beatriz Mateos",
"Miguel A Muñoz",
"Sebastiano Stramaglia",
"Jesus M Cortes"
],
"doi": "10.1038/srep10532",
"ref_id": "b19",
"title": "A novel brain partition highlights the modular skeleton shared by structure and function",
"year": "2015"
},
{
"authors": [
"Jingqiu Ding",
"Tommaso D'orsi",
"Rajai Nasser",
"David Steurer"
],
"doi": "10.1109/focs52979.2021.00046",
"ref_id": "b20",
"title": "Robust recovery for stochastic block models",
"year": "2021. 2022"
},
{
"authors": [
"Cynthia Dwork"
],
"doi": "10.1145/3294052.3322188",
"ref_id": "b21",
"title": "Differential Privacy and the US Census",
"year": "2019"
},
{
"authors": [
"Cynthia Dwork",
"Frank Mcsherry",
"Kobbi Nissim",
"Adam Smith"
],
"doi": "10.1007/11681878_14",
"ref_id": "b22",
"title": "Calibrating Noise to Sensitivity in Private Data Analysis",
"year": "2006"
},
{
"authors": [
"Cynthia Dwork",
"Aaron Roth"
],
"doi": "10.1561/0400000042",
"ref_id": "b23",
"title": "The Algorithmic Foundations of Differential Privacy",
"year": "2014"
},
{
"authors": [
"Cynthia Dwork",
"Kunal Talwar",
"Abhradeep Thakurta",
"Li Zhang"
],
"doi": "10.1145/2591796.2591883",
"ref_id": "b24",
"title": "Analyze gauss",
"year": "2014b"
},
{
"authors": [
"Michael B Eisen",
"Paul T Spellman",
"Patrick O Brown",
"David Botstein"
],
"doi": "10.1073/pnas.95.25.14863",
"ref_id": "b25",
"title": "Cluster analysis and display of genome-wide expression patterns",
"year": "1998"
},
{
"authors": [
"M Eliáš",
"M Kapralov",
"J Kulkarni",
"Y T Lee"
],
"doi": "",
"ref_id": "b26",
"title": "Differentially private release of synthetic graphs",
"year": "2020"
},
{
"authors": [
"A Epasto",
"V Mirrokni",
"B Perozzi",
"A Tsitsulin",
"P Zhong"
],
"doi": "",
"ref_id": "b27",
"title": "Differentially private graph learning via sensitivity-bounded personalized pagerank",
"year": "2022"
},
{
"authors": [
"Úlfar Erlingsson",
"Vasyl Pihur",
"Aleksandra Korolova"
],
"doi": "10.1145/2660267.2660348",
"ref_id": "b28",
"title": "RAPPOR",
"year": "2014"
},
{
"authors": [
"Yingjie Fei",
"Yudong Chen"
],
"doi": "10.1109/tit.2020.2966438",
"ref_id": "b29",
"title": "Achieving the Bayes Error Rate in Synchronization and Block Models by SDP, Robustly",
"year": "2020"
},
{
"authors": [
"Badih Ghazi",
"Cristóbal Guzmán",
"Pritish Kamath",
"Ravi Kumar",
"Pasin Manurangsi"
],
"doi": "10.52202/079017-2025",
"ref_id": "b30",
"title": "Differentially Private Optimization with Sparse Gradients",
"year": "2020"
},
{
"authors": [
"O Guédon",
"R Vershynin"
],
"doi": "10.1007/s00440-015-0659-z",
"ref_id": "b31",
"title": "Community detection in sparse networks via Grothendieck's inequality",
"year": "2016"
},
{
"authors": [
"M Hardt",
"K Talwar"
],
"doi": "",
"ref_id": "b32",
"title": "On the geometry of differential privacy",
"year": "2010"
},
{
"authors": [
"Aditya Hegde",
"Helen Möllering",
"Thomas Schneider",
"Hossein Yalame"
],
"doi": "10.2478/popets-2021-0068",
"ref_id": "b33",
"title": "SoK: Efficient Privacy-preserving Clustering",
"year": "2021. 2021"
},
{
"authors": [
"Anil K Jain"
],
"doi": "10.1016/j.patrec.2009.09.011",
"ref_id": "b34",
"title": "Data clustering: 50 years beyond K-means",
"year": "2010"
},
{
"authors": [
"N Jardine",
"R Sibson"
],
"doi": "10.1016/0025-5564(68)90030-8",
"ref_id": "b35",
"title": "A model for taxonomy",
"year": "1968"
},
{
"authors": [
"W B Johnson"
],
"doi": "",
"ref_id": "b36",
"title": "Extensions of lipschitz mappings into a hilbert space",
"year": "1984"
},
{
"authors": [
"Shiva Prasad Kasiviswanathan",
"Kobbi Nissim",
"Sofya Raskhodnikova",
"Adam Smith"
],
"doi": "10.1007/978-3-642-36594-2_26",
"ref_id": "b37",
"title": "Analyzing Graphs with Node Differential Privacy",
"year": "2013"
},
{
"authors": [
"Aashish Kolluri",
"Teodora Baluta",
"Prateek Saxena"
],
"doi": "10.1145/3460120.3484822",
"ref_id": "b38",
"title": "Private Hierarchical Clustering in Federated Networks",
"year": "2021"
},
{
"authors": [
"Y Lecun"
],
"doi": "10.17683/ijomam.issue5.19",
"ref_id": "b39",
"title": "AN INTELLIGENT ROLLING BEARING FAULT DIAGNOSIS METHOD OF CNN BASED ON MNIST DATABASE OF HANDWRITTEN DIGITS",
"year": "1998"
},
{
"authors": [
"J Leskovec",
"A Rajaraman",
"J D Ullman"
],
"doi": "",
"ref_id": "b40",
"title": "Mining of massive datasets",
"year": "2014"
},
{
"authors": [
"A Liu",
"A Moitra"
],
"doi": "10.48550/arXiv.2207.11903",
"ref_id": "b41",
"title": "Minimax rates for robust community detection",
"year": "2022"
},
{
"authors": [
"Ashwin Machanavajjhala",
"Xi He",
"Michael Hay"
],
"doi": "10.1145/3035918.3054779",
"ref_id": "b42",
"title": "Differential Privacy in the Wild",
"year": "2017"
},
{
"authors": [
"Charles F Mann",
"David W Matula",
"Eli V Olinick"
],
"doi": "10.1016/j.socnet.2008.03.004",
"ref_id": "b43",
"title": "The use of sparsest cuts to reveal the hierarchical community structure of social networks",
"year": "2008"
},
{
"authors": [
"F Mcsherry"
],
"doi": "10.1109/sfcs.2001.959929",
"ref_id": "b44",
"title": "Spectral partitioning of random graphs",
"year": "2001"
},
{
"authors": [
"Frank Mcsherry",
"Kunal Talwar"
],
"doi": "10.1109/focs.2007.66",
"ref_id": "b45",
"title": "Mechanism Design via Differential Privacy",
"year": "2007"
},
{
"authors": [
"Ankur Moitra",
"William Perry",
"Alexander S Wein"
],
"doi": "10.1145/2897518.2897573",
"ref_id": "b46",
"title": "How robust are reconstruction thresholds for community detection?",
"year": "2016"
},
{
"authors": [
"Andrea Montanari",
"Subhabrata Sen"
],
"doi": "10.1145/2897518.2897548",
"ref_id": "b47",
"title": "Semidefinite programs on sparse random graphs and their application to community detection",
"year": "2016"
},
{
"authors": [
"Agus Santoso",
"Siti Nurhayati"
],
"doi": "10.55640/ijidml-v02i02-02",
"ref_id": "b48",
"title": "ALGORITHMIC GUARANTEES FOR HIERARCHICAL DATA GROUPING: INSIGHTS FROM AVERAGE LINKAGE, BISECTING K-MEANS, AND LOCAL SEARCH HEURISTICS",
"year": "2017"
},
{
"authors": [
"Fionn Murtagh",
"Pedro Contreras"
],
"doi": "10.1002/widm.53",
"ref_id": "b49",
"title": "Algorithms for hierarchical clustering: an overview",
"year": "2012"
},
{
"authors": [
"R Pinot"
],
"doi": "",
"ref_id": "b50",
"title": "Minimum spanning tree release under differential privacy constraints",
"year": "2018"
},
{
"authors": [
"Amrita Roy Chowdhury",
"Chenghong Wang",
"Xi He",
"Ashwin Machanavajjhala",
"Somesh Jha"
],
"doi": "10.1145/3318464.3380596",
"ref_id": "b51",
"title": "Cryptϵ",
"year": "2020"
},
{
"authors": [
"M Seif",
"D Nguyen",
"A Vullikanti",
"R Tandon"
],
"doi": "",
"ref_id": "b52",
"title": "Differentially private community detection for stochastic block models",
"year": "2022"
},
{
"authors": [
"P H A Sneath",
"Robert R Sokal"
],
"doi": "10.1038/193855a0",
"ref_id": "b53",
"title": "Numerical Taxonomy",
"year": "1962"
},
{
"authors": [
"M Steinbach",
"G Karypis",
"V Kumar"
],
"doi": "",
"ref_id": "b54",
"title": "A comparison of document clustering techniques",
"year": "2000"
},
{
"authors": [
"Michele Tumminello",
"Fabrizio Lillo",
"Rosario N Mantegna"
],
"doi": "10.1016/j.jebo.2010.01.004",
"ref_id": "b55",
"title": "Correlation, hierarchies, and networks in financial markets",
"year": "2010"
},
{
"authors": [
"Pauli Virtanen",
"Ralf Gommers",
"Travis E Oliphant",
"Matt Haberland",
"Tyler Reddy",
"David Cournapeau",
"Evgeni Burovski",
"Pearu Peterson",
"Warren Weckesser",
"Jonathan Bright",
"Stéfan J Van Der Walt",
"Matthew Brett",
"Joshua Wilson",
"K Jarrod Millman",
"Nikolay Mayorov",
"Andrew R J Nelson",
"Eric Jones",
"Robert Kern",
"Eric Larson",
"C J Carey",
"İlhan Polat",
"Yu Feng",
"Eric W Moore",
"Jake Vanderplas",
"Denis Laxalde",
"Josef Perktold",
"Robert Cimrman",
"Ian Henriksen",
"E A Quintero",
"Charles R Harris",
"Anne M Archibald",
"Antônio H Ribeiro",
"Fabian Pedregosa",
"Paul Van Mulbregt"
],
"doi": "10.1038/s41592-020-0772-5",
"ref_id": "b56",
"title": "Author Correction: SciPy 1.0: fundamental algorithms for scientific computing in Python",
"year": "2020"
},
{
"authors": [
"V Vu"
],
"doi": "",
"ref_id": "b57",
"title": "A simple svd algorithm for finding hidden partitions",
"year": "2014"
},
{
"authors": [
"V H Vu"
],
"doi": "10.1145/1060590.1060654",
"ref_id": "b58",
"title": "Spectral norm of random matrices",
"year": "2005"
},
{
"authors": [
"Joe H Ward Jr"
],
"doi": "10.1080/01621459.1963.10500845",
"ref_id": "b59",
"title": "Hierarchical Grouping to Optimize an Objective Function",
"year": "1963"
},
{
"authors": [
"Qian Xiao",
"Rui Chen",
"Kian-Lee Tan"
],
"doi": "10.1145/2623330.2623642",
"ref_id": "b60",
"title": "Differentially private network data release via structural inference",
"year": "2014"
}
] |
[
"fa2f0f3760db598f",
"a17c645d3ff160b9",
"04741b0414ee99dc",
"3307bce4c069789b",
"2dc7f23bbb9c5f1c",
"2810c40af3bbd53b",
"5d65b45a5a400ebc",
"dc12e618800d2c1c",
"e08071ba035b67f8",
"0418bc13b9b99902",
"9009fdb89166ac06",
"d480d1699a13a0ba",
"0657f4769776989d",
"8ca672d841e344b7",
"4c18a1eeb7e22635",
"ee6702d920cf7d7f",
"245032ecd61be161",
"4bbf5ac7b1ea59cb",
"257a5abfec7c8543",
"9a213050f596710c",
"f577645e0e64cd19",
"37c88ccbc436abb7",
"8c2964e52542dc80",
"0129d9dbb15a08fb",
"1ec3e811476ea4fe",
"fd71f771897b8434",
"29e5bb4ebe7209e1"
] |
[
"9009fdb89166ac06",
"0657f4769776989d",
"4bbf5ac7b1ea59cb",
"8215de6d2fe2b4dd",
"1b4395952f8afebb",
"c12d783b24cff61d",
"0129d9dbb15a08fb",
"e08071ba035b67f8",
"5d65b45a5a400ebc",
"245032ecd61be161",
"ee6702d920cf7d7f",
"ccefd7f65017e499",
"0418bc13b9b99902",
"5f749504babb9be5",
"a14efa685b7d7edb",
"e8b2e9ef5be83c9e",
"b530d7ffd52e4c3a",
"fd71f771897b8434",
"879c2ee4adf0c13b",
"88f27a1db7214c54",
"ea50c9f48f424cc3",
"8c2964e52542dc80",
"8ca672d841e344b7",
"13dee622b725cef9",
"9a213050f596710c",
"eb2eb78a478acf25",
"d480d1699a13a0ba",
"dc12e618800d2c1c",
"3307bce4c069789b",
"28d7e264c740ea38",
"4c18a1eeb7e22635",
"5be74c38afc4b0e4",
"472c16a46f628d27",
"04741b0414ee99dc",
"a17c645d3ff160b9",
"b3f3a172f8c87d9a",
"14ce04035ce06a63",
"fa2f0f3760db598f",
"257a5abfec7c8543",
"1c57110a5bed4dc1",
"c713247be52998f1",
"cd6a23273f7a430f",
"37c88ccbc436abb7",
"f5ce6e250ea77d87",
"3c981d048f2cae90",
"1ec3e811476ea4fe",
"427de95a4cf0495b",
"33e8155a4343caa7",
"f577645e0e64cd19",
"2dc7f23bbb9c5f1c",
"cdeaaf935d35be1a",
"29e5bb4ebe7209e1",
"5c296e1f10c82d37",
"91b7cd3a229fb60d",
"c462dd0316412518",
"75f7a12bd434585f",
"b755e01a0c2ae13e",
"6db7e104011c44c2",
"7f242cdfd0d155cc",
"b1ed5207bfe54143",
"2810c40af3bbd53b"
] |
nS2x7LOKZk
|
Are labels informative in semi-supervised learning? Estimating and leveraging the missing-data mechanism.
|
data/openreview_paper/ICML_2023_oral/nS2x7LOKZk//paper.pdf
| 44
| 0
|
[] |
[
{
"authors": [
"D Ahfock",
"G J Mclachlan"
],
"doi": "",
"ref_id": "b0",
"title": "On missing label patterns in semi-supervised learning",
"year": "2019"
},
{
"authors": [
"S Armato",
"G Mclennan",
"M Mcnitt-Gray",
"C Meyer",
"A Reeves",
"L Bidaut",
"B Zhao",
"B Croft",
"L Clarke"
],
"doi": "10.1118/1.3469350",
"ref_id": "b1",
"title": "WE-B-201B-02: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Public Database of CT Scans for Lung Nodule Analysis",
"year": "2011"
},
{
"authors": [
"Stuart G Baker",
"Nan M Laird"
],
"doi": "10.1080/01621459.1988.10478565",
"ref_id": "b2",
"title": "Regression Analysis for Categorical Variables with Outcome Subject to Nonignorable Nonresponse",
"year": "1988"
},
{
"authors": [
"D Berthelot",
"N Carlini",
"E D Cubuk",
"A Kurakin",
"K Sohn",
"H Zhang",
"C Raffel"
],
"doi": "",
"ref_id": "b3",
"title": "Remixmatch: Semisupervised learning with distribution alignment and augmentation anchoring",
"year": "2019"
},
{
"authors": [
"K Cao",
"M Brbic",
"J Leskovec"
],
"doi": "",
"ref_id": "b4",
"title": "Open-world semisupervised learning",
"year": "2021"
},
{
"authors": [],
"doi": "10.7551/mitpress/9780262033589.001.0001",
"ref_id": "b5",
"title": "Semi-Supervised Learning",
"year": "2006"
},
{
"authors": [
"Yanbei Chen",
"Xiatian Zhu",
"Wei Li",
"Shaogang Gong"
],
"doi": "10.1609/aaai.v34i04.5763",
"ref_id": "b6",
"title": "Semi-Supervised Learning under Class Distribution Mismatch",
"year": "2020"
},
{
"authors": [
"N Codella",
"V Rotemberg",
"P Tschandl",
"M E Celebi",
"S Dusza",
"D Gutman",
"B Helba",
"A Kalloo",
"K Liopyris",
"M Marchetti"
],
"doi": "",
"ref_id": "b7",
"title": "Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration",
"year": "2019"
},
{
"authors": [
"X Haultfoeuille"
],
"doi": "10.1016/j.jeconom.2009.06.005",
"ref_id": "b8",
"title": "A new instrumental method for dealing with endogenous selection",
"year": "2010"
},
{
"authors": [
"Yves Grandvalet",
"Yoshua Bengio"
],
"doi": "10.7551/mitpress/6173.003.0013",
"ref_id": "b9",
"title": "Entropy Regularization",
"year": "2004"
},
{
"authors": [
"L.-Z Guo",
"Z.-Y Zhang",
"Y Jiang",
"Y.-F Li",
"Z.-H Zhou"
],
"doi": "",
"ref_id": "b10",
"title": "Safe deep semi-supervised learning for unseen-class unlabeled data",
"year": "2020"
},
{
"authors": [
"X Hu",
"Y Niu",
"C Miao",
"X.-S Hua",
"H Zhang"
],
"doi": "",
"ref_id": "b11",
"title": "On non-random missing labels in semi-supervised learning",
"year": "2022"
},
{
"authors": [
"Z Huang",
"C Xue",
"B Han",
"J Yang",
"C Gong"
],
"doi": "",
"ref_id": "b12",
"title": "Universal semi-supervised learning",
"year": "2021"
},
{
"authors": [
"Joseph G Ibrahim",
"Stuart R Lipsitz"
],
"doi": "10.2307/2533068",
"ref_id": "b13",
"title": "Parameter Estimation from Incomplete Data in Binomial Regression When the Missing Data Mechanism is Nonignorable",
"year": "1996"
},
{
"authors": [
"J G Ibrahim",
"M.-H Chen",
"S R Lipsitz"
],
"doi": "10.1093/biomet/88.2.551",
"ref_id": "b14",
"title": "Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable",
"year": "2001"
},
{
"authors": [
"A Krizhevsky"
],
"doi": "",
"ref_id": "b15",
"title": "Learning multiple layers of features from tiny images",
"year": "2009"
},
{
"authors": [
"M Le Morvan",
"N Prost",
"J Josse",
"E Scornet",
"G Varoquaux"
],
"doi": "",
"ref_id": "b16",
"title": "Linear predictor on linearly-generated data with missing values: non consistency and solutions",
"year": "2020"
},
{
"authors": [
"Y Lecun",
"C Cortes"
],
"doi": "",
"ref_id": "b17",
"title": "MNIST handwritten digit database",
"year": "2010"
},
{
"authors": [
"D.-H Lee"
],
"doi": "",
"ref_id": "b18",
"title": "Pseudo-label: The simple and efficient semisupervised learning method for deep neural networks",
"year": "2013"
},
{
"authors": [
"Roderick Little",
"Donald Rubin"
],
"doi": "10.1002/9781119482260",
"ref_id": "b19",
"title": "Statistical Analysis with Missing Data, Third Edition",
"year": "2019"
},
{
"authors": [
"Tiantian Liu",
"Yair Goldberg"
],
"doi": "10.1214/20-ejs1752",
"ref_id": "b20",
"title": "Kernel machines with missing responses",
"year": "2020"
},
{
"authors": [
"W Miao",
"E J Tchetgen Tchetgen"
],
"doi": "",
"ref_id": "b21",
"title": "On varieties of doubly robust estimators under missingness not at random with a shadow variable",
"year": "2016"
},
{
"authors": [
"Wang Miao",
"Peng Ding",
"Zhi Geng"
],
"doi": "10.1080/01621459.2015.1105808",
"ref_id": "b22",
"title": "Identifiability of Normal and Normal Mixture Models with Nonignorable Missing Data",
"year": "2016"
},
{
"authors": [
"W Miao",
"L Liu",
"E T Tchetgen",
"Z Geng"
],
"doi": "",
"ref_id": "b23",
"title": "Identification, doubly robust estimation, and semiparametric efficiency theory of nonignorable missing data with a shadow variable",
"year": "2019"
},
{
"authors": [
"K Mohan"
],
"doi": "10.4135/9781036230197.n1",
"ref_id": "b24",
"title": "Simon Massey Discusses Handling Missing Data",
"year": "2018. 2018"
},
{
"authors": [
"Geert Molenberghs",
"Caroline Beunckens",
"Cristina Sotto",
"Michael G Kenward"
],
"doi": "10.1111/j.1467-9868.2007.00640.x",
"ref_id": "b25",
"title": "Every Missingness not at Random Model Has a Missingness at Random Counterpart with Equal Fit",
"year": "2008"
},
{
"authors": [
"K Morikawa",
"J K Kim",
"Y Kano"
],
"doi": "",
"ref_id": "b26",
"title": "Semiparametric maximum likelihood estimation with data missing not at random",
"year": "2017"
},
{
"authors": [
"S A Murphy",
"A W Van Der Vaart"
],
"doi": "10.1080/01621459.2000.10474219",
"ref_id": "b27",
"title": "On Profile Likelihood",
"year": "2000"
},
{
"authors": [
"Leland G Neuberg"
],
"doi": "10.1017/s0266466603004109",
"ref_id": "b28",
"title": "<i>CAUSALITY: MODELS, REASONING, AND INFERENCE</i>, by Judea Pearl, Cambridge University Press, 2000",
"year": "2000. 2003"
},
{
"authors": [
"A Paszke",
"S Gross",
"F Massa",
"A Lerer",
"J Bradbury",
"G Chanan",
"T Killeen",
"Z Lin",
"N Gimelshein",
"L Antiga",
"A Desmaison",
"A Kopf",
"E Yang",
"Z Devito",
"M Raison",
"A Tejani",
"S Chilamkurthy",
"B Steiner",
"L Fang",
"J Bai",
"S Chintala"
],
"doi": "",
"ref_id": "b29",
"title": "Pytorch: An imperative style, high-performance deep learning library",
"year": "2019"
},
{
"authors": [
"Sophia Rabe-Hesketh",
"Anders Skrondal"
],
"doi": "10.1007/s11336-022-09895-1",
"ref_id": "b30",
"title": "Ignoring Non-ignorable Missingness",
"year": "2023"
},
{
"authors": [
"M N Rizve",
"K Duarte",
"Y S Rawat",
"M Shah"
],
"doi": "",
"ref_id": "b31",
"title": "In defense of pseudo-labeling: An uncertainty-aware pseudolabel selection framework for semi-supervised learning",
"year": "2021"
},
{
"authors": [
"D B Rubin"
],
"doi": "",
"ref_id": "b32",
"title": "Inference and missing data",
"year": "1976"
},
{
"authors": [
"H Schmutz",
"O Humbert",
"P.-A Mattei",
"Don"
],
"doi": "",
"ref_id": "b33",
"title": "t fear the unlabelled: safe deep semi-supervised learning via simple debiasing",
"year": "2023"
},
{
"authors": [
"H Scudder"
],
"doi": "10.1109/tit.1965.1053799",
"ref_id": "b34",
"title": "Probability of error of some adaptive pattern-recognition machines",
"year": "1965"
},
{
"authors": [
"Jun Shao",
"Lei Wang"
],
"doi": "10.1093/biomet/asv071",
"ref_id": "b35",
"title": "Semiparametric inverse propensity weighting for nonignorable missing data",
"year": "2016"
},
{
"authors": [
"K Sohn",
"D Berthelot",
"C.-L Li",
"Z Zhang",
"N Carlini",
"E D Cubuk",
"A Kurakin",
"H Zhang",
"C Raffel"
],
"doi": "",
"ref_id": "b36",
"title": "Fixmatch: Simplifying semi-supervised learning with consistency and confidence",
"year": "2020"
},
{
"authors": [
"Aude Sportisse",
"Claire Boyer",
"Julie Josse"
],
"doi": "10.1007/s11222-020-09963-5",
"ref_id": "b37",
"title": "Imputation and low-rank estimation with Missing Not At Random data",
"year": "2020"
},
{
"authors": [
"Niansheng Tang",
"Yuanyuan Ju"
],
"doi": "10.1080/24754269.2018.1522481",
"ref_id": "b38",
"title": "Statistical inference for nonignorable missing-data problems: a selective review",
"year": "2018"
},
{
"authors": [
"A W Van Der Vaart"
],
"doi": "",
"ref_id": "b39",
"title": "Asymptotic statistics",
"year": "1998"
},
{
"authors": [
"M J Wainwright"
],
"doi": "",
"ref_id": "b40",
"title": "High-dimensional statistics: A nonasymptotic viewpoint",
"year": "2019"
},
{
"authors": [
"Chen Wei",
"Kihyuk Sohn",
"Clayton Mellina",
"Alan Yuille",
"Fan Yang"
],
"doi": "10.1109/cvpr46437.2021.01071",
"ref_id": "b41",
"title": "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning",
"year": "2021"
},
{
"authors": [
"Q Xie",
"Z Dai",
"E Hovy",
"T Luong",
"Q Le"
],
"doi": "",
"ref_id": "b42",
"title": "Unsupervised data augmentation for consistency training",
"year": "2020"
},
{
"authors": [
"Jiancheng Yang",
"Rui Shi",
"Donglai Wei",
"Zequan Liu",
"Lin Zhao",
"Bilian Ke",
"Hanspeter Pfister",
"Bingbing Ni"
],
"doi": "10.1038/s41597-022-01721-8",
"ref_id": "b43",
"title": "MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification",
"year": "2023"
}
] |
[] |
[
"d77d907412430276",
"b36a42c1196bc1df",
"95f4c334a583c90f",
"d9cc705ab09783e4",
"41d73f294532c611",
"30c10ebd10dba633",
"86dd1c289fd7d656",
"1cb4a92437f5ebba",
"15b0fc76be07ddf7",
"eff4cf692532c430",
"f056ca161136cee3",
"039875c530ff3106",
"cecf7080edd0362e",
"d6acacd6286bbf9a",
"92b23dc40a38de66",
"0c75b99cd5e726b0",
"05f2a6659d8bd950",
"25e668b5a8e8f67d",
"557f8fba6ea710f0",
"19e20b1e9706c2b4",
"4bc1c600fa2c017a",
"4bf4d35c82c7d57f",
"7ce3a27dfb4e382e",
"bf89845a7f30745b",
"cfb927fb567425fb",
"f8a50883a128773b",
"156def4d0acd02b6",
"7d36dca2ef2fbbd8",
"ca4629cdf5382c80",
"e39313f99aa1bc1a",
"f9d2e8dff8370c72",
"be3f749c23991126",
"a7c9c9d1886ee800",
"7e28dc331c26a53e",
"5aa13d8fc5339e9b",
"80bd07d6bb6d817a",
"64bc74beff5d44a1",
"26bb58bc3036a558",
"f653bb62ce8e104b",
"d1820c0d2ab339f8",
"1c5144a38c05be0c",
"344bc4208b47db9e",
"b199f993a4f6324b",
"f41be9dc24b15ffa"
] |
Ovu1horBiZ
|
Reinforcement Learning from Passive Data via Latent Intentions
|
data/openreview_paper/ICML_2023_oral/Ovu1horBiZ//paper.pdf
| 38
| 19
|
[
{
"authors": [
"B Baker",
"I Akkaya",
"P Zhokhov",
"J Huizinga",
"J Tang",
"A Ecoffet",
"B Houghton",
"R Sampedro",
"J Clune"
],
"doi": "",
"ref_id": "b1",
"title": "Video pretraining (vpt): Learning to act by watching unlabeled online videos",
"year": "2022"
},
{
"authors": [
"Y J Ma",
"S Sodhani",
"D Jayaraman",
"O Bastani",
"V Kumar",
"A Zhang"
],
"doi": "",
"ref_id": "b16",
"title": "Vip: Towards universal visual reward and representation via value-implicit pre-training",
"year": "2022"
},
{
"authors": [
"D Borsa",
"A Barreto",
"J Quan",
"D J Mankowitz",
"R Munos",
"H V Hasselt",
"D Silver",
"T Schaul"
],
"doi": "",
"ref_id": "b4",
"title": "Universal successor features approximators",
"year": "2018"
},
{
"authors": [
"T Xiao",
"I Radosavovic",
"T Darrell",
"J Malik"
],
"doi": "",
"ref_id": "b35",
"title": "Masked visual pre-training for motor control",
"year": "2022"
},
{
"authors": [
"M Chang",
"A Gupta",
"S Gupta"
],
"doi": "",
"ref_id": "b5",
"title": "Learning value functions from undirected state-only experience",
"year": "2022"
},
{
"authors": [
"Richard S Sutton",
"Joseph Modayil",
"Michael Delp",
"Thomas Degris",
"Patrick M Pilarski",
"Adam White",
"Doina Precup"
],
"doi": "10.65109/qdhn7183",
"ref_id": "b28",
"title": "Horde: a scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction",
"year": "2011"
},
{
"authors": [
"A Srinivas",
"M Laskin",
"P Abbeel"
],
"doi": "",
"ref_id": "b26",
"title": "Curl: Contrastive unsupervised representations for reinforcement learning",
"year": "2020"
},
{
"authors": [
"Karl Schmeckpeper",
"Annie Xie",
"Oleh Rybkin",
"Stephen Tian",
"Kostas Daniilidis",
"Sergey Levine",
"Chelsea Finn"
],
"doi": "10.1007/978-3-030-58565-5_42",
"ref_id": "b22",
"title": "Learning Predictive Models from Observation and Interaction",
"year": "2020"
},
{
"authors": [
"S Nair",
"A Rajeswaran",
"V Kumar",
"C Finn",
"A Gupta"
],
"doi": "",
"ref_id": "b19",
"title": "R3m: A universal visual representation for robot manipulation",
"year": "2022"
},
{
"authors": [],
"doi": "10.5962/bhl.title.99010",
"ref_id": "b7",
"title": "S.M. Isbell & Co. seed merchants : growers and importers",
"year": "2019"
},
{
"authors": [
"T D Kulkarni",
"A Saeedi",
"S Gautam",
"S J Gershman"
],
"doi": "",
"ref_id": "b14",
"title": "Deep successor reinforcement learning",
"year": "2016"
},
{
"authors": [
"M C Machado",
"C Rosenbaum",
"X Guo",
"M Liu",
"G Tesauro",
"M Campbell"
],
"doi": "",
"ref_id": "b17",
"title": "Eigenoption discovery through the deep successor representation",
"year": "2017"
},
{
"authors": [
"B C Stadie",
"P Abbeel",
"I Sutskever"
],
"doi": "",
"ref_id": "b27",
"title": "Third-person imitation learning",
"year": "2017"
},
{
"authors": [
"Pierre Sermanet",
"Corey Lynch",
"Yevgen Chebotar",
"Jasmine Hsu",
"Eric Jang",
"Stefan Schaal",
"Sergey Levine",
"Google Brain"
],
"doi": "10.1109/icra.2018.8462891",
"ref_id": "b25",
"title": "Time-Contrastive Networks: Self-Supervised Learning from Video",
"year": "2018. 2017"
},
{
"authors": [
"A Barreto",
"W Dabney",
"R Munos",
"J J Hunt",
"T Schaul",
"D Silver",
"H V Hasselt"
],
"doi": "",
"ref_id": "b2",
"title": "Successor features for trans-fer in reinforcement learning",
"year": "2016"
},
{
"authors": [
"A Touati",
"Y Ollivier"
],
"doi": "",
"ref_id": "b31",
"title": "Learning one representation to optimize all rewards",
"year": "2021"
},
{
"authors": [
"A Nair",
"V H Pong",
"M Dalal",
"S Bahl",
"S Lin",
"S Levine"
],
"doi": "",
"ref_id": "b18",
"title": "Visual reinforcement learning with imagined goals",
"year": "2018"
},
{
"authors": [
"P Dayan"
],
"doi": "",
"ref_id": "b6",
"title": "Improving generalization for temporal difference learning: The successor representation",
"year": "1993"
},
{
"authors": [
"T Schaul",
"D Horgan",
"K Gregor",
"D Silver"
],
"doi": "",
"ref_id": "b21",
"title": "Universal value function approximators",
"year": "2015"
}
] |
[
{
"authors": [
"R Agarwal",
"D Schuurmans",
"M Norouzi"
],
"doi": "",
"ref_id": "b0",
"title": "An optimistic perspective on offline reinforcement learning",
"year": "2020"
},
{
"authors": [
"B Baker",
"I Akkaya",
"P Zhokhov",
"J Huizinga",
"J Tang",
"A Ecoffet",
"B Houghton",
"R Sampedro",
"J Clune"
],
"doi": "",
"ref_id": "b1",
"title": "Video pretraining (vpt): Learning to act by watching unlabeled online videos",
"year": "2022"
},
{
"authors": [
"A Barreto",
"W Dabney",
"R Munos",
"J J Hunt",
"T Schaul",
"D Silver",
"H V Hasselt"
],
"doi": "",
"ref_id": "b2",
"title": "Successor features for trans-fer in reinforcement learning",
"year": "2016"
},
{
"authors": [
"M G Bellemare",
"Y Naddaf",
"J Veness",
"M Bowling"
],
"doi": "10.1613/jair.3912",
"ref_id": "b3",
"title": "The Arcade Learning Environment: An Evaluation Platform for General Agents",
"year": "jun 2013"
},
{
"authors": [
"D Borsa",
"A Barreto",
"J Quan",
"D J Mankowitz",
"R Munos",
"H V Hasselt",
"D Silver",
"T Schaul"
],
"doi": "",
"ref_id": "b4",
"title": "Universal successor features approximators",
"year": "2018"
},
{
"authors": [
"M Chang",
"A Gupta",
"S Gupta"
],
"doi": "",
"ref_id": "b5",
"title": "Learning value functions from undirected state-only experience",
"year": "2022"
},
{
"authors": [
"P Dayan"
],
"doi": "",
"ref_id": "b6",
"title": "Improving generalization for temporal difference learning: The successor representation",
"year": "1993"
},
{
"authors": [],
"doi": "10.5962/bhl.title.99010",
"ref_id": "b7",
"title": "S.M. Isbell & Co. seed merchants : growers and importers",
"year": "2019"
},
{
"authors": [
"L Espeholt",
"H Soyer",
"R Munos",
"K Simonyan",
"V Mnih",
"T Ward",
"Y Doron",
"V Firoiu",
"T Harley",
"I Dunning",
"S Legg",
"K Kavukcuoglu"
],
"doi": "",
"ref_id": "b8",
"title": "Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures",
"year": "2018"
},
{
"authors": [
"B Eysenbach",
"T Zhang",
"R Salakhutdinov",
"S Levine"
],
"doi": "",
"ref_id": "b9",
"title": "Contrastive learning as goal-conditioned reinforcement learning",
"year": "2022"
},
{
"authors": [
"J Fu",
"A Kumar",
"O Nachum",
"G Tucker",
"S D Levine"
],
"doi": "",
"ref_id": "b10",
"title": "4rl: Datasets for deep data-driven reinforcement learning",
"year": "2020"
},
{
"authors": [
"K Grauman",
"A Westbury",
"E Byrne",
"Z Chavis",
"A Furnari",
"R Girdhar",
"J Hamburger",
"H Jiang",
"M Liu",
"X Liu",
"M Martin",
"T Nagarajan",
"I Radosavovic",
"S K Ramakrishnan",
"F Ryan",
"J Sharma",
"M Wray",
"M Xu",
"E Z Xu",
"C Zhao",
"S Bansal",
"D Batra",
"V Cartillier",
"S Crane",
"T Do",
"M Doulaty",
"A Erapalli",
"C Feichtenhofer",
"A Fragomeni",
"Q Fu",
"C Fuegen",
"A Gebreselasie",
"C González",
"J Hillis",
"X Huang",
"Y Huang",
"W Jia",
"W Khoo",
"J Kolár",
"S Kottur",
"A Kumar",
"F Landini",
"C Li",
"Y Li",
"Z Li",
"K Mangalam",
"R Modhugu",
"J Munro",
"T Murrell",
"T Nishiyasu",
"W Price",
"P R Puentes",
"M Ramazanova",
"L Sari",
"K Somasundaram",
"A Southerland",
"Y Sugano",
"R Tao",
"M Vo",
"Y Wang",
"X Wu",
"T Yagi",
"Y Zhu",
"P Arbelaez",
"D Crandall",
"D Damen",
"G M Farinella",
"B Ghanem",
"V K Ithapu",
"C V Jawahar",
"H Joo",
"K Kitani",
"H Li",
"R A Newcombe",
"A Oliva",
"H S Park",
"J M Rehg",
"Y Sato",
"J Shi",
"M Z Shou",
"A Torralba",
"L Torresani",
"M Yan",
"J Malik"
],
"doi": "",
"ref_id": "b11",
"title": "Ego4d: Around the world in 3, 000 hours of egocentric video",
"year": "2021"
},
{
"authors": [
"I Kostrikov",
"D Yarats",
"R Fergus"
],
"doi": "",
"ref_id": "b12",
"title": "Image augmentation is all you need: Regularizing deep reinforcement learning from pixels",
"year": "2020"
},
{
"authors": [
"I Kostrikov",
"A Nair",
"S Levine"
],
"doi": "",
"ref_id": "b13",
"title": "Offline reinforcement learning with implicit q-learning",
"year": "2021"
},
{
"authors": [
"T D Kulkarni",
"A Saeedi",
"S Gautam",
"S J Gershman"
],
"doi": "",
"ref_id": "b14",
"title": "Deep successor reinforcement learning",
"year": "2016"
},
{
"authors": [
"A Kumar",
"A Zhou",
"G Tucker",
"S Levine"
],
"doi": "",
"ref_id": "b15",
"title": "Conservative q-learning for offline reinforcement learning",
"year": "2020"
},
{
"authors": [
"Y J Ma",
"S Sodhani",
"D Jayaraman",
"O Bastani",
"V Kumar",
"A Zhang"
],
"doi": "",
"ref_id": "b16",
"title": "Vip: Towards universal visual reward and representation via value-implicit pre-training",
"year": "2022"
},
{
"authors": [
"M C Machado",
"C Rosenbaum",
"X Guo",
"M Liu",
"G Tesauro",
"M Campbell"
],
"doi": "",
"ref_id": "b17",
"title": "Eigenoption discovery through the deep successor representation",
"year": "2017"
},
{
"authors": [
"A Nair",
"V H Pong",
"M Dalal",
"S Bahl",
"S Lin",
"S Levine"
],
"doi": "",
"ref_id": "b18",
"title": "Visual reinforcement learning with imagined goals",
"year": "2018"
},
{
"authors": [
"S Nair",
"A Rajeswaran",
"V Kumar",
"C Finn",
"A Gupta"
],
"doi": "",
"ref_id": "b19",
"title": "R3m: A universal visual representation for robot manipulation",
"year": "2022"
},
{
"authors": [
"K Paster",
"S A Mcilraith",
"J Ba"
],
"doi": "",
"ref_id": "b20",
"title": "You can't count on luck: Why decision transformers fail in stochastic environments",
"year": "2022"
},
{
"authors": [
"T Schaul",
"D Horgan",
"K Gregor",
"D Silver"
],
"doi": "",
"ref_id": "b21",
"title": "Universal value function approximators",
"year": "2015"
},
{
"authors": [
"Karl Schmeckpeper",
"Annie Xie",
"Oleh Rybkin",
"Stephen Tian",
"Kostas Daniilidis",
"Sergey Levine",
"Chelsea Finn"
],
"doi": "10.1007/978-3-030-58565-5_42",
"ref_id": "b22",
"title": "Learning Predictive Models from Observation and Interaction",
"year": "2020"
},
{
"authors": [
"Younggyo Seo",
"Kimin Lee",
"Fangchen Liu",
"Stephen James",
"Pieter Abbeel"
],
"doi": "10.1109/icip46576.2022.9897982",
"ref_id": "b23",
"title": "HARP: Autoregressive Latent Video Prediction with High-Fidelity Image Generator",
"year": "2022"
},
{
"authors": [
"Y Seo",
"K Lee",
"S James",
"P Abbeel"
],
"doi": "",
"ref_id": "b24",
"title": "Reinforcement learning with action-free pre-training from videos",
"year": "2022"
},
{
"authors": [
"Pierre Sermanet",
"Corey Lynch",
"Yevgen Chebotar",
"Jasmine Hsu",
"Eric Jang",
"Stefan Schaal",
"Sergey Levine",
"Google Brain"
],
"doi": "10.1109/icra.2018.8462891",
"ref_id": "b25",
"title": "Time-Contrastive Networks: Self-Supervised Learning from Video",
"year": "2018. 2017"
},
{
"authors": [
"A Srinivas",
"M Laskin",
"P Abbeel"
],
"doi": "",
"ref_id": "b26",
"title": "Curl: Contrastive unsupervised representations for reinforcement learning",
"year": "2020"
},
{
"authors": [
"B C Stadie",
"P Abbeel",
"I Sutskever"
],
"doi": "",
"ref_id": "b27",
"title": "Third-person imitation learning",
"year": "2017"
},
{
"authors": [
"Richard S Sutton",
"Joseph Modayil",
"Michael Delp",
"Thomas Degris",
"Patrick M Pilarski",
"Adam White",
"Doina Precup"
],
"doi": "10.65109/qdhn7183",
"ref_id": "b28",
"title": "Horde: a scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction",
"year": "2011"
},
{
"authors": [
"Faraz Torabi",
"Garrett Warnell",
"Peter Stone"
],
"doi": "10.24963/ijcai.2018/687",
"ref_id": "b29",
"title": "Behavioral Cloning from Observation",
"year": "2018"
},
{
"authors": [
"Faraz Torabi",
"Garrett Warnell",
"Peter Stone"
],
"doi": "10.24963/ijcai.2019/882",
"ref_id": "b30",
"title": "Recent Advances in Imitation Learning from Observation",
"year": "2018"
},
{
"authors": [
"A Touati",
"Y Ollivier"
],
"doi": "",
"ref_id": "b31",
"title": "Learning one representation to optimize all rewards",
"year": "2021"
},
{
"authors": [
"S Toyer",
"R Shah",
"A Critch",
"S Russell"
],
"doi": "",
"ref_id": "b32",
"title": "The MAG-ICAL benchmark for robust imitation",
"year": "2020"
},
{
"authors": [
"A Van Den Oord",
"Y Li",
"O Vinyals"
],
"doi": "",
"ref_id": "b33",
"title": "Representation learning with contrastive predictive coding",
"year": "2018"
},
{
"authors": [
"A R Villaflor",
"Z Huang",
"S Pande",
"J M Dolan",
"J Schneider"
],
"doi": "",
"ref_id": "b34",
"title": "Addressing optimism bias in sequence modeling for reinforcement learning",
"year": "17-23 Jul 2022"
},
{
"authors": [
"T Xiao",
"I Radosavovic",
"T Darrell",
"J Malik"
],
"doi": "",
"ref_id": "b35",
"title": "Masked visual pre-training for motor control",
"year": "2022"
},
{
"authors": [
"M Yang",
"D Schuurmans",
"P Abbeel",
"O Nachum"
],
"doi": "10.5040/9781805016816.ch-012",
"ref_id": "b36",
"title": "You cannot control what others do, but you can control how you respond",
"year": "2022"
},
{
"authors": [
"K Zakka",
"A Zeng",
"P Florence",
"J Tompson",
"J Bohg",
"D Dwibedi"
],
"doi": "",
"ref_id": "b37",
"title": "Xirl: Cross-embodiment inverse reinforcement learning",
"year": "2021"
}
] |
[
"c7b9b84d363b94d0",
"fe6b5113364e16e4",
"a614ea64acbaed6b",
"3f60fc051117fd13",
"4af664e88032de1f",
"6e03d13761ce8245",
"3cdf97f816ef62eb",
"2586fba4858ef4bd",
"0b2c7e890fb504c7",
"af42b80e668921f1",
"977e310fb9c6a187",
"7c1c7942c7633715",
"299110a60037b28a",
"e3cdcb73f542bf72",
"4c07dde14727b246",
"3e400e480b9473ca",
"aa1d51820a5fe54b",
"7ce06ef07fae1dba",
"f1e60bbb5d26411c"
] |
[
"e6bc04e2b9f585eb",
"c7b9b84d363b94d0",
"4c07dde14727b246",
"1779c10d7c0791b6",
"a614ea64acbaed6b",
"4af664e88032de1f",
"7ce06ef07fae1dba",
"af42b80e668921f1",
"bb5271f9bbc0f3c6",
"ba54f89e2f6a7573",
"00ed24be71a08dca",
"61291a410e445705",
"da7645d7893d4e2e",
"e4ecda062a6f7fea",
"977e310fb9c6a187",
"e8142325d4b65a9d",
"fe6b5113364e16e4",
"7c1c7942c7633715",
"aa1d51820a5fe54b",
"0b2c7e890fb504c7",
"66b821f614675242",
"f1e60bbb5d26411c",
"2586fba4858ef4bd",
"2355fe61d92f5682",
"34e5847b8407a160",
"e3cdcb73f542bf72",
"3cdf97f816ef62eb",
"299110a60037b28a",
"6e03d13761ce8245",
"1aa4a16fee6715cc",
"be7ad6e49b2aff9c",
"3e400e480b9473ca",
"4432c5174524faa6",
"e2a9f6fa31a3d3d2",
"f9c7f19a896ba8c5",
"3f60fc051117fd13",
"f502b8ed42fad910",
"29b0ee2ee8de3296"
] |
jwy77xkyPt
|
Information-Theoretic State Space Model for Multi-View Reinforcement Learning
|
data/openreview_paper/ICML_2023_oral/jwy77xkyPt//paper.pdf
| 54
| 23
|
[
{
"authors": [
"R Jangir",
"N Hansen",
"S Ghosal",
"M Jain",
"X Wang"
],
"doi": "",
"ref_id": "b19",
"title": "Look closer: Bridging egocentric and third-person views with transformers for robotic manipulation",
"year": "2022"
},
{
"authors": [
"H Hwang",
"G.-H Kim",
"S Hong",
"K.-E Kim"
],
"doi": "",
"ref_id": "b18",
"title": "Multiview representation learning via total correlation objective",
"year": "2021"
},
{
"authors": [
"S Watanabe"
],
"doi": "",
"ref_id": "b48",
"title": "Information theoretical analysis of multivariate correlation",
"year": "1960"
},
{
"authors": [
"M Wu",
"N Goodman"
],
"doi": "",
"ref_id": "b49",
"title": "Multimodal generative models for scalable weakly-supervised learning",
"year": "2018"
},
{
"authors": [
"Yonglong Tian",
"Dilip Krishnan",
"Phillip Isola"
],
"doi": "10.1007/978-3-030-58621-8_45",
"ref_id": "b42",
"title": "Contrastive Multiview Coding",
"year": "2020"
},
{
"authors": [
"Yueyue Hu",
"Shiliang Sun",
"Xin Xu",
"Jing Zhao"
],
"doi": "10.1007/s13042-020-01130-6",
"ref_id": "b16",
"title": "Attentive multi-view reinforcement learning",
"year": "2020"
},
{
"authors": [
"M Federici",
"A Dutta",
"P Forré",
"N Kushman",
"Z Akata"
],
"doi": "",
"ref_id": "b8",
"title": "Learning robust representations via multi-view information bottleneck",
"year": "2020"
},
{
"authors": [
"N Barhate"
],
"doi": "",
"ref_id": "b1",
"title": "Minimal pytorch implementation of proximal policy optimization",
"year": "2021"
},
{
"authors": [
"J Fan",
"W Li",
"Dribo"
],
"doi": "",
"ref_id": "b7",
"title": "Robust deep reinforcement learning via multi-view information bottleneck",
"year": "2022"
},
{
"authors": [
"G Ver Steeg",
"A Galstyan"
],
"doi": "",
"ref_id": "b46",
"title": "Discovering structure in high-dimensional data through correlation explanation",
"year": "2014"
},
{
"authors": [
"R G Krishnan",
"U Shalit",
"D Sontag"
],
"doi": "",
"ref_id": "b24",
"title": "Deep kalman filters",
"year": "2015"
},
{
"authors": [
"N Tishby",
"F C Pereira",
"W Bialek"
],
"doi": "",
"ref_id": "b43",
"title": "The information bottleneck method",
"year": "2000"
},
{
"authors": [
"Ian Fischer"
],
"doi": "10.3390/e22090999",
"ref_id": "b9",
"title": "The Conditional Entropy Bottleneck",
"year": "2020"
},
{
"authors": [
"B Chen",
"P Abbeel",
"D Pathak"
],
"doi": "",
"ref_id": "b4",
"title": "Unsupervised learning of visual 3d keypoints for control",
"year": "2021"
},
{
"authors": [
"H Yang",
"D Shi",
"G Xie",
"Y Peng",
"Y Zhang",
"Y Yang",
"S Yang"
],
"doi": "",
"ref_id": "b50",
"title": "Self-supervised representations for multi-view reinforcement learning",
"year": "2022"
},
{
"authors": [
"G Ver Steeg",
"A Galstyan"
],
"doi": "",
"ref_id": "b47",
"title": "Maximally informative hierarchical representations of high-dimensional data",
"year": "2015"
},
{
"authors": [
"S Gao",
"R Brekelmans",
"G Ver Steeg",
"A Galstyan"
],
"doi": "",
"ref_id": "b10",
"title": "Auto-encoding total correlation explanation",
"year": "2019"
},
{
"authors": [
"Leslie Pack Kaelbling",
"Michael L Littman",
"Anthony R Cassandra"
],
"doi": "10.1016/s0004-3702(98)00023-x",
"ref_id": "b20",
"title": "Planning and acting in partially observable stochastic domains",
"year": "1998"
},
{
"authors": [
"M Li",
"L Wu",
"H B Ammar",
"J Wang"
],
"doi": "",
"ref_id": "b31",
"title": "Multi-view reinforcement learning",
"year": "2019"
},
{
"authors": [
"T M Sutter",
"I Daunhawer",
"J E Vogt"
],
"doi": "",
"ref_id": "b39",
"title": "Multimodal generative learning utilizing jensen-shannon-divergence",
"year": "2020"
},
{
"authors": [
"D Hafner",
"T Lillicrap",
"I Fischer",
"R Villegas",
"D Ha",
"H Lee",
"J Davidson"
],
"doi": "",
"ref_id": "b12",
"title": "Learning latent dynamics for planning from pixels",
"year": "2019"
},
{
"authors": [
"Y Shi",
"N Siddharth",
"B Paige",
"P H Torr"
],
"doi": "",
"ref_id": "b38",
"title": "Variational mixture-of-experts autoencoders for multi-modal deep generative models",
"year": "2019"
},
{
"authors": [
"P Poklukar",
"M Vasco",
"H Yin",
"F S Melo",
"A Paiva",
"D Kragic"
],
"doi": "",
"ref_id": "b34",
"title": "Geometric multimodal contrastive representation learning",
"year": "2022"
}
] |
[
{
"authors": [
"L N Alegre",
"Sumo-Rl"
],
"doi": "",
"ref_id": "b0",
"title": "",
"year": "2019"
},
{
"authors": [
"N Barhate"
],
"doi": "",
"ref_id": "b1",
"title": "Minimal pytorch implementation of proximal policy optimization",
"year": "2021"
},
{
"authors": [
"M I Belghazi",
"A Baratin",
"S Rajeshwar",
"S Ozair",
"Y Bengio",
"A Courville",
"D Hjelm"
],
"doi": "",
"ref_id": "b2",
"title": "Mutual information neural estimation",
"year": "2018"
},
{
"authors": [
"G Brockman",
"V Cheung",
"L Pettersson",
"J Schneider",
"J Schulman",
"J Tang",
"W Zaremba",
"Openai Gym"
],
"doi": "",
"ref_id": "b3",
"title": "",
"year": "2016"
},
{
"authors": [
"B Chen",
"P Abbeel",
"D Pathak"
],
"doi": "",
"ref_id": "b4",
"title": "Unsupervised learning of visual 3d keypoints for control",
"year": "2021"
},
{
"authors": [
"William G Cochran"
],
"doi": "10.2307/3001666",
"ref_id": "b5",
"title": "The Combination of Estimates from Different Experiments",
"year": "1954"
},
{
"authors": [
"W G Cochran",
"S P Carroll"
],
"doi": "",
"ref_id": "b6",
"title": "A sampling investigation of the efficiency of weighting inversely as the estimated variance",
"year": "1953"
},
{
"authors": [
"J Fan",
"W Li",
"Dribo"
],
"doi": "",
"ref_id": "b7",
"title": "Robust deep reinforcement learning via multi-view information bottleneck",
"year": "2022"
},
{
"authors": [
"M Federici",
"A Dutta",
"P Forré",
"N Kushman",
"Z Akata"
],
"doi": "",
"ref_id": "b8",
"title": "Learning robust representations via multi-view information bottleneck",
"year": "2020"
},
{
"authors": [
"Ian Fischer"
],
"doi": "10.3390/e22090999",
"ref_id": "b9",
"title": "The Conditional Entropy Bottleneck",
"year": "2020"
},
{
"authors": [
"S Gao",
"R Brekelmans",
"G Ver Steeg",
"A Galstyan"
],
"doi": "",
"ref_id": "b10",
"title": "Auto-encoding total correlation explanation",
"year": "2019"
},
{
"authors": [
"T Haarnoja",
"A Zhou",
"P Abbeel",
"S Levine"
],
"doi": "",
"ref_id": "b11",
"title": "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor",
"year": "2018"
},
{
"authors": [
"D Hafner",
"T Lillicrap",
"I Fischer",
"R Villegas",
"D Ha",
"H Lee",
"J Davidson"
],
"doi": "",
"ref_id": "b12",
"title": "Learning latent dynamics for planning from pixels",
"year": "2019"
},
{
"authors": [
"D Hafner",
"T Lillicrap",
"J Ba",
"M Norouzi"
],
"doi": "",
"ref_id": "b13",
"title": "Dream to control: Learning behaviors by latent imagination",
"year": "2020"
},
{
"authors": [
"D Hafner",
"T P Lillicrap",
"M Norouzi",
"J Ba"
],
"doi": "",
"ref_id": "b14",
"title": "Mastering atari with discrete world models",
"year": "2021"
},
{
"authors": [
"R D Hjelm",
"A Fedorov",
"S Lavoie-Marchildon",
"K Grewal",
"P Bachman",
"A Trischler",
"Y Bengio"
],
"doi": "",
"ref_id": "b15",
"title": "Learning deep representations by mutual information estimation and maximization",
"year": "2018"
},
{
"authors": [
"Yueyue Hu",
"Shiliang Sun",
"Xin Xu",
"Jing Zhao"
],
"doi": "10.1007/s13042-020-01130-6",
"ref_id": "b16",
"title": "Attentive multi-view reinforcement learning",
"year": "2020"
},
{
"authors": [
"H Hwang",
"G.-H Kim",
"S Hong",
"K.-E Kim"
],
"doi": "",
"ref_id": "b17",
"title": "Variational interaction information maximization for crossdomain disentanglement",
"year": "2020"
},
{
"authors": [
"H Hwang",
"G.-H Kim",
"S Hong",
"K.-E Kim"
],
"doi": "",
"ref_id": "b18",
"title": "Multiview representation learning via total correlation objective",
"year": "2021"
},
{
"authors": [
"R Jangir",
"N Hansen",
"S Ghosal",
"M Jain",
"X Wang"
],
"doi": "",
"ref_id": "b19",
"title": "Look closer: Bridging egocentric and third-person views with transformers for robotic manipulation",
"year": "2022"
},
{
"authors": [
"Leslie Pack Kaelbling",
"Michael L Littman",
"Anthony R Cassandra"
],
"doi": "10.1016/s0004-3702(98)00023-x",
"ref_id": "b20",
"title": "Planning and acting in partially observable stochastic domains",
"year": "1998"
},
{
"authors": [
"L Kaiser",
"M Babaeizadeh",
"P Milos",
"B Osinski",
"R H Campbell",
"K Czechowski",
"D Erhan",
"C Finn",
"P Kozakowski",
"S Levine"
],
"doi": "",
"ref_id": "b21",
"title": "Model-based reinforcement learning for atari",
"year": "2019"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "",
"ref_id": "b22",
"title": "A method for stochastic optimization",
"year": "2015"
},
{
"authors": [
"D Krajzewicz",
"J Erdmann",
"M Behrisch",
"L Bieker"
],
"doi": "10.1007/978-3-662-45079-6",
"ref_id": "b23",
"title": "Simulation of Urban Mobility",
"year": "December 2012"
},
{
"authors": [
"R G Krishnan",
"U Shalit",
"D Sontag"
],
"doi": "",
"ref_id": "b24",
"title": "Deep kalman filters",
"year": "2015"
},
{
"authors": [
"Brenden M Lake",
"Tomer D Ullman",
"Joshua B Tenenbaum",
"Samuel J Gershman"
],
"doi": "10.1017/s0140525x16001837",
"ref_id": "b25",
"title": "Building machines that learn and think like people",
"year": "2017"
},
{
"authors": [
"M Laskin",
"K Lee",
"A Stooke",
"L Pinto",
"P Abbeel",
"A Srinivas"
],
"doi": "",
"ref_id": "b26",
"title": "Reinforcement learning with augmented data",
"year": "2020"
},
{
"authors": [
"M Laskin",
"A Srinivas",
"P Abbeel"
],
"doi": "",
"ref_id": "b27",
"title": "Curl: Contrastive unsupervised representations for reinforcement learning",
"year": "2020"
},
{
"authors": [
"A X Lee",
"A Nagabandi",
"P Abbeel",
"S Levine"
],
"doi": "",
"ref_id": "b28",
"title": "Stochastic latent actor-critic: Deep reinforcement learning with a latent variable model",
"year": "2020"
},
{
"authors": [
"J Lee",
"B.-J Lee",
"K.-E Kim"
],
"doi": "",
"ref_id": "b29",
"title": "Reinforcement learning for control with multiple frequencies",
"year": "2020"
},
{
"authors": [
"L Li",
"T J Walsh",
"M L Littman"
],
"doi": "",
"ref_id": "b30",
"title": "Towards a unified theory of state abstraction for mdps",
"year": "2006"
},
{
"authors": [
"M Li",
"L Wu",
"H B Ammar",
"J Wang"
],
"doi": "",
"ref_id": "b31",
"title": "Multi-view reinforcement learning",
"year": "2019"
},
{
"authors": [
"W Mcgill"
],
"doi": "",
"ref_id": "b32",
"title": "Multivariate information transmission",
"year": "1954"
},
{
"authors": [
"A V D Oord",
"Y Li",
"O Vinyals"
],
"doi": "",
"ref_id": "b33",
"title": "Representation learning with contrastive predictive coding",
"year": "2018"
},
{
"authors": [
"P Poklukar",
"M Vasco",
"H Yin",
"F S Melo",
"A Paiva",
"D Kragic"
],
"doi": "",
"ref_id": "b34",
"title": "Geometric multimodal contrastive representation learning",
"year": "2022"
},
{
"authors": [
"B Poole",
"S Ozair",
"A Van Den Oord",
"A Alemi",
"G Tucker"
],
"doi": "",
"ref_id": "b35",
"title": "On variational bounds of mutual information",
"year": "2019"
},
{
"authors": [
"K Rakelly",
"A Gupta",
"C Florensa",
"S Levine"
],
"doi": "",
"ref_id": "b36",
"title": "Which mutual-information representation learning objectives are sufficient for control?",
"year": "2021"
},
{
"authors": [
"J Schulman",
"F Wolski",
"P Dhariwal",
"A Radford",
"O Klimov"
],
"doi": "",
"ref_id": "b37",
"title": "Proximal policy optimization algorithms",
"year": "2017"
},
{
"authors": [
"Y Shi",
"N Siddharth",
"B Paige",
"P H Torr"
],
"doi": "",
"ref_id": "b38",
"title": "Variational mixture-of-experts autoencoders for multi-modal deep generative models",
"year": "2019"
},
{
"authors": [
"T M Sutter",
"I Daunhawer",
"J E Vogt"
],
"doi": "",
"ref_id": "b39",
"title": "Multimodal generative learning utilizing jensen-shannon-divergence",
"year": "2020"
},
{
"authors": [
"T M Sutter",
"I Daunhawer",
"J E Vogt"
],
"doi": "",
"ref_id": "b40",
"title": "Generalized multimodal elbo",
"year": "2021"
},
{
"authors": [
"Y Tassa",
"Y Doron",
"A Muldal",
"T Erez",
"Y Li",
"D D L Casas",
"D Budden",
"A Abdolmaleki",
"J Merel",
"A Lefrancq"
],
"doi": "",
"ref_id": "b41",
"title": "Deepmind control suite",
"year": "2018"
},
{
"authors": [
"Yonglong Tian",
"Dilip Krishnan",
"Phillip Isola"
],
"doi": "10.1007/978-3-030-58621-8_45",
"ref_id": "b42",
"title": "Contrastive Multiview Coding",
"year": "2020"
},
{
"authors": [
"N Tishby",
"F C Pereira",
"W Bialek"
],
"doi": "",
"ref_id": "b43",
"title": "The information bottleneck method",
"year": "2000"
},
{
"authors": [
"Stef Van Buuren"
],
"doi": "10.1201/9780429492259",
"ref_id": "b44",
"title": "Flexible Imputation of Missing Data, Second Edition",
"year": "2018"
},
{
"authors": [
"A Vaswani",
"N Shazeer",
"N Parmar",
"J Uszkoreit",
"L Jones",
"A N Gomez",
"L U Kaiser",
"I Polosukhin"
],
"doi": "",
"ref_id": "b45",
"title": "Attention is all you need",
"year": "2017"
},
{
"authors": [
"G Ver Steeg",
"A Galstyan"
],
"doi": "",
"ref_id": "b46",
"title": "Discovering structure in high-dimensional data through correlation explanation",
"year": "2014"
},
{
"authors": [
"G Ver Steeg",
"A Galstyan"
],
"doi": "",
"ref_id": "b47",
"title": "Maximally informative hierarchical representations of high-dimensional data",
"year": "2015"
},
{
"authors": [
"S Watanabe"
],
"doi": "",
"ref_id": "b48",
"title": "Information theoretical analysis of multivariate correlation",
"year": "1960"
},
{
"authors": [
"M Wu",
"N Goodman"
],
"doi": "",
"ref_id": "b49",
"title": "Multimodal generative models for scalable weakly-supervised learning",
"year": "2018"
},
{
"authors": [
"H Yang",
"D Shi",
"G Xie",
"Y Peng",
"Y Zhang",
"Y Yang",
"S Yang"
],
"doi": "",
"ref_id": "b50",
"title": "Self-supervised representations for multi-view reinforcement learning",
"year": "2022"
},
{
"authors": [
"T Yu",
"D Quillen",
"Z He",
"R Julian",
"K Hausman",
"C Finn",
"S Levine"
],
"doi": "",
"ref_id": "b51",
"title": "Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning",
"year": "2020"
},
{
"authors": [
"C Zhang",
"Z Han",
"H Fu",
"J T Zhou",
"Q Hu"
],
"doi": "",
"ref_id": "b52",
"title": "Cpm-nets: Cross partial multi-view networks",
"year": "2019"
},
{
"authors": [
"Changqing Zhang",
"Yajie Cui",
"Zongbo Han",
"Joey Tianyi Zhou",
"Huazhu Fu",
"Qinghua Hu"
],
"doi": "10.1109/tpami.2020.3037734",
"ref_id": "b53",
"title": "Deep Partial Multi-View Learning",
"year": "2020"
}
] |
[
"8fff3905fe466601",
"c6f8d617c54d9f5c",
"2da7ea3943dfa7e0",
"4254a56c70c407bf",
"cb391135924aea4a",
"3877f56420c0da0e",
"3594142f5c0a6833",
"55a2b47b216e7ebd",
"0f16825e4c6f9ca0",
"0fceb21a4c06f2be",
"749b9701720b857a",
"096f85e900249d10",
"de344f36fde78e71",
"f6557c75fa31a474",
"836674a62d4195ba",
"6999b731a8d7b4b6",
"f243be7cafb1138b",
"aaa2dc832476747f",
"42705dc060804cd6",
"19f99351fe0366f8",
"b0a73948120acbf8",
"e5b65aaece077c2e",
"3eda1327cff6e357"
] |
[
"d91fcfbe809e0c84",
"55a2b47b216e7ebd",
"67d1539ac135d7be",
"bf7fd420fa3d0400",
"f6557c75fa31a474",
"eeb8725a8b07d0c6",
"7177da699e515d8c",
"0f16825e4c6f9ca0",
"3594142f5c0a6833",
"de344f36fde78e71",
"f243be7cafb1138b",
"e436392273aa8135",
"b0a73948120acbf8",
"fd0b5633f25b60dd",
"dcf2220701fc7a5c",
"dcdb079fab6d4b2d",
"3877f56420c0da0e",
"f767ce5951062cd6",
"c6f8d617c54d9f5c",
"8fff3905fe466601",
"aaa2dc832476747f",
"b74a181863827db9",
"efa52fc16696aff7",
"46ce486a63b18658",
"749b9701720b857a",
"4ca43ed6541ad1f6",
"6759ac313b4bbd04",
"edc3fbde65218091",
"aa3687e5f0fb6630",
"53d58c5cd1f8177c",
"6de6bca262d75379",
"42705dc060804cd6",
"9a96717c7dd1fc1c",
"5c1d8cb59cb00bb1",
"3eda1327cff6e357",
"08064e0a550d8936",
"3fe45eb478110dd4",
"8801c585dbbd10ea",
"e5b65aaece077c2e",
"19f99351fe0366f8",
"754840f1e5d8f184",
"d39c4f46233f732e",
"cb391135924aea4a",
"096f85e900249d10",
"e88a01b298360497",
"69c2ddc2106cfcca",
"0fceb21a4c06f2be",
"6999b731a8d7b4b6",
"2da7ea3943dfa7e0",
"4254a56c70c407bf",
"836674a62d4195ba",
"ddd15812dbda40a4",
"da0110117a22723e",
"23af21af119ad1c2"
] |
CXkJh2ITml
|
Bayes-optimal Learning of Deep Random Networks of Extensive-width
|
data/openreview_paper/ICML_2023_oral/CXkJh2ITml//paper.pdf
| 65
| 33
|
[
{
"authors": [
"J Hron",
"Y Bahri",
"R Novak",
"J Pennington",
"J N Sohl-Dickstein"
],
"doi": "",
"ref_id": "b27",
"title": "Exact posterior distributions of wide bayesian neural networks",
"year": "2020"
},
{
"authors": [
"M Advani",
"S Ganguli"
],
"doi": "",
"ref_id": "b0",
"title": "Statistical mechanics of optimal convex inference in high dimensions",
"year": "2016"
},
{
"authors": [
"R M Neal"
],
"doi": "",
"ref_id": "b44",
"title": "Priors for infinite networks",
"year": "1994"
},
{
"authors": [
"Noureddine El Karoui"
],
"doi": "10.1214/07-aos581",
"ref_id": "b14",
"title": "Spectrum estimation for large dimensional covariance matrices using random matrix theory",
"year": "2008"
},
{
"authors": [
"Michel Talagrand"
],
"doi": "10.4007/annals.2006.163.221",
"ref_id": "b56",
"title": "The Parisi formula",
"year": "2006"
},
{
"authors": [
"Jaehoon Lee",
"Lechao Xiao",
"Samuel S Schoenholz",
"Yasaman Bahri",
"Roman Novak",
"Jascha Sohl-Dickstein",
"Jeffrey Pennington"
],
"doi": "10.1088/1742-5468/abc62b",
"ref_id": "b31",
"title": "Wide neural networks of any depth evolve as linear models under gradient descent <sup>*</sup>",
"year": "2018"
},
{
"authors": [
"T L Watkin",
"A Rau",
"M Biehl"
],
"doi": "",
"ref_id": "b58",
"title": "The statistical mechanics of learning a rule",
"year": "1993"
},
{
"authors": [
"Christos Thrampoulidis",
"Ehsan Abbasi",
"Babak Hassibi"
],
"doi": "10.1109/tit.2018.2840720",
"ref_id": "b57",
"title": "Precise Error Analysis of Regularized <inline-formula> <tex-math notation=\"LaTeX\">$M$ </tex-math> </inline-formula>-Estimators in High Dimensions",
"year": "2018"
},
{
"authors": [
"Jean Barbier",
"Florent Krzakala",
"Nicolas Macris",
"Léo Miolane",
"Lenka Zdeborová"
],
"doi": "10.1073/pnas.1802705116",
"ref_id": "b5",
"title": "Optimal errors and phase transitions in high-dimensional generalized linear models",
"year": "2017"
},
{
"authors": [
"B Aubin",
"F Krzakala",
"Y M Lu",
"L Zdeborová"
],
"doi": "",
"ref_id": "b4",
"title": "Generalization error in high-dimensional perceptrons: Approaching bayes error with convex optimization",
"year": "2020"
},
{
"authors": [
"A Maillard",
"B Loureiro",
"F Krzakala",
"L Zdeborová"
],
"doi": "",
"ref_id": "b37",
"title": "Phase retrieval in high dimensions: Statistical and computational phase transitions",
"year": "2020"
},
{
"authors": [
"D Bosch",
"A Panahi",
"B Hassibi"
],
"doi": "",
"ref_id": "b6",
"title": "Precise asymptotic analysis of deep random feature models",
"year": "2023"
},
{
"authors": [
"H Cui",
"L Saglietti",
"L Zdeborová"
],
"doi": "",
"ref_id": "b9",
"title": "Large deviations for the perceptron model and consequences for active learning",
"year": "2019"
},
{
"authors": [
"S Yaida"
],
"doi": "10.7551/mitpress/3206.003.0013",
"ref_id": "b61",
"title": "Mathematical Background",
"year": "2019"
},
{
"authors": [
"Federica Gerace",
"Bruno Loureiro",
"Florent Krzakala",
"Marc Mézard",
"Lenka Zdeborová"
],
"doi": "10.1088/1742-5468/ac3ae6",
"ref_id": "b18",
"title": "Generalisation error in learning with random features and the hidden manifold model*",
"year": "2020"
},
{
"authors": [
"Abdulkadir Canatar",
"Blake Bordelon",
"Cengiz Pehlevan"
],
"doi": "10.1038/s41467-021-23103-1",
"ref_id": "b7",
"title": "Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks",
"year": "2020"
},
{
"authors": [
"Dominik Schröder",
"Hugo Cui",
"Daniil Dmitriev",
"Bruno Loureiro"
],
"doi": "10.1088/1742-5468/ad65e2",
"ref_id": "b53",
"title": "Deterministic equivalent and error universality of deep random features learning<sup>*</sup>",
"year": "2023"
},
{
"authors": [
"Boris Hanin",
"Alexander Zlokapa"
],
"doi": "10.1073/pnas.2301345120",
"ref_id": "b25",
"title": "Bayesian interpolation with deep linear networks",
"year": "2022"
},
{
"authors": [
"S Ariosto",
"R Pacelli",
"M Pastore",
"F Ginelli",
"M Gherardi",
"P Rotondo"
],
"doi": "",
"ref_id": "b1",
"title": "Statistical mechanics of deep learning beyond the infinite-width limit",
"year": "2022"
},
{
"authors": [
"Jeffrey Pennington",
"Pratik Worah"
],
"doi": "10.1088/1742-5468/ab3bc3",
"ref_id": "b49",
"title": "Nonlinear random matrix theory for deep learning",
"year": "2019. 2019"
},
{
"authors": [
"Benjamin Aubin",
"Antoine Maillard",
"Jean Barbier",
"Florent Krzakala",
"Nicolas Macris",
"Lenka Zdeborová"
],
"doi": "10.1088/1742-5468/ab43d2",
"ref_id": "b3",
"title": "The committee machine: computational to statistical gaps in learning a two-layers neural network",
"year": "2019. 2018"
},
{
"authors": [
"G De",
"A G Matthews",
"M Rowland",
"J Hron",
"R E Turner",
"Z Ghahramani"
],
"doi": "",
"ref_id": "b13",
"title": "Gaussian process behaviour in wide deep neural networks",
"year": "2018"
},
{
"authors": [
"Qianyi Li",
"Haim Sompolinsky"
],
"doi": "10.1103/physrevx.11.031059",
"ref_id": "b34",
"title": "Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization",
"year": "2021"
},
{
"authors": [
"Cosme Louart",
"Zhenyu Liao",
"Romain Couillet"
],
"doi": "10.1214/17-aap1328",
"ref_id": "b35",
"title": "A random matrix approach to neural networks",
"year": "2017"
},
{
"authors": [
"A Montanari",
"F Ruan",
"Y Sohn",
"J Yan"
],
"doi": "",
"ref_id": "b43",
"title": "The generalization error of max-margin linear classifiers: Highdimensional asymptotics in the overparametrized regime",
"year": "2019"
},
{
"authors": [
"Daniel A Roberts",
"Sho Yaida",
"Boris Hanin"
],
"doi": "10.1017/9781009023405",
"ref_id": "b51",
"title": "The Principles of Deep Learning Theory",
"year": "2021"
},
{
"authors": [
"Bruno Loureiro",
"Cédric Gerbelot",
"Hugo Cui",
"Sebastian Goldt",
"Florent Krzakala",
"Marc Mézard",
"Lenka Zdeborová"
],
"doi": "10.1088/1742-5468/ac9825",
"ref_id": "b36",
"title": "Learning curves of generic features maps for realistic datasets with a teacher-student model*",
"year": "2021"
},
{
"authors": [
"Marylou Gabrié"
],
"doi": "10.1088/1751-8121/ab7f65",
"ref_id": "b17",
"title": "Mean-field inference methods for neural networks",
"year": "2019"
},
{
"authors": [
"Hugo Cui",
"Bruno Loureiro",
"Florent Krzakala",
"Lenka Zdeborová"
],
"doi": "10.1088/1742-5468/ac9829",
"ref_id": "b10",
"title": "Generalization error rates in kernel regression: the crossover from the noiseless to noisy regime*",
"year": "2021"
},
{
"authors": [
"Jacob A Zavatone-Veth",
"Abdulkadir Canatar",
"Benjamin S Ruben",
"Cengiz Pehlevan"
],
"doi": "10.1088/1742-5468/ac98a6",
"ref_id": "b62",
"title": "Asymptotics of representation learning in finite Bayesian neural networks*",
"year": "2022. 2021"
},
{
"authors": [
"S Goldt",
"B Loureiro",
"G Reeves",
"F Krzakala",
"M Mézard",
"L Zdeborová"
],
"doi": "",
"ref_id": "b22",
"title": "The gaussian equivalence of generative models for learning with shallow neural networks",
"year": "2021"
},
{
"authors": [
"A Montanari",
"B Saeed"
],
"doi": "",
"ref_id": "b42",
"title": "Universality of empirical risk minimization",
"year": "2022"
},
{
"authors": [
"H S Seung",
"H Sompolinsky",
"N Tishby"
],
"doi": "10.1103/physreva.45.6056",
"ref_id": "b55",
"title": "Statistical mechanics of learning from examples",
"year": "1992"
}
] |
[
{
"authors": [
"M Advani",
"S Ganguli"
],
"doi": "",
"ref_id": "b0",
"title": "Statistical mechanics of optimal convex inference in high dimensions",
"year": "2016"
},
{
"authors": [
"S Ariosto",
"R Pacelli",
"M Pastore",
"F Ginelli",
"M Gherardi",
"P Rotondo"
],
"doi": "",
"ref_id": "b1",
"title": "Statistical mechanics of deep learning beyond the infinite-width limit",
"year": "2022"
},
{
"authors": [
"S Arora",
"S S Du",
"Z Li",
"R Salakhutdinov",
"R Wang",
"D Yu"
],
"doi": "",
"ref_id": "b2",
"title": "Harnessing the power of infinitely wide deep nets on small-data tasks",
"year": "2020"
},
{
"authors": [
"Benjamin Aubin",
"Antoine Maillard",
"Jean Barbier",
"Florent Krzakala",
"Nicolas Macris",
"Lenka Zdeborová"
],
"doi": "10.1088/1742-5468/ab43d2",
"ref_id": "b3",
"title": "The committee machine: computational to statistical gaps in learning a two-layers neural network",
"year": "2019. 2018"
},
{
"authors": [
"B Aubin",
"F Krzakala",
"Y M Lu",
"L Zdeborová"
],
"doi": "",
"ref_id": "b4",
"title": "Generalization error in high-dimensional perceptrons: Approaching bayes error with convex optimization",
"year": "2020"
},
{
"authors": [
"Jean Barbier",
"Florent Krzakala",
"Nicolas Macris",
"Léo Miolane",
"Lenka Zdeborová"
],
"doi": "10.1073/pnas.1802705116",
"ref_id": "b5",
"title": "Optimal errors and phase transitions in high-dimensional generalized linear models",
"year": "2017"
},
{
"authors": [
"D Bosch",
"A Panahi",
"B Hassibi"
],
"doi": "",
"ref_id": "b6",
"title": "Precise asymptotic analysis of deep random feature models",
"year": "2023"
},
{
"authors": [
"Abdulkadir Canatar",
"Blake Bordelon",
"Cengiz Pehlevan"
],
"doi": "10.1038/s41467-021-23103-1",
"ref_id": "b7",
"title": "Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks",
"year": "2020"
},
{
"authors": [
"Lucas Clarté",
"Bruno Loureiro",
"Florent Krzakala",
"Lenka Zdeborová"
],
"doi": "10.1088/2632-2153/acd749",
"ref_id": "b8",
"title": "Theoretical characterization of uncertainty in high-dimensional linear classification",
"year": "2022"
},
{
"authors": [
"H Cui",
"L Saglietti",
"L Zdeborová"
],
"doi": "",
"ref_id": "b9",
"title": "Large deviations for the perceptron model and consequences for active learning",
"year": "2019"
},
{
"authors": [
"Hugo Cui",
"Bruno Loureiro",
"Florent Krzakala",
"Lenka Zdeborová"
],
"doi": "10.1088/1742-5468/ac9829",
"ref_id": "b10",
"title": "Generalization error rates in kernel regression: the crossover from the noiseless to noisy regime*",
"year": "2021"
},
{
"authors": [
"H Cui",
"B Loureiro",
"F Krzakala",
"L Zdeborová"
],
"doi": "",
"ref_id": "b11",
"title": "Error rates for kernel classification under source and capacity conditions",
"year": "2022"
},
{
"authors": [
"S Ascoli",
"M Gabrié",
"L Sagun",
"G Biroli"
],
"doi": "",
"ref_id": "b12",
"title": "On the interplay between data structure and loss function in classification problems",
"year": "2021"
},
{
"authors": [
"G De",
"A G Matthews",
"M Rowland",
"J Hron",
"R E Turner",
"Z Ghahramani"
],
"doi": "",
"ref_id": "b13",
"title": "Gaussian process behaviour in wide deep neural networks",
"year": "2018"
},
{
"authors": [
"Noureddine El Karoui"
],
"doi": "10.1214/07-aos581",
"ref_id": "b14",
"title": "Spectrum estimation for large dimensional covariance matrices using random matrix theory",
"year": "2008"
},
{
"authors": [
"Z Fan",
"Z Wang"
],
"doi": "",
"ref_id": "b15",
"title": "Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks",
"year": "2020"
},
{
"authors": [
"Kirsten Fischer",
"Alexandre René",
"Christian Keup",
"Moritz Layer",
"David Dahmen",
"Moritz Helias"
],
"doi": "10.1103/physrevresearch.4.043143",
"ref_id": "b16",
"title": "Decomposing neural networks as mappings of correlation functions",
"year": "2022"
},
{
"authors": [
"Marylou Gabrié"
],
"doi": "10.1088/1751-8121/ab7f65",
"ref_id": "b17",
"title": "Mean-field inference methods for neural networks",
"year": "2019"
},
{
"authors": [
"Federica Gerace",
"Bruno Loureiro",
"Florent Krzakala",
"Marc Mézard",
"Lenka Zdeborová"
],
"doi": "10.1088/1742-5468/ac3ae6",
"ref_id": "b18",
"title": "Generalisation error in learning with random features and the hidden manifold model*",
"year": "2020"
},
{
"authors": [
"Behrooz Ghorbani",
"Song Mei",
"Theodor Misiakiewicz",
"Andrea Montanari"
],
"doi": "10.1214/20-aos1990",
"ref_id": "b19",
"title": "Linearized two-layers neural networks in high dimension",
"year": "2019"
},
{
"authors": [
"Behrooz Ghorbani",
"Song Mei",
"Theodor Misiakiewicz",
"Andrea Montanari"
],
"doi": "10.1088/1742-5468/ac3a81",
"ref_id": "b20",
"title": "When do neural networks outperform kernel methods?*",
"year": "2021. 2020"
},
{
"authors": [
"Sebastian Goldt",
"Marc Mézard",
"Florent Krzakala",
"Lenka Zdeborová"
],
"doi": "10.1103/physrevx.10.041044",
"ref_id": "b21",
"title": "Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model",
"year": "2020"
},
{
"authors": [
"S Goldt",
"B Loureiro",
"G Reeves",
"F Krzakala",
"M Mézard",
"L Zdeborová"
],
"doi": "",
"ref_id": "b22",
"title": "The gaussian equivalence of generative models for learning with shallow neural networks",
"year": "2021"
},
{
"authors": [
"Sebastian Goldt",
"Marc Mézard",
"Florent Krzakala",
"Lenka Zdeborová"
],
"doi": "10.1103/physrevx.10.041044",
"ref_id": "b23",
"title": "Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model",
"year": "2022"
},
{
"authors": [
"Boris Hanin"
],
"doi": "10.1214/23-aap1933",
"ref_id": "b24",
"title": "Random neural networks in the infinite width limit as Gaussian processes",
"year": "2022"
},
{
"authors": [
"Boris Hanin",
"Alexander Zlokapa"
],
"doi": "10.1073/pnas.2301345120",
"ref_id": "b25",
"title": "Bayesian interpolation with deep linear networks",
"year": "2022"
},
{
"authors": [
"Trevor Hastie",
"Andrea Montanari",
"Saharon Rosset",
"Ryan J Tibshirani"
],
"doi": "10.1214/21-aos2133",
"ref_id": "b26",
"title": "Surprises in high-dimensional ridgeless least squares interpolation",
"year": "2019"
},
{
"authors": [
"J Hron",
"Y Bahri",
"R Novak",
"J Pennington",
"J N Sohl-Dickstein"
],
"doi": "",
"ref_id": "b27",
"title": "Exact posterior distributions of wide bayesian neural networks",
"year": "2020"
},
{
"authors": [
"Hong Hu",
"Yue M Lu"
],
"doi": "10.1109/tit.2022.3217698",
"ref_id": "b28",
"title": "Universality Laws for High-Dimensional Learning With Random Features",
"year": "2022"
},
{
"authors": [
"H Hu",
"Y M Lu"
],
"doi": "",
"ref_id": "b29",
"title": "Sharp asymptotics of kernel ridge regression beyond the linear regime",
"year": "2022"
},
{
"authors": [
"Yukito Iba"
],
"doi": "10.1088/0305-4470/32/21/302",
"ref_id": "b30",
"title": "The Nishimori line and Bayesian statistics",
"year": "1998"
},
{
"authors": [
"Jaehoon Lee",
"Lechao Xiao",
"Samuel S Schoenholz",
"Yasaman Bahri",
"Roman Novak",
"Jascha Sohl-Dickstein",
"Jeffrey Pennington"
],
"doi": "10.1088/1742-5468/abc62b",
"ref_id": "b31",
"title": "Wide neural networks of any depth evolve as linear models under gradient descent <sup>*</sup>",
"year": "2018"
},
{
"authors": [
"Jaehoon Lee",
"Lechao Xiao",
"Samuel S Schoenholz",
"Yasaman Bahri",
"Roman Novak",
"Jascha Sohl-Dickstein",
"Jeffrey Pennington"
],
"doi": "10.1088/1742-5468/abc62b",
"ref_id": "b32",
"title": "Wide neural networks of any depth evolve as linear models under gradient descent <sup>*</sup>",
"year": "2020. 2019"
},
{
"authors": [
"Jaehoon Lee",
"Lechao Xiao",
"Samuel S Schoenholz",
"Yasaman Bahri",
"Roman Novak",
"Jascha Sohl-Dickstein",
"Jeffrey Pennington"
],
"doi": "10.1088/1742-5468/abc62b",
"ref_id": "b33",
"title": "Wide neural networks of any depth evolve as linear models under gradient descent <sup>*</sup>",
"year": "2020"
},
{
"authors": [
"Qianyi Li",
"Haim Sompolinsky"
],
"doi": "10.1103/physrevx.11.031059",
"ref_id": "b34",
"title": "Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization",
"year": "2021"
},
{
"authors": [
"Cosme Louart",
"Zhenyu Liao",
"Romain Couillet"
],
"doi": "10.1214/17-aap1328",
"ref_id": "b35",
"title": "A random matrix approach to neural networks",
"year": "2017"
},
{
"authors": [
"Bruno Loureiro",
"Cédric Gerbelot",
"Hugo Cui",
"Sebastian Goldt",
"Florent Krzakala",
"Marc Mézard",
"Lenka Zdeborová"
],
"doi": "10.1088/1742-5468/ac9825",
"ref_id": "b36",
"title": "Learning curves of generic features maps for realistic datasets with a teacher-student model*",
"year": "2021"
},
{
"authors": [
"A Maillard",
"B Loureiro",
"F Krzakala",
"L Zdeborová"
],
"doi": "",
"ref_id": "b37",
"title": "Phase retrieval in high dimensions: Statistical and computational phase transitions",
"year": "2020"
},
{
"authors": [
"S Mei",
"A Montanari"
],
"doi": "",
"ref_id": "b38",
"title": "The generalization error of random features regression: Precise asymptotics and the double descent curve",
"year": "2019"
},
{
"authors": [
"Song Mei",
"Theodor Misiakiewicz",
"Andrea Montanari"
],
"doi": "10.1016/j.acha.2021.12.003",
"ref_id": "b39",
"title": "Generalization error of random feature and kernel methods: Hypercontractivity and kernel matrix concentration",
"year": "2021"
},
{
"authors": [
"Marc Mézard",
"Andrea Montanari"
],
"doi": "10.1093/acprof:oso/9780198570837.001.0001",
"ref_id": "b40",
"title": "Information, Physics, and Computation",
"year": "2002"
},
{
"authors": [
"T Misiakiewicz"
],
"doi": "",
"ref_id": "b41",
"title": "Spectrum of inner-product kernel matrices in the polynomial regime and multiple descent phenomenon in kernel ridge regression",
"year": "2022"
},
{
"authors": [
"A Montanari",
"B Saeed"
],
"doi": "",
"ref_id": "b42",
"title": "Universality of empirical risk minimization",
"year": "2022"
},
{
"authors": [
"A Montanari",
"F Ruan",
"Y Sohn",
"J Yan"
],
"doi": "",
"ref_id": "b43",
"title": "The generalization error of max-margin linear classifiers: Highdimensional asymptotics in the overparametrized regime",
"year": "2019"
},
{
"authors": [
"R M Neal"
],
"doi": "",
"ref_id": "b44",
"title": "Priors for infinite networks",
"year": "1994"
},
{
"authors": [
"Hidetoshi Nishimori"
],
"doi": "10.1093/acprof:oso/9780198509417.001.0001",
"ref_id": "b45",
"title": "Statistical Physics of Spin Glasses and Information Processing",
"year": "2001"
},
{
"authors": [
"Manfred Opper",
"David Haussler"
],
"doi": "10.1103/physrevlett.66.2677",
"ref_id": "b46",
"title": "Generalization performance of Bayes optimal classification algorithm for learning a perceptron",
"year": "1991"
},
{
"authors": [
"G Parisi"
],
"doi": "",
"ref_id": "b47",
"title": "Towards a mean field theory for spin glasses",
"year": "1979"
},
{
"authors": [
"Giorgio Parisi"
],
"doi": "10.1103/physrevlett.50.1946",
"ref_id": "b48",
"title": "Order Parameter for Spin-Glasses",
"year": "1983"
},
{
"authors": [
"Jeffrey Pennington",
"Pratik Worah"
],
"doi": "10.1088/1742-5468/ab3bc3",
"ref_id": "b49",
"title": "Nonlinear random matrix theory for deep learning",
"year": "2019. 2019"
},
{
"authors": [
"A Rahimi",
"B Recht"
],
"doi": "10.7551/mitpress/7496.003.0017",
"ref_id": "b50",
"title": "References",
"year": "2007"
},
{
"authors": [
"Daniel A Roberts",
"Sho Yaida",
"Boris Hanin"
],
"doi": "10.1017/9781009023405",
"ref_id": "b51",
"title": "The Principles of Deep Learning Theory",
"year": "2021"
},
{
"authors": [
"M Sahraee-Ardakan",
"M Emami",
"P Pandit",
"S Rangan",
"A K Fletcher"
],
"doi": "",
"ref_id": "b52",
"title": "Kernel methods and multi-layer perceptrons learn linear models in high dimensions",
"year": "2022"
},
{
"authors": [
"Dominik Schröder",
"Hugo Cui",
"Daniil Dmitriev",
"Bruno Loureiro"
],
"doi": "10.1088/1742-5468/ad65e2",
"ref_id": "b53",
"title": "Deterministic equivalent and error universality of deep random features learning<sup>*</sup>",
"year": "2023"
},
{
"authors": [
"H Schwarze"
],
"doi": "10.1088/0305-4470/26/21/017",
"ref_id": "b54",
"title": "Learning a rule in a multilayer neural network",
"year": "1993"
},
{
"authors": [
"H S Seung",
"H Sompolinsky",
"N Tishby"
],
"doi": "10.1103/physreva.45.6056",
"ref_id": "b55",
"title": "Statistical mechanics of learning from examples",
"year": "1992"
},
{
"authors": [
"Michel Talagrand"
],
"doi": "10.4007/annals.2006.163.221",
"ref_id": "b56",
"title": "The Parisi formula",
"year": "2006"
},
{
"authors": [
"Christos Thrampoulidis",
"Ehsan Abbasi",
"Babak Hassibi"
],
"doi": "10.1109/tit.2018.2840720",
"ref_id": "b57",
"title": "Precise Error Analysis of Regularized <inline-formula> <tex-math notation=\"LaTeX\">$M$ </tex-math> </inline-formula>-Estimators in High Dimensions",
"year": "2018"
},
{
"authors": [
"T L Watkin",
"A Rau",
"M Biehl"
],
"doi": "",
"ref_id": "b58",
"title": "The statistical mechanics of learning a rule",
"year": "1993"
},
{
"authors": [
"D Wu",
"J Xu"
],
"doi": "",
"ref_id": "b59",
"title": "On the optimal weighted ℓ 2 regularization in overparameterized linear regression",
"year": "2020"
},
{
"authors": [
"Lechao Xiao",
"Hong Hu",
"Theodor Misiakiewicz",
"Yue M Lu",
"Jeffrey Pennington"
],
"doi": "10.1088/1742-5468/ad01b7",
"ref_id": "b60",
"title": "Precise learning curves and higher-order scaling limits for dot-product kernel regression <sup>*</sup>",
"year": "2022"
},
{
"authors": [
"S Yaida"
],
"doi": "10.7551/mitpress/3206.003.0013",
"ref_id": "b61",
"title": "Mathematical Background",
"year": "2019"
},
{
"authors": [
"Jacob A Zavatone-Veth",
"Abdulkadir Canatar",
"Benjamin S Ruben",
"Cengiz Pehlevan"
],
"doi": "10.1088/1742-5468/ac98a6",
"ref_id": "b62",
"title": "Asymptotics of representation learning in finite Bayesian neural networks*",
"year": "2022. 2021"
},
{
"authors": [
"Jacob A Zavatone-Veth",
"William L Tong",
"Cengiz Pehlevan"
],
"doi": "10.1103/physreve.105.064118",
"ref_id": "b63",
"title": "Contrasting random and learned features in deep Bayesian linear regression",
"year": "2022"
},
{
"authors": [
"Lenka Zdeborová",
"Florent Krzakala"
],
"doi": "10.1080/00018732.2016.1211393",
"ref_id": "b64",
"title": "Statistical physics of inference: thresholds and algorithms",
"year": "2015"
}
] |
[
"cf7d586ae469dd00",
"0e158c91b804a04d",
"c367c363fca7bd49",
"82fffb9b5cde4dd5",
"72783db1e14e50ca",
"92bd5ef627702ef0",
"c75cac3874187b31",
"f0a48c568a56cbfb",
"190637669357c42c",
"82d7fb29f66f4df6",
"1baf5faf0f0dfd35",
"7fc7b79353c8544f",
"bd6787d9469a816e",
"7a23e990c9d6b439",
"a30b2777f471e77e",
"3e69ef05e26e4b5f",
"8c41bd5053b225dc",
"8cb3e9a3c724ef66",
"7b4be9698e06a486",
"0b36139d776d2e57",
"523dc860997891e5",
"4c6be1beedb04ef2",
"0170d242f140b3af",
"a455136421fbed07",
"bd685f4812006af3",
"d5d8056d7299869a",
"9a7e4dfc0b726bba",
"acf67f3a14123d7b",
"61eafc038777da91",
"d5e85a522e6359f8",
"d760ae5f14670165",
"3ae1b14e37082196",
"2e3f44861f70260d"
] |
[
"0e158c91b804a04d",
"7b4be9698e06a486",
"864214022edca181",
"523dc860997891e5",
"82d7fb29f66f4df6",
"190637669357c42c",
"7fc7b79353c8544f",
"3e69ef05e26e4b5f",
"559fc479d169c59b",
"bd6787d9469a816e",
"61eafc038777da91",
"3772de01c471a48a",
"2e3e7e8dbd6f9617",
"4c6be1beedb04ef2",
"82fffb9b5cde4dd5",
"301704807171863f",
"024a65bc6d4e3ae4",
"acf67f3a14123d7b",
"a30b2777f471e77e",
"61b0703b64e2975e",
"961c63fb75f2d503",
"cf5a4e4aee0f4c44",
"d760ae5f14670165",
"1d3986b1ac231a0f",
"e8736d1293a18916",
"8cb3e9a3c724ef66",
"96b03b1c868c62fd",
"cf7d586ae469dd00",
"14ee449eb2d7de8e",
"4e3d238aec3df287",
"b3df5ed4b05f620a",
"92bd5ef627702ef0",
"6c52ae5ac08e5d11",
"7b01252a4e91b4dc",
"0170d242f140b3af",
"a455136421fbed07",
"9a7e4dfc0b726bba",
"1baf5faf0f0dfd35",
"405a5f81e64416cb",
"a8022b8e3384df51",
"412a26e6f1126be5",
"2279f95ed59ef23e",
"3ae1b14e37082196",
"bd685f4812006af3",
"c367c363fca7bd49",
"13e89258c4606b24",
"adf756bea4d65b35",
"67d9e9f25da6ddf1",
"6151d54ded081b97",
"0b36139d776d2e57",
"ff043575ca85e4fe",
"d5d8056d7299869a",
"b7f4b3cb05df6925",
"8c41bd5053b225dc",
"9f227ae0243657c5",
"2e3f44861f70260d",
"72783db1e14e50ca",
"f0a48c568a56cbfb",
"c75cac3874187b31",
"7bfa3d7965ea8af9",
"92b71c57c9db9eb2",
"7a23e990c9d6b439",
"d5e85a522e6359f8",
"a49e57b16ce2ffda",
"9fbdd03f9d9c5a66"
] |
O1j4uFuSVW
|
Adapting to game trees in zero-sum imperfect information games
|
data/openreview_paper/ICML_2023_oral/O1j4uFuSVW//paper.pdf
| 57
| 27
|
[
{
"authors": [
"O Tammelin"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b45",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"J V Romanovsky"
],
"doi": "10.1016/0011-7471(63)90317-6",
"ref_id": "b39",
"title": "Dokl. Akad. Nauk, SSSR",
"year": "1962"
},
{
"authors": [
"R Munos",
"J Pérolat",
"J.-B Lespiau",
"M Rowland",
"B De Vylder",
"M Lanctot",
"F Timbers",
"D Hennes",
"S Omidshafiei",
"A Gruslys",
"M G Azar",
"E Lockhart",
"K Tuyls"
],
"doi": "",
"ref_id": "b34",
"title": "Fast computation of nash equilibria in imperfect information games",
"year": "2020"
},
{
"authors": [
"G Farina",
"C Kroer",
"T Sandholm"
],
"doi": "",
"ref_id": "b13",
"title": "Stochastic Regret Minimization in Extensive-Form Games",
"year": "2020"
},
{
"authors": [
"Arkadi Nemirovski"
],
"doi": "10.1137/s1052623403425629",
"ref_id": "b35",
"title": "Prox-Method with Rate of Convergence <i>O</i>(1/<i>t</i>) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems",
"year": "2004"
},
{
"authors": [
"Andrew Gilpin",
"Javier Peña",
"Tuomas Sandholm"
],
"doi": "10.1007/s10107-010-0430-2",
"ref_id": "b16",
"title": "First-order algorithm with $${\\mathcal{O}({\\rm ln}(1{/}\\epsilon))}$$ convergence for $${\\epsilon}$$ -equilibrium in two-person zero-sum games",
"year": "2012"
},
{
"authors": [
"Sergiu Hart",
"Andreu Mas-Colell"
],
"doi": "10.1111/1468-0262.00153",
"ref_id": "b18",
"title": "A Simple Adaptive Procedure Leading to Correlated Equilibrium",
"year": "2000"
},
{
"authors": [
"G Farina",
"C Kroer",
"T Sandholm"
],
"doi": "",
"ref_id": "b12",
"title": "Regret circuits: Composability of regret minimizers",
"year": "9-15 June 2019. 2019"
},
{
"authors": [
"Y Bai",
"C Jin",
"S Mei",
"T Yu"
],
"doi": "",
"ref_id": "b4",
"title": "Near-optimal learning of extensive-form games with imperfect information",
"year": "2022"
},
{
"authors": [
"Peter Auer",
"Nicolò Cesa-Bianchi",
"Yoav Freund",
"Robert E Schapire"
],
"doi": "10.1137/s0097539701398375",
"ref_id": "b1",
"title": "The Nonstochastic Multiarmed Bandit Problem",
"year": "January 2003"
},
{
"authors": [
"Samid Hoda",
"Andrew Gilpin",
"Javier Peña",
"Tuomas Sandholm"
],
"doi": "10.1287/moor.1100.0452",
"ref_id": "b20",
"title": "Smoothing Techniques for Computing Nash Equilibria of Sequential Games",
"year": "2010"
},
{
"authors": [
"K Waugh",
"J A Bagnell"
],
"doi": "",
"ref_id": "b49",
"title": "A unified view of large-scale zero-sum equilibrium computation",
"year": "2014"
},
{
"authors": [
"G Neu"
],
"doi": "",
"ref_id": "b37",
"title": "Explore no more: Improved high-probability regret bounds for non-stochastic bandits",
"year": "2015"
},
{
"authors": [
"Neil Burch",
"Matej Moravcik",
"Martin Schmid"
],
"doi": "10.1613/jair.1.11370",
"ref_id": "b8",
"title": "Revisiting CFR+ and Alternating Updates",
"year": "2019"
},
{
"authors": [
"Martin Schmid",
"Neil Burch",
"Marc Lanctot",
"Matej Moravcik",
"Rudolf Kadlec",
"Michael Bowling"
],
"doi": "10.1609/aaai.v33i01.33012157",
"ref_id": "b40",
"title": "Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games Using Baselines",
"year": "2018"
},
{
"authors": [
"Noam Brown",
"Tuomas Sandholm"
],
"doi": "10.1126/science.aao1733",
"ref_id": "b6",
"title": "Superhuman AI for heads-up no-limit poker: Libratus beats top professionals",
"year": "2018"
},
{
"authors": [
"Geoffrey J Gordon"
],
"doi": "10.7551/mitpress/7503.003.0066",
"ref_id": "b17",
"title": "No-regret Algorithms for Online Convex Programs",
"year": "2007"
},
{
"authors": [
"Bernhard Von Stengel"
],
"doi": "10.1006/game.1996.0050",
"ref_id": "b48",
"title": "Efficient Computation of Behavior Strategies",
"year": "1996"
},
{
"authors": [
"Martin Schmid",
"Matej Moravčík",
"Neil Burch",
"Rudolf Kadlec",
"Josh Davidson",
"Kevin Waugh",
"Nolan Bard",
"Finbarr Timbers",
"Marc Lanctot",
"G Zacharias Holland",
"Elnaz Davoodi",
"Alden Christianson",
"Michael Bowling"
],
"doi": "10.1126/sciadv.adg3256",
"ref_id": "b41",
"title": "Student of Games: A unified learning algorithm for both perfect and imperfect information games",
"year": "2021"
},
{
"authors": [
"C Kroer",
"G Farina",
"T Sandholm"
],
"doi": "",
"ref_id": "b22",
"title": "Solving large sequential games with the excessive gap technique",
"year": "2018"
},
{
"authors": [
"Tor Lattimore",
"Csaba Szepesvári"
],
"doi": "10.1017/9781108571401",
"ref_id": "b28",
"title": "Bandit Algorithms",
"year": "2020"
},
{
"authors": [
"C.-W Lee",
"C Kroer",
"H Luo"
],
"doi": "",
"ref_id": "b29",
"title": "Last-iterate convergence in extensive-form games",
"year": "2021"
},
{
"authors": [
"Anton Bakhtin",
"Noam Brown",
"Emily Dinan",
"Gabriele Farina",
"Colin Flaherty",
"Daniel Fried",
"Andrew Goff",
"Jonathan Gray",
"Hengyuan Hu",
"Athul Paul Jacob",
"Mojtaba Komeili",
"Karthik Konath",
"Minae Kwon",
"Adam Lerer",
"Mike Lewis",
"Alexander H Miller",
"Sasha Mitts",
"Adithya Renduchintala",
"Stephen Roller",
"Dirk Rowe",
"Weiyan Shi",
"Joe Spisak",
"Alexander Wei",
"David Wu",
"Hugh Zhang",
"Markus Zijlstra"
],
"doi": "10.1126/science.ade9097",
"ref_id": "b5",
"title": "Human-level play in the game of<i>Diplomacy</i>by combining language models with strategic reasoning",
"year": "2022"
},
{
"authors": [
"Y U Nesterov"
],
"doi": "10.1007/s10107-004-0552-5",
"ref_id": "b36",
"title": "Smooth minimization of non-smooth functions",
"year": "2005"
},
{
"authors": [
"J Pérolat",
"B De Vylder",
"D Hennes",
"E Tarassov",
"F Strub",
"V De Boer",
"P Muller",
"J T Connor",
"N Burch",
"T Anthony",
"S Mcaleer",
"R Elie",
"S H Cen",
"Z Wang",
"A Gruslys",
"A Malysheva",
"M Khan",
"S Ozair",
"F Timbers",
"T Pohlen",
"T Eccles",
"M Rowland",
"M Lanctot",
"J.-B Lespiau",
"B Piot",
"S Omidshafiei",
"E Lockhart",
"L Sifre",
"N Beauguerlange",
"R Munos",
"D Silver",
"S Singh",
"D Hassabis",
"K Tuyls"
],
"doi": "10.48550/ARXIV.2206.15378",
"ref_id": "b38",
"title": "Mastering the game of stratego with model-free multiagent reinforcement learning",
"year": "2022"
},
{
"authors": [
"Matej Moravčík",
"Martin Schmid",
"Neil Burch",
"Viliam Lisý",
"Dustin Morrill",
"Nolan Bard",
"Trevor Davis",
"Kevin Waugh",
"Michael Johanson",
"Michael Bowling"
],
"doi": "10.1126/science.aam6960",
"ref_id": "b33",
"title": "DeepStack: Expert-level artificial intelligence in heads-up no-limit poker",
"year": "2017"
},
{
"authors": [
"M Lanctot",
"K Waugh",
"M Zinkevich",
"M Bowling"
],
"doi": "",
"ref_id": "b26",
"title": "Monte-Carlo sampling for regret minimization in extensive games",
"year": "2009"
}
] |
[
{
"authors": [
"J D Abernethy",
"C Lee",
"A Tewari"
],
"doi": "",
"ref_id": "b0",
"title": "Fighting bandits with a new kind of smoothness",
"year": "2015"
},
{
"authors": [
"Peter Auer",
"Nicolò Cesa-Bianchi",
"Yoav Freund",
"Robert E Schapire"
],
"doi": "10.1137/s0097539701398375",
"ref_id": "b1",
"title": "The Nonstochastic Multiarmed Bandit Problem",
"year": "January 2003"
},
{
"authors": [
"Y Bai",
"C Jin",
"T Yu"
],
"doi": "",
"ref_id": "b2",
"title": "Near-optimal reinforcement learning with self-play",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b3",
"title": "",
"year": "2020"
},
{
"authors": [
"Y Bai",
"C Jin",
"S Mei",
"T Yu"
],
"doi": "",
"ref_id": "b4",
"title": "Near-optimal learning of extensive-form games with imperfect information",
"year": "2022"
},
{
"authors": [
"Anton Bakhtin",
"Noam Brown",
"Emily Dinan",
"Gabriele Farina",
"Colin Flaherty",
"Daniel Fried",
"Andrew Goff",
"Jonathan Gray",
"Hengyuan Hu",
"Athul Paul Jacob",
"Mojtaba Komeili",
"Karthik Konath",
"Minae Kwon",
"Adam Lerer",
"Mike Lewis",
"Alexander H Miller",
"Sasha Mitts",
"Adithya Renduchintala",
"Stephen Roller",
"Dirk Rowe",
"Weiyan Shi",
"Joe Spisak",
"Alexander Wei",
"David Wu",
"Hugh Zhang",
"Markus Zijlstra"
],
"doi": "10.1126/science.ade9097",
"ref_id": "b5",
"title": "Human-level play in the game of<i>Diplomacy</i>by combining language models with strategic reasoning",
"year": "2022"
},
{
"authors": [
"Noam Brown",
"Tuomas Sandholm"
],
"doi": "10.1126/science.aao1733",
"ref_id": "b6",
"title": "Superhuman AI for heads-up no-limit poker: Libratus beats top professionals",
"year": "2018"
},
{
"authors": [
"N Brown",
"A Lerer",
"S Gross",
"T Sandholm"
],
"doi": "",
"ref_id": "b7",
"title": "Deep counterfactual regret minimization",
"year": "2019"
},
{
"authors": [
"Neil Burch",
"Matej Moravcik",
"Martin Schmid"
],
"doi": "10.1613/jair.1.11370",
"ref_id": "b8",
"title": "Revisiting CFR+ and Alternating Updates",
"year": "2019"
},
{
"authors": [
"Nicolo Cesa-Bianchi",
"Gabor Lugosi"
],
"doi": "10.1017/cbo9780511546921",
"ref_id": "b9",
"title": "Prediction, Learning, and Games",
"year": "2006"
},
{
"authors": [
"C Daskalakis",
"D J Foster",
"N Golowich"
],
"doi": "",
"ref_id": "b10",
"title": "Independent policy gradient methods for competitive reinforcement learning",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b11",
"title": "",
"year": "2020"
},
{
"authors": [
"G Farina",
"C Kroer",
"T Sandholm"
],
"doi": "",
"ref_id": "b12",
"title": "Regret circuits: Composability of regret minimizers",
"year": "9-15 June 2019. 2019"
},
{
"authors": [
"G Farina",
"C Kroer",
"T Sandholm"
],
"doi": "",
"ref_id": "b13",
"title": "Stochastic Regret Minimization in Extensive-Form Games",
"year": "2020"
},
{
"authors": [
"Gabriele Farina",
"Christian Kroer",
"Tuomas Sandholm"
],
"doi": "10.1609/aaai.v35i6.16676",
"ref_id": "b14",
"title": "Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent",
"year": "2021"
},
{
"authors": [
"Gabriele Farina",
"Robin Schmucker",
"Tuomas Sandholm"
],
"doi": "10.1609/aaai.v35i6.16677",
"ref_id": "b15",
"title": "Bandit Linear Optimization for Sequential Decision Making and Extensive-Form Games",
"year": "2021"
},
{
"authors": [
"Andrew Gilpin",
"Javier Peña",
"Tuomas Sandholm"
],
"doi": "10.1007/s10107-010-0430-2",
"ref_id": "b16",
"title": "First-order algorithm with $${\\mathcal{O}({\\rm ln}(1{/}\\epsilon))}$$ convergence for $${\\epsilon}$$ -equilibrium in two-person zero-sum games",
"year": "2012"
},
{
"authors": [
"Geoffrey J Gordon"
],
"doi": "10.7551/mitpress/7503.003.0066",
"ref_id": "b17",
"title": "No-regret Algorithms for Online Convex Programs",
"year": "2007"
},
{
"authors": [
"Sergiu Hart",
"Andreu Mas-Colell"
],
"doi": "10.1111/1468-0262.00153",
"ref_id": "b18",
"title": "A Simple Adaptive Procedure Leading to Correlated Equilibrium",
"year": "2000"
},
{
"authors": [
"J Heinrich",
"M Lanctot",
"D Silver"
],
"doi": "",
"ref_id": "b19",
"title": "Fictitious self-play in extensive-form games",
"year": "2015"
},
{
"authors": [
"Samid Hoda",
"Andrew Gilpin",
"Javier Peña",
"Tuomas Sandholm"
],
"doi": "10.1287/moor.1100.0452",
"ref_id": "b20",
"title": "Smoothing Techniques for Computing Nash Equilibria of Sequential Games",
"year": "2010"
},
{
"authors": [
"M Johanson",
"N Bard",
"M Lanctot",
"R Gibson",
"M Bowling",
"C Waugh",
"K Kilinc ¸-Karzan",
"F Sandholm",
"T"
],
"doi": "10.1145/2764468.2764476",
"ref_id": "b21",
"title": "Faster first-order methods for extensive-form game solving",
"year": "2015"
},
{
"authors": [
"C Kroer",
"G Farina",
"T Sandholm"
],
"doi": "",
"ref_id": "b22",
"title": "Solving large sequential games with the excessive gap technique",
"year": "2018"
},
{
"authors": [
"Christian Kroer",
"Kevin Waugh",
"Fatma Kılınç-Karzan",
"Tuomas Sandholm"
],
"doi": "10.1007/s10107-018-1336-7",
"ref_id": "b23",
"title": "Faster algorithms for extensive-form game solving via improved smoothing functions",
"year": "2020"
},
{
"authors": [
"H W Kuhn"
],
"doi": "10.1073/pnas.36.10.570",
"ref_id": "b24",
"title": "Extensive Games",
"year": "1950"
},
{
"authors": [
"H W Kuhn"
],
"doi": "10.1515/9781400881970-012",
"ref_id": "b25",
"title": "11. Extensive Games and the Problem of Information",
"year": "1953"
},
{
"authors": [
"M Lanctot",
"K Waugh",
"M Zinkevich",
"M Bowling"
],
"doi": "",
"ref_id": "b26",
"title": "Monte-Carlo sampling for regret minimization in extensive games",
"year": "2009"
},
{
"authors": [
"M Lanctot",
"E Lockhart",
"J.-B Lespiau",
"V Zambaldi",
"S Upadhyay",
"J Pérolat",
"S Srinivasan",
"F Timbers",
"K Tuyls",
"S Omidshafiei",
"D Hennes",
"D Morrill",
"P Muller",
"T Ewalds",
"R Faulkner",
"J Kramár",
"B De Vylder",
"B Saeta",
"J Bradbury",
"D Ding",
"S Borgeaud",
"M Lai",
"J Schrittwieser",
"T Anthony",
"E Hughes",
"I Danihelka",
"Ryan-Davis",
"J"
],
"doi": "",
"ref_id": "b27",
"title": "Openspiel: A framework for reinforcement learning in games",
"year": "2019"
},
{
"authors": [
"Tor Lattimore",
"Csaba Szepesvári"
],
"doi": "10.1017/9781108571401",
"ref_id": "b28",
"title": "Bandit Algorithms",
"year": "2020"
},
{
"authors": [
"C.-W Lee",
"C Kroer",
"H Luo"
],
"doi": "",
"ref_id": "b29",
"title": "Last-iterate convergence in extensive-form games",
"year": "2021"
},
{
"authors": [
"Michael L Littman"
],
"doi": "10.1016/b978-1-55860-335-6.50027-1",
"ref_id": "b30",
"title": "Markov games as a framework for multi-agent reinforcement learning",
"year": "1994"
},
{
"authors": [
"Q Liu",
"T Yu",
"Y Bai",
"Jin",
"C"
],
"doi": "",
"ref_id": "b31",
"title": "A sharp analysis of model-based reinforcement learning with self-play",
"year": "18-24 Jul 2021"
},
{
"authors": [
"S Mcaleer",
"G Farina",
"M Lanctot",
"T Sandholm",
"Escher"
],
"doi": "10.48550/arXiv.2206.04122",
"ref_id": "b32",
"title": "Eschewing importance sampling in games by computing a history value function to estimate regret",
"year": "2022"
},
{
"authors": [
"Matej Moravčík",
"Martin Schmid",
"Neil Burch",
"Viliam Lisý",
"Dustin Morrill",
"Nolan Bard",
"Trevor Davis",
"Kevin Waugh",
"Michael Johanson",
"Michael Bowling"
],
"doi": "10.1126/science.aam6960",
"ref_id": "b33",
"title": "DeepStack: Expert-level artificial intelligence in heads-up no-limit poker",
"year": "2017"
},
{
"authors": [
"R Munos",
"J Pérolat",
"J.-B Lespiau",
"M Rowland",
"B De Vylder",
"M Lanctot",
"F Timbers",
"D Hennes",
"S Omidshafiei",
"A Gruslys",
"M G Azar",
"E Lockhart",
"K Tuyls"
],
"doi": "",
"ref_id": "b34",
"title": "Fast computation of nash equilibria in imperfect information games",
"year": "2020"
},
{
"authors": [
"Arkadi Nemirovski"
],
"doi": "10.1137/s1052623403425629",
"ref_id": "b35",
"title": "Prox-Method with Rate of Convergence <i>O</i>(1/<i>t</i>) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems",
"year": "2004"
},
{
"authors": [
"Y U Nesterov"
],
"doi": "10.1007/s10107-004-0552-5",
"ref_id": "b36",
"title": "Smooth minimization of non-smooth functions",
"year": "2005"
},
{
"authors": [
"G Neu"
],
"doi": "",
"ref_id": "b37",
"title": "Explore no more: Improved high-probability regret bounds for non-stochastic bandits",
"year": "2015"
},
{
"authors": [
"J Pérolat",
"B De Vylder",
"D Hennes",
"E Tarassov",
"F Strub",
"V De Boer",
"P Muller",
"J T Connor",
"N Burch",
"T Anthony",
"S Mcaleer",
"R Elie",
"S H Cen",
"Z Wang",
"A Gruslys",
"A Malysheva",
"M Khan",
"S Ozair",
"F Timbers",
"T Pohlen",
"T Eccles",
"M Rowland",
"M Lanctot",
"J.-B Lespiau",
"B Piot",
"S Omidshafiei",
"E Lockhart",
"L Sifre",
"N Beauguerlange",
"R Munos",
"D Silver",
"S Singh",
"D Hassabis",
"K Tuyls"
],
"doi": "10.48550/ARXIV.2206.15378",
"ref_id": "b38",
"title": "Mastering the game of stratego with model-free multiagent reinforcement learning",
"year": "2022"
},
{
"authors": [
"J V Romanovsky"
],
"doi": "10.1016/0011-7471(63)90317-6",
"ref_id": "b39",
"title": "Dokl. Akad. Nauk, SSSR",
"year": "1962"
},
{
"authors": [
"Martin Schmid",
"Neil Burch",
"Marc Lanctot",
"Matej Moravcik",
"Rudolf Kadlec",
"Michael Bowling"
],
"doi": "10.1609/aaai.v33i01.33012157",
"ref_id": "b40",
"title": "Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games Using Baselines",
"year": "2018"
},
{
"authors": [
"Martin Schmid",
"Matej Moravčík",
"Neil Burch",
"Rudolf Kadlec",
"Josh Davidson",
"Kevin Waugh",
"Nolan Bard",
"Finbarr Timbers",
"Marc Lanctot",
"G Zacharias Holland",
"Elnaz Davoodi",
"Alden Christianson",
"Michael Bowling"
],
"doi": "10.1126/sciadv.adg3256",
"ref_id": "b41",
"title": "Student of Games: A unified learning algorithm for both perfect and imperfect information games",
"year": "2021"
},
{
"authors": [
"A Sidford",
"M Wang",
"L Yang",
"Y Ye"
],
"doi": "",
"ref_id": "b42",
"title": "Solving discounted stochastic two-player games with near-optimal time and sample complexity",
"year": "August 2020. 2020"
},
{
"authors": [
"F Southey",
"M Bowling",
"B Larson",
"C Piccione",
"N Burch",
"D Billings",
"C Rayner"
],
"doi": "",
"ref_id": "b43",
"title": "Bayes' bluff: Opponent modelling in poker",
"year": "2005"
},
{
"authors": [
"M Strens"
],
"doi": "",
"ref_id": "b44",
"title": "A Bayesian Framework for Reinforcement Learning",
"year": "2000"
},
{
"authors": [
"O Tammelin"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b45",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"Constantino Tsallis"
],
"doi": "10.1007/bf01016429",
"ref_id": "b46",
"title": "Possible generalization of Boltzmann-Gibbs statistics",
"year": "1988"
},
{
"authors": [
"J Von Neumann"
],
"doi": "",
"ref_id": "b47",
"title": "Zur Theorie der Gesellschaftsspiele",
"year": "1928"
},
{
"authors": [
"Bernhard Von Stengel"
],
"doi": "10.1006/game.1996.0050",
"ref_id": "b48",
"title": "Efficient Computation of Behavior Strategies",
"year": "1996"
},
{
"authors": [
"K Waugh",
"J A Bagnell"
],
"doi": "",
"ref_id": "b49",
"title": "A unified view of large-scale zero-sum equilibrium computation",
"year": "2014"
},
{
"authors": [
"C Wei",
"C Lee",
"M Zhang",
"H Luo"
],
"doi": "",
"ref_id": "b50",
"title": "Last-iterate convergence of decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games",
"year": "August 2021. 2021"
},
{
"authors": [
"C.-Y Wei",
"Y.-T Hong",
"C.-J Lu"
],
"doi": "",
"ref_id": "b51",
"title": "Online reinforcement learning in stochastic games",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b52",
"title": "",
"year": "2017"
},
{
"authors": [
"Q Xie",
"Y Chen",
"Z Wang",
"Z Yang"
],
"doi": "",
"ref_id": "b53",
"title": "Learning zerosum simultaneous-move markov games using function approximation and correlated equilibrium",
"year": "09-12 Jul 2020"
},
{
"authors": [
"Brian Hu Zhang",
"Tuomas Sandholm"
],
"doi": "10.1609/aaai.v35i6.16724",
"ref_id": "b54",
"title": "Finding and Certifying (Near-)Optimal Strategies in Black-Box Extensive-Form Games",
"year": "2021"
},
{
"authors": [
"K Zhang",
"S Kakade",
"T Basar",
"L Yang"
],
"doi": "",
"ref_id": "b55",
"title": "Model-based multi-agent rl in zero-sum markov games with nearoptimal sample complexity",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b56",
"title": "",
"year": "2020"
}
] |
[
"3f6b3f7918784a71",
"6c4ec217d0c82261",
"c1f2146d9bdce91f",
"e6c6b596167894a8",
"6c73389a940b86f6",
"f8d72c6f22df3935",
"d07819811d5300f4",
"da26e152d890308b",
"d1d89e952b603930",
"09d333e5fab31827",
"e553b2fb7a69f60c",
"d98e633a99e7567b",
"87c17ae81b89012c",
"deaa60a5ad88dac4",
"7a954d76bf62c13c",
"6a993483e870bca5",
"c4348c4bca5275d2",
"e835748dacd6328d",
"495f2b5d6097382d",
"5100ec0265a5ec5b",
"a8e5aa6f2a215a01",
"762621d3da8264ea",
"cd466969b0ed06cb",
"2fe9b75d47d53bee",
"095903bd2e451f66",
"25fb9dc0a5bf3ec3",
"0459e7673fda8c81"
] |
[
"d0e853a6356d966f",
"09d333e5fab31827",
"8b16434af0b6d1e0",
"c27b3e365f55765e",
"d1d89e952b603930",
"cd466969b0ed06cb",
"6a993483e870bca5",
"7fae944fbd688e65",
"deaa60a5ad88dac4",
"2789278b5dc911da",
"8f2a4eeaa6ef3afb",
"c27b3e365f55765e",
"da26e152d890308b",
"e6c6b596167894a8",
"95584433de71e816",
"dd8e42aeab014ac4",
"f8d72c6f22df3935",
"c4348c4bca5275d2",
"d07819811d5300f4",
"12e8b0d4fcf2b4d4",
"e553b2fb7a69f60c",
"35ee50c51b34ef57",
"5100ec0265a5ec5b",
"7629ff1169697825",
"989174c8864e053e",
"5f8a8edfb656a320",
"0459e7673fda8c81",
"139d266d8edcfc7f",
"a8e5aa6f2a215a01",
"762621d3da8264ea",
"27c4b33ec85fe7c6",
"2c9b3c5458118065",
"06cb5b96b072d82e",
"25fb9dc0a5bf3ec3",
"c1f2146d9bdce91f",
"6c73389a940b86f6",
"2fe9b75d47d53bee",
"87c17ae81b89012c",
"095903bd2e451f66",
"6c4ec217d0c82261",
"7a954d76bf62c13c",
"495f2b5d6097382d",
"327357c80db6961f",
"b4c096bbda676cab",
"ca5dcbc753893965",
"3f6b3f7918784a71",
"a675a0650f657f0c",
"d8ab6ef4e293b4c2",
"e835748dacd6328d",
"d98e633a99e7567b",
"e7356fa862e18639",
"d726af1d9d045b42",
"1b4395952f8afebb",
"f9d54f0fdb6a7d64",
"9d717b933a179bf8",
"c8278a4fcf75ce11",
"c27b3e365f55765e"
] |
qlAtMW9jIh
|
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
|
data/openreview_paper/ICML_2023_oral/qlAtMW9jIh//paper.pdf
| 44
| 15
|
[
{
"authors": [
"J M Hammersley",
"D C Handscomb"
],
"doi": "10.1007/978-94-009-5819-7",
"ref_id": "b14",
"title": "Monte Carlo Methods",
"year": "1964"
},
{
"authors": [
"Nicholas Metropolis",
"Arianna W Rosenbluth",
"Marshall N Rosenbluth",
"Augusta H Teller",
"Edward Teller"
],
"doi": "10.1063/1.1699114",
"ref_id": "b22",
"title": "Equation of State Calculations by Fast Computing Machines",
"year": "June 1953"
},
{
"authors": [
"R C Jeffrey"
],
"doi": "",
"ref_id": "b17",
"title": "The Logic of Decision",
"year": "1983. 1965"
},
{
"authors": [
"Radford M Neal"
],
"doi": "10.1006/jcph.1994.1054",
"ref_id": "b26",
"title": "An Improved Acceptance Procedure for the Hybrid Monte Carlo Algorithm",
"year": "1994"
},
{
"authors": [
"D Tolpin",
"Y Zhou",
"T Rainforth",
"H Yang"
],
"doi": "",
"ref_id": "b37",
"title": "Probabilistic Programs with Stochastic Conditioning",
"year": "July 2021"
},
{
"authors": [
"W K Hastings"
],
"doi": "10.1093/biomet/57.1.97",
"ref_id": "b15",
"title": "Monte Carlo sampling methods using Markov chains and their applications",
"year": "April 1970"
},
{
"authors": [
"Simon Duane",
"A D Kennedy",
"Brian J Pendleton",
"Duncan Roweth"
],
"doi": "10.1016/0370-2693(87)91197-x",
"ref_id": "b10",
"title": "Hybrid Monte Carlo",
"year": "September 1987"
},
{
"authors": [
"Hei Chan",
"Adnan Darwiche"
],
"doi": "10.1016/j.artint.2004.09.005",
"ref_id": "b6",
"title": "On the revision of probabilistic beliefs using uncertain evidence",
"year": "2005"
},
{
"authors": [
"Persi Diaconis",
"Sandy L Zabell"
],
"doi": "10.1080/01621459.1982.10477893",
"ref_id": "b9",
"title": "Updating Subjective Probability",
"year": "1982"
},
{
"authors": [
"Philippe Smets",
"Jeffrey"
],
"doi": "10.1016/b978-1-4832-1451-1.50065-2",
"ref_id": "b35",
"title": "Jeffrey's rule of conditioning generalized to belief functions.",
"year": "1993"
},
{
"authors": [
"B Jacobs"
],
"doi": "10.1093/biomet/57.1.97",
"ref_id": "b16",
"title": "The Mathematics of Changing One's Mind, via Jeffrey's or via Pearl's Update Rule",
"year": "August 2019"
},
{
"authors": [
"Carl G Wagner"
],
"doi": "10.1086/341053",
"ref_id": "b41",
"title": "Probability Kinematics and Commutativity",
"year": "June 2002"
},
{
"authors": [
"J Pearl"
],
"doi": "",
"ref_id": "b29",
"title": "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference",
"year": "1988"
},
{
"authors": [
"K Yao"
],
"doi": "10.1080/03610926.2020.1838545",
"ref_id": "b43",
"title": "Bayesian inference with uncertain data of imprecise observations",
"year": "2022"
},
{
"authors": [
"Marco Valtorta",
"Young-Gyun Kim",
"Jiří Vomlel"
],
"doi": "10.1016/s0888-613x(01)00056-1",
"ref_id": "b38",
"title": "Soft evidential update for probabilistic multiagent systems",
"year": "January 2002"
}
] |
[
{
"authors": [
"A G Baydin",
"T A Le",
"Pyprob"
],
"doi": "",
"ref_id": "b0",
"title": "",
"year": "2018"
},
{
"authors": [
"Atilim Güneş Baydin",
"Lei Shao",
"Wahid Bhimji",
"Lukas Heinrich",
"Lawrence Meadows",
"Jialin Liu",
"Andreas Munk",
"Saeid Naderiparizi",
"Bradley Gram-Hansen",
"Gilles Louppe",
"Mingfei Ma",
"Xiaohui Zhao",
"Philip Torr",
"Victor Lee",
"Kyle Cranmer",
"Prabhat",
"Frank Wood"
],
"doi": "10.1145/3295500.3356180",
"ref_id": "b1",
"title": "Etalumis",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b2",
"title": "",
"year": "2019"
},
{
"authors": [
"A Ben Mrad",
"V Delcroix",
"S Piechowiak",
"M A Maalej",
"M Abid"
],
"doi": "10.1109/ICMSAO.2013.6552583",
"ref_id": "b3",
"title": "Understanding soft evidence as probabilistic evidence: Illustration with several use cases",
"year": "April 2013"
},
{
"authors": [
"C M Bishop"
],
"doi": "",
"ref_id": "b4",
"title": "Pattern Recognition and Machine Learning",
"year": "2006"
},
{
"authors": [
"William J Borucki",
"David Koch",
"Gibor Basri",
"Natalie Batalha",
"Timothy Brown",
"Douglas Caldwell",
"John Caldwell",
"Jørgen Christensen-Dalsgaard",
"William D Cochran",
"Edna Devore",
"Edward W Dunham",
"Andrea K Dupree",
"Thomas N Gautier",
"John C Geary",
"Ronald Gilliland",
"Alan Gould",
"Steve B Howell",
"Jon M Jenkins",
"Yoji Kondo",
"David W Latham",
"Geoffrey W Marcy",
"Søren Meibom",
"Hans Kjeldsen",
"Jack J Lissauer",
"David G Monet",
"David Morrison",
"Dimitar Sasselov",
"Jill Tarter",
"Alan Boss",
"Don Brownlee",
"Toby Owen",
"Derek Buzasi",
"David Charbonneau",
"Laurance Doyle",
"Jonathan Fortney",
"Eric B Ford",
"Matthew J Holman",
"Sara Seager",
"Jason H Steffen",
"William F Welsh",
"Jason Rowe",
"Howard Anderson",
"Lars Buchhave",
"David Ciardi",
"Lucianne Walkowicz",
"William Sherry",
"Elliott Horch",
"Howard Isaacson",
"Mark E Everett",
"Debra Fischer",
"Guillermo Torres",
"John Asher Johnson",
"Michael Endl",
"Phillip Macqueen",
"Stephen T Bryson",
"Jessie Dotson",
"Michael Haas",
"Jeffrey Kolodziejczak",
"Jeffrey Van Cleve",
"Hema Chandrasekaran",
"Joseph D Twicken",
"Elisa V Quintana",
"Bruce D Clarke",
"Christopher Allen",
"Jie Li",
"Haley Wu",
"Peter Tenenbaum",
"Ekaterina Verner",
"Frederick Bruhweiler",
"Jason Barnes",
"Andrej Prsa"
],
"doi": "10.1126/science.1185402",
"ref_id": "b5",
"title": "Kepler Planet-Detection Mission: Introduction and First Results",
"year": "5968. February 2010"
},
{
"authors": [
"Hei Chan",
"Adnan Darwiche"
],
"doi": "10.1016/j.artint.2004.09.005",
"ref_id": "b6",
"title": "On the revision of probabilistic beliefs using uncertain evidence",
"year": "2005"
},
{
"authors": [
"Maximilian Dax",
"Stephen R Green",
"Jonathan Gair",
"Jakob H Macke",
"Alessandra Buonanno",
"Bernhard Schölkopf"
],
"doi": "10.1103/physrevlett.127.241103",
"ref_id": "b7",
"title": "Real-Time Gravitational Wave Science with Neural Posterior Estimation",
"year": "December 2021"
},
{
"authors": [
"Katherine M Deck",
"Eric Agol",
"Matthew J Holman",
"David Nesvorný"
],
"doi": "10.1088/0004-637x/787/2/132",
"ref_id": "b8",
"title": "TTVFast: AN EFFICIENT AND ACCURATE CODE FOR TRANSIT TIMING INVERSION PROBLEMS",
"year": "June 2014"
},
{
"authors": [
"Persi Diaconis",
"Sandy L Zabell"
],
"doi": "10.1080/01621459.1982.10477893",
"ref_id": "b9",
"title": "Updating Subjective Probability",
"year": "1982"
},
{
"authors": [
"Simon Duane",
"A D Kennedy",
"Brian J Pendleton",
"Duncan Roweth"
],
"doi": "10.1016/0370-2693(87)91197-x",
"ref_id": "b10",
"title": "Hybrid Monte Carlo",
"year": "September 1987"
},
{
"authors": [
"F Feroz",
"M P Hobson"
],
"doi": "10.1093/mnras/stt2148",
"ref_id": "b11",
"title": "Bayesian analysis of radial velocity data of GJ667C with correlated noise: evidence for only two planets",
"year": "February 2014"
},
{
"authors": [
"S Gershman",
"N Goodman"
],
"doi": "",
"ref_id": "b12",
"title": "Amortized inference in probabilistic reasoning",
"year": "2014"
},
{
"authors": [
"A J Grove",
"J Y Halpern"
],
"doi": "",
"ref_id": "b13",
"title": "Probability update: Conditioning vs. cross-entropy",
"year": "August 1997"
},
{
"authors": [
"J M Hammersley",
"D C Handscomb"
],
"doi": "10.1007/978-94-009-5819-7",
"ref_id": "b14",
"title": "Monte Carlo Methods",
"year": "1964"
},
{
"authors": [
"W K Hastings"
],
"doi": "10.1093/biomet/57.1.97",
"ref_id": "b15",
"title": "Monte Carlo sampling methods using Markov chains and their applications",
"year": "April 1970"
},
{
"authors": [
"B Jacobs"
],
"doi": "10.1093/biomet/57.1.97",
"ref_id": "b16",
"title": "The Mathematics of Changing One's Mind, via Jeffrey's or via Pearl's Update Rule",
"year": "August 2019"
},
{
"authors": [
"R C Jeffrey"
],
"doi": "",
"ref_id": "b17",
"title": "The Logic of Decision",
"year": "1983. 1965"
},
{
"authors": [
"A Lavin",
"H Zenil",
"B Paige",
"D Krakauer",
"J Gottschlich",
"T Mattson",
"A Anandkumar",
"S Choudry",
"K Rocki",
"A G Baydin"
],
"doi": "",
"ref_id": "b18",
"title": "Simulation intelligence: Towards a new generation of scientific methods",
"year": "2021"
},
{
"authors": [
"L Lentati",
"M P Hobson",
"P Alexander"
],
"doi": "10.1093/mnras/stu1721",
"ref_id": "b19",
"title": "Bayesian estimation of non-Gaussianity in pulsar timing analysis",
"year": "November 2014"
},
{
"authors": [
"Yan Liang",
"Jakob Robnik",
"Uroš Seljak"
],
"doi": "10.3847/1538-3881/abe6a7",
"ref_id": "b20",
"title": "Kepler-90: Giant Transit-timing Variations Reveal a Super-puff",
"year": "March 2021"
},
{
"authors": [
"N Metropolis",
"S Ulam"
],
"doi": "10.1080/01621459.1949.10483310",
"ref_id": "b21",
"title": "The Monte Carlo Method",
"year": "September 1949"
},
{
"authors": [
"Nicholas Metropolis",
"Arianna W Rosenbluth",
"Marshall N Rosenbluth",
"Augusta H Teller",
"Edward Teller"
],
"doi": "10.1063/1.1699114",
"ref_id": "b22",
"title": "Equation of State Calculations by Fast Computing Machines",
"year": "June 1953"
},
{
"authors": [
"Siddharth Mishra-Sharma",
"Kyle Cranmer"
],
"doi": "10.1103/physrevd.105.063017",
"ref_id": "b23",
"title": "Neural simulation-based inference approach for characterizing the Galactic Center <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> -ray excess",
"year": "March 2022"
},
{
"authors": [
"Ali Ben Mrad",
"Véronique Delcroix",
"Sylvain Piechowiak",
"Philip Leicester",
"Mohamed Abid"
],
"doi": "10.1007/s10489-015-0678-6",
"ref_id": "b24",
"title": "An explication of uncertain evidence in Bayesian networks: likelihood evidence and probabilistic evidence",
"year": "December 2015"
},
{
"authors": [
"A Munk",
"B Zwartsenberg",
"A Scibior",
"A G Baydin",
"A L Stewart",
"G Fernlund",
"A Poursartip",
"F Wood"
],
"doi": "",
"ref_id": "b25",
"title": "Probabilistic surrogate networks for simulators with unbounded randomness",
"year": "2022"
},
{
"authors": [
"Radford M Neal"
],
"doi": "10.1006/jcph.1994.1054",
"ref_id": "b26",
"title": "An Improved Acceptance Procedure for the Hybrid Monte Carlo Algorithm",
"year": "1994"
},
{
"authors": [
"Vehbi Paksoy",
"Ramazan Turkmen",
"Fuzhen Zhang"
],
"doi": "10.13001/1081-3810.1622",
"ref_id": "b27",
"title": "Inequalities of generalized matrix functions via tensor products",
"year": "2014"
},
{
"authors": [
"G Papamakarios",
"D Sterratt",
"I Murray"
],
"doi": "",
"ref_id": "b28",
"title": "Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows",
"year": "April 2019"
},
{
"authors": [
"J Pearl"
],
"doi": "",
"ref_id": "b29",
"title": "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference",
"year": "1988"
},
{
"authors": [
"Judea Pearl"
],
"doi": "10.1023/a:1016709416174",
"ref_id": "b30",
"title": "On Two Pseudo-Paradoxes in Bayesian Analysis",
"year": "August 2001"
},
{
"authors": [
"Yun Peng",
"Shenyong Zhang",
"Rong Pan"
],
"doi": "10.1142/s0218488510006696",
"ref_id": "b31",
"title": "BAYESIAN NETWORK REASONING WITH UNCERTAIN EVIDENCES",
"year": "October 2010"
},
{
"authors": [
"A G Riess",
"W Yuan",
"L M Macri",
"D Scolnic",
"D Brout",
"S Casertano",
"D O Jones",
"Y Murakami",
"G S Anand",
"L Breuval",
"T G Brink",
"A V Filippenko",
"S Hoffmann",
"S W Jha",
"W Kenworthy",
"J Mackenty",
"B E Stahl",
"W Zheng"
],
"doi": "10.3847/2041-8213/ac5c5b",
"ref_id": "b32",
"title": "A comprehensive measurement of the local value of the hubble constant with 1 km s -1 mpc -1 uncertainty from the hubble space telescope and the SH0ES team",
"year": "July 2022"
},
{
"authors": [
"T Schulze-Hartung",
"R Launhardt",
"T Henning"
],
"doi": "10.1051/0004-6361/201219074",
"ref_id": "b33",
"title": "Bayesian analysis of exoplanet and binary orbits",
"year": "September 2012"
},
{
"authors": [
"Glenn Shafer"
],
"doi": "10.1086/289004",
"ref_id": "b34",
"title": "Jeffrey's Rule of Conditioning",
"year": "1981"
},
{
"authors": [
"Philippe Smets",
"Jeffrey"
],
"doi": "10.1016/b978-1-4832-1451-1.50065-2",
"ref_id": "b35",
"title": "Jeffrey's rule of conditioning generalized to belief functions.",
"year": "1993"
},
{
"authors": [
"E Thrane",
"C Talbot"
],
"doi": "10.1017/pasa.2019",
"ref_id": "b36",
"title": "An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models",
"year": "March 2019"
},
{
"authors": [
"D Tolpin",
"Y Zhou",
"T Rainforth",
"H Yang"
],
"doi": "",
"ref_id": "b37",
"title": "Probabilistic Programs with Stochastic Conditioning",
"year": "July 2021"
},
{
"authors": [
"Marco Valtorta",
"Young-Gyun Kim",
"Jiří Vomlel"
],
"doi": "10.1016/s0888-613x(01)00056-1",
"ref_id": "b38",
"title": "Soft evidential update for probabilistic multiagent systems",
"year": "January 2002"
},
{
"authors": [
"R Van De Schoot",
"S Depaoli",
"R King",
"B Kramer",
"K Märtens",
"M G Tadesse",
"M Vannucci",
"A Gelman",
"D Veen",
"J Willemsen",
"C Yau"
],
"doi": "10.1038/s43586-020-00001-2",
"ref_id": "b39",
"title": "Bayesian statistics and modelling",
"year": "January 2021"
},
{
"authors": [
"Sarah J Vigeland",
"Michele Vallisneri"
],
"doi": "10.1093/mnras/stu312",
"ref_id": "b40",
"title": "Bayesian inference for pulsar-timing models",
"year": "May 2014"
},
{
"authors": [
"Carl G Wagner"
],
"doi": "10.1086/341053",
"ref_id": "b41",
"title": "Probability Kinematics and Commutativity",
"year": "June 2002"
},
{
"authors": [
"Frank Wood",
"Andrew Warrington",
"Saeid Naderiparizi",
"Christian Weilbach",
"Vaden Masrani",
"William Harvey",
"Adam Ścibior",
"Boyan Beronov",
"John Grefenstette",
"Duncan Campbell",
"S Ali Nasseri"
],
"doi": "10.3389/frai.2021.550603",
"ref_id": "b42",
"title": "Planning as Inference in Epidemiological Dynamics Models",
"year": "2022"
},
{
"authors": [
"K Yao"
],
"doi": "10.1080/03610926.2020.1838545",
"ref_id": "b43",
"title": "Bayesian inference with uncertain data of imprecise observations",
"year": "2022"
}
] |
[
"e02ed37c0129f86d",
"bb72e922c3874682",
"a25bb13e7c0d8fbc",
"b3679f83ac940086",
"cf4e58b44120081c",
"d8d2450d41e67a79",
"39c1b4a8ef659edd",
"39ea1fab345a98b5",
"3ec15f0ca0113c19",
"b745656784f4daca",
"f11d9ef1a9ab164c",
"cfaa01ca126f62f2",
"05c6ade311ddf6f5",
"d71a3fd7e7b1ad50",
"c85312c9ceb95662"
] |
[
"b4456ce6b99cecfe",
"c52cebb90e95c77d",
"7e13ecdaf7b05cda",
"ae9982e772d53566",
"810f2ca1fa5f7d85",
"fa0d5c0037526464",
"39ea1fab345a98b5",
"bd4a7365db59e154",
"18e8a7cba515330c",
"3ec15f0ca0113c19",
"39c1b4a8ef659edd",
"2fdabc1743456e0b",
"e59cd271c195cffe",
"4227842e782ae43d",
"e02ed37c0129f86d",
"d8d2450d41e67a79",
"f11d9ef1a9ab164c",
"a25bb13e7c0d8fbc",
"88acc24abe43229d",
"4d36ebcd8cdf32f1",
"d313e51936639d6c",
"c13c77a79b594514",
"bb72e922c3874682",
"4b4ca929a3c6237d",
"92ecb7c196f899e9",
"e7f40984af9c4d0f",
"b3679f83ac940086",
"b3be7f42962e9c0d",
"19a83c6504d01471",
"05c6ade311ddf6f5",
"3dcbd88ec0419e72",
"e2a4c82202bafd47",
"4f2eb406ba150f7f",
"ef8076a31dd822c1",
"67afb0d4baec6185",
"b745656784f4daca",
"e60e5b2df8db5b29",
"cf4e58b44120081c",
"c85312c9ceb95662",
"8b376c00a3b0f82e",
"700f37e5a9848b4e",
"cfaa01ca126f62f2",
"8c17a4b4d5179618",
"d71a3fd7e7b1ad50"
] |
XAK3238obr
|
How Bad is Top-$K$ Recommendation under Competing Content Creators?
|
data/openreview_paper/ICML_2023_oral/XAK3238obr//paper.pdf
| 41
| 16
|
[
{
"authors": [
"O Ben-Porat",
"M Tennenholtz"
],
"doi": "",
"ref_id": "b5",
"title": "A game-theoretic approach to recommendation systems with strategic content providers",
"year": "2018"
},
{
"authors": [
"H Hotelling"
],
"doi": "",
"ref_id": "b16",
"title": "Stability in competition",
"year": "1929. 1929"
},
{
"authors": [
"R D Luce",
"P Suppes"
],
"doi": "",
"ref_id": "b25",
"title": "Preference, utility, and subjective probability",
"year": "1965"
},
{
"authors": [
"Elias Koutsoupias",
"Christos Papadimitriou"
],
"doi": "10.1007/3-540-49116-3_38",
"ref_id": "b22",
"title": "Worst-Case Equilibria",
"year": "1999"
},
{
"authors": [
"O Ben-Porat",
"G Goren",
"I Rosenberg",
"M Tennenholtz"
],
"doi": "",
"ref_id": "b6",
"title": "From recommendation systems to facility location games",
"year": "2019"
},
{
"authors": [
"George Baltas",
"Peter Doyle"
],
"doi": "10.1016/s0148-2963(99)00058-2",
"ref_id": "b2",
"title": "Random utility models in marketing research: a survey",
"year": "2001"
},
{
"authors": [
"Avrim Blum",
"Mohammadtaghi Hajiaghayi",
"Katrina Ligett",
"Aaron Roth"
],
"doi": "10.1145/1374376.1374430",
"ref_id": "b7",
"title": "Regret minimization and the price of total anarchy",
"year": "2008"
},
{
"authors": [
"G Christodoulou",
"E Koutsoupias"
],
"doi": "",
"ref_id": "b9",
"title": "The price of anarchy of finite congestion games",
"year": "2005"
},
{
"authors": [
"M Jagadeesan",
"N Garg",
"J Steinhardt"
],
"doi": "",
"ref_id": "b19",
"title": "Supplyside equilibria in recommender systems",
"year": "2022"
},
{
"authors": [
"Tim Roughgarden"
],
"doi": "10.1145/2806883",
"ref_id": "b35",
"title": "Intrinsic Robustness of the Price of Anarchy",
"year": "2015"
},
{
"authors": [
"R Ben Basat",
"M Tennenholtz",
"O Kurland"
],
"doi": "",
"ref_id": "b3",
"title": "The probability ranking principle is not optimal in adversarial retrieval settings",
"year": "2015"
},
{
"authors": [
"Nimrod Raifer",
"Fiana Raiber",
"Moshe Tennenholtz",
"Oren Kurland"
],
"doi": "10.1145/3077136.3080785",
"ref_id": "b34",
"title": "Information Retrieval Meets Game Theory",
"year": "2017"
},
{
"authors": [
"A Vetta"
],
"doi": "10.1109/sfcs.2002.1181966",
"ref_id": "b39",
"title": "Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions",
"year": "2002. 2002"
},
{
"authors": [
"J Hron",
"K Krauth",
"M I Jordan",
"N Kilbertus",
"S Dean"
],
"doi": "",
"ref_id": "b17",
"title": "Modeling content creator incentives on algorithmcurated platforms",
"year": "2022"
},
{
"authors": [
"George Christodoulou",
"Annamária Kovács",
"Michael Schapira"
],
"doi": "10.1007/978-3-540-70575-8_67",
"ref_id": "b10",
"title": "Bayesian Combinatorial Auctions",
"year": "2008"
},
{
"authors": [
"W Shen",
"Z Wang"
],
"doi": "",
"ref_id": "b38",
"title": "Hotelling-downs model with limited attraction",
"year": "2016"
}
] |
[
{
"authors": [
"Peter Auer",
"Nicolò Cesa-Bianchi",
"Yoav Freund",
"Robert E Schapire"
],
"doi": "10.1137/s0097539701398375",
"ref_id": "b0",
"title": "The Nonstochastic Multiarmed Bandit Problem",
"year": "2002"
},
{
"authors": [
"M Balog",
"N Tripuraneni",
"Z Ghahramani",
"A Weller"
],
"doi": "",
"ref_id": "b1",
"title": "Lost relatives of the gumbel trick",
"year": "2017"
},
{
"authors": [
"George Baltas",
"Peter Doyle"
],
"doi": "10.1016/s0148-2963(99)00058-2",
"ref_id": "b2",
"title": "Random utility models in marketing research: a survey",
"year": "2001"
},
{
"authors": [
"R Ben Basat",
"M Tennenholtz",
"O Kurland"
],
"doi": "",
"ref_id": "b3",
"title": "The probability ranking principle is not optimal in adversarial retrieval settings",
"year": "2015"
},
{
"authors": [
"O Ben-Porat",
"M Tennenholtz"
],
"doi": "",
"ref_id": "b4",
"title": "Shapley facility location games",
"year": "2017"
},
{
"authors": [
"O Ben-Porat",
"M Tennenholtz"
],
"doi": "",
"ref_id": "b5",
"title": "A game-theoretic approach to recommendation systems with strategic content providers",
"year": "2018"
},
{
"authors": [
"O Ben-Porat",
"G Goren",
"I Rosenberg",
"M Tennenholtz"
],
"doi": "",
"ref_id": "b6",
"title": "From recommendation systems to facility location games",
"year": "2019"
},
{
"authors": [
"Avrim Blum",
"Mohammadtaghi Hajiaghayi",
"Katrina Ligett",
"Aaron Roth"
],
"doi": "10.1145/1374376.1374430",
"ref_id": "b7",
"title": "Regret minimization and the price of total anarchy",
"year": "2008"
},
{
"authors": [
"J Bobadilla",
"F Ortega",
"A Hernando",
"A Gutiérrez"
],
"doi": "10.1016/j.knosys.2013.03.012",
"ref_id": "b8",
"title": "Recommender systems survey",
"year": "2013"
},
{
"authors": [
"G Christodoulou",
"E Koutsoupias"
],
"doi": "",
"ref_id": "b9",
"title": "The price of anarchy of finite congestion games",
"year": "2005"
},
{
"authors": [
"George Christodoulou",
"Annamária Kovács",
"Michael Schapira"
],
"doi": "10.1007/978-3-540-70575-8_67",
"ref_id": "b10",
"title": "Bayesian Combinatorial Auctions",
"year": "2008"
},
{
"authors": [
"Constantinos Daskalakis",
"Paul W Goldberg",
"Christos H Papadimitriou"
],
"doi": "10.1137/070699652",
"ref_id": "b11",
"title": "The Complexity of Computing a Nash Equilibrium",
"year": "2009"
},
{
"authors": [
"Jicong Fan",
"Jieyu Cheng"
],
"doi": "10.1016/j.neunet.2017.10.007",
"ref_id": "b12",
"title": "Matrix completion by deep matrix factorization",
"year": "2018"
},
{
"authors": [
"Daniel Fleder",
"Kartik Hosanagar"
],
"doi": "10.1287/mnsc.1080.0974",
"ref_id": "b13",
"title": "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity",
"year": "2009"
},
{
"authors": [
"F Maxwell Harper",
"Joseph A Konstan"
],
"doi": "10.1145/2827872",
"ref_id": "b14",
"title": "The MovieLens Datasets",
"year": "2015"
},
{
"authors": [
"Xiangnan He",
"Lizi Liao",
"Hanwang Zhang",
"Liqiang Nie",
"Xia Hu",
"Tat-Seng Chua"
],
"doi": "10.1145/3038912.3052569",
"ref_id": "b15",
"title": "Neural Collaborative Filtering",
"year": "2017"
},
{
"authors": [
"H Hotelling"
],
"doi": "",
"ref_id": "b16",
"title": "Stability in competition",
"year": "1929. 1929"
},
{
"authors": [
"J Hron",
"K Krauth",
"M I Jordan",
"N Kilbertus",
"S Dean"
],
"doi": "",
"ref_id": "b17",
"title": "Modeling content creator incentives on algorithmcurated platforms",
"year": "2022"
},
{
"authors": [
"Neil Hurley",
"Mi Zhang"
],
"doi": "10.1145/1944339.1944341",
"ref_id": "b18",
"title": "Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation",
"year": "2011"
},
{
"authors": [
"M Jagadeesan",
"N Garg",
"J Steinhardt"
],
"doi": "",
"ref_id": "b19",
"title": "Supplyside equilibria in recommender systems",
"year": "2022"
},
{
"authors": [
"Joseph A Konstan",
"Bradley N Miller",
"David Maltz",
"Jonathan L Herlocker",
"Lee R Gordon",
"John Riedl"
],
"doi": "10.1145/245108.245126",
"ref_id": "b20",
"title": "GroupLens",
"year": "1997"
},
{
"authors": [
"Yehuda Koren",
"Robert Bell",
"Chris Volinsky"
],
"doi": "10.1109/mc.2009.263",
"ref_id": "b21",
"title": "Matrix Factorization Techniques for Recommender Systems",
"year": "2009"
},
{
"authors": [
"Elias Koutsoupias",
"Christos Papadimitriou"
],
"doi": "10.1007/3-540-49116-3_38",
"ref_id": "b22",
"title": "Worst-Case Equilibria",
"year": "1999"
},
{
"authors": [
"Chun Kai Ling",
"Fei Fang",
"J Zico Kolter"
],
"doi": "10.24963/ijcai.2018/55",
"ref_id": "b23",
"title": "What Game Are We Playing? End-to-end Learning in Normal and Extensive Form Games",
"year": "2018"
},
{
"authors": [
"R D Luce"
],
"doi": "10.1037/14396-000",
"ref_id": "b24",
"title": "Individual choice behavior: A theoretical analysis.",
"year": "1959"
},
{
"authors": [
"R D Luce",
"P Suppes"
],
"doi": "",
"ref_id": "b25",
"title": "Preference, utility, and subjective probability",
"year": "1965"
},
{
"authors": [
"Charles F Manski"
],
"doi": "10.1007/bf00133443",
"ref_id": "b26",
"title": "The structure of random utility models",
"year": "1977"
},
{
"authors": [
"D Mcfadden"
],
"doi": "",
"ref_id": "b27",
"title": "The measurement of urban travel demand",
"year": "1974"
},
{
"authors": [
"Daniel L Mcfadden"
],
"doi": "10.1016/s1573-4412(84)02016-x",
"ref_id": "b28",
"title": "Chapter 24 Econometric analysis of qualitative response models",
"year": "1984"
},
{
"authors": [
"Richard D Mckelvey",
"Thomas R Palfrey"
],
"doi": "10.1006/game.1995.1023",
"ref_id": "b29",
"title": "Quantal Response Equilibria for Normal Form Games",
"year": "1995. 2022"
},
{
"authors": [
"Dov Monderer",
"Lloyd S Shapley"
],
"doi": "10.1006/game.1996.0044",
"ref_id": "b30",
"title": "Potential Games",
"year": "1996"
},
{
"authors": [
"C H Papadimitriou",
"T Roughgarden"
],
"doi": "",
"ref_id": "b31",
"title": "Computing equilibria in multi-player games",
"year": "2005"
},
{
"authors": [
"R L Plackett"
],
"doi": "",
"ref_id": "b32",
"title": "The analysis of permutations",
"year": "1975"
},
{
"authors": [
"Kun Qian",
"Sanjay Jain"
],
"doi": "10.2139/ssrn.4311562",
"ref_id": "b33",
"title": "Digital Content Creation: An Analysis of the Impact of Recommendation Systems",
"year": "2022"
},
{
"authors": [
"Nimrod Raifer",
"Fiana Raiber",
"Moshe Tennenholtz",
"Oren Kurland"
],
"doi": "10.1145/3077136.3080785",
"ref_id": "b34",
"title": "Information Retrieval Meets Game Theory",
"year": "2017"
},
{
"authors": [
"Tim Roughgarden"
],
"doi": "10.1145/2806883",
"ref_id": "b35",
"title": "Intrinsic Robustness of the Price of Anarchy",
"year": "2015"
},
{
"authors": [
"Tim Roughgarden",
"Vasilis Syrgkanis",
"Eva Tardos"
],
"doi": "10.1613/jair.5272",
"ref_id": "b36",
"title": "The Price of Anarchy in Auctions",
"year": "2017"
},
{
"authors": [
"Savy"
],
"doi": "",
"ref_id": "b37",
"title": "Will the new youtube algorithm impact your content?",
"year": "2019"
},
{
"authors": [
"W Shen",
"Z Wang"
],
"doi": "",
"ref_id": "b38",
"title": "Hotelling-downs model with limited attraction",
"year": "2016"
},
{
"authors": [
"A Vetta"
],
"doi": "10.1109/sfcs.2002.1181966",
"ref_id": "b39",
"title": "Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions",
"year": "2002. 2002"
},
{
"authors": [],
"doi": "10.4135/9781506325279.n16",
"ref_id": "b40",
"title": "Chapter 11 YouTube",
"year": "2023"
}
] |
[
"6a22a3fb165fca93",
"4c64de279f325127",
"2e716ab3a8d7da09",
"4431a2475550864d",
"00bffdfb79709b4c",
"2a5b31ecb23c4fd6",
"e642cc1db745efde",
"e47bad6b5fd0d5f9",
"75630e6760fb8161",
"c89fb1f481330f4c",
"1413246247962b62",
"bc4300482288273e",
"f225bfff569580ab",
"bacc64d2dcaee9fa",
"95016d7006d07d74",
"0a2f92289744e03e"
] |
[
"bdc6896a51803109",
"90ecfcdcc280de79",
"2a5b31ecb23c4fd6",
"1413246247962b62",
"d8c205b097dad989",
"6a22a3fb165fca93",
"00bffdfb79709b4c",
"e642cc1db745efde",
"66594edd1f1f6204",
"e47bad6b5fd0d5f9",
"95016d7006d07d74",
"5533a592605fcf56",
"b5902fb599653d58",
"f8c83ade0cc5dbf3",
"0373aac4fedd85d2",
"fa5902b1a390bfb3",
"4c64de279f325127",
"bacc64d2dcaee9fa",
"b2cea2175863a1ac",
"75630e6760fb8161",
"6da2c5c1d573dc38",
"8de512c64a921e31",
"4431a2475550864d",
"3120c6c7e3eb0239",
"61cc4f43c94c4d13",
"2e716ab3a8d7da09",
"00bb78d975472934",
"388617f215c97b46",
"ed0b50e94fce8114",
"a75eaca1956e235c",
"1e944811e0dc8143",
"6ffb9f91f322c2f6",
"6a1dca2fe6ad8557",
"287a5265768aef0f",
"bc4300482288273e",
"c89fb1f481330f4c",
"5accfab4fc924785",
"37d5322b31d3c3da",
"0a2f92289744e03e",
"f225bfff569580ab",
"65c1d23ad1e5d94d"
] |
6rlGbYv4bT
|
Weighted Flow Diffusion for Local Graph Clustering with Node Attributes: an Algorithm and Statistical Guarantees
|
data/openreview_paper/ICML_2023_oral/6rlGbYv4bT//paper.pdf
| 32
| 0
|
[] |
[
{
"authors": [
"Emmanuel Abbe",
"Jianqing Fan",
"Kaizheng Wang"
],
"doi": "10.1214/22-aos2196",
"ref_id": "b0",
"title": "An ℓp theory of PCA and spectral clustering",
"year": "2022"
},
{
"authors": [
"Z Allen-Zhu",
"L Silvio",
"S M Vahab"
],
"doi": "",
"ref_id": "b1",
"title": "A local algorithm for finding well-connected clusters",
"year": "2013"
},
{
"authors": [
"R Andersen",
"F Chung",
"K Lang"
],
"doi": "",
"ref_id": "b2",
"title": "Local graph partitioning using pagerank vectors",
"year": "2006"
},
{
"authors": [
"R Andersen",
"S O Gharan",
"Y Peres",
"L Trevisan"
],
"doi": "",
"ref_id": "b3",
"title": "Almost optimal local graph clustering using evolving sets",
"year": "2016"
},
{
"authors": [
"Ery Arias-Castro",
"Emmanuel J Candès",
"Hannes Helgason",
"Ofer Zeitouni"
],
"doi": "10.1214/07-aos526",
"ref_id": "b4",
"title": "Searching for a trail of evidence in a maze",
"year": "2008"
},
{
"authors": [
"Ery Arias-Castro",
"Emmanuel J Candès",
"Arnaud Durand"
],
"doi": "10.1214/10-aos839",
"ref_id": "b5",
"title": "Detection of an anomalous cluster in a network",
"year": "2011"
},
{
"authors": [
"A Baranwal",
"K Fountoulakis",
"A Jagannath"
],
"doi": "",
"ref_id": "b6",
"title": "Graph convolution for semi-supervised classification: Improved linear separability and out-of-distribution generalization",
"year": "2021"
},
{
"authors": [
"Aseem Baranwal",
"Kimon Fontoulakis",
"Robert Wang"
],
"doi": "10.52202/079017-4065",
"ref_id": "b7",
"title": "Analysis of Corrected Graph Convolutions",
"year": "2023"
},
{
"authors": [
"A Baranwal",
"A Jagannath",
"K Fountoulakis"
],
"doi": "",
"ref_id": "b8",
"title": "Optimality of message-passing architectures for sparse graphs",
"year": "2023"
},
{
"authors": [
"G Braun",
"H Tyagi",
"C Biernacki"
],
"doi": "",
"ref_id": "b9",
"title": "An iterative clustering algorithm for the contextual stochastic block model with optimality guarantees",
"year": "2022"
},
{
"authors": [
"Li Chen",
"Richard Peng",
"Di Wang"
],
"doi": "10.1109/focs52979.2021.00060",
"ref_id": "b10",
"title": "2-norm Flow Diffusion in Near-Linear Time",
"year": "2022"
},
{
"authors": [
"Y Chen",
"J Xu"
],
"doi": "",
"ref_id": "b11",
"title": "Statistical-computational tradeoffs in planted problems and submatrix localization with a growing number of clusters and submatrices",
"year": "2016"
},
{
"authors": [
"U Chitra",
"K Ding",
"J C H Lee",
"B J Raphael"
],
"doi": "",
"ref_id": "b12",
"title": "Quantifying and reducing bias in maximum likelihood estimation of structured anomalies",
"year": "2021"
},
{
"authors": [
"Y Deshpande",
"S Sen",
"A Montanari",
"E Mossel"
],
"doi": "",
"ref_id": "b13",
"title": "Contextual stochastic block models",
"year": "2018"
},
{
"authors": [
"Kimon Fountoulakis",
"Farbod Roosta-Khorasani",
"Julian Shun",
"Xiang Cheng",
"Michael W Mahoney"
],
"doi": "10.1007/s10107-017-1214-8",
"ref_id": "b14",
"title": "Variational perspective on local graph clustering",
"year": "2017"
},
{
"authors": [
"K Fountoulakis",
"D Wang",
"S Yang"
],
"doi": "",
"ref_id": "b15",
"title": "p-norm flow diffusion for local graph clustering",
"year": "2020"
},
{
"authors": [
"K Fountoulakis",
"A Levi",
"S Yang",
"A Baranwal",
"A Jagannath"
],
"doi": "",
"ref_id": "b16",
"title": "Graph attention retrospective",
"year": "2023"
},
{
"authors": [
"David F Gleich"
],
"doi": "10.1137/140976649",
"ref_id": "b17",
"title": "PageRank Beyond the Web",
"year": "2015"
},
{
"authors": [
"W Ha",
"K Fountoulakis",
"M W Mahoney"
],
"doi": "",
"ref_id": "b18",
"title": "Statistical guarantees for local graph clustering",
"year": "2021"
},
{
"authors": [
"Lucas G S Jeub",
"Prakash Balachandran",
"Mason A Porter",
"Peter J Mucha",
"Michael W Mahoney"
],
"doi": "10.1103/physreve.91.012821",
"ref_id": "b19",
"title": "Think locally, act locally: Detection of small, medium-sized, and large communities in large networks",
"year": "2015"
},
{
"authors": [
"Caiyan Jia",
"Yafang Li",
"Matthew B Carson",
"Xiaoyang Wang",
"Jian Yu"
],
"doi": "10.1038/s41598-017-02751-8",
"ref_id": "b20",
"title": "Node Attribute-enhanced Community Detection in Complex Networks",
"year": "2017"
},
{
"authors": [
"Jure Leskovec",
"Kevin J Lang",
"Anirban Dasgupta",
"Michael W Mahoney"
],
"doi": "10.1080/15427951.2009.10129177",
"ref_id": "b21",
"title": "Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters",
"year": "2009"
},
{
"authors": [
"M Liu",
"D F Gleich"
],
"doi": "",
"ref_id": "b22",
"title": "Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering",
"year": "2020"
},
{
"authors": [
"P Macgregor",
"H Sun"
],
"doi": "",
"ref_id": "b23",
"title": "Local algorithms for finding densely connected clusters",
"year": "2021"
},
{
"authors": [
"Julian Mcauley",
"Christopher Targett",
"Qinfeng Shi",
"Anton Van Den Hengel"
],
"doi": "10.1145/2766462.2767755",
"ref_id": "b24",
"title": "Image-Based Recommendations on Styles and Substitutes",
"year": "2015"
},
{
"authors": [
"J Qian",
"V Saligrama"
],
"doi": "",
"ref_id": "b25",
"title": "Efficient minimax signal detection on graphs",
"year": "2014"
},
{
"authors": [
"A Reid",
"P Yuval"
],
"doi": "",
"ref_id": "b26",
"title": "Finding sparse cuts locally using evolving sets",
"year": "2009"
},
{
"authors": [
"James Sharpnack",
"Aarti Singh"
],
"doi": "10.1109/globalsip.2013.6736910",
"ref_id": "b27",
"title": "Near-optimal and computationally efficient detectors for weak and sparse graph-structured patterns",
"year": "2013"
},
{
"authors": [
"O Shchur",
"M Mumme",
"A Bojchevski",
"S Günnemann"
],
"doi": "",
"ref_id": "b28",
"title": "Pitfalls of graph neural network evaluation",
"year": "2018. 2018"
},
{
"authors": [
"Pan Shi",
"Kun He",
"David Bindel",
"John E Hopcroft"
],
"doi": "10.1007/978-3-319-71249-9_39",
"ref_id": "b29",
"title": "Local Lanczos Spectral Approximation for Community Detection",
"year": "2017"
},
{
"authors": [
"Daniel A Spielman",
"Shang-Hua Teng"
],
"doi": "10.1137/080744888",
"ref_id": "b30",
"title": "A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning",
"year": "2013"
},
{
"authors": [
"Heli Sun",
"Fang He",
"Jianbin Huang",
"Yizhou Sun",
"Yang Li",
"Chenyu Wang",
"Liang He",
"Zhongbin Sun",
"Xiaolin Jia"
],
"doi": "10.1145/3385415",
"ref_id": "b31",
"title": "Network Embedding for Community Detection in Attributed Networks",
"year": ""
}
] |
[] |
[
"5b198d02e38f0f5d",
"30833bbb9c36fa56",
"eeb270af265c4676",
"7d8b0211aee660e5",
"b839f535e517fbc1",
"87aaef71c0dcef00",
"e1fae0f74ea3f192",
"39cc58e479d922bc",
"0d9fa409bd9261ef",
"5ce67d3233196ace",
"d996bd4bff42dc92",
"281038f7734e9c54",
"b9476ea2bc765c74",
"b34815cdf3397edd",
"35e5120113b47fff",
"32ca135855c1ea44",
"c88cf941f0f76b12",
"19982105871f408c",
"d8840dfd1fa0826c",
"914774429511390c",
"5be77f50a224df83",
"823913a19b715da6",
"147fe86c0825e162",
"ca2e4b9014bc51e4",
"4953dd3e39325c21",
"a3013e05ee813e00",
"442987c861175d77",
"39c3f90d9192fa9b",
"c152b0504ee86dee",
"088cb2f80d7a9373",
"ef01b207e862e225",
"da770a60ab3a33ec"
] |
DH11pt7S2t
|
Facial Expression Recognition with Adaptive Frame Rate based on Multiple Testing Correction
|
data/openreview_paper/ICML_2023_oral/DH11pt7S2t//paper.pdf
| 51
| 0
|
[] |
[
{
"authors": [
"N S Belova",
"A V Savchenko"
],
"doi": "",
"ref_id": "b0",
"title": "Statistical testing of segment homogeneity in classification of piecewise-regular objects",
"year": "2015"
},
{
"authors": [
"Y Benjamini",
"Y Hochberg"
],
"doi": "",
"ref_id": "b1",
"title": "Controlling the false discovery rate: a practical and powerful approach to multiple testing",
"year": "1995"
},
{
"authors": [
"A Dhall",
"Emotiw"
],
"doi": "",
"ref_id": "b2",
"title": "Automatic emotion, engagement and cohesion prediction tasks",
"year": "2019. 2019"
},
{
"authors": [
"M Dutson",
"Y Li",
"M Gupta"
],
"doi": "",
"ref_id": "b3",
"title": "Event neural networks",
"year": "2022"
},
{
"authors": [
"Hehe Fan",
"Zhongwen Xu",
"Linchao Zhu",
"Chenggang Yan",
"Jianjun Ge",
"Yi Yang"
],
"doi": "10.24963/ijcai.2018/98",
"ref_id": "b4",
"title": "Watching a Small Portion could be as Good as Watching All: Towards Efficient Video Classification",
"year": "2018"
},
{
"authors": [
"Ruohan Gao",
"Tae-Hyun Oh",
"Kristen Grauman",
"Lorenzo Torresani"
],
"doi": "10.1109/cvpr42600.2020.01047",
"ref_id": "b5",
"title": "Listen to Look: Action Recognition by Previewing Audio",
"year": "2020"
},
{
"authors": [
"Amir Ghodrati",
"Babak Ehteshami Bejnordi",
"Amirhossein Habibian"
],
"doi": "10.1109/cvpr46437.2021.01535",
"ref_id": "b6",
"title": "FrameExit: Conditional Early Exiting for Efficient Video Recognition",
"year": "2021"
},
{
"authors": [
"Shreyank N Gowda",
"Marcus Rohrbach",
"Laura Sevilla-Lara"
],
"doi": "10.1609/aaai.v35i2.16235",
"ref_id": "b7",
"title": "SMART Frame Selection for Action Recognition",
"year": "2021"
},
{
"authors": [
"Artem M Grachev",
"Dmitry I Ignatov",
"Andrey V Savchenko"
],
"doi": "10.1007/978-3-319-69900-4_44",
"ref_id": "b8",
"title": "Neural Networks Compression for Language Modeling",
"year": "2017"
},
{
"authors": [
"Yosef Hochberg",
"Ajit C Tamhane"
],
"doi": "10.1002/9780470316672",
"ref_id": "b9",
"title": "Multiple Comparison Procedures",
"year": "2009"
},
{
"authors": [
"Jae -Yeop Jeong",
"Yeong-Gi Hong",
"Daun Kim",
"Jin-Woo Jeong",
"Yuchul Jung",
"Sang-Ho Kim"
],
"doi": "10.1109/cvprw56347.2022.00262",
"ref_id": "b10",
"title": "Classification of Facial Expression In-the-Wild based on Ensemble of Multi-head Cross Attention Networks",
"year": "2022"
},
{
"authors": [
"R R Jillela",
"A Ross"
],
"doi": "",
"ref_id": "b11",
"title": "Adaptive frame selection for improved face recognition in low-resolution videos",
"year": "2009"
},
{
"authors": [
"A Karpov",
"I Makarov"
],
"doi": "",
"ref_id": "b12",
"title": "Exploring efficiency of vision transformers for self-supervised monocular depth estimation",
"year": "2022"
},
{
"authors": [
"Y I Khokhlova",
"A Savchenko"
],
"doi": "",
"ref_id": "b13",
"title": "About neural-network algorithms application in viseme classification problem with face video in audiovisual speech recognition systems",
"year": "2014"
},
{
"authors": [
"Hanul Kim",
"Mihir Jain",
"Jun-Tae Lee",
"Sungrack Yun",
"Fatih Porikli"
],
"doi": "10.1109/iccv48922.2021.01346",
"ref_id": "b14",
"title": "Efficient Action Recognition via Dynamic Knowledge Propagation",
"year": "2021"
},
{
"authors": [
"D Kollias",
"Abaw"
],
"doi": "",
"ref_id": "b15",
"title": "Valence-arousal estimation, expression recognition, action unit detection & multi-task learning challenges",
"year": "2022"
},
{
"authors": [
"Dimitrios Kollias",
"Panagiotis Tzirakis",
"Mihalis A Nicolaou",
"Athanasios Papaioannou",
"Guoying Zhao",
"Björn Schuller",
"Irene Kotsia",
"Stefanos Zafeiriou"
],
"doi": "10.1007/s11263-019-01158-4",
"ref_id": "b16",
"title": "Deep Affect Prediction in-the-Wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond",
"year": "2019"
},
{
"authors": [
"Bruno Korbar",
"Du Tran",
"Lorenzo Torresani"
],
"doi": "10.1109/iccv.2019.00633",
"ref_id": "b17",
"title": "SCSampler: Sampling Salient Clips From Video for Efficient Action Recognition",
"year": "2019"
},
{
"authors": [
"S Kullback"
],
"doi": "",
"ref_id": "b18",
"title": "Information Theory and Statistics",
"year": "1997"
},
{
"authors": [
"Vikas Kumar",
"Shivansh Rao",
"Li Yu"
],
"doi": "10.1007/978-3-030-66415-2_53",
"ref_id": "b19",
"title": "Noisy Student Training Using Body Language Dataset Improves Facial Expression Recognition",
"year": "2020"
},
{
"authors": [
"S Li",
"W Zheng",
"Y Zong",
"C Lu",
"C Tang",
"X Jiang",
"J Liu",
"W Xia"
],
"doi": "",
"ref_id": "b20",
"title": "Bi-modality fusion for emotion recognition in the wild",
"year": "2019"
},
{
"authors": [
"Jaebong Lim",
"Yunju Baek",
"Bumhee Chae"
],
"doi": "10.1109/access.2022.3228573",
"ref_id": "b21",
"title": "Temporal Early Exiting With Confidence Calibration for Driver Identification Based on Driving Sensing Data",
"year": "2022"
},
{
"authors": [
"Jintao Lin",
"Haodong Duan",
"Kai Chen",
"Dahua Lin",
"Limin Wang"
],
"doi": "10.1109/cvpr52688.2022.01352",
"ref_id": "b22",
"title": "OCSampler: Compressing Videos to One Clip with Single-step Sampling",
"year": "2022"
},
{
"authors": [
"Chuanhe Liu",
"Tianhao Tang",
"Kui Lv",
"Minghao Wang"
],
"doi": "10.1145/3242969.3264989",
"ref_id": "b23",
"title": "Multi-Feature Based Emotion Recognition for Video Clips",
"year": "2018"
},
{
"authors": [
"Ilya Makarov",
"Mikhail Tokmakov",
"Pavel Polyakov",
"Peter Zyuzin",
"Maxim Martynov",
"Oleg Konoplya",
"George Kuznetsov",
"Ivan Guschenko-Cheverda",
"Maxim Uriev",
"Ivan Mokeev",
"Olga Gerasimova",
"Lada Tokmakova",
"Alexey Kosmachev"
],
"doi": "10.1145/2964284.2973826",
"ref_id": "b24",
"title": "First-Person Shooter Game for Virtual Reality Headset with Advanced Multi-Agent Intelligent System",
"year": "2016"
},
{
"authors": [
"Debin Meng",
"Xiaojiang Peng",
"Kai Wang",
"Yu Qiao"
],
"doi": "10.1109/icip.2019.8803603",
"ref_id": "b25",
"title": "Frame Attention Networks for Facial Expression Recognition in Videos",
"year": "2019"
},
{
"authors": [
"Yue Meng",
"Chung-Ching Lin",
"Rameswar Panda",
"Prasanna Sattigeri",
"Leonid Karlinsky",
"Aude Oliva",
"Kate Saenko",
"Rogerio Feris"
],
"doi": "10.1007/978-3-030-58571-6_6",
"ref_id": "b26",
"title": "AR-Net: Adaptive Frame Resolution for Efficient Action Recognition",
"year": "2020"
},
{
"authors": [
"Ali Mollahosseini",
"Behzad Hasani",
"Mohammad H Mahoor"
],
"doi": "10.1109/taffc.2017.2740923",
"ref_id": "b27",
"title": "AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild",
"year": "2017"
},
{
"authors": [
"Kim Ngan Phan",
"Hong-Hai Nguyen",
"Van-Thong Huynh",
"Soo-Hyung Kim"
],
"doi": "10.1109/cvprw56347.2022.00280",
"ref_id": "b28",
"title": "Facial Expression Classification using Fusion of Deep Neural Network in Video",
"year": "2022"
},
{
"authors": [
"A Raviv",
"Y Dinai",
"I Drozdov",
"N Zehngut",
"I Goldin",
"S I R Center"
],
"doi": "",
"ref_id": "b29",
"title": "D-step: Dynamic spatio-temporal pruning",
"year": "2022"
},
{
"authors": [
"Elena Ryumina",
"Denis Dresvyanskiy",
"Alexey Karpov"
],
"doi": "10.1016/j.neucom.2022.10.013",
"ref_id": "b30",
"title": "In search of a robust facial expressions recognition model: A large-scale visual cross-corpus study",
"year": "2022"
},
{
"authors": [
"Andrey V Savchenko"
],
"doi": "10.1109/ijcnn48605.2020.9207379",
"ref_id": "b31",
"title": "Sequential Analysis with Specified Confidence Level and Adaptive Convolutional Neural Networks in Image Recognition",
"year": "2020"
},
{
"authors": [
"Andrey V Savchenko"
],
"doi": "10.1109/sisy52375.2021.9582508",
"ref_id": "b32",
"title": "Facial expression and attributes recognition based on multi-task learning of lightweight neural networks",
"year": "2021"
},
{
"authors": [
"A V Savchenko"
],
"doi": "",
"ref_id": "b33",
"title": "Fast inference in convolutional neural networks based on sequential three-way decisions",
"year": "2021"
},
{
"authors": [
"A V Savchenko"
],
"doi": "",
"ref_id": "b34",
"title": "Video-based frame-level facial analysis of affective behavior on mobile devices using EfficientNets",
"year": "2022"
},
{
"authors": [
"Andrey V Savchenko"
],
"doi": "10.1007/978-3-031-25075-0_4",
"ref_id": "b35",
"title": "MT-EmotiEffNet for Multi-task Human Affective Behavior Analysis and Learning from Synthetic Data",
"year": "2023"
},
{
"authors": [
"A V Savchenko",
"L V Savchenko",
"I Makarov"
],
"doi": "",
"ref_id": "b36",
"title": "Classifying emotions and engagement in online learning based on a single facial expression recognition neural network",
"year": "2022"
},
{
"authors": [
"Ximeng Sun",
"Rameswar Panda",
"Chun-Fu Richard Chen",
"Aude Oliva",
"Rogerio Feris",
"Kate Saenko"
],
"doi": "10.1109/iccv48922.2021.00728",
"ref_id": "b37",
"title": "Dynamic Network Quantization for Efficient Video Inference",
"year": "2021"
},
{
"authors": [
"Huanjie Tao",
"Qianyue Duan"
],
"doi": "10.1016/j.eswa.2022.119371",
"ref_id": "b38",
"title": "An adaptive frame selection network with enhanced dilated convolution for video smoke recognition",
"year": "2023"
},
{
"authors": [
"S Teerapittayanon",
"B Mcdanel",
"H Kung",
"Branchynet"
],
"doi": "",
"ref_id": "b39",
"title": "Fast inference via early exiting from deep neural networks",
"year": "2016"
},
{
"authors": [
"A Wald"
],
"doi": "",
"ref_id": "b40",
"title": "Sequential Analysis",
"year": "2013"
},
{
"authors": [
"Yulin Wang",
"Zhaoxi Chen",
"Haojun Jiang",
"Shiji Song",
"Yizeng Han",
"Gao Huang"
],
"doi": "10.1109/iccv48922.2021.01594",
"ref_id": "b41",
"title": "Adaptive Focus for Efficient Video Recognition",
"year": "2021"
},
{
"authors": [
"Y Wang",
"Y Sun",
"Y Huang",
"Z Liu",
"S Gao",
"W Zhang",
"W Ge",
"W Zhang"
],
"doi": "",
"ref_id": "b42",
"title": "FERV39k: A large-scale multi-scene dataset for facial expression recognition in videos",
"year": "2022"
},
{
"authors": [
"Zuxuan Wu",
"Hengduo Li",
"Yingbin Zheng",
"Caiming Xiong",
"Yu-Gang Jiang",
"Larry S Davis"
],
"doi": "10.1007/s11263-021-01508-1",
"ref_id": "b43",
"title": "A Coarse-to-Fine Framework for Resource Efficient Video Recognition",
"year": "2019"
},
{
"authors": [
"Zuxuan Wu",
"Caiming Xiong",
"Chih-Yao Ma",
"Richard Socher",
"Larry S Davis"
],
"doi": "10.1109/cvpr.2019.00137",
"ref_id": "b44",
"title": "AdaFrame: Adaptive Frame Selection for Fast Video Recognition",
"year": "2019"
},
{
"authors": [
"Boyang Xia",
"Wenhao Wu",
"Haoran Wang",
"Rui Su",
"Dongliang He",
"Haosen Yang",
"Xiaoran Fan",
"Wanli Ouyang"
],
"doi": "10.1007/978-3-031-19830-4_40",
"ref_id": "b45",
"title": "NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition",
"year": "2022"
},
{
"authors": [
"F Xue",
"Z Tan",
"Y Zhu",
"Z Ma",
"G Guo"
],
"doi": "",
"ref_id": "b46",
"title": "Coarseto-fine cascaded networks with smooth predicting for video facial expression recognition",
"year": "2022"
},
{
"authors": [
"Serena Yeung",
"Olga Russakovsky",
"Greg Mori",
"Li Fei-Fei"
],
"doi": "10.1109/cvpr.2016.293",
"ref_id": "b47",
"title": "End-to-End Learning of Action Detection from Frame Glimpses in Videos",
"year": "2016"
},
{
"authors": [
"Wei Zhang",
"Feng Qiu",
"Suzhen Wang",
"Hao Zeng",
"Zhimeng Zhang",
"Rudong An",
"Bowen Ma",
"Yu Ding"
],
"doi": "10.1109/cvprw56347.2022.00271",
"ref_id": "b48",
"title": "Transformer-based Multimodal Information Fusion for Facial Expression Analysis",
"year": "2022"
},
{
"authors": [
"Wei Zhang",
"Bowen Ma",
"Feng Qiu",
"Yu Ding"
],
"doi": "10.1109/cvprw59228.2023.00615",
"ref_id": "b49",
"title": "Multi-modal Facial Affective Analysis based on Masked Autoencoder",
"year": "2023"
},
{
"authors": [
"Hengshun Zhou",
"Debin Meng",
"Yuanyuan Zhang",
"Xiaojiang Peng",
"Jun Du",
"Kai Wang",
"Yu Qiao"
],
"doi": "10.1145/3340555.3355713",
"ref_id": "b50",
"title": "Exploring Emotion Features and Fusion Strategies for Audio-Video Emotion Recognition",
"year": "2019"
}
] |
[] |
[
"f2907e2529494030",
"8eb6c5da03f1cca9",
"e0f095dcfc4256ef",
"f426041f3a3a3b03",
"a99e9cbc2f6b0c89",
"c853657d862576b1",
"695a9c9d98310c17",
"59224b79bc0cea0d",
"ddd750fc732203de",
"a22bd8913aba417a",
"00de840419364031",
"6309baa59e2ab0b5",
"46b493c90dca6684",
"03a34f875e755776",
"062f344b525c4063",
"ac9be4a73208a609",
"9f995720df26926f",
"bbe05697461f5491",
"c28beb635ec1b9d2",
"6d93d44299b6d25d",
"941703f19ae91177",
"ac6cd557f5a1f29a",
"78cafa8df548ed7e",
"56f98545c93a9f56",
"7b11651ddc7bd33d",
"969ccb9586f0da1d",
"208e1dde1328815a",
"7eab088e5a68762a",
"38e4687c1c325835",
"cc040095ea110612",
"0c4c21c13c386959",
"698b1be0cb212246",
"f642c5b174b6ab70",
"8202c3b9469468e3",
"60f4fac77a3b34eb",
"e1735da257430983",
"040f3b28d4b947d4",
"707cd939b12f7d9e",
"6dc416371733d443",
"10ccfb3247a72e40",
"edfd01864447892d",
"aa9da2848952a0de",
"73ab525ced0cd38d",
"48fdcf631c57e5b6",
"a44628b82a0edd9f",
"5ddf01f15d939054",
"43eb133a84eadec0",
"01f3231d09d195b2",
"97d7fe07556fe476",
"589da59136e47326",
"d84016899887270a"
] |
Lhyy8H75KA
|
Scaling Vision Transformers to 22 Billion Parameters
|
data/openreview_paper/ICML_2023_oral/Lhyy8H75KA//paper.pdf
| 123
| 0
|
[] |
[
{
"authors": [
"Samira Abnar",
"Willem Zuidema"
],
"doi": "10.18653/v1/2020.acl-main.385",
"ref_id": "b0",
"title": "Quantifying Attention Flow in Transformers",
"year": "2020"
},
{
"authors": [
"S Abnar",
"M Dehghani",
"B Neyshabur",
"H Sedghi"
],
"doi": "",
"ref_id": "b1",
"title": "Exploring the limits of large scale pre-training",
"year": "2021"
},
{
"authors": [
"T Adler",
"J Brandstetter",
"M Widrich",
"A Mayr",
"D P Kreil",
"M Kopp",
"G Klambauer",
"S Hochreiter"
],
"doi": "",
"ref_id": "b2",
"title": "Crossdomain few-shot learning by representation fusion",
"year": "2020"
},
{
"authors": [
"O Aka",
"K Burke",
"A Bauerle",
"C Greer",
"M Mitchell"
],
"doi": "",
"ref_id": "b3",
"title": "Measuring model biases in the absence of ground truth",
"year": "2021"
},
{
"authors": [
"I Alabdulmohsin",
"M Lucic"
],
"doi": "",
"ref_id": "b4",
"title": "A near optimal algorithm for debiasing trained machine learning models",
"year": "2021"
},
{
"authors": [
"A Andreassen",
"Y Bahri",
"B Neyshabur",
"R Roelofs"
],
"doi": "",
"ref_id": "b5",
"title": "The evolution of out-of-distribution robustness throughout fine-tuning",
"year": "2021"
},
{
"authors": [
"A Barbu",
"D Mayo",
"J Alverio",
"W Luo",
"C Wang",
"D Gutfreund",
"J Tenenbaum",
"B Katz"
],
"doi": "",
"ref_id": "b6",
"title": "ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models",
"year": "2019"
},
{
"authors": [
"C Beattie",
"J Z Leibo",
"D Teplyashin",
"T Ward",
"M Wainwright",
"H Küttler",
"A Lefrancq",
"S Green",
"V Valdés",
"A Sadik"
],
"doi": "",
"ref_id": "b7",
"title": "",
"year": "2016"
},
{
"authors": [
"L Beyer",
"O J Hénaff",
"A Kolesnikov",
"X Zhai",
"A V Oord"
],
"doi": "",
"ref_id": "b8",
"title": "Are we done with imagenet?",
"year": "2020"
},
{
"authors": [
"Lucas Beyer",
"Pavel Izmailov",
"Alexander Kolesnikov",
"Mathilde Caron",
"Simon Kornblith",
"Xiaohua Zhai",
"Matthias Minderer",
"Michael Tschannen",
"Ibrahim Alabdulmohsin",
"Filip Pavetic"
],
"doi": "10.1109/cvpr52729.2023.01393",
"ref_id": "b9",
"title": "FlexiViT: One Model for All Patch Sizes",
"year": "2022"
},
{
"authors": [
"L Beyer",
"X Zhai",
"A Royer",
"L Markeeva",
"R Anil",
"A Kolesnikov"
],
"doi": "",
"ref_id": "b10",
"title": "Knowledge distillation: A good teacher is patient and consistent",
"year": "2022"
},
{
"authors": [
"J Bradbury",
"R Frostig",
"P Hawkins",
"M J Johnson",
"C Leary",
"D Maclaurin",
"G Necula",
"A Paszke",
"J Vanderplas",
"S Wanderman-Milne",
"Q Zhang"
],
"doi": "",
"ref_id": "b11",
"title": "JAX: composable transformations of Python+NumPy programs",
"year": "2018"
},
{
"authors": [
"J Buolamwini",
"T Gebru"
],
"doi": "",
"ref_id": "b12",
"title": "Gender shades: Intersectional accuracy disparities in commercial gender classification",
"year": "2018"
},
{
"authors": [
"Richard H Byrd",
"Peihuang Lu",
"Jorge Nocedal",
"Ciyou Zhu"
],
"doi": "10.1137/0916069",
"ref_id": "b13",
"title": "A Limited Memory Algorithm for Bound Constrained Optimization",
"year": "1995"
},
{
"authors": [
"Aylin Caliskan",
"Joanna J Bryson",
"Arvind Narayanan"
],
"doi": "10.1126/science.aal4230",
"ref_id": "b14",
"title": "Semantics derived automatically from language corpora contain human-like biases",
"year": "2017"
},
{
"authors": [
"Xi Chen",
"Josip Djolonga",
"Piotr Padlewski",
"Basil Mustafa",
"Soravit Changpinyo",
"Jialin Wu",
"Carlos Riquelme Ruiz",
"Sebastian Goodman",
"Xiao Wang",
"Yi Tay",
"Siamak Shakeri",
"Mostafa Dehghani",
"Daniel Salz",
"Mario Lucic",
"Michael Tschannen",
"Arsha Nagrani",
"Hexiang Hu",
"Mandar Joshi",
"Bo Pang",
"Ceslee Montgomery",
"Paulina Pietrzyk",
"Marvin Ritter",
"A J Piergiovanni",
"Matthias Minderer",
"Filip Pavetic",
"Austin Waters",
"Gang Li",
"Ibrahim Alabdulmohsin",
"Lucas Beyer",
"Julien Amelot",
"Kenton Lee",
"Andreas Peter Steiner",
"Yang Li",
"Daniel Keysers",
"Anurag Arnab",
"Yuanzhong Xu",
"Keran Rong",
"Alexander Kolesnikov",
"Mojtaba Seyedhosseini",
"Anelia Angelova",
"Xiaohua Zhai",
"Neil Houlsby",
"Radu Soricut"
],
"doi": "10.1109/cvpr52733.2024.01368",
"ref_id": "b15",
"title": "On Scaling Up a Multilingual Vision and Language Model",
"year": "2022"
},
{
"authors": [
"Gong Cheng",
"Junwei Han",
"Xiaoqiang Lu"
],
"doi": "10.1109/jproc.2017.2675998",
"ref_id": "b16",
"title": "Remote Sensing Image Scene Classification: Benchmark and State of the Art",
"year": "2017"
},
{
"authors": [
"A Chowdhery",
"S Narang",
"J Devlin",
"M Bosma",
"G Mishra",
"A Roberts",
"P Barham",
"H W Chung",
"C Sutton",
"S Gehrmann"
],
"doi": "",
"ref_id": "b17",
"title": "Scaling language modeling with pathways",
"year": "2022"
},
{
"authors": [
"H W Chung",
"L Hou",
"S Longpre",
"B Zoph",
"Y Tay",
"W Fedus",
"E Li",
"X Wang",
"M Dehghani",
"S Brahma"
],
"doi": "",
"ref_id": "b18",
"title": "Scaling instruction-finetuned language models",
"year": "2022"
},
{
"authors": [
"Mircea Cimpoi",
"Subhransu Maji",
"Iasonas Kokkinos",
"Sammy Mohamed",
"Andrea Vedaldi"
],
"doi": "10.1109/cvpr.2014.461",
"ref_id": "b19",
"title": "Describing Textures in the Wild",
"year": "2014"
},
{
"authors": [
"Mark Collier",
"Basil Mustafa",
"Efi Kokiopoulou",
"Rodolphe Jenatton",
"Jesse Berent"
],
"doi": "10.1109/cvpr46437.2021.00160",
"ref_id": "b20",
"title": "Correlated Input-Dependent Label Noise in Large-Scale Image Classification",
"year": "2021"
},
{
"authors": [
"J.-B Cordonnier",
"A Loukas",
"M Jaggi"
],
"doi": "",
"ref_id": "b21",
"title": "On the relationship between self-attention and convolutional layers",
"year": "2019"
},
{
"authors": [
"Yin Cui",
"Yang Song",
"Chen Sun",
"Andrew Howard",
"Serge Belongie"
],
"doi": "10.1109/cvpr.2018.00432",
"ref_id": "b22",
"title": "Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning",
"year": "2018"
},
{
"authors": [
"M Dehghani",
"A Arnab",
"L Beyer",
"A Vaswani",
"Y Tay"
],
"doi": "",
"ref_id": "b23",
"title": "The efficiency misnomer",
"year": "2021"
},
{
"authors": [
"M Dehghani",
"Y Tay",
"A A Gritsenko",
"Z Zhao",
"N Houlsby",
"F Diaz",
"D Metzler",
"O Vinyals"
],
"doi": "",
"ref_id": "b24",
"title": "The benchmark lottery",
"year": "2021"
},
{
"authors": [
"M Dehghani",
"A Gritsenko",
"A Arnab",
"M Minderer",
"Y Tay"
],
"doi": "",
"ref_id": "b25",
"title": "Scenic: A jax library for computer vision research and beyond",
"year": "2022"
},
{
"authors": [
"J Deng",
"W Dong",
"R Socher",
"L.-J Li",
"K Li",
"L Fei-Fei"
],
"doi": "",
"ref_id": "b26",
"title": "ImageNet: A large-scale hierarchical image database",
"year": "2009"
},
{
"authors": [
"Jessica Deuschel",
"Bettina Finzel",
"Ines Rieger"
],
"doi": "10.20378/irb-50304",
"ref_id": "b27",
"title": "Uncovering the Bias in Facial Expressions",
"year": "2020"
},
{
"authors": [
"Josip Djolonga",
"Jessica Yung",
"Michael Tschannen",
"Rob Romijnders",
"Lucas Beyer",
"Alexander Kolesnikov",
"Joan Puigcerver",
"Matthias Minderer",
"Alexander D'amour",
"Dan Moldovan",
"Sylvain Gelly",
"Neil Houlsby",
"Xiaohua Zhai",
"Mario Lucic"
],
"doi": "10.1109/cvpr46437.2021.01619",
"ref_id": "b28",
"title": "On Robustness and Transferability of Convolutional Neural Networks",
"year": "2020"
},
{
"authors": [
"Josip Djolonga",
"Jessica Yung",
"Michael Tschannen",
"Rob Romijnders",
"Lucas Beyer",
"Alexander Kolesnikov",
"Joan Puigcerver",
"Matthias Minderer",
"Alexander D'amour",
"Dan Moldovan",
"Sylvain Gelly",
"Neil Houlsby",
"Xiaohua Zhai",
"Mario Lucic"
],
"doi": "10.1109/cvpr46437.2021.01619",
"ref_id": "b29",
"title": "On Robustness and Transferability of Convolutional Neural Networks",
"year": "2021"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly",
"J Uszkoreit",
"N Houlsby"
],
"doi": "",
"ref_id": "b30",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2021"
},
{
"authors": [
"Cynthia Dwork",
"Moritz Hardt",
"Toniann Pitassi",
"Omer Reingold",
"Richard Zemel"
],
"doi": "10.1145/2090236.2090255",
"ref_id": "b31",
"title": "Fairness through awareness",
"year": "2012"
},
{
"authors": [
"D Eigen",
"C Puhrsch",
"R Fergus"
],
"doi": "",
"ref_id": "b32",
"title": "Depth map prediction from a single image using a multi-scale deep network",
"year": "2014"
},
{
"authors": [
"R El-Yaniv",
"Y Wiener"
],
"doi": "",
"ref_id": "b33",
"title": "On the foundations of noisefree selective classification",
"year": "2010"
},
{
"authors": [
"U Evci",
"V Dumoulin",
"H Larochelle",
"M C Mozer"
],
"doi": "",
"ref_id": "b34",
"title": "Head2Toe: Utilizing intermediate representations for better transfer learning",
"year": "2022"
},
{
"authors": [
"Mark Everingham",
"Luc Van Gool",
"Christopher K I Williams",
"John Winn",
"Andrew Zisserman"
],
"doi": "10.1007/s11263-009-0275-4",
"ref_id": "b35",
"title": "The Pascal Visual Object Classes (VOC) Challenge",
"year": "2010"
},
{
"authors": [
"W Fedus",
"B Zoph",
"N Shazeer"
],
"doi": "",
"ref_id": "b36",
"title": "Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity",
"year": "2021"
},
{
"authors": [
"Jessica Li"
],
"doi": "10.23860/thesis-li-jessica-2023",
"ref_id": "b37",
"title": "Exploring CLIP Feature Vectors for Improved Out-of-Distribution Detection",
"year": "2021"
},
{
"authors": [
"A Geiger",
"P Lenz",
"C Stiller",
"R Urtasun"
],
"doi": "10.1177/0278364913491297",
"ref_id": "b38",
"title": "Vision meets robotics: The KITTI dataset",
"year": "2013"
},
{
"authors": [
"Robert Geirhos",
"Patricia Rubisch",
"Jonas Rauber",
"Carlos R Medina Temme",
"Claudio Michaelis",
"Wieland Brendel",
"Matthias Bethge",
"Felix A Wichmann"
],
"doi": "10.1167/19.10.209c",
"ref_id": "b39",
"title": "Inducing a human-like shape bias leads to emergent human-level distortion robustness in CNNs",
"year": "2019"
},
{
"authors": [
"Robert Geirhos",
"Kantharaju Narayanappa",
"Benjamin Mitzkus",
"Tizian Thieringer",
"Matthias Bethge",
"Felix A Wichmann",
"Wieland Brendel"
],
"doi": "10.1167/jov.22.14.3273",
"ref_id": "b40",
"title": "The bittersweet lesson: data-rich models narrow the behavioural gap to human vision",
"year": "2021"
},
{
"authors": [
"J H Gilmer",
"A Schioppa",
"J Cohen"
],
"doi": "10.4324/9781003451389-5",
"ref_id": "b41",
"title": "Assessing the effectiveness of administrative training in Africa",
"year": "2023"
},
{
"authors": [
"C Guo",
"G Pleiss",
"Y Sun",
"K Q Weinberger"
],
"doi": "",
"ref_id": "b42",
"title": "On calibration of modern neural networks",
"year": "2017"
},
{
"authors": [
"J Heek",
"A Levskaya",
"A Oliver",
"M Ritter",
"B Rondepierre",
"A Steiner",
"M Van Zee"
],
"doi": "",
"ref_id": "b43",
"title": "Flax: A neural network library and ecosystem for JAX",
"year": "2020"
},
{
"authors": [
"Patrick Helber",
"Benjamin Bischke",
"Andreas Dengel",
"Damian Borth"
],
"doi": "10.1109/jstars.2019.2918242",
"ref_id": "b44",
"title": "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification",
"year": "2019"
},
{
"authors": [
"Lisa Anne Hendricks",
"Kaylee Burns",
"Kate Saenko",
"Trevor Darrell",
"Anna Rohrbach"
],
"doi": "10.1007/978-3-030-01219-9_47",
"ref_id": "b45",
"title": "Women Also Snowboard: Overcoming Bias in Captioning Models",
"year": "2018"
},
{
"authors": [
"D Hendrycks",
"T Dietterich"
],
"doi": "",
"ref_id": "b46",
"title": "Benchmarking neural network robustness to common corruptions and perturbations",
"year": "2019"
},
{
"authors": [
"D Hendrycks",
"S Basart",
"M Mazeika",
"M Mostajabi",
"J Steinhardt",
"D Song"
],
"doi": "",
"ref_id": "b47",
"title": "Scaling out-ofdistribution detection for real-world settings",
"year": "2019"
},
{
"authors": [
"D Hendrycks",
"S Basart",
"N Mu",
"S Kadavath",
"F Wang",
"E Dorundo",
"R Desai",
"T Zhu",
"S Parajuli",
"M Guo",
"D Song",
"J Steinhardt",
"J Gilmer"
],
"doi": "",
"ref_id": "b48",
"title": "The many faces of robustness: A critical analysis of out-of-distribution generalization",
"year": "2020"
},
{
"authors": [
"Dan Hendrycks",
"Kevin Zhao",
"Steven Basart",
"Jacob Steinhardt",
"Dawn Song"
],
"doi": "10.1109/cvpr46437.2021.01501",
"ref_id": "b49",
"title": "Natural Adversarial Examples",
"year": "2021"
},
{
"authors": [
"M Hermann",
"B Ruf",
"M Weinmann",
"S Hinz"
],
"doi": "10.5194/isprs-annals-v-2-2020-357-2020",
"ref_id": "b50",
"title": "SELF-SUPERVISED LEARNING FOR MONOCULAR DEPTH ESTIMATION FROM AERIAL IMAGERY",
"year": "2020"
},
{
"authors": [
"G Hinton",
"O Vinyals",
"J Dean"
],
"doi": "",
"ref_id": "b51",
"title": "Distilling the knowledge in a neural network",
"year": "2015"
},
{
"authors": [
"C Jia",
"Y Yang",
"Y Xia",
"Y.-T Chen",
"Z Parekh",
"H Pham",
"Q Le",
"Y.-H Sung",
"Z Li",
"T Duerig"
],
"doi": "",
"ref_id": "b52",
"title": "Scaling up visual and vision-language representation learning with noisy text supervision",
"year": "2021"
},
{
"authors": [
"Justin Johnson",
"Bharath Hariharan",
"Laurens Van Der Maaten",
"Li Fei-Fei",
"C Lawrence Zitnick",
"Ross Girshick"
],
"doi": "10.1109/cvpr.2017.215",
"ref_id": "b53",
"title": "CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning",
"year": "2017"
},
{
"authors": [
"Norman P Jouppi",
"Doe Hyun Yoon",
"George Kurian",
"Sheng Li",
"Nishant Patil",
"James Laudon",
"Cliff Young",
"David Patterson"
],
"doi": "10.1145/3360307",
"ref_id": "b54",
"title": "A domain-specific supercomputer for training deep neural networks",
"year": "2020. 2015"
},
{
"authors": [
"Jakob Nikolas Kather",
"Cleo-Aron Weis",
"Francesco Bianconi",
"Susanne M Melchers",
"Lothar R Schad",
"Timo Gaiser",
"Alexander Marx",
"Frank Gerrit Zöllner"
],
"doi": "10.1038/srep27988",
"ref_id": "b55",
"title": "Multi-class texture analysis in colorectal cancer histology",
"year": "2016"
},
{
"authors": [
"W Kay",
"J Carreira",
"K Simonyan",
"B Zhang",
"C Hillier",
"S Vijayanarasimhan",
"F Viola",
"T Green",
"T Back",
"P Natsev"
],
"doi": "",
"ref_id": "b56",
"title": "The kinetics human action video dataset",
"year": "2017"
},
{
"authors": [
"A Khalifa",
"M C Mozer",
"H Sedghi",
"B Neyshabur",
"I Alabdulmohsin"
],
"doi": "",
"ref_id": "b57",
"title": "Layer-stack temperature scaling",
"year": "2022"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "",
"ref_id": "b58",
"title": "A method for stochastic optimization",
"year": "2015"
},
{
"authors": [
"I D Kivlichan",
"Z Lin",
"J Liu",
"L Vasserman"
],
"doi": "",
"ref_id": "b59",
"title": "Measuring and improving model-moderator collaboration using uncertainty estimation",
"year": "2021"
},
{
"authors": [
"Alexander Kolesnikov",
"Lucas Beyer",
"Xiaohua Zhai",
"Joan Puigcerver",
"Jessica Yung",
"Sylvain Gelly",
"Neil Houlsby"
],
"doi": "10.1007/978-3-030-58558-7_29",
"ref_id": "b60",
"title": "Big Transfer (BiT): General Visual Representation Learning",
"year": "2020"
},
{
"authors": [
"Jonathan Krause",
"Michael Stark",
"Jia Deng",
"Li Fei-Fei"
],
"doi": "10.1109/iccvw.2013.77",
"ref_id": "b61",
"title": "3D Object Representations for Fine-Grained Categorization",
"year": "2013"
},
{
"authors": [
"A Krizhevsky",
"G Hinton"
],
"doi": "10.7717/peerjcs.633/fig-5",
"ref_id": "b62",
"title": "Figure 5: Initial cross entropy values of samples from CIFAR-100 (Krizhevsky, 2009) on SqueezeNet (Iandola et al., 2016) when learning 10 classes at a time using the same learning settings as shown in Table 1.",
"year": "2009"
},
{
"authors": [
"Taku Kudo",
"John Richardson"
],
"doi": "10.18653/v1/d18-2012",
"ref_id": "b63",
"title": "SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing",
"year": "November 2018"
},
{
"authors": [
"M Kumar",
"N Houlsby",
"N Kalchbrenner",
"E D Cubuk"
],
"doi": "",
"ref_id": "b64",
"title": "Do better imagenet classifiers assess perceptual similarity better",
"year": "2022"
},
{
"authors": [
"Y Lecun",
"F J Huang",
"L Bottou"
],
"doi": "",
"ref_id": "b65",
"title": "Learning methods for generic object recognition with invariance to pose and lighting",
"year": "2004"
},
{
"authors": [
"F.-F Li",
"M Andreeto",
"M Ranzato",
"P Perona",
"Caltech"
],
"doi": "10.22002/D1.20086",
"ref_id": "b66",
"title": "",
"year": "2022"
},
{
"authors": [
"Ziwei Liu",
"Ping Luo",
"Xiaogang Wang",
"Xiaoou Tang"
],
"doi": "10.1109/iccv.2015.425",
"ref_id": "b67",
"title": "Deep Learning Face Attributes in the Wild",
"year": "2015"
},
{
"authors": [
"I Loshchilov",
"F Hutter",
"Sgdr"
],
"doi": "",
"ref_id": "b68",
"title": "Stochastic gradient descent with warm restarts",
"year": "2017"
},
{
"authors": [
"Dhruv Mahajan",
"Ross Girshick",
"Vignesh Ramanathan",
"Kaiming He",
"Manohar Paluri",
"Yixuan Li",
"Ashwin Bharambe",
"Laurens Van Der Maaten"
],
"doi": "10.1007/978-3-030-01216-8_12",
"ref_id": "b69",
"title": "Exploring the Limits of Weakly Supervised Pretraining",
"year": "2018"
},
{
"authors": [
"L Matthey",
"I Higgins",
"D Hassabis",
"A Lerchner"
],
"doi": "",
"ref_id": "b70",
"title": "dSprites: Disentanglement testing sprites dataset",
"year": "2017"
},
{
"authors": [
"M Minderer",
"J Djolonga",
"R Romijnders",
"F Hubis",
"X Zhai",
"N Houlsby",
"D Tran",
"M Lucic"
],
"doi": "",
"ref_id": "b71",
"title": "Revisiting the calibration of modern neural networks",
"year": "2021"
},
{
"authors": [
"Margaret Mitchell",
"Simone Wu",
"Andrew Zaldivar",
"Parker Barnes",
"Lucy Vasserman",
"Ben Hutchinson",
"Elena Spitzer",
"Inioluwa Deborah Raji",
"Timnit Gebru"
],
"doi": "10.1145/3287560.3287596",
"ref_id": "b72",
"title": "Model Cards for Model Reporting",
"year": "2019"
},
{
"authors": [
"Mathew Monfort",
"Carl Vondrick",
"Aude Oliva",
"Alex Andonian",
"Bolei Zhou",
"Kandan Ramakrishnan",
"Sarah Adel Bargal",
"Tom Yan",
"Lisa Brown",
"Quanfu Fan",
"Dan Gutfreund"
],
"doi": "10.1109/tpami.2019.2901464",
"ref_id": "b73",
"title": "Moments in Time Dataset: One Million Videos for Event Understanding",
"year": "2019"
},
{
"authors": [
"Roozbeh Mottaghi",
"Xianjie Chen",
"Xiaobai Liu",
"Nam-Gyu Cho",
"Seong-Whan Lee",
"Sanja Fidler",
"Raquel Urtasun",
"Alan Yuille"
],
"doi": "10.1109/cvpr.2014.119",
"ref_id": "b74",
"title": "The Role of Context for Object Detection and Semantic Segmentation in the Wild",
"year": "2014"
},
{
"authors": [
"M P Naeini",
"G Cooper",
"M Hauskrecht"
],
"doi": "",
"ref_id": "b75",
"title": "Obtaining well calibrated probabilities using bayesian binning",
"year": "2015"
},
{
"authors": [
"Y Netzer",
"T Wang",
"A Coates",
"A Bissacco",
"B Wu",
"A Y Ng"
],
"doi": "",
"ref_id": "b76",
"title": "Reading digits in natural images with unsupervised feature learning",
"year": "2011. 2011"
},
{
"authors": [
"Maria-Elena Nilsback",
"Andrew Zisserman"
],
"doi": "10.1109/icvgip.2008.47",
"ref_id": "b77",
"title": "Automated Flower Classification over a Large Number of Classes",
"year": "2008"
},
{
"authors": [
"Sinno Jialin Pan",
"Qiang Yang"
],
"doi": "10.1109/tkde.2009.191",
"ref_id": "b78",
"title": "A Survey on Transfer Learning",
"year": "2010"
},
{
"authors": [
"O M Parkhi",
"A Vedaldi",
"A Zisserman",
"C Jawahar"
],
"doi": "",
"ref_id": "b79",
"title": "Cats and dogs",
"year": "2012. 2012"
},
{
"authors": [
"Hieu Pham",
"Zihang Dai",
"Golnaz Ghiasi",
"Kenji Kawaguchi",
"Hanxiao Liu",
"Adams Wei Yu",
"Jiahui Yu",
"Yi-Ting Chen",
"Minh-Thang Luong",
"Yonghui Wu",
"Mingxing Tan",
"Quoc V Le"
],
"doi": "10.1016/j.neucom.2023.126658",
"ref_id": "b80",
"title": "Combined scaling for zero-shot transfer learning",
"year": "2021"
},
{
"authors": [
"R Pope",
"S Douglas",
"A Chowdhery",
"J Devlin",
"J Bradbury",
"A Levskaya",
"J Heek",
"K Xiao",
"S Agrawal",
"J Dean"
],
"doi": "",
"ref_id": "b81",
"title": "Efficiently scaling transformer inference",
"year": "2022"
},
{
"authors": [
"A Radford",
"J W Kim",
"C Hallacy",
"A Ramesh",
"G Goh",
"S Agarwal",
"G Sastry",
"A Askell",
"P Mishkin",
"J Clark"
],
"doi": "",
"ref_id": "b82",
"title": "Learning transferable visual models from natural language supervision",
"year": "2021"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P J Liu"
],
"doi": "",
"ref_id": "b83",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "2019"
},
{
"authors": [
"Rene Ranftl",
"Alexey Bochkovskiy",
"Vladlen Koltun"
],
"doi": "10.1109/iccv48922.2021.01196",
"ref_id": "b84",
"title": "Vision Transformers for Dense Prediction",
"year": "2021"
},
{
"authors": [
"B Recht",
"R Roelofs",
"L Schmidt",
"V Shankar"
],
"doi": "",
"ref_id": "b85",
"title": "Do ImageNet classifiers generalize to ImageNet?",
"year": "2019"
},
{
"authors": [
"C Riquelme",
"J Puigcerver",
"B Mustafa",
"M Neumann",
"R Jenatton",
"A Susano Pinto",
"D Keysers",
"N Houlsby"
],
"doi": "",
"ref_id": "b86",
"title": "Scaling vision with sparse mixture of experts",
"year": "2021"
},
{
"authors": [
"Chitwan Saharia",
"William Chan",
"Huiwen Chang",
"Chris Lee",
"Jonathan Ho",
"Tim Salimans",
"David Fleet",
"Mohammad Norouzi"
],
"doi": "10.1145/3528233.3530757",
"ref_id": "b87",
"title": "Palette: Image-to-Image Diffusion Models",
"year": "2022"
},
{
"authors": [
"Robin Strudel",
"Ricardo Garcia",
"Ivan Laptev",
"Cordelia Schmid"
],
"doi": "10.1109/iccv48922.2021.00717",
"ref_id": "b88",
"title": "Segmenter: Transformer for Semantic Segmentation",
"year": "2021"
},
{
"authors": [
"Chen Sun",
"Abhinav Shrivastava",
"Saurabh Singh",
"Abhinav Gupta"
],
"doi": "10.1109/iccv.2017.97",
"ref_id": "b89",
"title": "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era",
"year": "2017"
},
{
"authors": [
"P Sun",
"H Kretzschmar",
"X Dotiwalla",
"A Chouard",
"V Patnaik",
"P Tsui",
"J Guo",
"Y Zhou",
"Y Chai",
"B Caine"
],
"doi": "",
"ref_id": "b90",
"title": "Scalability in perception for autonomous driving: Waymo open dataset",
"year": "2020"
},
{
"authors": [
"M Sundararajan",
"A Taly",
"Q Yan"
],
"doi": "",
"ref_id": "b91",
"title": "Axiomatic attribution for deep networks",
"year": "2017"
},
{
"authors": [
"C Szegedy",
"W Liu",
"Y Jia",
"P Sermanet",
"S Reed",
"D Anguelov",
"D Erhan",
"V Vanhoucke",
"A Rabinovich"
],
"doi": "",
"ref_id": "b92",
"title": "Going deeper with convolutions",
"year": "2015"
},
{
"authors": [
"R Taori",
"A Dave",
"V Shankar",
"N Carlini",
"B Recht",
"L Schmidt"
],
"doi": "",
"ref_id": "b93",
"title": "Measuring robustness to natural distribution shifts in image classification",
"year": "2020"
},
{
"authors": [
"Y Tay",
"M Dehghani",
"V Q Tran",
"X Garcia",
"D Bahri",
"T Schuster",
"H S Zheng",
"N Houlsby",
"D Metzler"
],
"doi": "",
"ref_id": "b94",
"title": "Unifying language learning paradigms",
"year": "2022"
},
{
"authors": [
"Eu Wern Teh",
"Graham W Taylor"
],
"doi": "10.1109/isbi45749.2020.9098533",
"ref_id": "b95",
"title": "Learning with Less Data Via Weakly Labeled Patch Classification in Digital Pathology",
"year": "2019"
},
{
"authors": [
"Hugo Touvron",
"Matthieu Cord",
"Hervé Jégou"
],
"doi": "10.1007/978-3-031-20053-3_30",
"ref_id": "b96",
"title": "DeiT III: Revenge of the ViT",
"year": "2022"
},
{
"authors": [
"D Tran",
"J Liu",
"M W Dusenberry",
"D Phan",
"M Collier",
"J Ren",
"K Han",
"Z Wang",
"Z Mariet",
"H Hu"
],
"doi": "",
"ref_id": "b97",
"title": "Towards reliability using pretrained large model extensions",
"year": "2022"
},
{
"authors": [
"Catherine Wah",
"Steve Branson",
"Pietro Perona",
"Serge Belongie"
],
"doi": "10.1109/iccv.2011.6126539",
"ref_id": "b98",
"title": "Multiclass recognition and part localization with humans in the loop",
"year": "2011"
},
{
"authors": [
"B Wang",
"A Komatsuzaki"
],
"doi": "",
"ref_id": "b99",
"title": "GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model",
"year": "May 2021"
},
{
"authors": [
"Shibo Wang",
"Jinliang Wei",
"Amit Sabne",
"Andy Davis",
"Berkin Ilbeyi",
"Blake Hechtman",
"Dehao Chen",
"Karthik Srinivasa Murthy",
"Marcello Maggioni",
"Qiao Zhang",
"Sameer Kumar",
"Tongfei Guo",
"Yuanzhong Xu",
"Zongwei Zhou"
],
"doi": "10.1145/3567955.3567959",
"ref_id": "b100",
"title": "Overlap Communication with Dependent Computation via Decomposition in Large Deep Learning Models",
"year": "2022"
},
{
"authors": [
"Y Wang",
"K Li",
"Y Li",
"Y He",
"B Huang",
"Z Zhao",
"H Zhang",
"J Xu",
"Y Liu",
"Z Wang",
"S Xing",
"G Chen",
"J Pan",
"J Yu",
"Y Wang",
"L Wang",
"Y Qiao",
"Internvideo"
],
"doi": "",
"ref_id": "b101",
"title": "General video foundation models via generative and discriminative learning",
"year": "2022"
},
{
"authors": [
"Z Wang",
"K Qinami",
"I C Karakozis",
"K Genova",
"P Nair",
"K Hata",
"O Russakovsky"
],
"doi": "",
"ref_id": "b102",
"title": "Towards fairness in visual recognition: Effective strategies for bias mitigation",
"year": "2020"
},
{
"authors": [
"J Wei",
"Y Tay",
"R Bommasani",
"C Raffel",
"B Zoph",
"S Borgeaud",
"D Yogatama",
"M Bosma",
"D Zhou",
"D Metzler"
],
"doi": "",
"ref_id": "b103",
"title": "Emergent abilities of large language models",
"year": "2022"
},
{
"authors": [
"Y Wen",
"D Tran",
"J Ba"
],
"doi": "",
"ref_id": "b104",
"title": "Batchensemble: an alternative approach to efficient ensemble and lifelong learning",
"year": "2019"
},
{
"authors": [
"Jianxiong Xiao",
"James Hays",
"Krista A Ehinger",
"Aude Oliva",
"Antonio Torralba"
],
"doi": "10.1109/cvpr.2010.5539970",
"ref_id": "b105",
"title": "SUN database: Large-scale scene recognition from abbey to zoo",
"year": "2010"
},
{
"authors": [
"Tete Xiao",
"Yingcheng Liu",
"Bolei Zhou",
"Yuning Jiang",
"Jian Sun"
],
"doi": "10.1007/978-3-030-01228-1_26",
"ref_id": "b106",
"title": "Unified Perceptual Parsing for Scene Understanding",
"year": "2018"
},
{
"authors": [
"Yi Yang",
"Shawn Newsam"
],
"doi": "10.1145/1869790.1869829",
"ref_id": "b107",
"title": "Bag-of-visual-words and spatial extensions for land-use classification",
"year": "2010"
},
{
"authors": [
"J Yu",
"Z Wang",
"V Vasudevan",
"L Yeung",
"M Seyedhosseini",
"Y Wu"
],
"doi": "",
"ref_id": "b108",
"title": "Coca: Contrastive captioners are imagetext foundation models",
"year": "2022"
},
{
"authors": [
"J Yu",
"Y Xu",
"J Y Koh",
"T Luong",
"G Baid",
"Z Wang",
"V Vasudevan",
"A Ku",
"Y Yang",
"B K Ayan"
],
"doi": "",
"ref_id": "b109",
"title": "Scaling autoregressive models for content-rich text-to-image generation",
"year": "2022"
},
{
"authors": [
"Muhammad Bilal Zafar",
"Isabel Valera",
"Manuel Gomez Rodriguez",
"Krishna P Gummadi"
],
"doi": "10.1145/3038912.3052660",
"ref_id": "b110",
"title": "Fairness Beyond Disparate Treatment & Disparate Impact",
"year": "2017"
},
{
"authors": [
"X Zhai",
"J Puigcerver",
"A Kolesnikov",
"P Ruyssen",
"C Riquelme",
"M Lucic",
"J Djolonga",
"A S Pinto",
"M Neumann",
"A Dosovitskiy"
],
"doi": "",
"ref_id": "b111",
"title": "A large-scale study of representation learning with the visual task adaptation benchmark",
"year": "2019"
},
{
"authors": [
"Xiaohua Zhai",
"Alexander Kolesnikov",
"Neil Houlsby",
"Lucas Beyer"
],
"doi": "10.1109/cvpr52688.2022.01179",
"ref_id": "b112",
"title": "Scaling Vision Transformers",
"year": "2022"
},
{
"authors": [
"Xiaohua Zhai",
"Xiao Wang",
"Basil Mustafa",
"Andreas Steiner",
"Daniel Keysers",
"Alexander Kolesnikov",
"Lucas Beyer"
],
"doi": "10.1109/cvpr52688.2022.01759",
"ref_id": "b113",
"title": "LiT: Zero-Shot Transfer with Locked-image text Tuning",
"year": "2022"
},
{
"authors": [
"B Zhang",
"R Sennrich"
],
"doi": "",
"ref_id": "b114",
"title": "Root mean square layer normalization",
"year": "2019"
},
{
"authors": [
"R Zhang",
"P Isola",
"A A Efros",
"E Shechtman",
"O Wang"
],
"doi": "",
"ref_id": "b115",
"title": "The unreasonable effectiveness of deep features as a perceptual metric",
"year": "2018"
},
{
"authors": [
"G Zhao",
"X Sun",
"J Xu",
"Z Zhang",
"L Luo",
"Muse"
],
"doi": "",
"ref_id": "b116",
"title": "Parallel multi-scale attention for sequence to sequence learning",
"year": "2019"
},
{
"authors": [
"Jieyu Zhao",
"Tianlu Wang",
"Mark Yatskar",
"Vicente Ordonez",
"Kai-Wei Chang"
],
"doi": "10.18653/v1/d17-1323",
"ref_id": "b117",
"title": "Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints",
"year": "2017"
},
{
"authors": [
"Bolei Zhou",
"Agata Lapedriza",
"Aditya Khosla",
"Aude Oliva",
"Antonio Torralba"
],
"doi": "10.1109/tpami.2017.2723009",
"ref_id": "b118",
"title": "Places: A 10 Million Image Database for Scene Recognition",
"year": "2017"
},
{
"authors": [
"Bolei Zhou",
"Hang Zhao",
"Xavier Puig",
"Sanja Fidler",
"Adela Barriuso",
"Antonio Torralba"
],
"doi": "10.1109/cvpr.2017.544",
"ref_id": "b119",
"title": "Scene Parsing through ADE20K Dataset",
"year": "2017"
},
{
"authors": [
"Bapps) ; Zhang"
],
"doi": "10.7717/peerj.18888/table-2",
"ref_id": "b120",
"title": "Table 2: Details of the NOS (Oh et al., 2023; Roderburg et al., 2021; Kurita et al., 2017; Musicco et al., 2013; Jørgensen et al., 2012; Khan et al., 2011; Baxter et al., 2009; Ren et al., 2022; Valentine et al., 2022; Ording et al., 2019; Heun et al., 2013; Ou et al., 2013; Attner et al., 2010).",
"year": "2018. 2011. 2022. 2013. 2015. 2009. 2009. 2017. 2017. 2016"
},
{
"authors": [
"Beattie"
],
"doi": "10.7717/peerj.20146/fig-2",
"ref_id": "b121",
"title": "Figure 2: Analysis of the risk of bias in accordance with the cochrane collaboration guidelines (Sigal et al., 2007; Church et al., 2010; Lambers et al., 2008; Tomas-Carus et al., 2016; Seyedizadeh, Cheragh-Birjandi & Hamedi Nia, 2020; Johansen et al., 2017; Macdonald et al., 2021; Aylin et al., 2009; Myers et al., 2013; Balducci et al., 2010; Reid et al., 2010; Stomby et al., 2017; Callisaya et al., 2017; Newton et al., 2020; Sénéchal et al., 2013; Annibalini et al., 2017; Donyaei et al., 2024; Larose et al., 2010; Byrkjeland et al., 2015; Banitalebi et al., 2019; Sparks et al., 2013; Banitalebi et al., 2021; Kadoglou et al., 2013; De Oliveira et al., 2012; Jamshidpour, Bahrpeyma & Khatami, 2020; Delevatti et al., 2022, 2020; Kang, Ko & Baek, 2016; Ghodrati et al., 2023; Martínez-Velilla et al., 2021; Espeland et al., 2017; Szilágyi et al., 2019; Jeon et al., 2020; Cai et al., 2023; Venkataraman et al., 2019; Yue et al., 2023; Ahmad et al., 2020).",
"year": "2016. 2017. 2017. 2014. 2019. 2008. 2009. 2018. 2019. 2020. 2021. 2019. 2022. 2017. 2013. 2019. 2019. 2014. 2010. 2019. 2012. 2017. 2017. 2015. 2004. 2004. 2010"
},
{
"authors": [
"Netzer"
],
"doi": "10.7717/peerj-cs.3495/fig-3",
"ref_id": "b122",
"title": "Figure 3: A selection of images from the UC Merced dataset (Yang & Newsam, 2010).",
"year": "2011. 2010. 2020"
}
] |
[] |
[
"1fa041a12ad52a74",
"7377ba10903cdcd3",
"7e63d79190b6b37b",
"7d291c7124de8053",
"a2e8778005b06418",
"3cd59af8a76471c0",
"4622086a4ae816d4",
"2d2e4c86b60a6d69",
"43490d6251009fc3",
"8fd909b167d50654",
"e8c8290c83e9c957",
"93ba50b1acee2748",
"2986fa811b91d3c6",
"3a3c326fefa5cf15",
"9b99e48c42d772d7",
"ec224fd23e81fe74",
"8d38dd60d537cc22",
"f240fc5d37c96edd",
"1a24dc8003b4b7ee",
"d098c8b1644683ce",
"3e75352b7b5312e2",
"7f9b8fd881dcf83e",
"377576873e1a3124",
"ce24fb23d747d06c",
"108e8db6002ffd70",
"10acdc6feace3a89",
"d49bee4f792b8dbc",
"c68f70cf24bd008f",
"6b7fe5d078266408",
"8ce19989bf23a09c",
"0b1cb47ac4ba5a71",
"edec86a8979f9263",
"514a695c1a577652",
"276a3e033f99a81d",
"568e9c2092bafab5",
"228290feadaa8ffd",
"57b7db8c93b0b4ba",
"05e6b50d9cceabbe",
"9b942aa38f7df02b",
"f38db7622ff4c087",
"de31b2e25927aab7",
"1df10dbb8a5b4f23",
"906c5f102c2c9ed8",
"6116f6051b7b9a3f",
"5fa9aa2730f12ca2",
"d124cc8a5eee7fdb",
"8cf06daec5e720ed",
"daddaf32f0761761",
"3afb4e7e8bee1feb",
"ac7017d6f8dfa6d4",
"43435fd2e4ea93bd",
"ad0c688e26ebaa3e",
"ade13a414911549c",
"f44a04269bc256d3",
"19f151d5608de85a",
"05201cb802205a17",
"05b811f9a74ef27f",
"b5b17ffceff4c4d5",
"efa52fc16696aff7",
"505d6b0f681ecdef",
"9cadae0d0fa29b58",
"810e959b5eec514d",
"ed10b7a0d3a6750e",
"6d2a0db406c543ec",
"de585cd958fd5312",
"d66cf09b420b5e4c",
"697e9ed710f842c7",
"364f7248dae178e7",
"f4ec8d727332361a",
"f02638b8b0e9bc28",
"732d3a8ed4ed9375",
"f0cde89cfcb14c55",
"a2a32511ba50d79c",
"0de910871ec4f42c",
"3fe2a9c1c6372e72",
"05c3406a8b08848e",
"50bb059ad5c2e9d2",
"3823d2f9dd6b1f6b",
"76b0143f8f19b50f",
"6db1a1c7d4968175",
"fdeb3ad689d044cf",
"bd532648cce414da",
"d2cb36a6296098c3",
"0ef97d43aa0a44f5",
"0f7b41762087fc55",
"1a474da2a92cd959",
"bb265f425c3ee0b0",
"70d3b63a2322c839",
"50842a9664f5b5f8",
"c5e30ce54ede3a8a",
"41bafa2fe2388797",
"71baa4bfc33b0622",
"23ed76ea41f28d97",
"39a1b2db553e3fc0",
"a77ba16b950c9cf5",
"b2bc3b17325b189a",
"216fe3367e48c775",
"8ad952229ed78fcf",
"f87fba28b64598eb",
"fcbe8ad4a2f72e6c",
"a6a54a27b6156ef0",
"b6f37573c2adae1e",
"16de30e5f1e85bee",
"605969fef7551d56",
"659bab77a9b85d70",
"c77564062b110d4a",
"4534142c2d9f35c1",
"3e96cc8615f0b26f",
"7f41b37446fb0320",
"4986a56958f273d6",
"9e4c735092dc72d0",
"80ecff57203f681d",
"e8f2c9b3cc2abee4",
"b4a9d2a706dc1cd1",
"03f6444dcf42fbe8",
"54621c0c0e4b34c1",
"45d6f97b228977be",
"e37679670a0388bb",
"66e840a8719381e7",
"ae82ba4f9f1fe10d",
"ba24fec20280bccb",
"808a4dbac5dc6a24",
"1f996a0a2a719ec5"
] |
cjWHQpEqaZ
|
Robustly Learning a Single Neuron via Sharpness
|
data/openreview_paper/ICML_2023_oral/cjWHQpEqaZ//paper.pdf
| 14
| 0
|
[] |
[
{
"authors": [
"P Auer",
"M Herbster",
"M K Warmuth"
],
"doi": "10.7551/mitpress/1120.003.0002",
"ref_id": "b0",
"title": "NIPS Committees",
"year": "1995"
},
{
"authors": [
"P Awasthi",
"A Tang",
"A Vijayaraghavan"
],
"doi": "",
"ref_id": "b1",
"title": "Agnostic learning of general relu activation using gradient descent",
"year": "2022"
},
{
"authors": [
"P Bartlett",
"M Jordan",
"J Mcauliffe"
],
"doi": "",
"ref_id": "b2",
"title": "Convexity, classification, and risk bounds",
"year": "2006"
},
{
"authors": [
"Jérôme Bolte",
"Trong Phong Nguyen",
"Juan Peypouquet",
"Bruce W Suter"
],
"doi": "10.1007/s10107-016-1091-6",
"ref_id": "b3",
"title": "From error bounds to the complexity of first-order descent methods for convex functions",
"year": "2017"
},
{
"authors": [
"M Liu",
"X Zhang",
"L Zhang",
"R Jin",
"T Yang"
],
"doi": "",
"ref_id": "b4",
"title": "Fast rates of erm and stochastic approximation: Adaptive to error bound conditions",
"year": "2018"
},
{
"authors": [
"S Łojasiewicz"
],
"doi": "",
"ref_id": "b5",
"title": "Une propriété topologique des sousensembles analytiques réels",
"year": "1963"
},
{
"authors": [
"Stanislas Łojasiewicz"
],
"doi": "10.5802/aif.1384",
"ref_id": "b6",
"title": "Sur la géométrie semi- et sous- analytique",
"year": "1993"
},
{
"authors": [
"P Manurangsi",
"D Reichman"
],
"doi": "",
"ref_id": "b7",
"title": "The computational complexity of training relu (s)",
"year": "2018"
},
{
"authors": [
"J.-S Pang"
],
"doi": "10.1007/bf02614322",
"ref_id": "b8",
"title": "Error bounds in mathematical programming",
"year": "1997"
},
{
"authors": [
"P Ramachandran",
"B Zoph",
"Q V Le"
],
"doi": "",
"ref_id": "b9",
"title": "Searching for activation functions",
"year": "2017"
},
{
"authors": [
"V Roulet",
"A Aspremont",
"Sharpness"
],
"doi": "",
"ref_id": "b10",
"title": "restart and acceleration",
"year": "2017"
},
{
"authors": [
"J Síma"
],
"doi": "",
"ref_id": "b11",
"title": "Training a single sigmoidal neuron is hard",
"year": "2002"
},
{
"authors": [
"M Soltanolkotabi"
],
"doi": "",
"ref_id": "b12",
"title": "Learning ReLUs via gradient descent",
"year": "2017"
},
{
"authors": [
"G Yehudai",
"O Shamir"
],
"doi": "",
"ref_id": "b13",
"title": "Learning a single neuron with gradient methods",
"year": "2020"
}
] |
[] |
[
"a30842c14b91a707",
"24b9be279f629761",
"5078e5f0ab1c9c90",
"b97a06db93f168bf",
"311c5ce3c72c8bdc",
"8c7b157080617602",
"728956b8f0817f60",
"acc2a340ccac4069",
"aad2f109827330b1",
"a9687647df94c0d3",
"a758d04b4b524714",
"719a2eb9421d30e5",
"582797a8399d1780",
"b1374bc2fa704b30"
] |
y6gg68aGiq
|
Tighter Information-Theoretic Generalization Bounds from Supersamples
|
data/openreview_paper/ICML_2023_oral/y6gg68aGiq//paper.pdf
| 57
| 1
|
[
{
"authors": [
"T M Cover",
"J A Thomas"
],
"doi": "10.1002/9780470048146.scard",
"ref_id": "b5",
"title": "Wiley Series in Telecommunications and Signal Processing",
"year": "2006"
}
] |
[
{
"authors": [
"A Asadi",
"E Abbe",
"S Verdú"
],
"doi": "",
"ref_id": "b0",
"title": "Chaining mutual information and tightening generalization bounds",
"year": "2018"
},
{
"authors": [
"P L Bartlett",
"S Mendelson"
],
"doi": "",
"ref_id": "b1",
"title": "Rademacher and gaussian complexities: Risk bounds and structural results",
"year": "Nov. 2002"
},
{
"authors": [
"Y Bu",
"S Zou",
"V V Veeravalli"
],
"doi": "",
"ref_id": "b2",
"title": "Tightening mutual information based bounds on generalization error",
"year": "2019. 2019"
},
{
"authors": [
"O Catoni"
],
"doi": "10.1214/lnms/1199996417",
"ref_id": "b3",
"title": "Chapter 3: Transductive PAC-Bayesian learning",
"year": "2007"
},
{
"authors": [
"E Clerico",
"A Shidani",
"G Deligiannidis",
"A Doucet"
],
"doi": "",
"ref_id": "b4",
"title": "Chained generalisation bounds",
"year": "02-05 Jul 2022"
},
{
"authors": [
"T M Cover",
"J A Thomas"
],
"doi": "10.1002/9780470048146.scard",
"ref_id": "b5",
"title": "Wiley Series in Telecommunications and Signal Processing",
"year": "2006"
},
{
"authors": [
"V Cédric"
],
"doi": "",
"ref_id": "b6",
"title": "Optimal Transport: Old and New (Grundlehren der mathematischen Wissenschaften",
"year": "2008"
},
{
"authors": [
"Jia Deng",
"Wei Dong",
"Richard Socher",
"Li-Jia Li",
"Kai Li",
"Li Fei-Fei"
],
"doi": "10.1109/cvpr.2009.5206848",
"ref_id": "b7",
"title": "ImageNet: A large-scale hierarchical image database",
"year": "2009. 2009"
},
{
"authors": [
"Z Goldfeld",
"K Greenewald"
],
"doi": "",
"ref_id": "b8",
"title": "Sliced mutual information: A scalable measure of statistical dependence",
"year": "2021"
},
{
"authors": [
"Z Goldfeld",
"K Greenewald",
"T Nuradha",
"G Reeves"
],
"doi": "",
"ref_id": "b9",
"title": "k$-sliced mutual information: A quantitative study of scalability with dimension",
"year": "2022"
},
{
"authors": [
"P Grunwald",
"T Steinke",
"L Zakynthinou"
],
"doi": "",
"ref_id": "b10",
"title": "Pac-bayes, mac-bayes and conditional mutual information: Fast rate bounds that handle general vc classes",
"year": "2021"
},
{
"authors": [
"H Hafez-Kolahi",
"Z Golgooni",
"S Kasaei",
"M Soleymani"
],
"doi": "",
"ref_id": "b11",
"title": "Conditioning and processing: Techniques to improve information-theoretic generalization bounds",
"year": "2020"
},
{
"authors": [
"M Haghifam",
"J Negrea",
"A Khisti",
"D M Roy",
"G K Dziugaite"
],
"doi": "",
"ref_id": "b12",
"title": "Sharpened generalization bounds based on conditional mutual information and an application to noisy, iterative algorithms",
"year": "2020"
},
{
"authors": [
"Mahdi Haghifam",
"Shay Moran",
"Daniel M Roy",
"Gintare Karolina Dziugiate"
],
"doi": "10.1109/isit50566.2022.9834400",
"ref_id": "b13",
"title": "Understanding Generalization via Leave-One-Out Conditional Mutual Information",
"year": "2021"
},
{
"authors": [
"Mahdi Haghifam",
"Shay Moran",
"Daniel M Roy",
"Gintare Karolina Dziugiate"
],
"doi": "10.1109/isit50566.2022.9834400",
"ref_id": "b14",
"title": "Understanding Generalization via Leave-One-Out Conditional Mutual Information",
"year": "2022"
},
{
"authors": [
"M Haghifam",
"B Rodríguez-Gálvez",
"R Thobaben",
"M Skoglund",
"D M Roy",
"G K Dziugaite"
],
"doi": "",
"ref_id": "b15",
"title": "Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic convex optimization",
"year": "2023"
},
{
"authors": [
"H Harutyunyan",
"M Raginsky",
"G V Steeg",
"A Galstyan"
],
"doi": "",
"ref_id": "b16",
"title": "Information-theoretic generalization bounds for blackbox learning algorithms",
"year": "2021"
},
{
"authors": [
"H He",
"H Yan",
"V Y Tan"
],
"doi": "",
"ref_id": "b17",
"title": "Information-theoretic characterization of the generalization error for iterative semisupervised learning",
"year": "2022"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b18",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"Fredrik Hellstrom",
"Giuseppe Durisi"
],
"doi": "10.1109/jsait.2020.3040992",
"ref_id": "b19",
"title": "Generalization Bounds via Information Density and Conditional Information Density",
"year": "2020"
},
{
"authors": [
"Fredrik Hellstrom",
"Giuseppe Durisi"
],
"doi": "10.1109/isit45174.2021.9517731",
"ref_id": "b20",
"title": "Fast-Rate Loss Bounds via Conditional Information Measures with Applications to Neural Networks",
"year": "2021. 2021"
},
{
"authors": [
"F Hellström",
"G Durisi"
],
"doi": "",
"ref_id": "b21",
"title": "A new family of generalization bounds using samplewise evaluated CMI",
"year": "2022"
},
{
"authors": [
"F Hellström",
"G Durisi"
],
"doi": "",
"ref_id": "b22",
"title": "Evaluated CMI bounds for meta learning: Tightness and expressiveness",
"year": "2022"
},
{
"authors": [
"Wassily Hoeffding"
],
"doi": "10.1080/01621459.1963.10500830",
"ref_id": "b23",
"title": "Probability Inequalities for Sums of Bounded Random Variables",
"year": "1963"
},
{
"authors": [
"S Jastrzębski",
"Z Kenton",
"D Arpit",
"N Ballas",
"A Fischer",
"Y Bengio",
"A Storkey"
],
"doi": "",
"ref_id": "b24",
"title": "Three factors influencing minima in sgd",
"year": "2017"
},
{
"authors": [
"S M Kakade",
"K Sridharan",
"A Tewari"
],
"doi": "",
"ref_id": "b25",
"title": "On the complexity of linear prediction: Risk bounds, margin bounds, and regularization",
"year": "2008"
},
{
"authors": [
"A Krizhevsky"
],
"doi": "",
"ref_id": "b26",
"title": "Learning multiple layers of features from tiny images",
"year": "2009"
},
{
"authors": [
"Y Lecun",
"C Cortes",
"C Burges"
],
"doi": "",
"ref_id": "b27",
"title": "Mnist handwritten digit database",
"year": "2010"
},
{
"authors": [
"J Negrea",
"M Haghifam",
"G K Dziugaite",
"A Khisti",
"D M Roy"
],
"doi": "",
"ref_id": "b28",
"title": "Information-theoretic generalization bounds for sgld via data-dependent estimates",
"year": "2019"
},
{
"authors": [
"G Neu",
"G K Dziugaite",
"M Haghifam",
"D M Roy"
],
"doi": "",
"ref_id": "b29",
"title": "Information-theoretic generalization bounds for stochastic gradient descent",
"year": "2021"
},
{
"authors": [
"F Pedregosa",
"G Varoquaux",
"A Gramfort",
"V Michel",
"B Thirion",
"O Grisel",
"M Blondel",
"P Prettenhofer",
"R Weiss",
"V Dubourg",
"J Vanderplas",
"A Passos",
"D Cournapeau",
"M Brucher",
"M Perrot",
"E Duchesnay"
],
"doi": "",
"ref_id": "b30",
"title": "Scikit-learn: Machine learning in Python",
"year": "2011"
},
{
"authors": [
"Ankit Pensia",
"Varun Jog",
"Po-Ling Loh"
],
"doi": "10.1109/isit.2018.8437571",
"ref_id": "b31",
"title": "Generalization Error Bounds for Noisy, Iterative Algorithms",
"year": "2018. 2018"
},
{
"authors": [
"Y Polyanskiy",
"Y Wu"
],
"doi": "",
"ref_id": "b32",
"title": "Lecture notes on information theory",
"year": "2019. 2019"
},
{
"authors": [
"M Raginsky",
"A Rakhlin",
"M Telgarsky"
],
"doi": "",
"ref_id": "b33",
"title": "Non-convex learning via stochastic gradient langevin dynamics: a nonasymptotic analysis",
"year": "2017"
},
{
"authors": [
"M R Rammal",
"A Achille",
"A Golatkar",
"S Diggavi",
"S Soatto"
],
"doi": "10.4324/9780080966236-11",
"ref_id": "b34",
"title": "The techni cal/informa tion environm ents",
"year": "2022"
},
{
"authors": [
"Borja Rodriguez-Galvez",
"German Bassi",
"Ragnar Thobaben",
"Mikael Skoglund"
],
"doi": "10.1109/itw46852.2021.9457578",
"ref_id": "b35",
"title": "On Random Subset Generalization Error Bounds and the Stochastic Gradient Langevin Dynamics Algorithm",
"year": "2021"
},
{
"authors": [
"Borja Rodriguez-Galvez",
"German Bassi",
"Ragnar Thobaben",
"Mikael Skoglund"
],
"doi": "10.1109/itw46852.2021.9457578",
"ref_id": "b36",
"title": "On Random Subset Generalization Error Bounds and the Stochastic Gradient Langevin Dynamics Algorithm",
"year": "2021"
},
{
"authors": [
"Daniel Russo",
"James Zou"
],
"doi": "10.1109/tit.2019.2945779",
"ref_id": "b37",
"title": "How Much Does Your Data Exploration Overfit? Controlling Bias via Information Usage",
"year": "2016"
},
{
"authors": [
"Daniel Russo",
"James Zou"
],
"doi": "10.1109/tit.2019.2945779",
"ref_id": "b38",
"title": "How Much Does Your Data Exploration Overfit? Controlling Bias via Information Usage",
"year": "2019"
},
{
"authors": [
"Y Seldin",
"F Laviolette",
"N Cesa-Bianchi",
"J Shawe-Taylor",
"P Auer"
],
"doi": "10.1109/tit.2012.2211334",
"ref_id": "b39",
"title": "PAC-Bayesian Inequalities for Martingales",
"year": "2012"
},
{
"authors": [
"C E Shannon"
],
"doi": "10.1002/j.1538-7305.1948.tb01338.x",
"ref_id": "b40",
"title": "A Mathematical Theory of Communication",
"year": "1948"
},
{
"authors": [
"T Steinke",
"L Zakynthinou"
],
"doi": "",
"ref_id": "b41",
"title": "Reasoning about generalization via conditional mutual information",
"year": "2020"
},
{
"authors": [
"I O Tolstikhin",
"Y Seldin"
],
"doi": "",
"ref_id": "b42",
"title": "Pac-bayes-empiricalbernstein inequality",
"year": "2013"
},
{
"authors": [
"Vladimir N Vapnik"
],
"doi": "10.1007/978-1-4757-3264-1_8",
"ref_id": "b43",
"title": "Direct Methods in Statistical Learning Theory",
"year": "1998"
},
{
"authors": [
"H Wang",
"Y Huang",
"R Gao",
"F Calmon"
],
"doi": "",
"ref_id": "b44",
"title": "Analyzing the generalization capability of sgld using properties of gaussian channels",
"year": "2021"
},
{
"authors": [
"Z Wang",
"Y Mao"
],
"doi": "",
"ref_id": "b45",
"title": "On the generalization of models trained with SGD: Information-theoretic bounds and implications",
"year": "2022"
},
{
"authors": [
"Z Wang",
"Y Mao"
],
"doi": "",
"ref_id": "b46",
"title": "Two facets of sde under an information-theoretic lens: Generalization of sgd via training trajectories and via terminal states",
"year": "2022"
},
{
"authors": [
"Z Wang",
"Y Mao"
],
"doi": "",
"ref_id": "b47",
"title": "Information-theoretic analysis of unsupervised domain adaptation",
"year": "2023"
},
{
"authors": [
"Xuetong Wu",
"Jonathan H Manton",
"Uwe Aickelin",
"Jingge Zhu"
],
"doi": "10.1109/isit44484.2020.9173989",
"ref_id": "b48",
"title": "Information-theoretic analysis for transfer learning",
"year": "2020. 2020"
},
{
"authors": [
"A Xu",
"M Raginsky"
],
"doi": "",
"ref_id": "b49",
"title": "Information-theoretic analysis of generalization capability of learning algorithms",
"year": "2017"
},
{
"authors": [
"J Yang",
"S Sun",
"D M Roy"
],
"doi": "",
"ref_id": "b50",
"title": "Fast-rate pac-bayes generalization bounds via shifted rademacher processes",
"year": "2019"
},
{
"authors": [
"R W Yeung"
],
"doi": "10.1109/18.79902",
"ref_id": "b51",
"title": "A new outlook on Shannon's information measures",
"year": "1991"
},
{
"authors": [
"Chiyuan Zhang",
"Samy Bengio",
"Moritz Hardt",
"Benjamin Recht",
"Oriol Vinyals"
],
"doi": "10.1145/3446776",
"ref_id": "b52",
"title": "Understanding deep learning (still) requires rethinking generalization",
"year": "2017"
},
{
"authors": [
"Chiyuan Zhang",
"Samy Bengio",
"Moritz Hardt",
"Benjamin Recht",
"Oriol Vinyals"
],
"doi": "10.1145/3446776",
"ref_id": "b53",
"title": "Understanding deep learning (still) requires rethinking generalization",
"year": "2021"
},
{
"authors": [
"N Zhivotovskiy",
"S Hanneke"
],
"doi": "10.1016/j.tcs.2017.12.029",
"ref_id": "b54",
"title": "Localization of VC classes: Beyond local Rademacher complexities",
"year": "2018"
},
{
"authors": [
"Ruida Zhou",
"Chao Tian",
"Tie Liu"
],
"doi": "10.1109/tit.2022.3144615",
"ref_id": "b55",
"title": "Individually Conditional Individual Mutual Information Bound on Generalization Error",
"year": "2022"
},
{
"authors": [
"Ruida Zhou",
"Chao Tian",
"Tie Liu"
],
"doi": "10.1109/isit50566.2022.9834702",
"ref_id": "b56",
"title": "Stochastic Chaining and Strengthened Information-Theoretic Generalization Bounds",
"year": "2022. 2022"
}
] |
[
"6124cec145709029"
] |
[
"639ad34b7a2e2fb1",
"ab00837062707a69",
"8212ce60777d4153",
"496c21d8614e7242",
"34cd72d6c8c58ab1",
"6124cec145709029",
"58152847cbff932c",
"7c3cb27d0975ea4f",
"c724872f81ca6d4c",
"1f995ce76d51666e",
"dc2e94e81a9286fb",
"8b6b3020f83fa0d7",
"a1a522458136e513",
"410abd68440f1549",
"5a1dc2ad933bcaed",
"6e119b311687728f",
"490a47bb448fe5ad",
"e867a90f3e8897e8",
"39ea51c87cdfdcfb",
"c3bc6dad2ce89aa0",
"36431050f8d88bfb",
"376b491b3b3cc632",
"397e0d51d742b283",
"876e29840330d7f4",
"8c4447a2d84f6905",
"385010c1dd00d011",
"0c75b99cd5e726b0",
"5d85c2ba04e619d5",
"ded7ede442b3ffc2",
"7fdf9fe151ff82ae",
"39532d491be5ad09",
"14420a756f20cf7e",
"7beaee70c0f08888",
"f79dcf3389805ed3",
"c713f353ef79f7f0",
"f538ff7b204988d4",
"f538ff7b204988d4",
"748f3c3280693092",
"ecc2b456bbdb1101",
"5e507ea92abb41c4",
"10b53d2818eac7d7",
"c70d0d489ff4b4f5",
"9a480a1ee48f4083",
"6fed95666820ce87",
"b7d6dce473e55b1a",
"43114ba78b89525a",
"7ebc40fcae28bcd3",
"e623631419d9effa",
"685280cb6b77875b",
"a068db16c57cfdba",
"f0f01b017bd3fb0d",
"3d8d6616713ddd59",
"afd3ae5ad8848d33",
"9eec93a28e8c5713",
"5d10e19cfc191d69",
"04440b2df35894b5",
"63fddac42138d92e"
] |
wLAMOoL0KD
|
Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch
|
data/openreview_paper/ICML_2023_oral/wLAMOoL0KD//paper.pdf
| 22
| 16
|
[
{
"authors": [
"Minsoo Rhu",
"Natalia Gimelshein",
"Jason Clemons",
"Arslan Zulfiqar",
"Stephen W Keckler"
],
"doi": "10.1109/micro.2016.7783721",
"ref_id": "b20",
"title": "vDNN: Virtualized deep neural networks for scalable, memory-efficient neural network design",
"year": "2016"
},
{
"authors": [
"M Kusumoto",
"T Inoue",
"G Watanabe",
"T Akiba",
"M Koyama"
],
"doi": "",
"ref_id": "b14",
"title": "A graph theoretic framework of recomputation algorithms for memory-efficient backpropagation",
"year": "2019"
},
{
"authors": [
"M Kirisame",
"S Lyubomirsky",
"A Haan",
"J Brennan",
"M He",
"J Roesch",
"T Chen",
"Z Tatlock"
],
"doi": "",
"ref_id": "b12",
"title": "Dynamic tensor rematerialization",
"year": "2020"
},
{
"authors": [
"D Das",
"S Avancha",
"D Mudigere",
"K Vaidynathan",
"S Sridharan",
"D Kalamkar",
"B Kaul",
"P Dubey"
],
"doi": "",
"ref_id": "b9",
"title": "Distributed deep learning using synchronous stochastic gradient descent",
"year": "2016"
},
{
"authors": [
"Tung D Le",
"Haruki Imai",
"Yasushi Negishi",
"Kiyokuni Kawachiya"
],
"doi": "10.1145/3315573.3329984",
"ref_id": "b15",
"title": "Automatic GPU memory management for large neural models in TensorFlow",
"year": "2018"
},
{
"authors": [
"Deepak Narayanan",
"Aaron Harlap",
"Amar Phanishayee",
"Vivek Seshadri",
"Nikhil R Devanur",
"Gregory R Ganger",
"Phillip B Gibbons",
"Matei Zaharia"
],
"doi": "10.1145/3341301.3359646",
"ref_id": "b17",
"title": "PipeDream",
"year": "2019"
},
{
"authors": [
"S G Patil",
"P Jain",
"P Dutta",
"I Stoica",
"J Gonzalez",
"Poet"
],
"doi": "",
"ref_id": "b19",
"title": "Training neural networks on tiny devices with integrated rematerialization and paging",
"year": "2022"
},
{
"authors": [
"Y Huang",
"Y Cheng",
"A Bapna",
"O Firat",
"D Chen",
"M Chen",
"H Lee",
"J Ngiam",
"Q V Le",
"Y Wu"
],
"doi": "",
"ref_id": "b10",
"title": "Gpipe: Efficient training of giant neural networks using pipeline parallelism",
"year": "2019"
},
{
"authors": [
"T Chen",
"B Xu",
"C Zhang",
"C Guestrin"
],
"doi": "",
"ref_id": "b8",
"title": "Training deep nets with sublinear memory cost",
"year": "2016"
},
{
"authors": [
"Sanjith Athlur",
"Nitika Saran",
"Muthian Sivathanu",
"Ramachandran Ramjee",
"Nipun Kwatra"
],
"doi": "10.1145/3492321.3519584",
"ref_id": "b0",
"title": "Varuna",
"year": "2022"
},
{
"authors": [
"Paras Jain",
"Ajay Jain",
"Tianjun Zhang",
"Pieter Abbeel",
"Joseph Gonzalez",
"Ion Stoica"
],
"doi": "10.18653/v1/2021.emnlp-main.482",
"ref_id": "b11",
"title": "Contrastive Code Representation Learning",
"year": "2020"
},
{
"authors": [
"B Steiner",
"M Elhoushi",
"J Kahn",
"J Hegarty",
"Olla"
],
"doi": "",
"ref_id": "b21",
"title": "Optimizing the lifetime and location of arrays to reduce the memory usage of neural networks",
"year": "2022"
},
{
"authors": [
"R Kumar",
"M Purohit",
"Z Svitkina",
"E Vee",
"J Wang"
],
"doi": "",
"ref_id": "b13",
"title": "Efficient rematerialization for deep networks",
"year": "2019"
},
{
"authors": [
"Jianjin Liao",
"Mingzhen Li",
"Hailong Yang",
"Qingxiao Sun",
"Biao Sun",
"Jiwei Hao",
"Tianyu Feng",
"Fengwei Yu",
"Shengdong Chen",
"Ye Tao",
"Zicheng Zhang",
"Zhongzhi Luan",
"Depei Qian"
],
"doi": "10.1109/ipdps54959.2023.00025",
"ref_id": "b16",
"title": "Exploiting Input Tensor Dynamics in Activation Checkpointing for Efficient Training on GPU",
"year": "2022"
},
{
"authors": [
"Uwe Naumann"
],
"doi": "10.1007/978-3-540-68942-3_2",
"ref_id": "b18",
"title": "Call Tree Reversal is NP-Complete",
"year": "2008"
},
{
"authors": [
"O Beaumont",
"L Eyraud-Dubois",
"A Shilova",
"X Zhao"
],
"doi": "",
"ref_id": "b7",
"title": "Weight Offloading Strategies for Training Large DNN Models",
"year": "February 2022"
}
] |
[
{
"authors": [
"Sanjith Athlur",
"Nitika Saran",
"Muthian Sivathanu",
"Ramachandran Ramjee",
"Nipun Kwatra"
],
"doi": "10.1145/3492321.3519584",
"ref_id": "b0",
"title": "Varuna",
"year": "2022"
},
{
"authors": [
"O Beaumont",
"L Eyraud-Dubois",
"J Hermann",
"A Joly",
"A Shilova",
"Rotor"
],
"doi": "",
"ref_id": "b1",
"title": "",
"year": "2019"
},
{
"authors": [
"O Beaumont",
"L Eyraud-Dubois",
"J Hermann",
"A Joly",
"A Shilova"
],
"doi": "",
"ref_id": "b2",
"title": "Optimal checkpointing for heterogeneous chains: how to train deep neural networks with limited memory",
"year": "2019"
},
{
"authors": [
"Olivier Beaumont",
"Lionel Eyraud-Dubois",
"Alena Shilova"
],
"doi": "10.1007/978-3-030-57675-2_10",
"ref_id": "b3",
"title": "Optimal GPU-CPU Offloading Strategies for Deep Neural Network Training",
"year": "2020"
},
{
"authors": [
"Olivier Beaumont",
"Julien Herrmann",
"Guillaume Pallez (aupy)",
"Alena Shilova"
],
"doi": "10.1098/rsta.2019.0049",
"ref_id": "b4",
"title": "Optimal memory-aware backpropagation of deep join networks",
"year": "2166. 2020"
},
{
"authors": [
"Olivier Beaumont",
"Lionel Eyraud-Dubois",
"Alena Shilova"
],
"doi": "10.1109/ipdpsw55747.2022.00174",
"ref_id": "b5",
"title": "MadPipe: Memory Aware Dynamic Programming Algorithm for Pipelined Model Parallelism",
"year": "2021"
},
{
"authors": [
"Olivier Beaumont",
"Lionel Eyraud-Dubois",
"Alena Shilova"
],
"doi": "10.1007/978-3-030-85665-6_12",
"ref_id": "b6",
"title": "Pipelined Model Parallelism: Complexity Results and Memory Considerations",
"year": "2021"
},
{
"authors": [
"O Beaumont",
"L Eyraud-Dubois",
"A Shilova",
"X Zhao"
],
"doi": "",
"ref_id": "b7",
"title": "Weight Offloading Strategies for Training Large DNN Models",
"year": "February 2022"
},
{
"authors": [
"T Chen",
"B Xu",
"C Zhang",
"C Guestrin"
],
"doi": "",
"ref_id": "b8",
"title": "Training deep nets with sublinear memory cost",
"year": "2016"
},
{
"authors": [
"D Das",
"S Avancha",
"D Mudigere",
"K Vaidynathan",
"S Sridharan",
"D Kalamkar",
"B Kaul",
"P Dubey"
],
"doi": "",
"ref_id": "b9",
"title": "Distributed deep learning using synchronous stochastic gradient descent",
"year": "2016"
},
{
"authors": [
"Y Huang",
"Y Cheng",
"A Bapna",
"O Firat",
"D Chen",
"M Chen",
"H Lee",
"J Ngiam",
"Q V Le",
"Y Wu"
],
"doi": "",
"ref_id": "b10",
"title": "Gpipe: Efficient training of giant neural networks using pipeline parallelism",
"year": "2019"
},
{
"authors": [
"Paras Jain",
"Ajay Jain",
"Tianjun Zhang",
"Pieter Abbeel",
"Joseph Gonzalez",
"Ion Stoica"
],
"doi": "10.18653/v1/2021.emnlp-main.482",
"ref_id": "b11",
"title": "Contrastive Code Representation Learning",
"year": "2020"
},
{
"authors": [
"M Kirisame",
"S Lyubomirsky",
"A Haan",
"J Brennan",
"M He",
"J Roesch",
"T Chen",
"Z Tatlock"
],
"doi": "",
"ref_id": "b12",
"title": "Dynamic tensor rematerialization",
"year": "2020"
},
{
"authors": [
"R Kumar",
"M Purohit",
"Z Svitkina",
"E Vee",
"J Wang"
],
"doi": "",
"ref_id": "b13",
"title": "Efficient rematerialization for deep networks",
"year": "2019"
},
{
"authors": [
"M Kusumoto",
"T Inoue",
"G Watanabe",
"T Akiba",
"M Koyama"
],
"doi": "",
"ref_id": "b14",
"title": "A graph theoretic framework of recomputation algorithms for memory-efficient backpropagation",
"year": "2019"
},
{
"authors": [
"Tung D Le",
"Haruki Imai",
"Yasushi Negishi",
"Kiyokuni Kawachiya"
],
"doi": "10.1145/3315573.3329984",
"ref_id": "b15",
"title": "Automatic GPU memory management for large neural models in TensorFlow",
"year": "2018"
},
{
"authors": [
"Jianjin Liao",
"Mingzhen Li",
"Hailong Yang",
"Qingxiao Sun",
"Biao Sun",
"Jiwei Hao",
"Tianyu Feng",
"Fengwei Yu",
"Shengdong Chen",
"Ye Tao",
"Zicheng Zhang",
"Zhongzhi Luan",
"Depei Qian"
],
"doi": "10.1109/ipdps54959.2023.00025",
"ref_id": "b16",
"title": "Exploiting Input Tensor Dynamics in Activation Checkpointing for Efficient Training on GPU",
"year": "2022"
},
{
"authors": [
"Deepak Narayanan",
"Aaron Harlap",
"Amar Phanishayee",
"Vivek Seshadri",
"Nikhil R Devanur",
"Gregory R Ganger",
"Phillip B Gibbons",
"Matei Zaharia"
],
"doi": "10.1145/3341301.3359646",
"ref_id": "b17",
"title": "PipeDream",
"year": "2019"
},
{
"authors": [
"Uwe Naumann"
],
"doi": "10.1007/978-3-540-68942-3_2",
"ref_id": "b18",
"title": "Call Tree Reversal is NP-Complete",
"year": "2008"
},
{
"authors": [
"S G Patil",
"P Jain",
"P Dutta",
"I Stoica",
"J Gonzalez",
"Poet"
],
"doi": "",
"ref_id": "b19",
"title": "Training neural networks on tiny devices with integrated rematerialization and paging",
"year": "2022"
},
{
"authors": [
"Minsoo Rhu",
"Natalia Gimelshein",
"Jason Clemons",
"Arslan Zulfiqar",
"Stephen W Keckler"
],
"doi": "10.1109/micro.2016.7783721",
"ref_id": "b20",
"title": "vDNN: Virtualized deep neural networks for scalable, memory-efficient neural network design",
"year": "2016"
},
{
"authors": [
"B Steiner",
"M Elhoushi",
"J Kahn",
"J Hegarty",
"Olla"
],
"doi": "",
"ref_id": "b21",
"title": "Optimizing the lifetime and location of arrays to reduce the memory usage of neural networks",
"year": "2022"
}
] |
[
"5df67bbbe3903e48",
"7311cd489fc2e7b1",
"ac8f15e0157fa521",
"708adf3eb66e4064",
"a1fc3aa6d853ea2e",
"7960370b0a6920cc",
"2fd9d1d07b8aaa5e",
"92ed90c52c5e1380",
"9f6d20e9ab5ecba8",
"96c5cec3949de62b",
"dc96fcc999152b3f",
"cff6be8771d0dc3a",
"b330e66ce62e15dd",
"e1973afebfc423b3",
"7cc43709e41200d7",
"476342b3add89ac9"
] |
[
"96c5cec3949de62b",
"a0feeb6dd6d6b8c3",
"c61032fb8dc5b975",
"c78a0392ee43e743",
"34350457288df264",
"6d8e7db3aa5b301e",
"d3730a1df4eab6ac",
"476342b3add89ac9",
"9f6d20e9ab5ecba8",
"708adf3eb66e4064",
"92ed90c52c5e1380",
"dc96fcc999152b3f",
"ac8f15e0157fa521",
"b330e66ce62e15dd",
"7311cd489fc2e7b1",
"a1fc3aa6d853ea2e",
"e1973afebfc423b3",
"7960370b0a6920cc",
"7cc43709e41200d7",
"2fd9d1d07b8aaa5e",
"5df67bbbe3903e48",
"cff6be8771d0dc3a"
] |
odqQB2OXsG
|
Understanding Plasticity in Neural Networks
|
data/openreview_paper/ICML_2023_oral/odqQB2OXsG//paper.pdf
| 63
| 29
|
[
{
"authors": [
"R Hadsell",
"D Rao",
"A A Rusu",
"R Pascanu"
],
"doi": "",
"ref_id": "b25",
"title": "Embracing change: Continual learning in deep neural networks",
"year": "2020"
},
{
"authors": [
"W Fedus",
"D Ghosh",
"J D Martin",
"M G Bellemare",
"Y Bengio",
"H Larochelle"
],
"doi": "",
"ref_id": "b16",
"title": "On catastrophic interference in atari 2600 games",
"year": "2020"
},
{
"authors": [
"D Balduzzi",
"M Frean",
"L Leary",
"J Lewis",
"K W Ma",
"-D Mcwilliams",
"B"
],
"doi": "",
"ref_id": "b3",
"title": "The shattered gradients problem: If resnets are the answer, then what is the question",
"year": "2017"
},
{
"authors": [
"Ronald Kemker",
"Marc Mcclure",
"Angelina Abitino",
"Tyler Hayes",
"Christopher Kanan"
],
"doi": "10.1609/aaai.v32i1.11651",
"ref_id": "b31",
"title": "Measuring Catastrophic Forgetting in Neural Networks",
"year": "2018"
},
{
"authors": [
"J Martens",
"A Ballard",
"G Desjardins",
"G Swirszcz",
"V Dalibard",
"J Sohl-Dickstein",
"S S Schoenholz"
],
"doi": "",
"ref_id": "b40",
"title": "Rapid training of deep neural networks without skip connections or normalization layers using deep kernel shaping",
"year": "2021"
},
{
"authors": [
"J Ash",
"R P Adams"
],
"doi": "",
"ref_id": "b1",
"title": "On warm-starting neural network training",
"year": "2020"
},
{
"authors": [
"I Sutskever",
"J Martens",
"G Dahl",
"G Hinton"
],
"doi": "10.1109/icmlc.2002.1174562",
"ref_id": "b54",
"title": "Author Index",
"year": "2013"
},
{
"authors": [
"S Dohare",
"A R Mahmood",
"R S Sutton"
],
"doi": "",
"ref_id": "b13",
"title": "Continual backprop: Stochastic gradient descent with persistent randomness",
"year": "2021"
},
{
"authors": [
"J Frankle",
"G K Dziugaite",
"D Roy",
"M Carbin"
],
"doi": "",
"ref_id": "b18",
"title": "Linear mode connectivity and the lottery ticket hypothesis",
"year": "2020"
},
{
"authors": [
"S Jastrzebski",
"M Szymczak",
"S Fort",
"D Arpit",
"J Tabor",
"* Cho",
"K Geras",
"*",
"K"
],
"doi": "",
"ref_id": "b29",
"title": "The break-even point on optimization trajectories of deep neural networks",
"year": "2020"
},
{
"authors": [
"E Nikishin",
"M Schwarzer",
"P D'oro",
"P.-L Bacon",
"A Courville"
],
"doi": "",
"ref_id": "b43",
"title": "The primacy bias in deep reinforcement learning",
"year": "2022"
},
{
"authors": [
"S.-W Lee",
"J.-H Kim",
"J Jun",
"J.-W Ha",
"B.-T Zhang"
],
"doi": "",
"ref_id": "b35",
"title": "Overcoming catastrophic forgetting by incremental moment matching",
"year": "2017"
},
{
"authors": [
"X Glorot",
"Y Bengio"
],
"doi": "",
"ref_id": "b22",
"title": "Understanding the difficulty of training deep feedforward neural networks",
"year": "2010"
},
{
"authors": [
"J M Cohen",
"S Kaur",
"Y Li",
"J Z Kolter",
"A Talwalkar"
],
"doi": "",
"ref_id": "b9",
"title": "Gradient descent on neural networks typically occurs at the edge of stability",
"year": "2021"
},
{
"authors": [
"R M French"
],
"doi": "10.1016/s1364-6613(99)01294-2",
"ref_id": "b19",
"title": "Catastrophic forgetting in connectionist networks",
"year": "1999"
},
{
"authors": [
"G Yang",
"S Schoenholz"
],
"doi": "",
"ref_id": "b59",
"title": "Mean field residual networks: On the edge of chaos",
"year": "2017"
},
{
"authors": [
"T Berariu",
"W Czarnecki",
"S De",
"J Bornschein",
"S Smith",
"R Pascanu",
"C Clopath"
],
"doi": "",
"ref_id": "b6",
"title": "A study on the plasticity of neural networks",
"year": "2021"
},
{
"authors": [
"G Yang",
"J Pennington",
"V Rao",
"J Sohl-Dickstein",
"S S Schoenholz"
],
"doi": "",
"ref_id": "b60",
"title": "A mean field theory of batch normalization",
"year": "2019"
},
{
"authors": [
"Jungin Park",
"Jiyoung Lee",
"Ig-Jae Kim",
"Kwanghoon Sohn"
],
"doi": "10.1109/cvpr52688.2022.01430",
"ref_id": "b44",
"title": "Probabilistic Representations for Video Contrastive Learning",
"year": "2022"
},
{
"authors": [
"S S Schoenholz",
"J Gilmer",
"S Ganguli",
"J Sohl-Dickstein"
],
"doi": "",
"ref_id": "b53",
"title": "Deep information propagation",
"year": "2017"
},
{
"authors": [
"B Ghorbani",
"S Krishnan",
"Xiao",
"Y"
],
"doi": "",
"ref_id": "b20",
"title": "An investigation into neural net optimization via hessian eigenvalue density",
"year": "2019"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/iccv.2015.123",
"ref_id": "b26",
"title": "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification",
"year": "2015"
},
{
"authors": [
"H Li",
"Z Xu",
"G Taylor",
"C Studer",
"T Goldstein"
],
"doi": "",
"ref_id": "b37",
"title": "Visualizing the loss landscape of neural nets",
"year": "2018"
},
{
"authors": [
"J Kirkpatrick",
"R Pascanu",
"N Rabinowitz",
"J Veness",
"G Desjardins",
"A A Rusu",
"K Milan",
"J Quan",
"T Ramalho",
"A Grabska-Barwinska"
],
"doi": "",
"ref_id": "b33",
"title": "Overcoming catastrophic forgetting in neural networks",
"year": "2017"
},
{
"authors": [
"A Lewkowycz",
"Y Bahri",
"E Dyer",
"J Sohl-Dickstein",
"G Gur-Ari"
],
"doi": "",
"ref_id": "b36",
"title": "The large learning rate phase of deep learning: the catapult mechanism",
"year": "2020"
},
{
"authors": [
"M Igl",
"G Farquhar",
"J Luketina",
"W Boehmer",
"S Whiteson"
],
"doi": "",
"ref_id": "b28",
"title": "Transient non-stationarity and generalisation in deep reinforcement learning",
"year": "2021"
},
{
"authors": [
"C Lyle",
"M Rowland",
"W Dabney"
],
"doi": "",
"ref_id": "b38",
"title": "Understanding and preventing capacity loss in reinforcement learning",
"year": "2021"
},
{
"authors": [
"K He",
"X Zhang",
"S Ren",
"J Sun"
],
"doi": "",
"ref_id": "b27",
"title": "Deep residual learning for image recognition",
"year": "2016"
},
{
"authors": [
"S Schmitt",
"J J Hudson",
"A Zidek",
"S Osindero",
"C Doersch",
"W M Czarnecki",
"J Z Leibo",
"H Kuttler",
"A Zisserman",
"K Simonyan"
],
"doi": "",
"ref_id": "b52",
"title": "Kickstarting deep reinforcement learning",
"year": "2018"
}
] |
[
{
"authors": [
"L F Abbott",
"Sacha B Nelson"
],
"doi": "10.1038/81453",
"ref_id": "b0",
"title": "Synaptic plasticity: taming the beast",
"year": "2000"
},
{
"authors": [
"J Ash",
"R P Adams"
],
"doi": "",
"ref_id": "b1",
"title": "On warm-starting neural network training",
"year": "2020"
},
{
"authors": [
"J L Ba",
"J R Kiros",
"G E Hinton"
],
"doi": "",
"ref_id": "b2",
"title": "Layer normalization",
"year": "2016"
},
{
"authors": [
"D Balduzzi",
"M Frean",
"L Leary",
"J Lewis",
"K W Ma",
"-D Mcwilliams",
"B"
],
"doi": "",
"ref_id": "b3",
"title": "The shattered gradients problem: If resnets are the answer, then what is the question",
"year": "2017"
},
{
"authors": [
"P L Bartlett",
"S Mendelson"
],
"doi": "",
"ref_id": "b4",
"title": "Rademacher and gaussian complexities: Risk bounds and structural results",
"year": "Nov. 2002"
},
{
"authors": [
"M G Bellemare",
"Y Naddaf",
"J Veness",
"M Bowling"
],
"doi": "10.1613/jair.3912",
"ref_id": "b5",
"title": "The Arcade Learning Environment: An Evaluation Platform for General Agents",
"year": "2013"
},
{
"authors": [
"T Berariu",
"W Czarnecki",
"S De",
"J Bornschein",
"S Smith",
"R Pascanu",
"C Clopath"
],
"doi": "",
"ref_id": "b6",
"title": "A study on the plasticity of neural networks",
"year": "2021"
},
{
"authors": [
"Sébastien Bubeck",
"Mark Sellke"
],
"doi": "10.1145/3578580",
"ref_id": "b7",
"title": "A Universal Law of Robustness via Isoperimetry",
"year": "2023"
},
{
"authors": [
"Peter Bühlmann"
],
"doi": "10.1214/19-sts721",
"ref_id": "b8",
"title": "Invariance, Causality and Robustness",
"year": "2020"
},
{
"authors": [
"J M Cohen",
"S Kaur",
"Y Li",
"J Z Kolter",
"A Talwalkar"
],
"doi": "",
"ref_id": "b9",
"title": "Gradient descent on neural networks typically occurs at the edge of stability",
"year": "2021"
},
{
"authors": [
"Q Delfosse",
"P Schramowski",
"M Mundt",
"A Molina",
"K Kersting"
],
"doi": "",
"ref_id": "b10",
"title": "Adaptive rational activations to boost deep reinforcement learning",
"year": "2021"
},
{
"authors": [
"L Deng"
],
"doi": "",
"ref_id": "b11",
"title": "The mnist database of handwritten digit images for machine learning research",
"year": "2012"
},
{
"authors": [
"L Dinh",
"R Pascanu",
"S Bengio",
"Y Bengio"
],
"doi": "",
"ref_id": "b12",
"title": "Sharp minima can generalize for deep nets",
"year": "2017"
},
{
"authors": [
"S Dohare",
"A R Mahmood",
"R S Sutton"
],
"doi": "",
"ref_id": "b13",
"title": "Continual backprop: Stochastic gradient descent with persistent randomness",
"year": "2021"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly"
],
"doi": "",
"ref_id": "b14",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2020"
},
{
"authors": [
"G K Dziugaite",
"A Drouin",
"B Neal",
"N Rajkumar",
"E Caballero",
"L Wang",
"I Mitliagkas",
"D M Roy"
],
"doi": "",
"ref_id": "b15",
"title": "In search of robust measures of generalization",
"year": "2020"
},
{
"authors": [
"W Fedus",
"D Ghosh",
"J D Martin",
"M G Bellemare",
"Y Bengio",
"H Larochelle"
],
"doi": "",
"ref_id": "b16",
"title": "On catastrophic interference in atari 2600 games",
"year": "2020"
},
{
"authors": [
"S Fort",
"P K Nowak",
"S Narayanan"
],
"doi": "",
"ref_id": "b17",
"title": "Stiffness: A new perspective on generalization in neural networks",
"year": "2019"
},
{
"authors": [
"J Frankle",
"G K Dziugaite",
"D Roy",
"M Carbin"
],
"doi": "",
"ref_id": "b18",
"title": "Linear mode connectivity and the lottery ticket hypothesis",
"year": "2020"
},
{
"authors": [
"R M French"
],
"doi": "10.1016/s1364-6613(99)01294-2",
"ref_id": "b19",
"title": "Catastrophic forgetting in connectionist networks",
"year": "1999"
},
{
"authors": [
"B Ghorbani",
"S Krishnan",
"Xiao",
"Y"
],
"doi": "",
"ref_id": "b20",
"title": "An investigation into neural net optimization via hessian eigenvalue density",
"year": "2019"
},
{
"authors": [
"J Gilmer",
"B Ghorbani",
"A Garg",
"S R Kudugunta",
"B Neyshabur",
"D Cardoze",
"G E Dahl",
"Z Nado",
"O Firat"
],
"doi": "",
"ref_id": "b21",
"title": "A loss curvature perspective on training instability in deep learning",
"year": "2022"
},
{
"authors": [
"X Glorot",
"Y Bengio"
],
"doi": "",
"ref_id": "b22",
"title": "Understanding the difficulty of training deep feedforward neural networks",
"year": "2010"
},
{
"authors": [
"F Gogianu",
"T Berariu",
"M C Rosca",
"C Clopath",
"L Busoniu",
"R Pascanu"
],
"doi": "",
"ref_id": "b23",
"title": "Spectral normalisation for deep reinforcement learning: an optimisation perspective",
"year": "2021"
},
{
"authors": [
"C Gulcehre",
"S Srinivasan",
"J Sygnowski",
"G Ostrovski",
"M Farajtabar",
"M Hoffman",
"R Pascanu",
"A Doucet"
],
"doi": "",
"ref_id": "b24",
"title": "An empirical study of implicit regularization in deep offline rl",
"year": "2022"
},
{
"authors": [
"R Hadsell",
"D Rao",
"A A Rusu",
"R Pascanu"
],
"doi": "",
"ref_id": "b25",
"title": "Embracing change: Continual learning in deep neural networks",
"year": "2020"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/iccv.2015.123",
"ref_id": "b26",
"title": "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification",
"year": "2015"
},
{
"authors": [
"K He",
"X Zhang",
"S Ren",
"J Sun"
],
"doi": "",
"ref_id": "b27",
"title": "Deep residual learning for image recognition",
"year": "2016"
},
{
"authors": [
"M Igl",
"G Farquhar",
"J Luketina",
"W Boehmer",
"S Whiteson"
],
"doi": "",
"ref_id": "b28",
"title": "Transient non-stationarity and generalisation in deep reinforcement learning",
"year": "2021"
},
{
"authors": [
"S Jastrzebski",
"M Szymczak",
"S Fort",
"D Arpit",
"J Tabor",
"* Cho",
"K Geras",
"*",
"K"
],
"doi": "",
"ref_id": "b29",
"title": "The break-even point on optimization trajectories of deep neural networks",
"year": "2020"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T B Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "",
"ref_id": "b30",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"Ronald Kemker",
"Marc Mcclure",
"Angelina Abitino",
"Tyler Hayes",
"Christopher Kanan"
],
"doi": "10.1609/aaai.v32i1.11651",
"ref_id": "b31",
"title": "Measuring Catastrophic Forgetting in Neural Networks",
"year": "2018"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "",
"ref_id": "b32",
"title": "A method for stochastic optimization",
"year": "2015"
},
{
"authors": [
"J Kirkpatrick",
"R Pascanu",
"N Rabinowitz",
"J Veness",
"G Desjardins",
"A A Rusu",
"K Milan",
"J Quan",
"T Ramalho",
"A Grabska-Barwinska"
],
"doi": "",
"ref_id": "b33",
"title": "Overcoming catastrophic forgetting in neural networks",
"year": "2017"
},
{
"authors": [
"A Kumar",
"R Agarwal",
"D Ghosh",
"S Levine"
],
"doi": "",
"ref_id": "b34",
"title": "Implicit under-parameterization inhibits data-efficient deep reinforcement learning",
"year": "2020"
},
{
"authors": [
"S.-W Lee",
"J.-H Kim",
"J Jun",
"J.-W Ha",
"B.-T Zhang"
],
"doi": "",
"ref_id": "b35",
"title": "Overcoming catastrophic forgetting by incremental moment matching",
"year": "2017"
},
{
"authors": [
"A Lewkowycz",
"Y Bahri",
"E Dyer",
"J Sohl-Dickstein",
"G Gur-Ari"
],
"doi": "",
"ref_id": "b36",
"title": "The large learning rate phase of deep learning: the catapult mechanism",
"year": "2020"
},
{
"authors": [
"H Li",
"Z Xu",
"G Taylor",
"C Studer",
"T Goldstein"
],
"doi": "",
"ref_id": "b37",
"title": "Visualizing the loss landscape of neural nets",
"year": "2018"
},
{
"authors": [
"C Lyle",
"M Rowland",
"W Dabney"
],
"doi": "",
"ref_id": "b38",
"title": "Understanding and preventing capacity loss in reinforcement learning",
"year": "2021"
},
{
"authors": [
"C Lyle",
"M Rowland",
"W Dabney",
"M Kwiatkowska",
"Y Gal"
],
"doi": "",
"ref_id": "b39",
"title": "Learning dynamics and generalization in deep reinforcement learning",
"year": "2022"
},
{
"authors": [
"J Martens",
"A Ballard",
"G Desjardins",
"G Swirszcz",
"V Dalibard",
"J Sohl-Dickstein",
"S S Schoenholz"
],
"doi": "",
"ref_id": "b40",
"title": "Rapid training of deep neural networks without skip connections or normalization layers using deep kernel shaping",
"year": "2021"
},
{
"authors": [
"Martial Mermillod",
"Aurélia Bugaiska",
"Patrick Bonin"
],
"doi": "10.3389/fpsyg.2013.00504",
"ref_id": "b41",
"title": "The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects",
"year": "2013"
},
{
"authors": [
"V Mnih",
"K Kavukcuoglu",
"D Silver",
"A A Rusu",
"J Veness",
"M G Bellemare",
"A Graves",
"M Riedmiller",
"A K Fidjeland",
"G Ostrovski"
],
"doi": "",
"ref_id": "b42",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"E Nikishin",
"M Schwarzer",
"P D'oro",
"P.-L Bacon",
"A Courville"
],
"doi": "",
"ref_id": "b43",
"title": "The primacy bias in deep reinforcement learning",
"year": "2022"
},
{
"authors": [
"Jungin Park",
"Jiyoung Lee",
"Ig-Jae Kim",
"Kwanghoon Sohn"
],
"doi": "10.1109/cvpr52688.2022.01430",
"ref_id": "b44",
"title": "Probabilistic Representations for Video Contrastive Learning",
"year": "2022"
},
{
"authors": [
"B Poole",
"S Lahiri",
"M Raghu",
"J Sohl-Dickstein",
"S Ganguli"
],
"doi": "",
"ref_id": "b45",
"title": "Exponential expressivity in deep neural networks through transient chaos",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b46",
"title": "",
"year": "2016"
},
{
"authors": [
"J Quan",
"G Ostrovski",
"Zoo"
],
"doi": "10.7717/peerj-cs.2967/table-3",
"ref_id": "b47",
"title": "Algorithm 1: EBLM-DQN.",
"year": "2020"
},
{
"authors": [
"D Rolnick",
"A Ahuja",
"J Schwarz",
"T Lillicrap",
"G Wayne"
],
"doi": "",
"ref_id": "b48",
"title": "Experience replay for continual learning",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b49",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2019"
},
{
"authors": [
"S Santurkar",
"D Tsipras",
"A Ilyas",
"A Madry"
],
"doi": "",
"ref_id": "b50",
"title": "How does batch normalization help optimization",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b51",
"title": "",
"year": "2018"
},
{
"authors": [
"S Schmitt",
"J J Hudson",
"A Zidek",
"S Osindero",
"C Doersch",
"W M Czarnecki",
"J Z Leibo",
"H Kuttler",
"A Zisserman",
"K Simonyan"
],
"doi": "",
"ref_id": "b52",
"title": "Kickstarting deep reinforcement learning",
"year": "2018"
},
{
"authors": [
"S S Schoenholz",
"J Gilmer",
"S Ganguli",
"J Sohl-Dickstein"
],
"doi": "",
"ref_id": "b53",
"title": "Deep information propagation",
"year": "2017"
},
{
"authors": [
"I Sutskever",
"J Martens",
"G Dahl",
"G Hinton"
],
"doi": "10.1109/icmlc.2002.1174562",
"ref_id": "b54",
"title": "Author Index",
"year": "2013"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b55",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"Hado Van Hasselt",
"Arthur Guez",
"David Silver"
],
"doi": "10.1609/aaai.v30i1.10295",
"ref_id": "b56",
"title": "Deep Reinforcement Learning with Double Q-Learning",
"year": "2016"
},
{
"authors": [
"V Vapnik"
],
"doi": "",
"ref_id": "b57",
"title": "On the uniform convergence of frequencies of occurrence of events to their probabilities",
"year": "1968"
},
{
"authors": [
"Z Wang",
"T Schaul",
"M Hessel",
"H Hasselt",
"M Lanctot",
"N Freitas"
],
"doi": "",
"ref_id": "b58",
"title": "Dueling network architectures for deep reinforcement learning",
"year": "2016"
},
{
"authors": [
"G Yang",
"S Schoenholz"
],
"doi": "",
"ref_id": "b59",
"title": "Mean field residual networks: On the edge of chaos",
"year": "2017"
},
{
"authors": [
"G Yang",
"J Pennington",
"V Rao",
"J Sohl-Dickstein",
"S S Schoenholz"
],
"doi": "",
"ref_id": "b60",
"title": "A mean field theory of batch normalization",
"year": "2019"
},
{
"authors": [
"C Zhang",
"S Bengio",
"Y Singer"
],
"doi": "10.3726/978-1-4539-1327-7/14",
"ref_id": "b61",
"title": "6. “All men and women are created equal”",
"year": "2021"
},
{
"authors": [
"G Zhang",
"A Botev",
"J Martens"
],
"doi": "",
"ref_id": "b62",
"title": "Deep learning without shortcuts: Shaping the kernel with tailored rectifiers",
"year": "2021"
}
] |
[
"e8ca5c415728d83c",
"43190bcf98b8b976",
"931f78629a12dc30",
"8486b00292474c13",
"8fb13c749a9bf32c",
"ab85ecad3d10c9d2",
"fbd88ac2344c1a0d",
"06f060df56e63eec",
"2021947c0d262106",
"a62cd2a5a4b49e09",
"1fa6cdf1979640c4",
"509420e493b6dee0",
"b0688cacc056f41d",
"f488b6f99500b448",
"93b233c4985b2809",
"5fc1454dd920cb3d",
"231738641414b123",
"9b3ea44f944dde7c",
"34a4035c13dbbbc3",
"d2fe95d547725e4d",
"b8eeb10ef42e12b7",
"b5b3cec8054d37f1",
"dbe5bb65dc3ccb8a",
"8a4c9a74fb55fa17",
"f0937d723db1955c",
"63c476e37fb0d231",
"a9a0c940e2600d8b",
"de987cb6d24c1886",
"31c9b047a3df0782"
] |
[
"08c2493abcf5f3d0",
"ab85ecad3d10c9d2",
"d854968100edc429",
"931f78629a12dc30",
"ab00837062707a69",
"105bee7b8d8132e0",
"231738641414b123",
"c80c0f47860dd48d",
"704ee8451099a817",
"f488b6f99500b448",
"915b879d70d8af9f",
"349f2afcf422e00f",
"f80cd8626f8e9913",
"06f060df56e63eec",
"e01b048243ab4004",
"8b18fa4fbc2c214a",
"43190bcf98b8b976",
"e3a59fbefb1b23bd",
"2021947c0d262106",
"93b233c4985b2809",
"b8eeb10ef42e12b7",
"521afeb6dd15b39f",
"b0688cacc056f41d",
"b54a500dfcaa3847",
"c30c8d3cf584d89a",
"e8ca5c415728d83c",
"b5b3cec8054d37f1",
"de987cb6d24c1886",
"63c476e37fb0d231",
"a62cd2a5a4b49e09",
"e9b17f06b8676f55",
"8486b00292474c13",
"efa52fc16696aff7",
"8a4c9a74fb55fa17",
"db9743134ad0f339",
"509420e493b6dee0",
"f0937d723db1955c",
"dbe5bb65dc3ccb8a",
"a9a0c940e2600d8b",
"be89ef1e5ad7c2b8",
"8fb13c749a9bf32c",
"0a7fa4f9c84bb34a",
"a5bf49f15d1e3452",
"1fa6cdf1979640c4",
"34a4035c13dbbbc3",
"107986c9471b4c6d",
"e38ee848b4ce3b78",
"1d910eb3847d834f",
"863c18622a48c682",
"9a6bcfe42d66b790",
"90e329d26bd905b8",
"16e1cd868b62e268",
"31c9b047a3df0782",
"d2fe95d547725e4d",
"fbd88ac2344c1a0d",
"34dc3e64fa458b25",
"7a2f500477d6b902",
"6d97d21b959bbb91",
"46100c3490685521",
"5fc1454dd920cb3d",
"9b3ea44f944dde7c",
"a97794e7d4af9924",
"213c791846c7c531"
] |
BAQWKRdL1D
|
Sketch-Flip-Merge: Mergeable Sketches for Private Distinct Counting
|
data/openreview_paper/ICML_2023_oral/BAQWKRdL1D//paper.pdf
| 33
| 7
|
[
{
"authors": [
"S L Warner"
],
"doi": "",
"ref_id": "b31",
"title": "Randomized response: A survey technique for eliminating evasive answer bias",
"year": "1965"
},
{
"authors": [
"Frédéric Giroire"
],
"doi": "10.1016/j.dam.2008.06.020",
"ref_id": "b17",
"title": "Order statistics and estimating cardinalities of massive data sets",
"year": "2009"
},
{
"authors": [
"B Kreuter",
"C W Wright",
"E S Skvortsov",
"R Mirisola",
"Y Wang"
],
"doi": "",
"ref_id": "b20",
"title": "Privacy-preserving secure cardinality and frequency estimation",
"year": "2020"
},
{
"authors": [
"Andrei Broder",
"Michael Mitzenmacher"
],
"doi": "10.1080/15427951.2004.10129096",
"ref_id": "b3",
"title": "Network Applications of Bloom Filters: A Survey",
"year": "2004"
},
{
"authors": [
"Philippe Flajolet",
"G Nigel Martin"
],
"doi": "10.1016/0022-0000(85)90041-8",
"ref_id": "b15",
"title": "Probabilistic counting algorithms for data base applications",
"year": "1985"
},
{
"authors": [
"Kyu-Young Whang",
"Brad T Vander-Zanden",
"Howard M Taylor"
],
"doi": "10.1145/78922.78925",
"ref_id": "b32",
"title": "A linear-time probabilistic counting algorithm for database applications",
"year": "1990"
},
{
"authors": [
"Ziv Bar-Yossef",
"T S Jayram",
"Ravi Kumar",
"D Sivakumar",
"Luca Trevisan"
],
"doi": "10.1007/3-540-45726-7_1",
"ref_id": "b2",
"title": "Counting Distinct Elements in a Data Stream",
"year": "2002"
}
] |
[
{
"authors": [
"Cuneyt G Akcora",
"Yitao Li",
"Yulia R Gel",
"Murat Kantarcioglu"
],
"doi": "10.24963/ijcai.2020/612",
"ref_id": "b0",
"title": "BitcoinHeist: Topological Data Analysis for Ransomware Prediction on the Bitcoin Blockchain",
"year": "7 2020"
},
{
"authors": [
"Mohammad Alaggan",
"Mathieu Cunche",
"Sébastien Gambs"
],
"doi": "10.1515/popets-2018-0010",
"ref_id": "b1",
"title": "Privacy-preserving Wi-Fi Analytics",
"year": "2018. 2018"
},
{
"authors": [
"Ziv Bar-Yossef",
"T S Jayram",
"Ravi Kumar",
"D Sivakumar",
"Luca Trevisan"
],
"doi": "10.1007/3-540-45726-7_1",
"ref_id": "b2",
"title": "Counting Distinct Elements in a Data Stream",
"year": "2002"
},
{
"authors": [
"Andrei Broder",
"Michael Mitzenmacher"
],
"doi": "10.1080/15427951.2004.10129096",
"ref_id": "b3",
"title": "Network Applications of Bloom Filters: A Survey",
"year": "2004"
},
{
"authors": [
"Seung Geol Choi",
"Dana Dachman-Soled",
"Mukul Kulkarni",
"Arkady Yerukhimovich"
],
"doi": "10.2478/popets-2020-0047",
"ref_id": "b4",
"title": "Differentially-Private Multi-Party Sketching for Large-Scale Statistics",
"year": "2020"
},
{
"authors": [
"Peter Clifford",
"Ioana A Cosma"
],
"doi": "10.1111/j.1467-9469.2010.00727.x",
"ref_id": "b5",
"title": "A Statistical Analysis of Probabilistic Counting Algorithms",
"year": "2012"
},
{
"authors": [
"Y Collet"
],
"doi": "",
"ref_id": "b6",
"title": "xxHash -extremely fast non-cryptographic hash algorithm",
"year": "2022. 2022-11-16"
},
{
"authors": [
"Graham Cormode",
"Ke Yi"
],
"doi": "10.1017/9781108769938",
"ref_id": "b7",
"title": "Small Summaries for Big Data",
"year": "2020"
},
{
"authors": [
"D Desfontaines",
"A Lochbihler",
"D Basin"
],
"doi": "10.2478/popets-2019-0018",
"ref_id": "b8",
"title": "Cardinality estimators do not preserve privacy",
"year": "2019. apr 2019"
},
{
"authors": [
"C Dickens",
"J Thaler",
"D Ting"
],
"doi": "",
"ref_id": "b9",
"title": "Order-invariant cardinality estimators are differentially private",
"year": "2022"
},
{
"authors": [
"Marianne Durand",
"Philippe Flajolet"
],
"doi": "10.1007/978-3-540-39658-1_55",
"ref_id": "b10",
"title": "Loglog Counting of Large Cardinalities",
"year": "2003"
},
{
"authors": [
"C Dwork"
],
"doi": "",
"ref_id": "b11",
"title": "Differential privacy: A survey of results",
"year": "2008"
},
{
"authors": [
"Cynthia Dwork",
"Frank Mcsherry",
"Kobbi Nissim",
"Adam Smith"
],
"doi": "10.1007/11681878_14",
"ref_id": "b12",
"title": "Calibrating Noise to Sensitivity in Private Data Analysis",
"year": "2006"
},
{
"authors": [
"Úlfar Erlingsson",
"Vasyl Pihur",
"Aleksandra Korolova"
],
"doi": "10.1145/2660267.2660348",
"ref_id": "b13",
"title": "RAPPOR",
"year": "2014"
},
{
"authors": [
"O Ertl"
],
"doi": "",
"ref_id": "b14",
"title": "New cardinality estimation algorithms for hyperloglog sketches",
"year": "2017"
},
{
"authors": [
"Philippe Flajolet",
"G Nigel Martin"
],
"doi": "10.1016/0022-0000(85)90041-8",
"ref_id": "b15",
"title": "Probabilistic counting algorithms for data base applications",
"year": "1985"
},
{
"authors": [
"Philippe Flajolet",
"Éric Fusy",
"Olivier Gandouet",
"Frédéric Meunier"
],
"doi": "10.46298/dmtcs.3545",
"ref_id": "b16",
"title": "HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm",
"year": "2007"
},
{
"authors": [
"Frédéric Giroire"
],
"doi": "10.1016/j.dam.2008.06.020",
"ref_id": "b17",
"title": "Order statistics and estimating cardinalities of massive data sets",
"year": "2009"
},
{
"authors": [
"Stefan Heule",
"Marc Nunkesser",
"Alexander Hall"
],
"doi": "10.1145/2452376.2452456",
"ref_id": "b18",
"title": "HyperLogLog in practice",
"year": "2013"
},
{
"authors": [
"V Kolchin",
"B Sevast'janov",
"V Christ'yakov",
"V Čistjakov",
"A Balakrishnan"
],
"doi": "10.59350/07vcq-5bp19",
"ref_id": "b19",
"title": "Wochenrückblick: Google Books, Content ID, Verwaiste Werke",
"year": "1978"
},
{
"authors": [
"B Kreuter",
"C W Wright",
"E S Skvortsov",
"R Mirisola",
"Y Wang"
],
"doi": "",
"ref_id": "b20",
"title": "Privacy-preserving secure cardinality and frequency estimation",
"year": "2020"
},
{
"authors": [
"K J Lang"
],
"doi": "",
"ref_id": "b21",
"title": "Back to the future: an even more nearly optimal cardinality estimation algorithm",
"year": "2017"
},
{
"authors": [
"B G Lindsay"
],
"doi": "",
"ref_id": "b22",
"title": "Composite likelihood methods",
"year": "1988"
},
{
"authors": [
"Darakhshan Mir",
"S Muthukrishnan",
"Aleksandar Nikolov",
"Rebecca N Wright"
],
"doi": "10.1145/1989284.1989290",
"ref_id": "b23",
"title": "Pan-private algorithms via statistics on sketches",
"year": "2011"
},
{
"authors": [
"Saskia Nuñez Von Voigt",
"Florian Tschorsch"
],
"doi": "10.1007/978-3-030-39634-3_9",
"ref_id": "b24",
"title": "RRTxFM: Probabilistic Counting for Differentially Private Statistics",
"year": "2019"
},
{
"authors": [
"R Pagh",
"N M Stausholm"
],
"doi": "",
"ref_id": "b25",
"title": "Efficient differentially private F 0 linear sketching",
"year": "2021"
},
{
"authors": [
"A Smith",
"S Song",
"A Guha Thakurta"
],
"doi": "",
"ref_id": "b26",
"title": "The flajoletmartin sketch itself preserves differential privacy: Private counting with minimal space",
"year": "2020"
},
{
"authors": [
"Rade Stanojevic",
"Mohamed Nabeel",
"Ting Yu"
],
"doi": "10.1109/pac.2017.43",
"ref_id": "b27",
"title": "Distributed Cardinality Estimation of Set Operations with Differential Privacy",
"year": "2017"
},
{
"authors": [
"Daniel Ting"
],
"doi": "10.1145/3299869.3319897",
"ref_id": "b28",
"title": "Approximate Distinct Counts for Billions of Datasets",
"year": "2019"
},
{
"authors": [
"Florian Tschorsch",
"Björn Scheuermann"
],
"doi": "10.1016/j.comnet.2013.05.011",
"ref_id": "b29",
"title": "An algorithm for privacy-preserving distributed user statistics",
"year": "2013"
},
{
"authors": [
"C Varin",
"N Reid",
"D Firth"
],
"doi": "",
"ref_id": "b30",
"title": "An overview of composite likelihood methods",
"year": "2011"
},
{
"authors": [
"S L Warner"
],
"doi": "",
"ref_id": "b31",
"title": "Randomized response: A survey technique for eliminating evasive answer bias",
"year": "1965"
},
{
"authors": [
"Kyu-Young Whang",
"Brad T Vander-Zanden",
"Howard M Taylor"
],
"doi": "10.1145/78922.78925",
"ref_id": "b32",
"title": "A linear-time probabilistic counting algorithm for database applications",
"year": "1990"
}
] |
[
"cbeb989fb67781a0",
"e33205bd5b08f4c4",
"d2d09f84674b397c",
"32fbff1ec5c57a49",
"cca5b5f01a3e88c8",
"39385531018a7c1f",
"f73d93447c69bc8a"
] |
[
"e9cb4af2a2052776",
"a7877ab42ea10fcd",
"f73d93447c69bc8a",
"32fbff1ec5c57a49",
"3112e1e57278848a",
"cdb6512509a399db",
"f0f230bf41bff609",
"a0cef349d323d0ee",
"8e1d524de596f70b",
"9e068601e7c31921",
"45d8a4995c2f58f3",
"3f81b9ff85117ec3",
"8ca672d841e344b7",
"3307bce4c069789b",
"ad151c66f7f2d6a3",
"cca5b5f01a3e88c8",
"64af31c491a32f27",
"e33205bd5b08f4c4",
"bdece4d9a1e0433d",
"7fb9d49f9a923c55",
"d2d09f84674b397c",
"9855056e28996c63",
"adb8a90b5ee3211b",
"42f9fdd9cd4d5fe3",
"a6e38513af12ef91",
"ef747f5a322b90ae",
"e6feaecc4a2aef34",
"ef0eaa0e35a6ef94",
"a897b598c57d7c9a",
"3d0151c878517ea9",
"0a241a86c92a7146",
"cbeb989fb67781a0",
"39385531018a7c1f"
] |
uY7F5bouCN
|
Brauer's Group Equivariant Neural Networks
|
data/openreview_paper/ICML_2023_oral/uY7F5bouCN//paper.pdf
| 40
| 7
|
[
{
"authors": [
"Cheryl Grood"
],
"doi": "10.1006/jabr.1999.8069",
"ref_id": "b18",
"title": "Brauer Algebras and Centralizer Algebras for SO(2n,C)",
"year": "1999"
},
{
"authors": [
"S Villar",
"D W Hogg",
"K Storey-Fisher",
"W Yao",
"B Blum-Smith"
],
"doi": "",
"ref_id": "b33",
"title": "Scalars are universal: Equivariant machine learning, structured like classical physics",
"year": "2021"
},
{
"authors": [
"Harshit Mathur*",
"Aditya Surana"
],
"doi": "10.35940/ijitee.h6819.0991120",
"ref_id": "b14",
"title": "Glass Classification based on Machine Learn-ing Algorithms",
"year": "18-24 Jul 2021"
},
{
"authors": [
"H Weyl"
],
"doi": "",
"ref_id": "b37",
"title": "The Classical Groups: Their Invariants and Representations",
"year": "1946"
},
{
"authors": [
"Richard Brauer"
],
"doi": "10.2307/1968843",
"ref_id": "b7",
"title": "On Algebras Which are Connected with the Semisimple Continuous Groups",
"year": "1937"
},
{
"authors": [
"G I Lehrer",
"R B Zhang"
],
"doi": "",
"ref_id": "b26",
"title": "The Brauer category and invariant theory",
"year": "2012"
},
{
"authors": [
"Phil Hanlon",
"David Wales"
],
"doi": "10.1016/0021-8693(89)90076-8",
"ref_id": "b21",
"title": "On the decomposition of Brauer's centralizer algebras",
"year": "1989"
}
] |
[
{
"authors": [
"H Barcelo",
"A Ram"
],
"doi": "",
"ref_id": "b0",
"title": "Combinatorial Representation Theory",
"year": "1997"
},
{
"authors": [
"G Benkart"
],
"doi": "10.1090/conm/194/02387",
"ref_id": "b1",
"title": "Commuting Actions -a Tale of Two Groups",
"year": "January 23 -27, 1995. 1996"
},
{
"authors": [
"G Benkart"
],
"doi": "10.4310/iccm.2014.v2.n2.a4",
"ref_id": "b2",
"title": "Awards at the International Congress of Mathematicians at Seoul (Korea) 2014",
"year": "August 13 -21, 2014. 2014"
},
{
"authors": [
"Georgia Benkart",
"Tom Halverson"
],
"doi": "10.1112/jlms.12175",
"ref_id": "b3",
"title": "Partition algebras Pk(n) with 2k>n and the fundamental theorems of invariant theory for the symmetric group Sn",
"year": "2019"
},
{
"authors": [
"G Benkart",
"T Halverson"
],
"doi": "10.1007/978-3-030-05141-9",
"ref_id": "b4",
"title": "Partition Algebras and the Invariant Theory of the Symmetric Group",
"year": "2019"
},
{
"authors": [
"Georgia Benkart",
"Dongho Moon"
],
"doi": "10.1090/fic/045/05",
"ref_id": "b5",
"title": "Tensor product representations of Temperley-Lieb algebras and Chebyshev polynomials",
"year": "July 15 -August 10, 2002. 2005"
},
{
"authors": [
"Alexander Bogatskiy",
"Timothy Hoffman",
"David W Miller",
"Jan T Offermann",
"Xiaoyang Liu"
],
"doi": "10.1007/jhep03(2024)113",
"ref_id": "b6",
"title": "Explainable equivariant neural networks for particle physics: PELICAN",
"year": "2020"
},
{
"authors": [
"Richard Brauer"
],
"doi": "10.2307/1968843",
"ref_id": "b7",
"title": "On Algebras Which are Connected with the Semisimple Continuous Groups",
"year": "1937"
},
{
"authors": [
"Wm. P Brown"
],
"doi": "10.1307/mmj/1031710528",
"ref_id": "b8",
"title": "An algebra related to the orthogonal group.",
"year": "1955"
},
{
"authors": [
"W P Brown"
],
"doi": "",
"ref_id": "b9",
"title": "The Semisimplicity of the Brauer Algebra",
"year": "1956"
},
{
"authors": [
"Xin Bai",
"Joanne Lavin"
],
"doi": "10.18178/ijlt.2.1.87-90",
"ref_id": "b10",
"title": "Evaluating Social Learning in a Virtual Environment via Concept Maps",
"year": "Jun 2016"
},
{
"authors": [
"T S Cohen",
"M Geiger",
"J Köhler",
"M Welling",
"Cnns"
],
"doi": "",
"ref_id": "b11",
"title": "International Conference on Learning Representations",
"year": "2018"
},
{
"authors": [
"Laura Colmenarejo",
"Rosa Orellana",
"Franco Saliola",
"Anne Schilling",
"Mike Zabrocki"
],
"doi": "10.1016/j.jalgebra.2020.04.010",
"ref_id": "b12",
"title": "An insertion algorithm on multiset partitions with applications to diagram algebras",
"year": "2020"
},
{
"authors": [
"B Finkelshtein",
"C Baskin",
"H Maron",
"N Dym"
],
"doi": "",
"ref_id": "b13",
"title": "A Simple and Universal Rotation Equivariant Point-Cloud Network",
"year": "2022. 25 Feb-22 Jul 2022"
},
{
"authors": [
"Harshit Mathur*",
"Aditya Surana"
],
"doi": "10.35940/ijitee.h6819.0991120",
"ref_id": "b14",
"title": "Glass Classification based on Machine Learn-ing Algorithms",
"year": "18-24 Jul 2021"
},
{
"authors": [
"Roe Goodman",
"Nolan R Wallach"
],
"doi": "10.1007/978-0-387-79852-3",
"ref_id": "b15",
"title": "Symmetry, Representations, and Invariants",
"year": "2009"
},
{
"authors": [
"S Greydanus",
"M Dzamba",
"J Yosinski"
],
"doi": "",
"ref_id": "b16",
"title": "Hamiltonian Neural Networks",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b17",
"title": "",
"year": "2019"
},
{
"authors": [
"Cheryl Grood"
],
"doi": "10.1006/jabr.1999.8069",
"ref_id": "b18",
"title": "Brauer Algebras and Centralizer Algebras for SO(2n,C)",
"year": "1999"
},
{
"authors": [
"Tom Halverson",
"Theodore N Jacobson"
],
"doi": "10.5802/alco.102",
"ref_id": "b19",
"title": "Set-partition tableaux and representations of diagram algebras",
"year": "2020"
},
{
"authors": [
"Tom Halverson",
"Arun Ram"
],
"doi": "10.1090/noti2447",
"ref_id": "b20",
"title": "Gems from the Work of Georgia Benkart",
"year": "March 2022"
},
{
"authors": [
"Phil Hanlon",
"David Wales"
],
"doi": "10.1016/0021-8693(89)90076-8",
"ref_id": "b21",
"title": "On the decomposition of Brauer's centralizer algebras",
"year": "1989"
},
{
"authors": [
"J S Hartford",
"D R Graham",
"K Leyton-Brown",
"S Ravanbakhsh"
],
"doi": "",
"ref_id": "b22",
"title": "Deep Models of Interactions Across Sets",
"year": "2018"
},
{
"authors": [
"Risi Kondor",
"Ruize Xu",
"Qingqi Zhang"
],
"doi": "10.52202/079017-0179",
"ref_id": "b23",
"title": "Schur Nets: exploiting local structure for equivariance in higher order graph neural networks",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b24",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2018"
},
{
"authors": [
"Wataru Kumagai",
"Akiyoshi Sannai",
"Makoto Kawano"
],
"doi": "10.1080/0952813x.2022.2123563",
"ref_id": "b25",
"title": "Universal approximation with neural networks on function spaces",
"year": "2020"
},
{
"authors": [
"G I Lehrer",
"R B Zhang"
],
"doi": "",
"ref_id": "b26",
"title": "The Brauer category and invariant theory",
"year": "2012"
},
{
"authors": [
"Lek-Heng Lim",
"Bradley J Nelson"
],
"doi": "10.1090/noti2666",
"ref_id": "b27",
"title": "What is... an Equivariant Neural Network?",
"year": "2022"
},
{
"authors": [
"H Maron",
"H Ben-Hamu",
"N Shamir",
"Y Lipman"
],
"doi": "",
"ref_id": "b28",
"title": "Invariant and Equivariant Graph Networks",
"year": "2019"
},
{
"authors": [
"H Pan",
"R Kondor"
],
"doi": "",
"ref_id": "b29",
"title": "Permutation Equivariant Layers for Higher Order Interactions",
"year": "28-30 Mar 2022"
},
{
"authors": [
"Edward Pearce-Crump"
],
"doi": "10.3233/faia240655",
"ref_id": "b30",
"title": "Connecting Permutation Equivariant Neural Networks and Partition Diagrams",
"year": "2022"
},
{
"authors": [
"K Ryan"
],
"doi": "",
"ref_id": "b31",
"title": "Representation-theoretic approaches to several problems in probability",
"year": "2021"
},
{
"authors": [
"E Segal"
],
"doi": "",
"ref_id": "b32",
"title": "Group Representation Theory",
"year": "2014"
},
{
"authors": [
"S Villar",
"D W Hogg",
"K Storey-Fisher",
"W Yao",
"B Blum-Smith"
],
"doi": "",
"ref_id": "b33",
"title": "Scalars are universal: Equivariant machine learning, structured like classical physics",
"year": "2021"
},
{
"authors": [
"Maurice Weiler",
"Fred A Hamprecht",
"Martin Storath"
],
"doi": "10.1109/cvpr.2018.00095",
"ref_id": "b34",
"title": "Learning Steerable Filters for Rotation Equivariant CNNs",
"year": ""
},
{
"authors": [],
"doi": "10.5555/3327546.3327700",
"ref_id": "b35",
"title": "",
"year": "2018"
},
{
"authors": [
"Hans Wenzl"
],
"doi": "10.2307/1971466",
"ref_id": "b36",
"title": "On the Structure of Brauer's Centralizer Algebras",
"year": "1988"
},
{
"authors": [
"H Weyl"
],
"doi": "",
"ref_id": "b37",
"title": "The Classical Groups: Their Invariants and Representations",
"year": "1946"
},
{
"authors": [
"M Zaheer",
"S Kottur",
"S Ravanbakhsh",
"B Poczos",
"R R Salakhutdinov",
"A J Smola"
],
"doi": "",
"ref_id": "b38",
"title": "Deep Sets",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b39",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2017"
}
] |
[
"f943bc5fbd774097",
"5bd474b758eb2db9",
"b9979ab89e491883",
"9736dc72581b694f",
"b9c0fd638922fe9e",
"262b3f90334a6388",
"3349fb381d3c978d"
] |
[
"c25db569304d93b3",
"a5f7aba131d0b2bb",
"ed2115d35b3d3cc7",
"c52c1c82db723d75",
"8858268b4907d4d5",
"92dddd622974c189",
"01db0a81ab57d3a1",
"b9c0fd638922fe9e",
"7eb8b54a18773079",
"9a49929f6243f231",
"48ac39423d448fcd",
"937a8e2494851fff",
"25e35fe2bdd0a225",
"259aa60814c63e0d",
"b9979ab89e491883",
"2782e550c5fc02bf",
"ee5e1115bc0cc227",
"7e13ecdaf7b05cda",
"f943bc5fbd774097",
"85fa904ddffd65a9",
"d1feb35bb3fc9811",
"3349fb381d3c978d",
"dbff42efd93df72b",
"9cf64b0d463b565c",
"a6625968b7060b53",
"21855380f748ffc5",
"262b3f90334a6388",
"b1dec2692f479f2a",
"51e16b6160ef5b34",
"0dd03991442253cd",
"2f2adfd49da36c22",
"397a969e2ad25e5c",
"631221fdeb2e5b3f",
"5bd474b758eb2db9",
"f4b2f6be5ede68ad",
"26a70c461ac50349",
"dcd2ec10f8abc7b4",
"9736dc72581b694f",
"75656c964b194f3a",
"1a7cf40d6eca41d8"
] |
tRhQsHnoFw
|
Bayesian Design Principles for Frequentist Sequential Learning
|
data/openreview_paper/ICML_2023_oral/tRhQsHnoFw//paper.pdf
| 28
| 3
|
[
{
"authors": [
"Volodymyr Mnih",
"Koray Kavukcuoglu",
"David Silver",
"Andrei A Rusu",
"Joel Veness",
"Marc G Bellemare",
"Alex Graves",
"Martin Riedmiller",
"Andreas K Fidjeland",
"Georg Ostrovski",
"Stig Petersen",
"Charles Beattie",
"Amir Sadik",
"Ioannis Antonoglou",
"Helen King",
"Dharshan Kumaran",
"Daan Wierstra",
"Shane Legg",
"Demis Hassabis"
],
"doi": "10.1038/nature14236",
"ref_id": "b21",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"D Silver",
"A Huang",
"C J Maddison",
"A Guez",
"L Sifre",
"G Van Den Driessche",
"J Schrittwieser",
"I Antonoglou",
"V Panneershelvam",
"M Lanctot"
],
"doi": "",
"ref_id": "b25",
"title": "Mastering the game of go with deep neural networks and tree search",
"year": "2016"
},
{
"authors": [
"Lihong Li",
"Wei Chu",
"John Langford",
"Robert E Schapire"
],
"doi": "10.1145/1772690.1772758",
"ref_id": "b20",
"title": "A contextual-bandit approach to personalized news article recommendation",
"year": "2010"
}
] |
[
{
"authors": [
"Jacob D Abernethy",
"Elad Hazan",
"Alexander Rakhlin"
],
"doi": "10.1109/tit.2012.2192096",
"ref_id": "b0",
"title": "Interior-Point Methods for Full-Information and Bandit Online Learning",
"year": "2008. 2008"
},
{
"authors": [
"A Agarwal",
"T Zhang"
],
"doi": "",
"ref_id": "b1",
"title": "Model-based rl with optimistic posterior sampling: Structural conditions and sample complexity",
"year": "2022"
},
{
"authors": [
"Peter Auer",
"Nicolò Cesa-Bianchi",
"Paul Fischer"
],
"doi": "10.1023/a:1013689704352",
"ref_id": "b2",
"title": "Finite-time Analysis of the Multiarmed Bandit Problem",
"year": "2002"
},
{
"authors": [
"P Auer",
"N Cesa-Bianchi",
"Y Freund",
"R E Schapire"
],
"doi": "",
"ref_id": "b3",
"title": "The nonstochastic multiarmed bandit problem",
"year": "2002b"
},
{
"authors": [
"O Besbes",
"Y Gur",
"A Zeevi"
],
"doi": "",
"ref_id": "b4",
"title": "Stochastic multi-armedbandit problem with non-stationary rewards",
"year": "2014"
},
{
"authors": [
"V I Bogachev",
"M A S Ruas"
],
"doi": "",
"ref_id": "b5",
"title": "Measure theory",
"year": "2007"
},
{
"authors": [
"V Dani",
"S M Kakade",
"T Hayes"
],
"doi": "",
"ref_id": "b6",
"title": "The price of bandit information for online optimization",
"year": "2007"
},
{
"authors": [
"S Du",
"S Kakade",
"J Lee",
"S Lovett",
"G Mahajan",
"W Sun",
"R Wang"
],
"doi": "",
"ref_id": "b7",
"title": "Bilinear classes: A structural framework for provable generalization in rl",
"year": "2021"
},
{
"authors": [
"D J Foster",
"A Rakhlin"
],
"doi": "",
"ref_id": "b8",
"title": "Beyond UCB: Optimal and efficient contextual bandits with regression oracles",
"year": "2020"
},
{
"authors": [
"D J Foster",
"S M Kakade",
"J Qian",
"A Rakhlin"
],
"doi": "",
"ref_id": "b9",
"title": "The statistical complexity of interactive decision making",
"year": "2021"
},
{
"authors": [
"D J Foster",
"N Golowich",
"J Qian",
"A Rakhlin",
"A Sekhari"
],
"doi": "",
"ref_id": "b10",
"title": "A note on model-free reinforcement learning with the decision-estimation coefficient",
"year": "2022"
},
{
"authors": [
"D J Foster",
"A Rakhlin",
"A Sekhari",
"K Sridharan"
],
"doi": "",
"ref_id": "b11",
"title": "On the complexity of adversarial decision making",
"year": "2022"
},
{
"authors": [
"D J Foster",
"N Golowich",
"Y Han"
],
"doi": "",
"ref_id": "b12",
"title": "Tight guarantees for interactive decision making with the decision-estimation coefficient",
"year": "2023"
},
{
"authors": [
"B Hao",
"T Lattimore"
],
"doi": "",
"ref_id": "b13",
"title": "Regret bounds for informationdirected reinforcement learning",
"year": "2022"
},
{
"authors": [
"Elad Hazan",
"C Seshadhri"
],
"doi": "10.1145/1553374.1553425",
"ref_id": "b14",
"title": "Efficient learning algorithms for changing environments",
"year": "2016"
},
{
"authors": [
"C Jin",
"Q Liu",
"S Miryoosefi"
],
"doi": "",
"ref_id": "b15",
"title": "Bellman eluder dimension: New rich classes of rl problems, and sampleefficient algorithms",
"year": "2021"
},
{
"authors": [
"T L Lai",
"Herbert Robbins"
],
"doi": "10.1016/0196-8858(85)90002-8",
"ref_id": "b16",
"title": "Asymptotically efficient adaptive allocation rules",
"year": "1985"
},
{
"authors": [
"Tor Lattimore"
],
"doi": "10.4171/msl/17",
"ref_id": "b17",
"title": "Improved regret for zeroth-order adversarial bandit convex optimisation",
"year": "2020"
},
{
"authors": [
"T Lattimore",
"A Gyorgy"
],
"doi": "",
"ref_id": "b18",
"title": "Mirror descent and the information ratio",
"year": "2021"
},
{
"authors": [
"Tor Lattimore",
"Csaba Szepesvári"
],
"doi": "10.1017/9781108571401",
"ref_id": "b19",
"title": "Bandit Algorithms",
"year": "2020"
},
{
"authors": [
"Lihong Li",
"Wei Chu",
"John Langford",
"Robert E Schapire"
],
"doi": "10.1145/1772690.1772758",
"ref_id": "b20",
"title": "A contextual-bandit approach to personalized news article recommendation",
"year": "2010"
},
{
"authors": [
"Volodymyr Mnih",
"Koray Kavukcuoglu",
"David Silver",
"Andrei A Rusu",
"Joel Veness",
"Marc G Bellemare",
"Alex Graves",
"Martin Riedmiller",
"Andreas K Fidjeland",
"Georg Ostrovski",
"Stig Petersen",
"Charles Beattie",
"Amir Sadik",
"Ioannis Antonoglou",
"Helen King",
"Dharshan Kumaran",
"Daan Wierstra",
"Shane Legg",
"Demis Hassabis"
],
"doi": "10.1038/nature14236",
"ref_id": "b21",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"R T Rockafellar"
],
"doi": "",
"ref_id": "b22",
"title": "Convex analysis",
"year": "2015"
},
{
"authors": [
"Daniel Russo",
"Benjamin Van Roy"
],
"doi": "10.1287/opre.2017.1663",
"ref_id": "b23",
"title": "Learning to Optimize via Information-Directed Sampling",
"year": "2016"
},
{
"authors": [
"D Russo",
"B Van Roy"
],
"doi": "",
"ref_id": "b24",
"title": "Learning to optimize via information-directed sampling",
"year": "2018"
},
{
"authors": [
"D Silver",
"A Huang",
"C J Maddison",
"A Guez",
"L Sifre",
"G Van Den Driessche",
"J Schrittwieser",
"I Antonoglou",
"V Panneershelvam",
"M Lanctot"
],
"doi": "",
"ref_id": "b25",
"title": "Mastering the game of go with deep neural networks and tree search",
"year": "2016"
},
{
"authors": [
"Maurice Sion"
],
"doi": "10.2140/pjm.1958.8.171",
"ref_id": "b26",
"title": "On general minimax theorems",
"year": "1958"
},
{
"authors": [
"M Song"
],
"doi": "",
"ref_id": "b27",
"title": "Proving that the conditional entropy of a probability measure is concave",
"year": "2019"
}
] |
[
"e700ad61395d2f72",
"d68ab52a52009531",
"4762f98fadbdf46a"
] |
[
"5abb147baa59d214",
"9a549599988ec17b",
"1a012ce7834ce227",
"e353752777e31d97",
"764e650fbcb29253",
"67f17b028d138a78",
"4738dcb6881cf2c4",
"09912d17a96f282f",
"2c3542a6bf5841d1",
"eb7139c7fa85d3ba",
"8fff35b7d83c1536",
"e79702bba3f59855",
"2ec4817f294780b3",
"f389df1aacf269bb",
"ca99d100648bff90",
"506ec54cc39b94b7",
"728d876e608dcc56",
"a452eb43421a48dc",
"42056eef6ae3b040",
"a8e5aa6f2a215a01",
"4762f98fadbdf46a",
"e700ad61395d2f72",
"a6d374c0517f9d3a",
"e69402e8c347616f",
"c70383cf9b6547ee",
"d68ab52a52009531",
"ef016d9245c28c63",
"4b019c5735d3d0ac"
] |
kWS8mpioS9
|
Efficient RL via Disentangled Environment and Agent Representations
|
data/openreview_paper/ICML_2023_oral/kWS8mpioS9//paper.pdf
| 51
| 6
|
[
{
"authors": [
"H Zhu",
"J Yu",
"A Gupta",
"D Shah",
"K Hartikainen",
"A Singh",
"V Kumar",
"S Levine"
],
"doi": "",
"ref_id": "b50",
"title": "The ingredients of realworld robotic reinforcement learning",
"year": "2020"
},
{
"authors": [
"D Hafner",
"T Lillicrap",
"J Ba",
"M Norouzi"
],
"doi": "",
"ref_id": "b13",
"title": "Dream to control: Learning behaviors by latent imagination",
"year": "2019"
},
{
"authors": [
"A V Nair",
"V Pong",
"M Dalal",
"S Bahl",
"S Lin",
"S Levine"
],
"doi": "",
"ref_id": "b29",
"title": "Visual reinforcement learning with imagined goals",
"year": "2018"
},
{
"authors": [
"T Haarnoja",
"A Zhou",
"P Abbeel",
"S Levine"
],
"doi": "",
"ref_id": "b12",
"title": "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor",
"year": "2018"
},
{
"authors": [
"F Ebert",
"C Finn",
"A X Lee",
"S Levine"
],
"doi": "",
"ref_id": "b7",
"title": "Selfsupervised visual planning with temporal skip connections",
"year": "2017"
},
{
"authors": [
"I Kostrikov",
"D Yarats",
"R Fergus"
],
"doi": "",
"ref_id": "b23",
"title": "Image augmentation is all you need: Regularizing deep reinforcement learning from pixels",
"year": "2020"
}
] |
[
{
"authors": [
"Kai Arulkumaran",
"Marc Peter Deisenroth",
"Miles Brundage",
"Anil Anthony Bharath"
],
"doi": "10.1109/msp.2017.2743240",
"ref_id": "b0",
"title": "Deep Reinforcement Learning: A Brief Survey",
"year": "2017"
},
{
"authors": [
"S Bahl",
"A Gupta",
"D Pathak"
],
"doi": "",
"ref_id": "b1",
"title": "Human-to-robot imitation in the wild",
"year": "2022"
},
{
"authors": [
"T Chen",
"S Kornblith",
"M Norouzi",
"G Hinton"
],
"doi": "",
"ref_id": "b2",
"title": "A simple framework for contrastive learning of visual representations",
"year": "13-18 Jul 2020"
},
{
"authors": [
"Xinlei Chen",
"Kaiming He"
],
"doi": "10.1109/cvpr46437.2021.01549",
"ref_id": "b3",
"title": "Exploring Simple Siamese Representation Learning",
"year": "2021"
},
{
"authors": [
"S Dasari",
"A Gupta"
],
"doi": "",
"ref_id": "b4",
"title": "Transformers for one-shot visual imitation",
"year": "2021"
},
{
"authors": [
"Coline Devin",
"Abhishek Gupta",
"Trevor Darrell",
"Pieter Abbeel",
"Sergey Levine"
],
"doi": "10.1109/icra.2017.7989250",
"ref_id": "b5",
"title": "Learning modular neural network policies for multi-task and multi-robot transfer",
"year": "2017. 2017"
},
{
"authors": [
"Y Duan",
"M Andrychowicz",
"B Stadie",
"O J Ho",
"J Schneider",
"I Sutskever",
"P Abbeel",
"W Zaremba"
],
"doi": "",
"ref_id": "b6",
"title": "Oneshot imitation learning",
"year": "2017"
},
{
"authors": [
"F Ebert",
"C Finn",
"A X Lee",
"S Levine"
],
"doi": "",
"ref_id": "b7",
"title": "Selfsupervised visual planning with temporal skip connections",
"year": "2017"
},
{
"authors": [
"C Finn",
"T Yu",
"T Zhang",
"P Abbeel",
"S Levine"
],
"doi": "",
"ref_id": "b8",
"title": "Oneshot visual imitation learning via meta-learning",
"year": "2017"
},
{
"authors": [
"J Fu",
"A Kumar",
"O Nachum",
"G Tucker",
"S Levine"
],
"doi": "",
"ref_id": "b9",
"title": "D4rl: Datasets for deep data-driven reinforcement learning",
"year": "2020"
},
{
"authors": [
"J.-B Grill",
"F Strub",
"F Altché",
"C Tallec",
"P Richemond",
"E Buchatskaya",
"C Doersch",
"B Avila Pires",
"Z Guo",
"M Gheshlaghi Azar"
],
"doi": "",
"ref_id": "b10",
"title": "Bootstrap your own latent-a new approach to self-supervised learning",
"year": "2020"
},
{
"authors": [
"Abhishek Gupta",
"Corey Lynch",
"Brandon Kinman",
"Garrett Peake",
"Sergey Levine",
"Karol Hausman"
],
"doi": "10.1109/icra48891.2023.10161447",
"ref_id": "b11",
"title": "Demonstration-Bootstrapped Autonomous Practicing via Multi-Task Reinforcement Learning",
"year": "2019"
},
{
"authors": [
"T Haarnoja",
"A Zhou",
"P Abbeel",
"S Levine"
],
"doi": "",
"ref_id": "b12",
"title": "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor",
"year": "2018"
},
{
"authors": [
"D Hafner",
"T Lillicrap",
"J Ba",
"M Norouzi"
],
"doi": "",
"ref_id": "b13",
"title": "Dream to control: Learning behaviors by latent imagination",
"year": "2019"
},
{
"authors": [
"D Hafner",
"T Lillicrap",
"M Norouzi",
"J Ba"
],
"doi": "",
"ref_id": "b14",
"title": "Mastering atari with discrete world models",
"year": "2020"
},
{
"authors": [
"Kaiming He",
"Georgia Gkioxari",
"Piotr Dollar",
"Ross Girshick"
],
"doi": "10.1109/iccv.2017.322",
"ref_id": "b15",
"title": "Mask R-CNN",
"year": "2017"
},
{
"authors": [
"Kaiming He",
"Haoqi Fan",
"Yuxin Wu",
"Saining Xie",
"Ross Girshick"
],
"doi": "10.1109/cvpr42600.2020.00975",
"ref_id": "b16",
"title": "Momentum Contrast for Unsupervised Visual Representation Learning",
"year": "2020"
},
{
"authors": [
"Kaiming He",
"Xinlei Chen",
"Saining Xie",
"Yanghao Li",
"Piotr Dollar",
"Ross Girshick"
],
"doi": "10.1109/cvpr52688.2022.01553",
"ref_id": "b17",
"title": "Masked Autoencoders Are Scalable Vision Learners",
"year": "2022"
},
{
"authors": [
"E S Hu",
"K Huang",
"O Rybkin",
"D Jayaraman"
],
"doi": "",
"ref_id": "b18",
"title": "Know thyself: Transferable visual control policies through robot-awareness",
"year": "2022"
},
{
"authors": [
"W Huang",
"I Mordatch",
"D Pathak"
],
"doi": "",
"ref_id": "b19",
"title": "One policy to control them all: Shared modular policies for agent-agnostic control",
"year": "2020"
},
{
"authors": [
"D Kalashnikov",
"A Irpan",
"P Pastor",
"J Ibarz",
"A Herzog",
"E Jang",
"D Quillen",
"E Holly",
"M Kalakrishnan",
"V Vanhoucke"
],
"doi": "",
"ref_id": "b20",
"title": "Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation",
"year": "2018"
},
{
"authors": [
"D Kalashnikov",
"J Varley",
"Y Chebotar",
"B Swanson",
"R Jonschkowski",
"C Finn",
"S Levine",
"K Hausman"
],
"doi": "",
"ref_id": "b21",
"title": "Mt-opt: Continuous multi-task robotic reinforcement learning at scale",
"year": "2021"
},
{
"authors": [
"D P Kingma",
"M Welling"
],
"doi": "",
"ref_id": "b22",
"title": "Auto-encoding variational bayes",
"year": "2013"
},
{
"authors": [
"I Kostrikov",
"D Yarats",
"R Fergus"
],
"doi": "",
"ref_id": "b23",
"title": "Image augmentation is all you need: Regularizing deep reinforcement learning from pixels",
"year": "2020"
},
{
"authors": [
"M Laskin",
"K Lee",
"A Stooke",
"L Pinto",
"P Abbeel",
"A Srinivas"
],
"doi": "",
"ref_id": "b24",
"title": "Reinforcement learning with augmented data",
"year": "2020"
},
{
"authors": [
"M Laskin",
"A Srinivas",
"P Abbeel"
],
"doi": "",
"ref_id": "b25",
"title": "CURL: Contrastive unsupervised representations for reinforcement learning",
"year": "13-18 Jul 2020"
},
{
"authors": [
"S Levine",
"C Finn",
"T Darrell",
"P Abbeel"
],
"doi": "",
"ref_id": "b26",
"title": "End-to-end training of deep visuomotor policies",
"year": "2016"
},
{
"authors": [
"T P Lillicrap",
"J J Hunt",
"A Pritzel",
"N Heess",
"T Erez",
"Y Tassa",
"D Silver",
"D Wierstra"
],
"doi": "",
"ref_id": "b27",
"title": "Continuous control with deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"R Mendonca",
"S Bahl",
"D Pathak",
"Alan"
],
"doi": "",
"ref_id": "b28",
"title": "Autonomously exploring robotic agents in the real world",
"year": "2023"
},
{
"authors": [
"A V Nair",
"V Pong",
"M Dalal",
"S Bahl",
"S Lin",
"S Levine"
],
"doi": "",
"ref_id": "b29",
"title": "Visual reinforcement learning with imagined goals",
"year": "2018"
},
{
"authors": [
"S Nair",
"A Rajeswaran",
"V Kumar",
"C Finn",
"A Gupta"
],
"doi": "",
"ref_id": "b30",
"title": "R3m: A universal visual representation for robot manipulation",
"year": "2022"
},
{
"authors": [
"Gerhard Neumann",
"Christian Daniel",
"Alexandros Paraschos",
"Andras Kupcsik",
"Jan Peters"
],
"doi": "10.3389/fncom.2014.00062",
"ref_id": "b31",
"title": "Learning modular policies for robotics",
"year": "2014"
},
{
"authors": [
"S Parisi",
"V Dean",
"D Pathak",
"A Gupta"
],
"doi": "",
"ref_id": "b32",
"title": "Interesting object, curious agent: Learning task-agnostic exploration",
"year": "2021"
},
{
"authors": [
"Deepak Pathak",
"Philipp Krahenbuhl",
"Jeff Donahue",
"Trevor Darrell",
"Alexei A Efros"
],
"doi": "10.1109/cvpr.2016.278",
"ref_id": "b33",
"title": "Context Encoders: Feature Learning by Inpainting",
"year": "2016"
},
{
"authors": [
"J Peters",
"K Mülling",
"Y Altün"
],
"doi": "",
"ref_id": "b34",
"title": "Relative entropy policy search",
"year": "2010"
},
{
"authors": [
"Ilija Radosavovic",
"Tete Xiao",
"Bike Zhang",
"Trevor Darrell",
"Jitendra Malik",
"Koushil Sreenath"
],
"doi": "10.1126/scirobotics.adi9579",
"ref_id": "b35",
"title": "Real-world humanoid locomotion with reinforcement learning",
"year": "2022"
},
{
"authors": [
"A Rajeswaran",
"V Kumar",
"A Gupta",
"G Vezzani",
"J Schulman",
"E Todorov",
"S Levine"
],
"doi": "",
"ref_id": "b36",
"title": "Learning complex dexterous manipulation with deep reinforcement learning and demonstrations",
"year": "2017"
},
{
"authors": [
"D J Rezende",
"S Mohamed",
"D Wierstra"
],
"doi": "",
"ref_id": "b37",
"title": "Stochastic backpropagation and approximate inference in deep generative models",
"year": "2014"
},
{
"authors": [
"L Shapiro"
],
"doi": "10.4324/9781315775845",
"ref_id": "b38",
"title": "The Routledge Handbook of Embodied Cognition",
"year": "2010"
},
{
"authors": [
"A Stone",
"O Ramirez",
"K Konolige",
"R Jonschkowski"
],
"doi": "",
"ref_id": "b39",
"title": "The distracting control suite-a challenging benchmark for reinforcement learning from pixels",
"year": "2021"
},
{
"authors": [
"Y Tassa",
"Y Doron",
"A Muldal",
"T Erez",
"Y Li",
"D D L Casas",
"D Budden",
"A Abdolmaleki",
"J Merel",
"A Lefrancq"
],
"doi": "",
"ref_id": "b40",
"title": "Deepmind control suite",
"year": "2018"
},
{
"authors": [
"Emanuel Todorov",
"Tom Erez",
"Yuval Tassa"
],
"doi": "10.1109/iros.2012.6386109",
"ref_id": "b41",
"title": "MuJoCo: A physics engine for model-based control",
"year": "2012"
},
{
"authors": [
"T Wang",
"R Liao",
"J Ba",
"S Fidler",
"Nervenet"
],
"doi": "",
"ref_id": "b42",
"title": "Learning structured policy with graph neural networks",
"year": "2018"
},
{
"authors": [
"M Watter",
"J Springenberg",
"J Boedecker",
"M Riedmiller"
],
"doi": "",
"ref_id": "b43",
"title": "Embed to control: A locally linear latent dynamics model for control from raw images",
"year": "2015"
},
{
"authors": [
"T Xiao",
"I Radosavovic",
"T Darrell",
"J Malik"
],
"doi": "",
"ref_id": "b44",
"title": "Masked visual pre-training for motor control",
"year": "2022"
},
{
"authors": [
"D Yarats",
"R Fergus",
"A Lazaric",
"L Pinto"
],
"doi": "",
"ref_id": "b45",
"title": "Mastering visual continuous control: Improved data-augmented reinforcement learning",
"year": "2021"
},
{
"authors": [
"Denis Yarats",
"Amy Zhang",
"Ilya Kostrikov",
"Brandon Amos",
"Joelle Pineau",
"Rob Fergus"
],
"doi": "10.1609/aaai.v35i12.17276",
"ref_id": "b46",
"title": "Improving Sample Efficiency in Model-Free Reinforcement Learning from Images",
"year": "2021"
},
{
"authors": [
"Tianhe Yu",
"Chelsea Finn",
"Sudeep Dasari",
"Annie Xie",
"Tianhao Zhang",
"Pieter Abbeel",
"Sergey Levine"
],
"doi": "10.15607/rss.2018.xiv.002",
"ref_id": "b47",
"title": "One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning",
"year": "2018"
},
{
"authors": [
"T Yu",
"D Quillen",
"Z He",
"R Julian",
"K Hausman",
"C Finn",
"S Levine"
],
"doi": "",
"ref_id": "b48",
"title": "Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning",
"year": "2020"
},
{
"authors": [
"M Zhang",
"S Vikram",
"L Smith",
"P Abbeel",
"M Johnson",
"S Levine"
],
"doi": "",
"ref_id": "b49",
"title": "Solar: Deep structured representations for model-based reinforcement learning",
"year": "2019"
},
{
"authors": [
"H Zhu",
"J Yu",
"A Gupta",
"D Shah",
"K Hartikainen",
"A Singh",
"V Kumar",
"S Levine"
],
"doi": "",
"ref_id": "b50",
"title": "The ingredients of realworld robotic reinforcement learning",
"year": "2020"
}
] |
[
"dcdbdf6a6cda551c",
"7df33925ef4535d7",
"733c717392286fd7",
"e436392273aa8135",
"b39516b2b241dedb",
"da7645d7893d4e2e"
] |
[
"39a0472bc0801a3a",
"2ae55d2e022df395",
"f32968dba2d7929a",
"b521e4ed95421902",
"f19559016fda0f4c",
"336d82b3df09dc08",
"f52c921dc5c9efed",
"b39516b2b241dedb",
"425fa991faa1f66e",
"e6dc9c6cbbbebadc",
"06ad1ace7f85f89d",
"12bcd7f048ef7884",
"e436392273aa8135",
"7df33925ef4535d7",
"f42e76fc8808d6d0",
"a9335eeefc0d99f3",
"26215087ab49e07e",
"1c87dfa921ba5632",
"2ce68f9b332b62ef",
"ec3cae6044d54efc",
"a5ead366e3887867",
"3b01246118fcc5a6",
"a3efbf49e88067f4",
"da7645d7893d4e2e",
"6759ac313b4bbd04",
"60ac89bdc758d960",
"632de823efae88de",
"7a8b7780292f50e3",
"12d3bd17d4bbdb13",
"733c717392286fd7",
"0b2c7e890fb504c7",
"60eddafa97390931",
"a23180b4c9128f8f",
"0b05a20b26597871",
"60a38605eca0a4fc",
"7b13f9f614ee9a80",
"3ddfa360a4e7113f",
"ccd9c0a92c2d8cbd",
"a827841787f4c98b",
"53398726002f9c8e",
"d39c4f46233f732e",
"df4a6a860bd59d4e",
"893d0236602453fc",
"df2d0928f8d54254",
"3f60fc051117fd13",
"8e7d55f7ee84648b",
"66c91424d1e1895e",
"72bce1debd82a2aa",
"ddd15812dbda40a4",
"82e2a3c1bd607ff1",
"dcdbdf6a6cda551c"
] |
1F2Opw8CGA
|
Structure-informed Language Models Are Protein Designers
|
data/openreview_paper/ICML_2023_oral/1F2Opw8CGA//paper.pdf
| 83
| 0
|
[] |
[
{
"authors": [
"Jared Adolf-Bryfogle",
"Oleks Kalyuzhniy",
"Michael Kubitz",
"Brian D Weitzner",
"Xiaozhen Hu",
"Yumiko Adachi",
"William R Schief",
"Roland L Dunbrack"
],
"doi": "10.1371/journal.pcbi.1006112",
"ref_id": "b0",
"title": "RosettaAntibodyDesign (RAbD): A general framework for computational antibody design",
"year": "2018"
},
{
"authors": [
"R F Alford",
"A Leaver-Fay",
"J R Jeliazkov",
"M J O'meara",
"F P Dimaio",
"H Park",
"M V Shapovalov",
"P D Renfrew",
"V K Mulligan",
"K Kappel"
],
"doi": "",
"ref_id": "b1",
"title": "The rosetta allatom energy function for macromolecular modeling and design",
"year": "2017"
},
{
"authors": [
"Minkyung Baek",
"Frank Dimaio",
"Ivan Anishchenko",
"Justas Dauparas",
"Sergey Ovchinnikov",
"Gyu Rie Lee",
"Jue Wang",
"Qian Cong",
"Lisa N Kinch",
"R Dustin Schaeffer",
"Claudia Millán",
"Hahnbeom Park",
"Carson Adams",
"Caleb R Glassman",
"Andy Degiovanni",
"Jose H Pereira",
"Andria V Rodrigues",
"Alberdina A Van Dijk",
"Ana C Ebrecht",
"Diederik J Opperman",
"Theo Sagmeister",
"Christoph Buhlheller",
"Tea Pavkov-Keller",
"Manoj K Rathinaswamy",
"Udit Dalwadi",
"Calvin K Yip",
"John E Burke",
"K Christopher Garcia",
"Nick V Grishin",
"Paul D Adams",
"Randy J Read",
"David Baker"
],
"doi": "10.1126/science.abj8754",
"ref_id": "b2",
"title": "Accurate prediction of protein structures and interactions using a three-track neural network",
"year": "2021"
},
{
"authors": [
"D Bahdanau",
"K Cho",
"Y Bengio"
],
"doi": "",
"ref_id": "b3",
"title": "Neural machine translation by jointly learning to align and translate",
"year": "May 7-9, 2015. 2015"
},
{
"authors": [
"B Boeckmann",
"A Bairoch",
"R Apweiler",
"M.-C Blatter",
"A Estreicher",
"E Gasteiger",
"M J Martin",
"K Michoud",
"C O'donovan",
"I Phan"
],
"doi": "10.1093/nar/gkg095",
"ref_id": "b4",
"title": "The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003",
"year": "2003"
},
{
"authors": [
"N Brandes",
"D Ofer",
"Y Peleg",
"N Rappoport",
"M Linial"
],
"doi": "",
"ref_id": "b5",
"title": "Proteinbert: a universal deep-learning model of protein sequence and function",
"year": "2022"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell"
],
"doi": "",
"ref_id": "b6",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"Peter J A Cock",
"Tiago Antao",
"Jeffrey T Chang",
"Brad A Chapman",
"Cymon J Cox",
"Andrew Dalke",
"Iddo Friedberg",
"Thomas Hamelryck",
"Frank Kauff",
"Bartek Wilczynski",
"Michiel J L De Hoon"
],
"doi": "10.1093/bioinformatics/btp163",
"ref_id": "b7",
"title": "Biopython: freely available Python tools for computational molecular biology and bioinformatics",
"year": "2009"
},
{
"authors": [
"Bassil I Dahiyat",
"Stephen L Mayo"
],
"doi": "10.1073/pnas.94.19.10172",
"ref_id": "b8",
"title": "Probing the role of packing specificity in protein design",
"year": "1997"
},
{
"authors": [
"J Dauparas",
"I Anishchenko",
"N Bennett",
"H Bai",
"R J Ragotte",
"L F Milles",
"B I M Wicky",
"A Courbet",
"R J De Haas",
"N Bethel",
"P J Y Leung",
"T F Huddy",
"S Pellock",
"D Tischer",
"F Chan",
"B Koepnick",
"H Nguyen",
"A Kang",
"B Sankaran",
"A K Bera",
"N P King",
"D Baker"
],
"doi": "10.1126/science.add2187",
"ref_id": "b9",
"title": "Robust deep learning–based protein sequence design using ProteinMPNN",
"year": "2022"
},
{
"authors": [
"J Devlin",
"M.-W Chang",
"K Lee",
"K Toutanova",
"Bert"
],
"doi": "10.18653/v1/N19-1423",
"ref_id": "b10",
"title": "Pre-training of deep bidirectional transformers for language understanding",
"year": "June 2019"
},
{
"authors": [
"A Elnaggar",
"M Heinzinger",
"C Dallago",
"G Rehawi",
"Y Wang",
"L Jones",
"T Gibbs",
"T Feher",
"C Angerer",
"M Steinegger"
],
"doi": "",
"ref_id": "b11",
"title": "Prottrans: Toward understanding the language of life through self-supervised learning",
"year": "2021"
},
{
"authors": [
"Noelia Ferruz",
"Birte Höcker"
],
"doi": "10.1038/s42256-022-00499-z",
"ref_id": "b12",
"title": "Controllable protein design with language models",
"year": "2022"
},
{
"authors": [
"Noelia Ferruz",
"Steffen Schmidt",
"Birte Höcker"
],
"doi": "10.1038/s41467-022-32007-7",
"ref_id": "b13",
"title": "ProtGPT2 is a deep unsupervised language model for protein design",
"year": "2022"
},
{
"authors": [
"Y Fu",
"H Peng",
"A Sabharwal",
"P Clark",
"T Khot"
],
"doi": "",
"ref_id": "b14",
"title": "Complexity-based prompting for multi-step reasoning",
"year": "2022"
},
{
"authors": [
"Z Gao",
"C Tan",
"S Z Li",
"Pifold"
],
"doi": "",
"ref_id": "b15",
"title": "Toward effective and efficient protein inverse folding",
"year": "2022"
},
{
"authors": [
"M Ghazvininejad",
"O Levy",
"Y Liu",
"L Zettlemoyer"
],
"doi": "10.18653/v1/D19-1633",
"ref_id": "b16",
"title": "Mask-predict: Parallel decoding of conditional masked language models",
"year": "November 2019"
},
{
"authors": [
"J Gu",
"J Bradbury",
"C Xiong",
"V O K Li",
"R Socher"
],
"doi": "",
"ref_id": "b17",
"title": "Non-autoregressive neural machine translation",
"year": "April 30 -May 3, 2018. 2018"
},
{
"authors": [
"L He",
"S Zhang",
"L Wu",
"H Xia",
"F Ju",
"H Zhang",
"S Liu",
"Y Xia",
"J Zhu",
"P Deng"
],
"doi": "",
"ref_id": "b18",
"title": "Pre-training coevolutionary protein representation via a pairwise masked language model",
"year": "2021"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b19",
"title": "Denoising diffusion probabilistic models",
"year": "2020"
},
{
"authors": [
"N Houlsby",
"A Giurgiu",
"S Jastrzebski",
"B Morrone",
"Q De Laroussilhe",
"A Gesmundo",
"M Attariyan",
"S Gelly"
],
"doi": "",
"ref_id": "b20",
"title": "Parameter-efficient transfer learning for nlp",
"year": "2019"
},
{
"authors": [
"Chloe Hsu",
"Robert Verkuil",
"Jason Liu",
"Zeming Lin",
"Brian Hie",
"Tom Sercu",
"Adam Lerer",
"Alexander Rives"
],
"doi": "10.1101/2022.04.10.487779",
"ref_id": "b21",
"title": "Learning inverse folding from millions of predicted structures",
"year": "17-23 Jul 2022"
},
{
"authors": [
"M Hu",
"F Yuan",
"K K Yang",
"F Ju",
"J Su",
"H Wang",
"F Yang",
"Q Ding"
],
"doi": "",
"ref_id": "b22",
"title": "Exploring evolution-aware &-free protein language models as protein function predictors",
"year": "2022"
},
{
"authors": [
"Po-Ssu Huang",
"Scott E Boyken",
"David Baker"
],
"doi": "10.1038/nature19946",
"ref_id": "b23",
"title": "The coming of age of de novo protein design",
"year": "2016"
},
{
"authors": [
"J Ingraham",
"V Garg",
"R Barzilay",
"T Jaakkola"
],
"doi": "",
"ref_id": "b24",
"title": "Generative models for graph-based protein design",
"year": "2019"
},
{
"authors": [
"W Jin",
"J Wohlwend",
"R Barzilay",
"T S Jaakkola"
],
"doi": "",
"ref_id": "b25",
"title": "Iterative refinement graph neural network for antibody sequence-structure co-design",
"year": "2021"
},
{
"authors": [
"B Jing",
"S Eismann",
"P Suriana",
"R J L Townshend",
"R Dror"
],
"doi": "",
"ref_id": "b26",
"title": "Learning from protein structure with geometric vector perceptrons",
"year": "2020"
},
{
"authors": [
"John Jumper",
"Richard Evans",
"Alexander Pritzel",
"Tim Green",
"Michael Figurnov",
"Olaf Ronneberger",
"Kathryn Tunyasuvunakool",
"Russ Bates",
"Augustin Žídek",
"Anna Potapenko",
"Alex Bridgland",
"Clemens Meyer",
"Simon A A Kohl",
"Andrew J Ballard",
"Andrew Cowie",
"Bernardino Romera-Paredes",
"Stanislav Nikolov",
"Rishub Jain",
"Jonas Adler",
"Trevor Back",
"Stig Petersen",
"David Reiman",
"Ellen Clancy",
"Michal Zielinski",
"Martin Steinegger",
"Michalina Pacholska",
"Tamas Berghammer",
"Sebastian Bodenstein",
"David Silver",
"Oriol Vinyals",
"Andrew W Senior",
"Koray Kavukcuoglu",
"Pushmeet Kohli",
"Demis Hassabis"
],
"doi": "10.1038/s41586-021-03819-2",
"ref_id": "b27",
"title": "Highly accurate protein structure prediction with AlphaFold",
"year": "2021"
},
{
"authors": [
"Wolfgang Kabsch",
"Christian Sander"
],
"doi": "10.1002/bip.360221211",
"ref_id": "b28",
"title": "Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features",
"year": "1983"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T B Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "",
"ref_id": "b29",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "10.1007/978-3-319-23108-2",
"ref_id": "b30",
"title": "Information Processing in Cells and Tissues",
"year": "May 7-9, 2015. 2015"
},
{
"authors": [
"D P Kingma",
"M Welling"
],
"doi": "",
"ref_id": "b31",
"title": "Auto-encoding variational bayes",
"year": "April 14-16, 2014. 2014"
},
{
"authors": [
"X Kong",
"W Huang",
"Y Liu"
],
"doi": "",
"ref_id": "b32",
"title": "Conditional antibody design as 3d equivariant graph translation",
"year": "2022"
},
{
"authors": [
"J Lee",
"R Tang",
"J Lin"
],
"doi": "10.1126/science.z66g9k7",
"ref_id": "b33",
"title": "ArXiv preprint server clamps down on AI slop",
"year": "2019"
},
{
"authors": [
"J Lees",
"C Yeats",
"J Perkins",
"I Sillitoe",
"R Rentzsch",
"B H Dessailly",
"C Orengo"
],
"doi": "10.1093/nar/gkr1181",
"ref_id": "b34",
"title": "Gene3D: a domain-based resource for comparative genomics, functional annotation and protein network analysis",
"year": "12 2011"
},
{
"authors": [
"Marie-Paule Lefranc",
"Christelle Pommié",
"Manuel Ruiz",
"Véronique Giudicelli",
"Elodie Foulquier",
"Lisa Truong",
"Valérie Thouvenin-Contet",
"Gérard Lefranc"
],
"doi": "10.1016/s0145-305x(02)00039-3",
"ref_id": "b35",
"title": "IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains",
"year": "2003"
},
{
"authors": [
"Xiang Lisa Li",
"Percy Liang"
],
"doi": "10.18653/v1/2021.acl-long.353",
"ref_id": "b36",
"title": "Prefix-Tuning: Optimizing Continuous Prompts for Generation",
"year": "2021"
},
{
"authors": [
"Zhixiu Li",
"Yuedong Yang",
"Eshel Faraggi",
"Jian Zhan",
"Yaoqi Zhou"
],
"doi": "10.1002/prot.24620",
"ref_id": "b37",
"title": "Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles",
"year": "2014"
},
{
"authors": [
"Zeming Lin",
"Halil Akin",
"Roshan Rao",
"Brian Hie",
"Zhongkai Zhu",
"Wenting Lu",
"Nikita Smetanin",
"Robert Verkuil",
"Ori Kabeli",
"Yaniv Shmueli",
"Allan Dos Santos Costa",
"Maryam Fazel-Zarandi",
"Tom Sercu",
"Salvatore Candido",
"Alexander Rives"
],
"doi": "10.1101/2022.07.20.500902",
"ref_id": "b38",
"title": "Evolutionary-scale prediction of atomic level protein structure with a language model",
"year": "2022"
},
{
"authors": [
"Amy X Lu",
"Haoran Zhang",
"Marzyeh Ghassemi",
"Alan Moses"
],
"doi": "10.1101/2020.09.04.283929",
"ref_id": "b39",
"title": "Self-Supervised Contrastive Learning of Protein Representations By Mutual Information Maximization",
"year": "2020"
},
{
"authors": [
"Ali Madani",
"Ben Krause",
"Eric R Greene",
"Subu Subramanian",
"Benjamin P Mohr",
"James M Holton",
"Jose Luis Olmos",
"Caiming Xiong",
"Zachary Z Sun",
"Richard Socher",
"James S Fraser",
"Nikhil Naik"
],
"doi": "10.1101/2021.07.18.452833",
"ref_id": "b40",
"title": "Deep neural language modeling enables functional protein generation across families",
"year": "2021"
},
{
"authors": [
"M Mcdermott",
"B Yap",
"H Hsu",
"D Jin",
"P Szolovits"
],
"doi": "",
"ref_id": "b41",
"title": "Adversarial contrastive pre-training for protein sequences",
"year": "2021"
},
{
"authors": [
"J Meier",
"R Rao",
"R Verkuil",
"J Liu",
"T Sercu",
"A Rives"
],
"doi": "",
"ref_id": "b42",
"title": "Language models enable zero-shot prediction of the effects of mutations on protein function",
"year": "2021"
},
{
"authors": [
"I Melnyk",
"V Chenthamarakshan",
"P.-Y Chen",
"P Das",
"A Dhurandhar",
"I Padhi",
"D Das"
],
"doi": "",
"ref_id": "b43",
"title": "Reprogramming large pretrained language models for antibody sequence infilling",
"year": "2022"
},
{
"authors": [
"Igor Melnyk",
"Aurélie Lozano",
"Payel Das",
"Vijil Chenthamarakshan"
],
"doi": "10.1038/s41598-025-00436-1",
"ref_id": "b44",
"title": "AlphaFold distillation for inverse protein design",
"year": "2022"
},
{
"authors": [
"S Min",
"S Park",
"S Kim",
"H.-S Choi",
"B Lee",
"S Yoon"
],
"doi": "",
"ref_id": "b45",
"title": "Pre-training of deep bidirectional protein sequence representations with structural information",
"year": "2021"
},
{
"authors": [
"Ananthan Nambiar",
"Maeve Heflin",
"Simon Liu",
"Sergei Maslov",
"Mark Hopkins",
"Anna Ritz"
],
"doi": "10.1145/3388440.3412467",
"ref_id": "b46",
"title": "Transforming the Language of Life",
"year": "2020"
},
{
"authors": [
"Erik Nijkamp",
"Jeffrey A Ruffolo",
"Eli N Weinstein",
"Nikhil Naik",
"Ali Madani"
],
"doi": "10.1016/j.cels.2023.10.002",
"ref_id": "b47",
"title": "ProGen2: Exploring the boundaries of protein language models",
"year": "2022"
},
{
"authors": [
"E Nourani",
"E Asgari",
"A C Mchardy",
"M R Mofrad"
],
"doi": "",
"ref_id": "b48",
"title": "Tripletprot: deep representation learning of proteins based on siamese networks",
"year": "2021"
},
{
"authors": [
"Tobias H Olsen",
"Iain H Moal",
"Charlotte M Deane"
],
"doi": "10.1101/2022.01.20.477061",
"ref_id": "b49",
"title": "AbLang: An antibody language model for completing antibody sequences",
"year": "2022"
},
{
"authors": [
"C A Orengo",
"A D Michie",
"S Jones",
"D T Jones",
"M B Swindells",
"J M Thornton"
],
"doi": "10.1016/s0969-2126(97)00260-8",
"ref_id": "b50",
"title": "CATH – a hierarchic classification of protein domain structures",
"year": "1997"
},
{
"authors": [
"Jonas Pfeiffer",
"Aishwarya Kamath",
"Andreas Rücklé",
"Kyunghyun Cho",
"Iryna Gurevych"
],
"doi": "10.18653/v1/2021.eacl-main.39",
"ref_id": "b51",
"title": "AdapterFusion: Non-Destructive Task Composition for Transfer Learning",
"year": "2020"
},
{
"authors": [
"Jonas Pfeiffer",
"Andreas Rücklé",
"Clifton Poth",
"Aishwarya Kamath",
"Ivan Vulić",
"Sebastian Ruder",
"Kyunghyun Cho",
"Iryna Gurevych"
],
"doi": "10.18653/v1/2020.emnlp-demos.7",
"ref_id": "b52",
"title": "AdapterHub: A Framework for Adapting Transformers",
"year": "2020"
},
{
"authors": [
"Jonas Pfeiffer",
"Ivan Vulić",
"Iryna Gurevych",
"Sebastian Ruder"
],
"doi": "10.18653/v1/2020.emnlp-main.617",
"ref_id": "b53",
"title": "MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer",
"year": "2020"
},
{
"authors": [
"Simon C Potter",
"Aurélien Luciani",
"Sean R Eddy",
"Youngmi Park",
"Rodrigo Lopez",
"Robert D Finn"
],
"doi": "10.1093/nar/gky448",
"ref_id": "b54",
"title": "HMMER web server: 2018 update",
"year": "06 2018"
},
{
"authors": [
"Yifei Qi",
"John Z H Zhang"
],
"doi": "10.1021/acs.jcim.0c00043",
"ref_id": "b55",
"title": "DenseCPD: Improving the Accuracy of Neural-Network-Based Computational Protein Sequence Design with DenseNet",
"year": "2020"
},
{
"authors": [
"A Radford",
"K Narasimhan",
"T Salimans",
"I Sutskever"
],
"doi": "10.7717/peerj-cs.3216/fig-8",
"ref_id": "b56",
"title": "Figure 8: Demonstration of continued pre-training of LLaMA2 models in combination of pre-training instructional datasets (Xie et al., 2025).",
"year": "2018"
},
{
"authors": [
"Roshan Rao",
"Nicholas Bhattacharya",
"Neil Thomas",
"Yan Duan",
"Xi Chen",
"John Canny",
"Pieter Abbeel",
"Yun S Song"
],
"doi": "10.1101/676825",
"ref_id": "b57",
"title": "Evaluating Protein Transfer Learning with TAPE",
"year": "2019"
},
{
"authors": [
"A Rives",
"J Meier",
"T Sercu",
"S Goyal",
"Z Lin",
"J Liu",
"D Guo",
"M Ott",
"C L Zitnick",
"J Ma",
"R Fergus"
],
"doi": "10.1101/622803v4",
"ref_id": "b58",
"title": "Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences",
"year": "2019"
},
{
"authors": [
"Robin Rombach",
"Andreas Blattmann",
"Dominik Lorenz",
"Patrick Esser",
"Bjorn Ommer"
],
"doi": "10.1109/cvpr52688.2022.01042",
"ref_id": "b59",
"title": "High-Resolution Image Synthesis with Latent Diffusion Models",
"year": "2022"
},
{
"authors": [
"Julian Salazar",
"Davis Liang",
"Toan Q Nguyen",
"Katrin Kirchhoff"
],
"doi": "10.18653/v1/2020.acl-main.240",
"ref_id": "b60",
"title": "Masked Language Model Scoring",
"year": "2020"
},
{
"authors": [
"N Savinov",
"J Chung",
"M Binkowski",
"E Elsen",
"A Van Den Oord"
],
"doi": "",
"ref_id": "b61",
"title": "Step-unrolled denoising autoencoders for text generation",
"year": "2021"
},
{
"authors": [
"Rico Sennrich",
"Barry Haddow",
"Alexandra Birch"
],
"doi": "10.18653/v1/p16-1009",
"ref_id": "b62",
"title": "Improving Neural Machine Translation Models with Monolingual Data",
"year": "August 2016"
},
{
"authors": [
"J Sohl-Dickstein",
"E Weiss",
"N Maheswaranathan",
"S Ganguli"
],
"doi": "",
"ref_id": "b63",
"title": "Deep unsupervised learning using nonequilibrium thermodynamics",
"year": "2015"
},
{
"authors": [
"Martin Steinegger",
"Johannes Söding"
],
"doi": "10.1038/nbt.3988",
"ref_id": "b64",
"title": "MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets",
"year": "2017"
},
{
"authors": [
"Arthur G Street",
"Stephen L Mayo"
],
"doi": "10.1016/s0969-2126(99)80062-8",
"ref_id": "b65",
"title": "Computational protein design",
"year": "1999"
},
{
"authors": [
"Nils Strodthoff",
"Patrick Wagner",
"Markus Wenzel",
"Wojciech Samek"
],
"doi": "10.1093/bioinformatics/btaa003",
"ref_id": "b66",
"title": "UDSMProt: universal deep sequence models for protein classification",
"year": "2020"
},
{
"authors": [
"P Sturmfels",
"J Vig",
"A Madani",
"N F Rajani"
],
"doi": "",
"ref_id": "b67",
"title": "Profile prediction: An alignment-based pre-training task for protein sequence models",
"year": "2020"
},
{
"authors": [
"Jianlin Su",
"Murtadha Ahmed",
"Yu Lu",
"Shengfeng Pan",
"Wen Bo",
"Yunfeng Liu"
],
"doi": "10.1016/j.neucom.2023.127063",
"ref_id": "b68",
"title": "RoFormer: Enhanced transformer with Rotary Position Embedding",
"year": "2021"
},
{
"authors": [
"B E Suzek",
"Y Wang",
"H Huang",
"P B Mcgarvey",
"C H Wu",
"U Consortium"
],
"doi": "",
"ref_id": "b69",
"title": "Uniref clusters: a comprehensive and scalable alternative for improving sequence similarity searches",
"year": "2015"
},
{
"authors": [
"Cheng Tan",
"Zhangyang Gao",
"Jun Xia",
"Bozhen Hu",
"Stan Z Li"
],
"doi": "10.1109/icassp49357.2023.10095229",
"ref_id": "b70",
"title": "Global-Context Aware Generative Protein Design",
"year": "2022"
},
{
"authors": [
"Clare‐louise Towse",
"Valerie Daggett"
],
"doi": "10.1002/bies.201200116",
"ref_id": "b71",
"title": "When a domain is not a domain, and why it is important to properly filter proteins in databases",
"year": "2012"
},
{
"authors": [
"Serbulent Unsal",
"Heval Atas",
"Muammer Albayrak",
"Kemal Turhan",
"Aybar C Acar",
"Tunca Doğan"
],
"doi": "10.1038/s42256-022-00457-9",
"ref_id": "b72",
"title": "Learning functional properties of proteins with language models",
"year": "2022"
},
{
"authors": [
"G Van Den Burg",
"C Williams"
],
"doi": "",
"ref_id": "b73",
"title": "On memorization in probabilistic deep generative models",
"year": "2021"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b74",
"title": "Attention Is All You Need",
"year": "December 4-9, 2017. 2017"
},
{
"authors": [
"Robert Verkuil",
"Ori Kabeli",
"Yilun Du",
"Basile I M Wicky",
"Lukas F Milles",
"Justas Dauparas",
"David Baker",
"Sergey Ovchinnikov",
"Tom Sercu",
"Alexander Rives"
],
"doi": "10.1101/2022.12.21.521521",
"ref_id": "b75",
"title": "Language models generalize beyond natural proteins",
"year": "2022"
},
{
"authors": [
"Joseph L Watson",
"David Juergens",
"Nathaniel R Bennett",
"Brian L Trippe",
"Jason Yim",
"Helen E Eisenach",
"Woody Ahern",
"Andrew J Borst",
"Robert J Ragotte",
"Lukas F Milles",
"Basile I M Wicky",
"Nikita Hanikel",
"Samuel J Pellock",
"Alexis Courbet",
"William Sheffler",
"Jue Wang",
"Preetham Venkatesh",
"Isaac Sappington",
"Susana Vázquez Torres",
"Anna Lauko",
"Valentin De Bortoli",
"Emile Mathieu",
"Regina Barzilay",
"Tommi S Jaakkola",
"Frank Dimaio",
"Minkyung Baek",
"David Baker"
],
"doi": "10.1101/2022.12.09.519842",
"ref_id": "b76",
"title": "Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative models",
"year": "2022"
},
{
"authors": [
"J Wei",
"Y Tay",
"R Bommasani",
"C Raffel",
"B Zoph",
"S Borgeaud",
"D Yogatama",
"M Bosma",
"D Zhou",
"D Metzler"
],
"doi": "",
"ref_id": "b77",
"title": "Emergent abilities of large language models",
"year": "2022"
},
{
"authors": [
"J Wei",
"X Wang",
"D Schuurmans",
"M Bosma",
"F Xia",
"E H Chi",
"Q V Le",
"D Zhou"
],
"doi": "",
"ref_id": "b78",
"title": "Chain-of-thought prompting elicits reasoning in large language models",
"year": "2022"
},
{
"authors": [
"Y Xiao",
"J Qiu",
"Z Li",
"C.-Y Hsieh",
"J Tang"
],
"doi": "",
"ref_id": "b79",
"title": "Modeling protein using large-scale pretrain language model",
"year": "2021"
},
{
"authors": [
"Kevin K Yang",
"Zachary Wu",
"Frances H Arnold"
],
"doi": "10.1038/s41592-019-0496-6",
"ref_id": "b80",
"title": "Machine-learning-guided directed evolution for protein engineering",
"year": "2019"
},
{
"authors": [
"K K Yang",
"A X Lu",
"N Fusi"
],
"doi": "",
"ref_id": "b81",
"title": "Convolutions are competitive with transformers for protein sequence pretraining",
"year": "2022"
},
{
"authors": [
"K K Yang",
"N Zanichelli",
"H Yeh"
],
"doi": "",
"ref_id": "b82",
"title": "Masked inverse folding with sequence transfer for protein representation learning",
"year": "2022"
}
] |
[] |
[
"00bb6f2d0a692fd8",
"9fab564b99bb8cf7",
"ccbb1f3e61ccc0b2",
"3511b8e8edcfc2df",
"804507973c9d73cf",
"d49b5a24b8e29027",
"294464a6d95efbcb",
"75a76dd4423f108d",
"1345f983622ba1c8",
"54b205a6c7328327",
"886cb27bc66f0e4e",
"d8d0c4c24d9903b1",
"6ec8304fa1f3e461",
"1e4cfa3dcc1e84ec",
"81d08d0e407f85ca",
"3b9b057e88260d14",
"94b29389b44942b6",
"bf2481fe2f259559",
"f5ba3449df6e0f8d",
"7cb4584473814329",
"ce4bb09decea5814",
"d951482c2ae59ea1",
"a8b00beddfb4a4db",
"e30aa468bed548f4",
"2b234ffcd11613c0",
"07397e47097c0236",
"6d1d312ca1b7f45f",
"7852ecae2e08eaff",
"f80dcf05284f6e5e",
"e9b17f06b8676f55",
"ce126520a6649fb5",
"3260f70eddcc82a0",
"500bf01c790f7338",
"d020a8e0ee9dc1fe",
"5a4375e4a7e6be8f",
"cade909be5f7e88a",
"74452fe050057c0e",
"4da290143133fda3",
"52bde58449ef9f6b",
"b5a6fa93f423aec6",
"dcff8adbd442992a",
"5f6d3f5a8d03002d",
"c5f6116f8523a311",
"10259e14caf1f2b6",
"978139e62bcbe77c",
"8dab49c34aaf4cad",
"5d97419816b5886a",
"4f2f369a6fa2d5cd",
"8b20ba8559dc5737",
"84820dbc25d97efe",
"d1bd7aaa428482e7",
"245616bdacc388d9",
"80b7cdb5cbe1aba6",
"5811c4012889a7c8",
"6fb394d75f6a8e93",
"696d3a4cbaacf867",
"4cf868ec7cbb617b",
"30b94505d9d7c14f",
"897367428357f7db",
"1e1f042b021f7da2",
"b3c890f48ca3eaec",
"677cdbbf0ad1b403",
"9dd591565ac656a0",
"26236d4d41c060e4",
"8e85a6a0a450b33b",
"e6de79cd4fd985cf",
"4832a44cca8ed886",
"b576f6151abfe71d",
"16c783d285dfce3c",
"5fbe458f7e4b55e2",
"8965ab72f9629051",
"d1fe4e112ae2c493",
"2019776f83fd0768",
"ea48dfd9f0f06f52",
"99133ee9ee295b97",
"3343c491c9e0d01c",
"573fc52c470bbb54",
"605969fef7551d56",
"039b5dbddeab7e5f",
"59cb6ffa835caea2",
"dcccda87987d1672",
"f48d91e1ac3417e5",
"5f3bb2612179fbd6"
] |
mjYZd6SgZS
|
On the Statistical Benefits of Temporal Difference Learning
|
data/openreview_paper/ICML_2023_oral/mjYZd6SgZS//paper.pdf
| 34
| 25
|
[
{
"authors": [
"Steffen Grunewalder",
"Sepp Hochreiter",
"Klaus Obermayer"
],
"doi": "10.1109/ijcnn.2007.4370979",
"ref_id": "b12",
"title": "Optimality of LSTD and its Relation to MC",
"year": "2007. 2007"
},
{
"authors": [
"Z Wang",
"V Bapst",
"N Heess",
"V Mnih",
"R Munos",
"K Kavukcuoglu",
"N Freitas"
],
"doi": "",
"ref_id": "b33",
"title": "Sample efficient actor-critic with experience replay",
"year": "2016"
},
{
"authors": [
"W Schultz",
"P Dayan",
"P R Montague"
],
"doi": "",
"ref_id": "b25",
"title": "A neural substrate of prediction and reward",
"year": "1997"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b27",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"P Dayan",
"T J Sejnowski",
"Td"
],
"doi": "",
"ref_id": "b9",
"title": "λ) converges with probability 1",
"year": "1994"
},
{
"authors": [
"V Mnih",
"K Kavukcuoglu",
"D Silver",
"A A Rusu",
"J Veness",
"M G Bellemare",
"A Graves",
"M Riedmiller",
"A K Fidjeland",
"G Ostrovski"
],
"doi": "",
"ref_id": "b19",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"Steven J Bradtke",
"Andrew G Barto"
],
"doi": "10.1007/bf00114723",
"ref_id": "b6",
"title": "Linear Least-Squares algorithms for temporal difference learning",
"year": "1996"
},
{
"authors": [
"B A Pires",
"C Szepesvári"
],
"doi": "",
"ref_id": "b21",
"title": "Statistical linear estimation with penalized estimators: an application to reinforcement learning",
"year": "2012"
},
{
"authors": [
"S Mannor",
"D Simester",
"P Sun",
"J N Tsitsiklis"
],
"doi": "",
"ref_id": "b18",
"title": "Bias and variance in value function estimation",
"year": "2004"
},
{
"authors": [
"Csaba Szepesvári"
],
"doi": "10.1007/978-3-031-01551-9",
"ref_id": "b29",
"title": "Algorithms for Reinforcement Learning",
"year": "2010"
},
{
"authors": [
"Koulik Khamaru",
"Ashwin Pananjady",
"Feng Ruan",
"Martin J Wainwright",
"Michael I Jordan"
],
"doi": "10.1137/20m1331524",
"ref_id": "b14",
"title": "Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis",
"year": "2020"
},
{
"authors": [
"M Andrychowicz",
"F Wolski",
"A Ray",
"J Schneider",
"R Fong",
"P Welinder",
"B Mcgrew",
"J Tobin",
"O Pieter Abbeel",
"W Zaremba"
],
"doi": "",
"ref_id": "b0",
"title": "Hindsight experience replay",
"year": "2017"
},
{
"authors": [
"Tommi Jaakkola",
"Michael I Jordan",
"Satinder P Singh"
],
"doi": "10.21236/ada276517",
"ref_id": "b13",
"title": "On the Convergence of Stochastic Iterative Dynamic Programming Algorithms",
"year": "1993"
},
{
"authors": [
"L Baird"
],
"doi": "",
"ref_id": "b2",
"title": "Residual algorithms: Reinforcement learning with function approximation",
"year": "1995"
},
{
"authors": [
"S Grünewälder",
"K Obermayer"
],
"doi": "",
"ref_id": "b11",
"title": "The optimal unbiased value estimator and its relation to lstd, td and mc",
"year": "2011"
},
{
"authors": [
"V F Farias",
"A A Li",
"T Peng",
"A T Zheng"
],
"doi": "",
"ref_id": "b10",
"title": "Markovian interference in experiments",
"year": "2022"
},
{
"authors": [
"A Lazaric",
"M Ghavamzadeh",
"R Munos"
],
"doi": "",
"ref_id": "b15",
"title": "Finitesample analysis of lstd",
"year": "2010"
},
{
"authors": [
"Jalaj Bhandari",
"Daniel Russo",
"Raghav Singal"
],
"doi": "10.1287/opre.2020.2024",
"ref_id": "b5",
"title": "A Finite Time Analysis of Temporal Difference Learning with Linear Function Approximation",
"year": "2018"
},
{
"authors": [
"J N Tsitsiklis",
"B Van Roy"
],
"doi": "10.1109/9.580874",
"ref_id": "b32",
"title": "An analysis of temporal-difference learning with function approximation",
"year": "1997"
},
{
"authors": [
"H Maei",
"C Szepesvari",
"S Bhatnagar",
"D Precup",
"D Silver",
"R S Sutton"
],
"doi": "",
"ref_id": "b17",
"title": "Convergent temporal-difference learning with arbitrary smooth function approximation",
"year": "2009"
},
{
"authors": [
"Fletcher Lu"
],
"doi": "10.1007/11424918_48",
"ref_id": "b16",
"title": "Error Bounds in Reinforcement Learning Policy Evaluation",
"year": "2005"
},
{
"authors": [
"M Tagorti",
"B Scherrer"
],
"doi": "",
"ref_id": "b30",
"title": "On the rate of convergence and error bounds for lstd (λ)",
"year": "2015"
},
{
"authors": [
"S Chen",
"A Devraj",
"A Busic",
"S Meyn"
],
"doi": "",
"ref_id": "b8",
"title": "Explicit meansquare error bounds for monte-carlo and linear stochastic approximation",
"year": "2020"
},
{
"authors": [
"Richard S Sutton",
"Hamid Reza Maei",
"Doina Precup",
"Shalabh Bhatnagar",
"David Silver",
"Csaba Szepesvári",
"Eric Wiewiora"
],
"doi": "10.1145/1553374.1553501",
"ref_id": "b28",
"title": "Fast gradient-descent methods for temporal-difference learning with linear function approximation",
"year": "2009"
},
{
"authors": [
"T Schaul",
"J Quan",
"I Antonoglou",
"D Silver"
],
"doi": "",
"ref_id": "b24",
"title": "Prioritized experience replay",
"year": "2015"
}
] |
[
{
"authors": [
"M Andrychowicz",
"F Wolski",
"A Ray",
"J Schneider",
"R Fong",
"P Welinder",
"B Mcgrew",
"J Tobin",
"O Pieter Abbeel",
"W Zaremba"
],
"doi": "",
"ref_id": "b0",
"title": "Hindsight experience replay",
"year": "2017"
},
{
"authors": [
"Susan Athey",
"Raj Chetty",
"Guido Imbens",
"Hyunseung Kang"
],
"doi": "10.3386/w26463",
"ref_id": "b1",
"title": "The Surrogate Index: Combining Short-Term Proxies to Estimate Long-Term Treatment Effects More Rapidly and Precisely",
"year": "2019"
},
{
"authors": [
"L Baird"
],
"doi": "",
"ref_id": "b2",
"title": "Residual algorithms: Reinforcement learning with function approximation",
"year": "1995"
},
{
"authors": [
"Iii Baird",
"L C"
],
"doi": "",
"ref_id": "b3",
"title": "Advantage updating",
"year": "1993"
},
{
"authors": [
"D P Bertsekas",
"J N Tsitsiklis"
],
"doi": "",
"ref_id": "b4",
"title": "An analysis of stochastic shortest path problems",
"year": "1991"
},
{
"authors": [
"Jalaj Bhandari",
"Daniel Russo",
"Raghav Singal"
],
"doi": "10.1287/opre.2020.2024",
"ref_id": "b5",
"title": "A Finite Time Analysis of Temporal Difference Learning with Linear Function Approximation",
"year": "2018"
},
{
"authors": [
"Steven J Bradtke",
"Andrew G Barto"
],
"doi": "10.1007/bf00114723",
"ref_id": "b6",
"title": "Linear Least-Squares algorithms for temporal difference learning",
"year": "1996"
},
{
"authors": [
"Q Cai",
"Z Yang",
"J D Lee",
"Z Wang"
],
"doi": "",
"ref_id": "b7",
"title": "Neural temporaldifference learning converges to global optima",
"year": "2019"
},
{
"authors": [
"S Chen",
"A Devraj",
"A Busic",
"S Meyn"
],
"doi": "",
"ref_id": "b8",
"title": "Explicit meansquare error bounds for monte-carlo and linear stochastic approximation",
"year": "2020"
},
{
"authors": [
"P Dayan",
"T J Sejnowski",
"Td"
],
"doi": "",
"ref_id": "b9",
"title": "λ) converges with probability 1",
"year": "1994"
},
{
"authors": [
"V F Farias",
"A A Li",
"T Peng",
"A T Zheng"
],
"doi": "",
"ref_id": "b10",
"title": "Markovian interference in experiments",
"year": "2022"
},
{
"authors": [
"S Grünewälder",
"K Obermayer"
],
"doi": "",
"ref_id": "b11",
"title": "The optimal unbiased value estimator and its relation to lstd, td and mc",
"year": "2011"
},
{
"authors": [
"Steffen Grunewalder",
"Sepp Hochreiter",
"Klaus Obermayer"
],
"doi": "10.1109/ijcnn.2007.4370979",
"ref_id": "b12",
"title": "Optimality of LSTD and its Relation to MC",
"year": "2007. 2007"
},
{
"authors": [
"Tommi Jaakkola",
"Michael I Jordan",
"Satinder P Singh"
],
"doi": "10.21236/ada276517",
"ref_id": "b13",
"title": "On the Convergence of Stochastic Iterative Dynamic Programming Algorithms",
"year": "1993"
},
{
"authors": [
"Koulik Khamaru",
"Ashwin Pananjady",
"Feng Ruan",
"Martin J Wainwright",
"Michael I Jordan"
],
"doi": "10.1137/20m1331524",
"ref_id": "b14",
"title": "Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis",
"year": "2020"
},
{
"authors": [
"A Lazaric",
"M Ghavamzadeh",
"R Munos"
],
"doi": "",
"ref_id": "b15",
"title": "Finitesample analysis of lstd",
"year": "2010"
},
{
"authors": [
"Fletcher Lu"
],
"doi": "10.1007/11424918_48",
"ref_id": "b16",
"title": "Error Bounds in Reinforcement Learning Policy Evaluation",
"year": "2005"
},
{
"authors": [
"H Maei",
"C Szepesvari",
"S Bhatnagar",
"D Precup",
"D Silver",
"R S Sutton"
],
"doi": "",
"ref_id": "b17",
"title": "Convergent temporal-difference learning with arbitrary smooth function approximation",
"year": "2009"
},
{
"authors": [
"S Mannor",
"D Simester",
"P Sun",
"J N Tsitsiklis"
],
"doi": "",
"ref_id": "b18",
"title": "Bias and variance in value function estimation",
"year": "2004"
},
{
"authors": [
"V Mnih",
"K Kavukcuoglu",
"D Silver",
"A A Rusu",
"J Veness",
"M G Bellemare",
"A Graves",
"M Riedmiller",
"A K Fidjeland",
"G Ostrovski"
],
"doi": "",
"ref_id": "b19",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"A Pananjady",
"M J Wainwright"
],
"doi": "",
"ref_id": "b20",
"title": "Instance-dependent ℓ ∞ -bounds for policy evaluation in tabular reinforcement learning",
"year": "2020"
},
{
"authors": [
"B A Pires",
"C Szepesvári"
],
"doi": "",
"ref_id": "b21",
"title": "Statistical linear estimation with penalized estimators: an application to reinforcement learning",
"year": "2012"
},
{
"authors": [
"Ross L Prentice"
],
"doi": "10.1002/sim.4780080407",
"ref_id": "b22",
"title": "Surrogate endpoints in clinical trials: Definition and operational criteria",
"year": "1989"
},
{
"authors": [
"M L Puterman"
],
"doi": "",
"ref_id": "b23",
"title": "Markov decision processes: discrete stochastic dynamic programming",
"year": "2014"
},
{
"authors": [
"T Schaul",
"J Quan",
"I Antonoglou",
"D Silver"
],
"doi": "",
"ref_id": "b24",
"title": "Prioritized experience replay",
"year": "2015"
},
{
"authors": [
"W Schultz",
"P Dayan",
"P R Montague"
],
"doi": "",
"ref_id": "b25",
"title": "A neural substrate of prediction and reward",
"year": "1997"
},
{
"authors": [
"R S Sutton"
],
"doi": "",
"ref_id": "b26",
"title": "Learning to predict by the methods of temporal differences",
"year": "1988"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b27",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"Richard S Sutton",
"Hamid Reza Maei",
"Doina Precup",
"Shalabh Bhatnagar",
"David Silver",
"Csaba Szepesvári",
"Eric Wiewiora"
],
"doi": "10.1145/1553374.1553501",
"ref_id": "b28",
"title": "Fast gradient-descent methods for temporal-difference learning with linear function approximation",
"year": "2009"
},
{
"authors": [
"Csaba Szepesvári"
],
"doi": "10.1007/978-3-031-01551-9",
"ref_id": "b29",
"title": "Algorithms for Reinforcement Learning",
"year": "2010"
},
{
"authors": [
"M Tagorti",
"B Scherrer"
],
"doi": "",
"ref_id": "b30",
"title": "On the rate of convergence and error bounds for lstd (λ)",
"year": "2015"
},
{
"authors": [
"J N Tsitsiklis",
"B Van Roy"
],
"doi": "10.1109/9.580874",
"ref_id": "b31",
"title": "An analysis of temporal-difference learning with function approximation",
"year": "1996"
},
{
"authors": [
"J N Tsitsiklis",
"B Van Roy"
],
"doi": "10.1109/9.580874",
"ref_id": "b32",
"title": "An analysis of temporal-difference learning with function approximation",
"year": "1997"
},
{
"authors": [
"Z Wang",
"V Bapst",
"N Heess",
"V Mnih",
"R Munos",
"K Kavukcuoglu",
"N Freitas"
],
"doi": "",
"ref_id": "b33",
"title": "Sample efficient actor-critic with experience replay",
"year": "2016"
}
] |
[
"302612a9b5f21084",
"1ad4ce6a705c03d5",
"34cfa83f328bf3d0",
"34dc3e64fa458b25",
"beafc9181d63a738",
"a5bf49f15d1e3452",
"4492773c8bc659b0",
"af5d84c2ef3d86a1",
"50604093e9901ca6",
"db9563f0984f3bab",
"925ecd414bb72e90",
"760035c1c0f65d08",
"ac8ea442a7d48e48",
"7b2104187c592de6",
"bfe7a35147665840",
"cda19664c38987c9",
"3fc9b76e09428c98",
"deea1b5e34090ba7",
"0c2acc50556344a8",
"6a16206d4b04777a",
"6b6cd05e75ac9d94",
"c3a10ff4e7736b70",
"de809cfae40944b1",
"ec324c9671bbf1a9",
"82077fd4043e438a"
] |
[
"760035c1c0f65d08",
"7253b8b63650f48e",
"7b2104187c592de6",
"960b1847fddb0069",
"092ea9809bba6675",
"deea1b5e34090ba7",
"4492773c8bc659b0",
"116fb64077075d67",
"de809cfae40944b1",
"beafc9181d63a738",
"cda19664c38987c9",
"bfe7a35147665840",
"302612a9b5f21084",
"ac8ea442a7d48e48",
"925ecd414bb72e90",
"3fc9b76e09428c98",
"6b6cd05e75ac9d94",
"6a16206d4b04777a",
"50604093e9901ca6",
"a5bf49f15d1e3452",
"e5717cbec97083bf",
"af5d84c2ef3d86a1",
"d69f755ac489ce64",
"a419112f82b6448f",
"82077fd4043e438a",
"34cfa83f328bf3d0",
"f1fa50be8f2b2485",
"34dc3e64fa458b25",
"ec324c9671bbf1a9",
"db9563f0984f3bab",
"c3a10ff4e7736b70",
"c1faf9649f6183c2",
"0c2acc50556344a8",
"1ad4ce6a705c03d5"
] |
1CqtvwHTKQ
|
A Study of Global and Episodic Bonuses for Exploration in Contextual MDPs
|
data/openreview_paper/ICML_2023_oral/1CqtvwHTKQ//paper.pdf
| 85
| 31
|
[
{
"authors": [
"A Fickinger",
"N Jaques",
"S Parajuli",
"M Chang",
"N Rhinehart",
"G Berseth",
"S Russell",
"S Levine"
],
"doi": "",
"ref_id": "b20",
"title": "Explore and control with adversarial surprise",
"year": "2021"
},
{
"authors": [
"Chi Jin",
"Zhuoran Yang",
"Zhaoran Wang",
"Michael I Jordan"
],
"doi": "10.1287/moor.2022.1309",
"ref_id": "b36",
"title": "Provably Efficient Reinforcement Learning with Linear Function Approximation",
"year": "09-12 Jul 2020"
},
{
"authors": [
"Juergen Schmidhuber"
],
"doi": "10.7551/mitpress/3115.003.0030",
"ref_id": "b64",
"title": "A Possibility for Implementing Curiosity and Boredom in Model-Building Neural Controllers",
"year": "1991"
},
{
"authors": [
"B C Stadie",
"S Levine",
"P Abbeel"
],
"doi": "",
"ref_id": "b70",
"title": "Incentivizing exploration in reinforcement learning with deep predictive models",
"year": "2015"
},
{
"authors": [
"P Shyam",
"W Jaśkowski",
"F Gomez"
],
"doi": "",
"ref_id": "b68",
"title": "Model-based active exploration",
"year": "09-15 Jun 2019"
},
{
"authors": [
"A C Tam",
"N C Rabinowitz",
"A K Lampinen",
"N A Roy",
"S C Chan",
"D Strouse",
"J X Wang",
"A Banino",
"F Hill"
],
"doi": "",
"ref_id": "b76",
"title": "Semantic exploration from language abstractions and pretrained representations",
"year": "2022"
},
{
"authors": [
"Pierre-Yves Oudeyer",
"Frdric Kaplan",
"Verena V Hafner"
],
"doi": "10.1109/tevc.2006.890271",
"ref_id": "b53",
"title": "Intrinsic Motivation Systems for Autonomous Mental Development",
"year": "2007"
},
{
"authors": [
"C Stanton",
"J Clune"
],
"doi": "",
"ref_id": "b71",
"title": "Deep curiosity search: Intra-life exploration improves performance on challenging deep reinforcement learning problems",
"year": "2018"
},
{
"authors": [
"J Zico Kolter",
"Andrew Y Ng"
],
"doi": "10.1145/1553374.1553441",
"ref_id": "b44",
"title": "Near-Bayesian exploration in polynomial time",
"year": "2009"
},
{
"authors": [
"G Manek",
"J Z Kolter"
],
"doi": "",
"ref_id": "b47",
"title": "Model-based reinforcement learning with ensembled model-value expansion",
"year": "2021"
},
{
"authors": [
"Jarryd Martin",
"Suraj Narayanan S.",
"Tom Everitt",
"Marcus Hutter"
],
"doi": "10.24963/ijcai.2017/344",
"ref_id": "b48",
"title": "Count-Based Exploration in Feature Space for Reinforcement Learning",
"year": "2017"
},
{
"authors": [
"D Jo",
"S Kim",
"D W Nam",
"T Kwon",
"S Rho",
"J Kim",
"D Lee",
"Leco"
],
"doi": "",
"ref_id": "b37",
"title": "Learnable episodic count for task-specific intrinsic reward",
"year": "2022"
},
{
"authors": [
"A Agarwal",
"M Henaff",
"S Kakade",
"W Sun"
],
"doi": "",
"ref_id": "b1",
"title": "Policy cover directed exploration for provable policy gradient learning",
"year": "2020"
},
{
"authors": [
"J Achiam",
"S Sastry"
],
"doi": "",
"ref_id": "b0",
"title": "Surprise-based intrinsic motivation for deep reinforcement learning",
"year": "2017"
},
{
"authors": [
"R I Brafman",
"M Tennenholtz"
],
"doi": "",
"ref_id": "b9",
"title": "R-MAX -A general polynomial time algorithm for near-optimal reinforcement learning",
"year": "2002"
},
{
"authors": [
"J Tarbouriech",
"E Garcelon",
"M Valko",
"M Pirotta",
"A Lazaric"
],
"doi": "",
"ref_id": "b78",
"title": "No-regret exploration in goal-oriented reinforcement learning",
"year": "2020"
},
{
"authors": [
"S Parisi",
"V Dean",
"D Pathak",
"A Gupta"
],
"doi": "",
"ref_id": "b55",
"title": "Interesting object, curious agent: Learning task-agnostic exploration",
"year": "2021"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b74",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"P.-Y Oudeyer",
"F Kaplan"
],
"doi": "10.3389/neuro.12.006.2007",
"ref_id": "b52",
"title": "What is intrinsic motivation? A typology of computational approaches",
"year": "2009"
},
{
"authors": [
"E L Strehl",
"M L Littman"
],
"doi": "",
"ref_id": "b73",
"title": "An analysis of modelbased interval estimation for markov decision processes",
"year": "2006"
},
{
"authors": [
"Alexander L Strehl",
"Michael L Littman"
],
"doi": "10.1016/j.jcss.2007.08.009",
"ref_id": "b72",
"title": "An analysis of model-based Interval Estimation for Markov Decision Processes",
"year": "2008"
},
{
"authors": [
"A Ramesh",
"L Kirsch",
"S Van Steenkiste",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b61",
"title": "Exploring through random curiosity with general value functions",
"year": "2022"
},
{
"authors": [
"Q Cai",
"Z Yang",
"C Jin",
"Z Wang"
],
"doi": "",
"ref_id": "b12",
"title": "Provably efficient exploration in policy optimization",
"year": "Jul 2020"
},
{
"authors": [
"Mathieu Seurin",
"Florian Strub",
"Philippe Preux",
"Olivier Pietquin"
],
"doi": "10.24963/ijcai.2021/406",
"ref_id": "b66",
"title": "Don’t Do What Doesn’t Matter: Intrinsic Motivation with Action Usefulness",
"year": "2021"
},
{
"authors": [
"G Ostrovski",
"M G Bellemare",
"A Oord",
"R Munos"
],
"doi": "",
"ref_id": "b51",
"title": "Count-based exploration with neural density models",
"year": "2017"
},
{
"authors": [
"H Tang",
"R Houthooft",
"D Foote",
"A Stooke",
"O Xi Chen",
"Y Duan",
"J Schulman",
"F Deturck",
"P Abbeel"
],
"doi": "",
"ref_id": "b77",
"title": "# exploration: A study of count-based exploration for deep reinforcement learning",
"year": "2017"
},
{
"authors": [
"Marlos C Machado",
"Marc G Bellemare",
"Michael Bowling"
],
"doi": "10.1609/aaai.v34i04.5955",
"ref_id": "b46",
"title": "Count-Based Exploration with the Successor Representation",
"year": "2020"
},
{
"authors": [
"R Sekar",
"O Rybkin",
"K Daniilidis",
"P Abbeel",
"D Hafner",
"D Pathak"
],
"doi": "",
"ref_id": "b65",
"title": "Planning to explore via self-supervised world models",
"year": "2020"
},
{
"authors": [
"A Campero",
"R Raileanu",
"H Küttler",
"J B Tenenbaum",
"T Rocktäschel",
"E Grefenstette"
],
"doi": "",
"ref_id": "b13",
"title": "Learning with amigo: Adversarially motivated intrinsic goals",
"year": "2020"
},
{
"authors": [
"Yannis Flet-Berliac",
"Philippe Preux"
],
"doi": "10.24963/ijcai.2020/376",
"ref_id": "b21",
"title": "Only Relevant Information Matters: Filtering Out Noisy Samples To Boost RL",
"year": "2021"
},
{
"authors": [
"R Fruit",
"A Lazaric"
],
"doi": "10.1017/9781316594179.019",
"ref_id": "b22",
"title": "Exploitation and Exploration",
"year": "2017"
}
] |
[
{
"authors": [
"J Achiam",
"S Sastry"
],
"doi": "",
"ref_id": "b0",
"title": "Surprise-based intrinsic motivation for deep reinforcement learning",
"year": "2017"
},
{
"authors": [
"A Agarwal",
"M Henaff",
"S Kakade",
"W Sun"
],
"doi": "",
"ref_id": "b1",
"title": "Policy cover directed exploration for provable policy gradient learning",
"year": "2020"
},
{
"authors": [
"R Agarwal",
"M Schwarzer",
"P S Castro",
"A Courville",
"M G Bellemare"
],
"doi": "",
"ref_id": "b2",
"title": "Deep reinforcement learning at the edge of the statistical precipice",
"year": "2021"
},
{
"authors": [
"Chris Murray",
"Mark Brown",
"Rebecca Horner"
],
"doi": "10.20933/100001207",
"ref_id": "b3",
"title": "Superheroes Never Give Up",
"year": "2020"
},
{
"authors": [
"C Beattie",
"J Z Leibo",
"D Teplyashin",
"T Ward",
"M Wainwright",
"H Küttler",
"A Lefrancq",
"S Green",
"V Valdés",
"A Sadik"
],
"doi": "",
"ref_id": "b4",
"title": "",
"year": "2016"
},
{
"authors": [
"M G Bellemare",
"Y Naddaf",
"J Veness",
"M Bowling"
],
"doi": "10.1613/jair.3912",
"ref_id": "b5",
"title": "The Arcade Learning Environment: An Evaluation Platform for General Agents",
"year": "2012"
},
{
"authors": [
"M Bellemare",
"S Srinivasan",
"G Ostrovski",
"T Schaul",
"D Saxton",
"R Munos"
],
"doi": "",
"ref_id": "b6",
"title": "Unifying count-based exploration and intrinsic motivation",
"year": "2016"
},
{
"authors": [
"M G Bellemare",
"S Srinivasan",
"G Ostrovski",
"T Schaul",
"D Saxton",
"R Munos"
],
"doi": "",
"ref_id": "b7",
"title": "Unifying count-based exploration and intrinsic motivation",
"year": "2016"
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b8",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": ""
},
{
"authors": [
"R I Brafman",
"M Tennenholtz"
],
"doi": "",
"ref_id": "b9",
"title": "R-MAX -A general polynomial time algorithm for near-optimal reinforcement learning",
"year": "2002"
},
{
"authors": [
"Y Burda",
"H Edwards",
"D Pathak",
"A Storkey",
"T Darrell",
"A A Efros"
],
"doi": "",
"ref_id": "b10",
"title": "Large-scale study of curiosity-driven learning",
"year": "2019"
},
{
"authors": [
"Y Burda",
"H Edwards",
"A Storkey",
"O Klimov"
],
"doi": "",
"ref_id": "b11",
"title": "Exploration by random network distillation",
"year": "2019"
},
{
"authors": [
"Q Cai",
"Z Yang",
"C Jin",
"Z Wang"
],
"doi": "",
"ref_id": "b12",
"title": "Provably efficient exploration in policy optimization",
"year": "Jul 2020"
},
{
"authors": [
"A Campero",
"R Raileanu",
"H Küttler",
"J B Tenenbaum",
"T Rocktäschel",
"E Grefenstette"
],
"doi": "",
"ref_id": "b13",
"title": "Learning with amigo: Adversarially motivated intrinsic goals",
"year": "2020"
},
{
"authors": [
"M Chevalier-Boisvert",
"L Willems",
"S Pal"
],
"doi": "",
"ref_id": "b14",
"title": "Minimalistic gridworld environment for openai gym",
"year": "2018"
},
{
"authors": [
"D Clevert",
"T Unterthiner",
"S Hochreiter"
],
"doi": "",
"ref_id": "b15",
"title": "Fast and accurate deep network learning by exponential linear units (elus)",
"year": "May 2-4, 2016. 2016"
},
{
"authors": [
"K Cobbe",
"O Klimov",
"C Hesse",
"T Kim",
"J Schulman"
],
"doi": "",
"ref_id": "b16",
"title": "Quantifying generalization in reinforcement learning",
"year": "09-15 Jun 2019"
},
{
"authors": [
"K Cobbe",
"C Hesse",
"J Hilton",
"J Schulman"
],
"doi": "10.1007/bf00058756",
"ref_id": "b17",
"title": "Machine learning, 1986, volume I",
"year": "Jul 2020"
},
{
"authors": [
"L Espeholt",
"H Soyer",
"R Munos",
"K Simonyan",
"V Mnih",
"T Ward",
"Y Doron",
"V Firoiu",
"T Harley",
"I Dunning",
"S Legg",
"K Kavukcuoglu"
],
"doi": "",
"ref_id": "b18",
"title": "IMPALA: scalable distributed deep-rl with importance weighted actor-learner architectures",
"year": "July 10-15, 2018. 2018"
},
{
"authors": [
"J Farebrother",
"M C Machado",
"M Bowling"
],
"doi": "",
"ref_id": "b19",
"title": "Generalization and regularization in DQN",
"year": "2018"
},
{
"authors": [
"A Fickinger",
"N Jaques",
"S Parajuli",
"M Chang",
"N Rhinehart",
"G Berseth",
"S Russell",
"S Levine"
],
"doi": "",
"ref_id": "b20",
"title": "Explore and control with adversarial surprise",
"year": "2021"
},
{
"authors": [
"Yannis Flet-Berliac",
"Philippe Preux"
],
"doi": "10.24963/ijcai.2020/376",
"ref_id": "b21",
"title": "Only Relevant Information Matters: Filtering Out Noisy Samples To Boost RL",
"year": "2021"
},
{
"authors": [
"R Fruit",
"A Lazaric"
],
"doi": "10.1017/9781316594179.019",
"ref_id": "b22",
"title": "Exploitation and Exploration",
"year": "2017"
},
{
"authors": [
"R Fruit",
"M Pirotta",
"A Lazaric"
],
"doi": "",
"ref_id": "b23",
"title": "Near optimal exploration-exploitation in non-communicating markov decision processes",
"year": "2018"
},
{
"authors": [
"R Fruit",
"M Pirotta",
"A Lazaric",
"R Ortner"
],
"doi": "",
"ref_id": "b24",
"title": "Efficient bias-span-constrained exploration-exploitation in reinforcement learning",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "",
"ref_id": "b25",
"title": "",
"year": "2018b"
},
{
"authors": [
"Chuang Gan",
"Siyuan Zhou",
"Jeremy Schwartz",
"Seth Alter",
"Abhishek Bhandwaldar",
"Dan Gutfreund",
"Daniel L K Yamins",
"James J Dicarlo",
"Josh Mcdermott",
"Antonio Torralba",
"Joshua B Tenenbaum"
],
"doi": "10.1109/icra46639.2022.9812329",
"ref_id": "b26",
"title": "The ThreeDWorld Transport Challenge: A Visually Guided Task-and-Motion Planning Benchmark Towards Physically Realistic Embodied AI",
"year": "2020"
},
{
"authors": [
"D Hafner"
],
"doi": "",
"ref_id": "b27",
"title": "Benchmarking the spectrum of agent capabilities",
"year": "2021"
},
{
"authors": [
"A Hallak",
"D Di Castro",
"S Mannor"
],
"doi": "",
"ref_id": "b28",
"title": "Contextual markov decision processes",
"year": "2015"
},
{
"authors": [
"K He",
"X Zhang",
"S Ren",
"J Sun"
],
"doi": "",
"ref_id": "b29",
"title": "Deep residual learning for image recognition",
"year": "2015"
},
{
"authors": [
"M Henaff"
],
"doi": "",
"ref_id": "b30",
"title": "Explicit explore-exploit algorithms in continuous state spaces",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b31",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2019"
},
{
"authors": [
"M Henaff",
"R Raileanu",
"M Jiang",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b32",
"title": "Exploration via elliptical episodic bonuses",
"year": "2022"
},
{
"authors": [
"Sepp Hochreiter",
"Jürgen Schmidhuber"
],
"doi": "10.1162/neco.1997.9.8.1735",
"ref_id": "b33",
"title": "Long Short-Term Memory",
"year": "1997"
},
{
"authors": [
"C Jin",
"Z Allen-Zhu",
"S Bubeck",
"M I Jordan"
],
"doi": "",
"ref_id": "b34",
"title": "Is q-learning provably efficient",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b35",
"title": "",
"year": "2018"
},
{
"authors": [
"Chi Jin",
"Zhuoran Yang",
"Zhaoran Wang",
"Michael I Jordan"
],
"doi": "10.1287/moor.2022.1309",
"ref_id": "b36",
"title": "Provably Efficient Reinforcement Learning with Linear Function Approximation",
"year": "09-12 Jul 2020"
},
{
"authors": [
"D Jo",
"S Kim",
"D W Nam",
"T Kwon",
"S Rho",
"J Kim",
"D Lee",
"Leco"
],
"doi": "",
"ref_id": "b37",
"title": "Learnable episodic count for task-specific intrinsic reward",
"year": "2022"
},
{
"authors": [
"Arthur Juliani",
"Ahmed Khalifa",
"Vincent-Pierre Berges",
"Jonathan Harper",
"Ervin Teng",
"Hunter Henry",
"Adam Crespi",
"Julian Togelius",
"Danny Lange"
],
"doi": "10.24963/ijcai.2019/373",
"ref_id": "b38",
"title": "Obstacle Tower: A Generalization Challenge in Vision, Control, and Planning",
"year": "2019"
},
{
"authors": [
"N Justesen",
"R R Torrado",
"P Bontrager",
"A Khalifa",
"J Togelius",
"S Risi"
],
"doi": "",
"ref_id": "b39",
"title": "Procedural level generation improves generality of deep reinforcement learning",
"year": "2018"
},
{
"authors": [
"Michael Kearns",
"Satinder Singh"
],
"doi": "10.1023/a:1017984413808",
"ref_id": "b40",
"title": "Near-Optimal Reinforcement Learning in Polynomial Time",
"year": ""
},
{
"authors": [
"Morgan Kaufmann"
],
"doi": "10.1016/b978-1-55860-508-4.50025-9",
"ref_id": "b41",
"title": "The Morgan Kaufmann Series in Data Management Systems",
"year": "2002"
},
{
"authors": [
"Robert Kirk",
"Amy Zhang",
"Edward Grefenstette",
"Tim Rocktäschel"
],
"doi": "10.1613/jair.1.14174",
"ref_id": "b42",
"title": "A Survey of Zero-shot Generalisation in Deep Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"R Kirk",
"A Zhang",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b43",
"title": "A survey of generalisation in deep reinforcement learning",
"year": "2021"
},
{
"authors": [
"J Zico Kolter",
"Andrew Y Ng"
],
"doi": "10.1145/1553374.1553441",
"ref_id": "b44",
"title": "Near-Bayesian exploration in polynomial time",
"year": "2009"
},
{
"authors": [
"H Küttler",
"N Nardelli",
"A H Miller",
"R Raileanu",
"M Selvatici",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b45",
"title": "The nethack learning environment",
"year": "2020"
},
{
"authors": [
"Marlos C Machado",
"Marc G Bellemare",
"Michael Bowling"
],
"doi": "10.1609/aaai.v34i04.5955",
"ref_id": "b46",
"title": "Count-Based Exploration with the Successor Representation",
"year": "2020"
},
{
"authors": [
"G Manek",
"J Z Kolter"
],
"doi": "",
"ref_id": "b47",
"title": "Model-based reinforcement learning with ensembled model-value expansion",
"year": "2021"
},
{
"authors": [
"Jarryd Martin",
"Suraj Narayanan S.",
"Tom Everitt",
"Marcus Hutter"
],
"doi": "10.24963/ijcai.2017/344",
"ref_id": "b48",
"title": "Count-Based Exploration in Feature Space for Reinforcement Learning",
"year": "2017"
},
{
"authors": [
"J Mu",
"V Zhong",
"R Raileanu",
"M Jiang",
"N Goodman",
"T Rocktäschel",
"E Grefenstette"
],
"doi": "",
"ref_id": "b49",
"title": "Improving intrinsic exploration with language abstractions",
"year": "2022"
},
{
"authors": [
"J Mu",
"V Zhong",
"R Raileanu",
"M Jiang",
"N D Goodman",
"T Rocktäschel",
"E Grefenstette"
],
"doi": "",
"ref_id": "b50",
"title": "Improving intrinsic exploration with language abstractions",
"year": "2022"
},
{
"authors": [
"G Ostrovski",
"M G Bellemare",
"A Oord",
"R Munos"
],
"doi": "",
"ref_id": "b51",
"title": "Count-based exploration with neural density models",
"year": "2017"
},
{
"authors": [
"P.-Y Oudeyer",
"F Kaplan"
],
"doi": "10.3389/neuro.12.006.2007",
"ref_id": "b52",
"title": "What is intrinsic motivation? A typology of computational approaches",
"year": "2009"
},
{
"authors": [
"Pierre-Yves Oudeyer",
"Frdric Kaplan",
"Verena V Hafner"
],
"doi": "10.1109/tevc.2006.890271",
"ref_id": "b53",
"title": "Intrinsic Motivation Systems for Autonomous Mental Development",
"year": "2007"
},
{
"authors": [
"C Packer",
"K Gao",
"J Kos",
"P Krähenbühl",
"V Koltun",
"D Song"
],
"doi": "",
"ref_id": "b54",
"title": "Assessing generalization in deep reinforcement learning",
"year": "2018"
},
{
"authors": [
"S Parisi",
"V Dean",
"D Pathak",
"A Gupta"
],
"doi": "",
"ref_id": "b55",
"title": "Interesting object, curious agent: Learning task-agnostic exploration",
"year": "2021"
},
{
"authors": [
"Deepak Pathak",
"Pulkit Agrawal",
"Alexei A Efros",
"Trevor Darrell"
],
"doi": "10.1109/cvprw.2017.70",
"ref_id": "b56",
"title": "Curiosity-Driven Exploration by Self-Supervised Prediction",
"year": "2017"
},
{
"authors": [
"Deepak Pathak",
"Pulkit Agrawal",
"Alexei A Efros",
"Trevor Darrell"
],
"doi": "10.1109/cvprw.2017.70",
"ref_id": "b57",
"title": "Curiosity-Driven Exploration by Self-Supervised Prediction",
"year": "2017"
},
{
"authors": [
"A Petrenko",
"E Wijmans",
"B Shacklett",
"V Koltun"
],
"doi": "",
"ref_id": "b58",
"title": "Megaverse: Simulating embodied agents at one million experiences per second",
"year": "2021"
},
{
"authors": [
"R Raileanu",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b59",
"title": "Ride: Rewarding impactdriven exploration for procedurally-generated environments",
"year": "2020"
},
{
"authors": [
"S K Ramakrishnan",
"A Gokaslan",
"E Wijmans",
"O Maksymets",
"A Clegg",
"J M Turner",
"E Undersander",
"W Galuba",
"A Westbury",
"A X Chang",
"M Savva",
"Y Zhao",
"D Batra"
],
"doi": "",
"ref_id": "b60",
"title": "Habitat-matterport 3d dataset (HM3d): 1000 large-scale 3d environments for embodied AI",
"year": "2021"
},
{
"authors": [
"A Ramesh",
"L Kirsch",
"S Van Steenkiste",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b61",
"title": "Exploring through random curiosity with general value functions",
"year": "2022"
},
{
"authors": [
"M Samvelyan",
"R Kirk",
"V Kurin",
"J Parker-Holder",
"M Jiang",
"E Hambro",
"F Petroni",
"H Küttler",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b62",
"title": "Minihack the planet: A sandbox for open-ended reinforcement learning research",
"year": "2021"
},
{
"authors": [
"Manolis Savva",
"Abhishek Kadian",
"Oleksandr Maksymets",
"Yili Zhao",
"Erik Wijmans",
"Bhavana Jain",
"Julian Straub",
"Jia Liu",
"Vladlen Koltun",
"Jitendra Malik",
"Devi Parikh",
"Dhruv Batra"
],
"doi": "10.1109/iccv.2019.00943",
"ref_id": "b63",
"title": "Habitat: A Platform for Embodied AI Research",
"year": "2019"
},
{
"authors": [
"Juergen Schmidhuber"
],
"doi": "10.7551/mitpress/3115.003.0030",
"ref_id": "b64",
"title": "A Possibility for Implementing Curiosity and Boredom in Model-Building Neural Controllers",
"year": "1991"
},
{
"authors": [
"R Sekar",
"O Rybkin",
"K Daniilidis",
"P Abbeel",
"D Hafner",
"D Pathak"
],
"doi": "",
"ref_id": "b65",
"title": "Planning to explore via self-supervised world models",
"year": "2020"
},
{
"authors": [
"Mathieu Seurin",
"Florian Strub",
"Philippe Preux",
"Olivier Pietquin"
],
"doi": "10.24963/ijcai.2021/406",
"ref_id": "b66",
"title": "Don’t Do What Doesn’t Matter: Intrinsic Motivation with Action Usefulness",
"year": "2021"
},
{
"authors": [
"Bokui Shen",
"Fei Xia",
"Chengshu Li",
"Roberto Martin-Martin",
"Linxi Fan",
"Guanzhi Wang",
"Claudia Perez-D'arpino",
"Shyamal Buch",
"Sanjana Srivastava",
"Lyne Tchapmi",
"Micael Tchapmi",
"Kent Vainio",
"Josiah Wong",
"Li Fei-Fei",
"Silvio Savarese"
],
"doi": "10.1109/iros51168.2021.9636667",
"ref_id": "b67",
"title": "iGibson 1.0: A Simulation Environment for Interactive Tasks in Large Realistic Scenes",
"year": "2021. 2020"
},
{
"authors": [
"P Shyam",
"W Jaśkowski",
"F Gomez"
],
"doi": "",
"ref_id": "b68",
"title": "Model-based active exploration",
"year": "09-15 Jun 2019"
},
{
"authors": [
"X Song",
"Y Jiang",
"S Tu",
"Y Du",
"B Neyshabur"
],
"doi": "",
"ref_id": "b69",
"title": "Observational overfitting in reinforcement learning",
"year": "2020"
},
{
"authors": [
"B C Stadie",
"S Levine",
"P Abbeel"
],
"doi": "",
"ref_id": "b70",
"title": "Incentivizing exploration in reinforcement learning with deep predictive models",
"year": "2015"
},
{
"authors": [
"C Stanton",
"J Clune"
],
"doi": "",
"ref_id": "b71",
"title": "Deep curiosity search: Intra-life exploration improves performance on challenging deep reinforcement learning problems",
"year": "2018"
},
{
"authors": [
"Alexander L Strehl",
"Michael L Littman"
],
"doi": "10.1016/j.jcss.2007.08.009",
"ref_id": "b72",
"title": "An analysis of model-based Interval Estimation for Markov Decision Processes",
"year": "2008"
},
{
"authors": [
"E L Strehl",
"M L Littman"
],
"doi": "",
"ref_id": "b73",
"title": "An analysis of modelbased interval estimation for markov decision processes",
"year": "2006"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b74",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"A Szot",
"A Clegg",
"E Undersander",
"E Wijmans",
"Y Zhao",
"J Turner",
"N Maestre",
"M Mukadam",
"D Chaplot",
"O Maksymets",
"A Gokaslan",
"V Vondrus",
"S Dharur",
"F Meier",
"W Galuba",
"A Chang",
"Z Kira",
"V Koltun",
"J Malik",
"M Savva",
"D Batra"
],
"doi": "",
"ref_id": "b75",
"title": "Habitat 2.0: Training home assistants to rearrange their habitat",
"year": "2021"
},
{
"authors": [
"A C Tam",
"N C Rabinowitz",
"A K Lampinen",
"N A Roy",
"S C Chan",
"D Strouse",
"J X Wang",
"A Banino",
"F Hill"
],
"doi": "",
"ref_id": "b76",
"title": "Semantic exploration from language abstractions and pretrained representations",
"year": "2022"
},
{
"authors": [
"H Tang",
"R Houthooft",
"D Foote",
"A Stooke",
"O Xi Chen",
"Y Duan",
"J Schulman",
"F Deturck",
"P Abbeel"
],
"doi": "",
"ref_id": "b77",
"title": "# exploration: A study of count-based exploration for deep reinforcement learning",
"year": "2017"
},
{
"authors": [
"J Tarbouriech",
"E Garcelon",
"M Valko",
"M Pirotta",
"A Lazaric"
],
"doi": "",
"ref_id": "b78",
"title": "No-regret exploration in goal-oriented reinforcement learning",
"year": "2020"
},
{
"authors": [
"K Wang",
"K Zhou",
"B Kang",
"J Feng",
"Yan",
"S"
],
"doi": "",
"ref_id": "b79",
"title": "Revisiting intrinsic reward for exploration in procedurally generated environments",
"year": "2023"
},
{
"authors": [
"Erik Wijmans",
"Manolis Savva",
"Irfan Essa",
"Stefan Lee",
"Ari S Morcos",
"Dhruv Batra"
],
"doi": "10.1145/3609468.3609471",
"ref_id": "b80",
"title": "Emergence of Maps in the Memories of Blind Navigation Agents",
"year": "2020"
},
{
"authors": [
"F Xiang",
"Y Qin",
"K Mo",
"Y Xia",
"H Zhu",
"F Liu",
"M Liu",
"H Jiang",
"Y Yuan",
"H Wang"
],
"doi": "",
"ref_id": "b81",
"title": "Sapien: A simulated part-based interactive environment",
"year": "2020"
},
{
"authors": [
"A Zhang",
"N Ballas",
"J Pineau"
],
"doi": "",
"ref_id": "b82",
"title": "A dissection of overfitting and generalization in continuous reinforcement learning",
"year": "2018"
},
{
"authors": [
"C Zhang",
"O Vinyals",
"R Munos",
"S Bengio"
],
"doi": "",
"ref_id": "b83",
"title": "A study on overfitting in deep reinforcement learning",
"year": "2018"
},
{
"authors": [
"Baihe Huang",
"Jiantao Jiao",
"Michael Jordan",
"Stuart Russell",
"Yuandong Tian",
"Shaolun Zhang",
"Hanlin Zhu"
],
"doi": "10.52202/079017-2872",
"ref_id": "b84",
"title": "Towards a Theoretical Understanding of the 'Reversal Curse' via Training Dynamics",
"year": "2021"
}
] |
[
"ca9ae667cb3887f0",
"429ab6bd529665bf",
"0fc2413c647726ac",
"7686d4db6d52e493",
"8ca29ed9aa8b434f",
"4d9f841bcd59e499",
"21ee97e13ba4fd2d",
"28e3dabe7b77454d",
"633cfb7f7704f1f5",
"8159a652bb9a29d5",
"ace7700c6faad036",
"c89433d047b19934",
"89123eef1bcb7701",
"374b418dd923b74f",
"7f1ccd0c101cb9f1",
"be01719465897ba9",
"a23180b4c9128f8f",
"34dc3e64fa458b25",
"4e841bf35e4efa58",
"c512ecc5258b98b8",
"aa9b99fe43f44730",
"aca6a844d49b9ed3",
"79cc81c17feb893b",
"d2ff72df42a127c8",
"a29f7cd24b06fcd0",
"08c29e501bb34835",
"45d573d092646419",
"3868899a114cfb92",
"e13838579837e6b2",
"ecadaf6b6aac5b04",
"e0f96572ef116afa"
] |
[
"374b418dd923b74f",
"89123eef1bcb7701",
"778db6a13d489dc4",
"2e42ed6d81ed6097",
"2d2e4c86b60a6d69",
"cec107f52483133b",
"141644058347c923",
"56b5ee36c890787a",
"279b2cc040950a3c",
"7f1ccd0c101cb9f1",
"02319a862bffdc11",
"1642138bfd671503",
"79cc81c17feb893b",
"e13838579837e6b2",
"a3003891016eb6aa",
"609454b5151566a8",
"cdf512de7fed60fe",
"93581732069963d8",
"bafffb137113ddf9",
"6b8e5b31198e0351",
"ca9ae667cb3887f0",
"ecadaf6b6aac5b04",
"e0f96572ef116afa",
"3205fcdbce3d2ca5",
"33044edc93df2087",
"00917c95c5ffc555",
"7f9a2569e6a8681d",
"192ca62c0799d0fe",
"fd3c934a6b9fa702",
"2280fba1acfbfdbc",
"028cac55a5e77989",
"9a6bcfe42d66b790",
"05eddd90c9917f1a",
"a8f9f4e442c49011",
"731b1b0df5e0cacb",
"16e1cd868b62e268",
"429ab6bd529665bf",
"c89433d047b19934",
"bdfce79689015a2b",
"a63dcf3f3e0e432c",
"8b0e911178ce2b01",
"66a2fb4f99009c22",
"f30653299776c92a",
"4bb818d57732a43b",
"633cfb7f7704f1f5",
"a781fa7f1b8b685d",
"45d573d092646419",
"8159a652bb9a29d5",
"ace7700c6faad036",
"19b6b300a05748e8",
"b3ef660e815b9efc",
"a29f7cd24b06fcd0",
"4e841bf35e4efa58",
"21ee97e13ba4fd2d",
"058c5d8325ebf0dc",
"a23180b4c9128f8f",
"bee39311dfe2a47c",
"bee39311dfe2a47c",
"2dc7d63904e6f6f1",
"acc0fdd12612ee36",
"c42425eaca1a3fe5",
"aca6a844d49b9ed3",
"16603dbd561cf0b3",
"0c42dd25f89f720c",
"0fc2413c647726ac",
"3868899a114cfb92",
"d2ff72df42a127c8",
"06862a40d0c1becd",
"8ca29ed9aa8b434f",
"ee73a9e4ee484fc0",
"7686d4db6d52e493",
"28e3dabe7b77454d",
"aa9b99fe43f44730",
"c512ecc5258b98b8",
"34dc3e64fa458b25",
"20c45d45ac432fa1",
"4d9f841bcd59e499",
"08c29e501bb34835",
"be01719465897ba9",
"41722f96d72f151e",
"0f8e3bd0513073cb",
"f1d59152e820bbe3",
"910ce80c785209be",
"eafc6330f7186f12",
"70a2b5d64841a810"
] |
dT7uMuZJjf
|
Sequential Underspecified Instrument Selection for Cause-Effect Estimation
|
data/openreview_paper/ICML_2023_oral/dT7uMuZJjf//paper.pdf
| 35
| 3
|
[
{
"authors": [
"Joshua D Angrist",
"Jörn-Steffen Pischke"
],
"doi": "10.2307/j.ctvcm4j72",
"ref_id": "b1",
"title": "Mostly Harmless Econometrics",
"year": "2008"
},
{
"authors": [
"Hyunseung Kang",
"Anru Zhang",
"T Tony Cai",
"Dylan S Small"
],
"doi": "10.1080/01621459.2014.994705",
"ref_id": "b14",
"title": "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization",
"year": "2016"
},
{
"authors": [
"Hahn",
"Hausman"
],
"doi": "10.2307/20777569",
"ref_id": "b8",
"title": "Estimation with Valid and Invalid Instruments",
"year": "2005"
}
] |
[
{
"authors": [
"E Ailer",
"C L Müller",
"N Kilbertus"
],
"doi": "",
"ref_id": "b0",
"title": "A causal view on compositional data",
"year": "2021"
},
{
"authors": [
"Joshua D Angrist",
"Jörn-Steffen Pischke"
],
"doi": "10.2307/j.ctvcm4j72",
"ref_id": "b1",
"title": "Mostly Harmless Econometrics",
"year": "2008"
},
{
"authors": [
"A Bennett",
"N Kallus",
"T Schnabel"
],
"doi": "",
"ref_id": "b2",
"title": "Deep generalized method of moments for instrumental variable analysis",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b3",
"title": "",
"year": "2019"
},
{
"authors": [
"E Bura",
"R Pfeiffer"
],
"doi": "10.1016/j.spl.2008.01.097",
"ref_id": "b4",
"title": "On the distribution of the left singular vectors of a random matrix and its applications",
"year": "2008"
},
{
"authors": [
"Vanessa Didelez",
"Nuala Sheehan"
],
"doi": "10.1177/0962280206077743",
"ref_id": "b5",
"title": "Mendelian randomization as an instrumental variable approach to causal inference",
"year": "2007"
},
{
"authors": [
"Yanfang Fu",
"Jennifer A Foden",
"Cyd Khayter",
"Morgan L Maeder",
"Deepak Reyon",
"J Keith Joung",
"Jeffry D Sander"
],
"doi": "10.1038/nbt.2623",
"ref_id": "b6",
"title": "High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells",
"year": "2013"
},
{
"authors": [
"J L Gamella",
"C Heinze-Deml"
],
"doi": "10.32614/cran.package.nonlinearicp",
"ref_id": "b7",
"title": "nonlinearICP: Invariant Causal Prediction for Nonlinear Models",
"year": "2020"
},
{
"authors": [
"Hahn",
"Hausman"
],
"doi": "10.2307/20777569",
"ref_id": "b8",
"title": "Estimation with Valid and Invalid Instruments",
"year": "2005"
},
{
"authors": [
"J Hartford",
"G Lewis",
"K Leyton-Brown",
"M Taddy"
],
"doi": "",
"ref_id": "b9",
"title": "Deep iv: A flexible approach for counterfactual prediction",
"year": "2017"
},
{
"authors": [
"Miguel A Hernán",
"James M Robins"
],
"doi": "10.1097/01.ede.0000222409.00878.37",
"ref_id": "b10",
"title": "Instruments for Causal Inference",
"year": "2006"
},
{
"authors": [
"Antti Hyttinen",
"Sergey Plis",
"Matti Järvisalo",
"Frederick Eberhardt",
"David Danks"
],
"doi": "10.1016/j.ijar.2017.07.009",
"ref_id": "b11",
"title": "A constraint optimization approach to causal discovery from subsampled time series data",
"year": "2013"
},
{
"authors": [
"D Janzing"
],
"doi": "",
"ref_id": "b12",
"title": "Causal regularization",
"year": "2019"
},
{
"authors": [
"Dominik Janzing",
"Bernhard Schölkopf"
],
"doi": "10.1515/jci-2017-0013",
"ref_id": "b13",
"title": "Detecting Confounding in Multivariate Linear Models via Spectral Analysis",
"year": "2018"
},
{
"authors": [
"Hyunseung Kang",
"Anru Zhang",
"T Tony Cai",
"Dylan S Small"
],
"doi": "10.1080/01621459.2014.994705",
"ref_id": "b14",
"title": "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization",
"year": "2016"
},
{
"authors": [
"N Kilbertus",
"M J Kusner",
"R Silva"
],
"doi": "",
"ref_id": "b15",
"title": "A class of algorithms for general instrumental variable models",
"year": "2020"
},
{
"authors": [
"P G Moschopoulos"
],
"doi": "10.1007/bf02481123",
"ref_id": "b16",
"title": "The distribution of the sum of independent gamma random variables",
"year": "1985"
},
{
"authors": [
"K Muandet",
"A Mehrjou",
"S K Lee",
"A Raj"
],
"doi": "",
"ref_id": "b17",
"title": "Dual instrumental variable regression",
"year": "2019"
},
{
"authors": [
"J Nocedal",
"S J Wright"
],
"doi": "10.1007/b98874",
"ref_id": "b18",
"title": "Numerical Optimization",
"year": "2006"
},
{
"authors": [
"K Padh",
"J Zeitler",
"D Watson",
"M Kusner",
"R Silva",
"N Kilbertus"
],
"doi": "",
"ref_id": "b19",
"title": "Stochastic causal programming for bounding treatment effects",
"year": "2022"
},
{
"authors": [
"J Pearl",
"Causality"
],
"doi": "",
"ref_id": "b20",
"title": "",
"year": "2009"
},
{
"authors": [
"N Pfister",
"J Peters"
],
"doi": "",
"ref_id": "b21",
"title": "Identifiability of sparse causal effects using instrumental variables",
"year": "2022"
},
{
"authors": [
"L Rendsburg",
"L C Vankadara",
"D Ghoshdastidar",
"U Luxburg"
],
"doi": "",
"ref_id": "b22",
"title": "A consistent estimator for confounding strength",
"year": "2022"
},
{
"authors": [
"D Rothenhäusler",
"P Bühlmann",
"N Meinshausen",
"J Peters"
],
"doi": "10.1111/rssb.12398.2,9",
"ref_id": "b23",
"title": "Anchor regression: Heterogeneous data meet causality",
"year": "2018"
},
{
"authors": [
"S Saengkyongam",
"L Henckel",
"N Pfister",
"J Peters"
],
"doi": "",
"ref_id": "b24",
"title": "Exploiting independent instruments: Identification and distribution generalization",
"year": "2022"
},
{
"authors": [
"Eleanor Sanderson",
"M Maria Glymour",
"Michael V Holmes",
"Hyunseung Kang",
"Jean Morrison",
"Marcus R Munafò",
"Tom Palmer",
"C Mary Schooling",
"Chris Wallace",
"Qingyuan Zhao",
"George Davey Smith"
],
"doi": "10.1038/s43586-021-00092-5",
"ref_id": "b25",
"title": "Mendelian randomization",
"year": "2022"
},
{
"authors": [
"R Singh",
"M Sahani",
"A Gretton"
],
"doi": "",
"ref_id": "b26",
"title": "Kernel instrumental variable regression",
"year": "2019"
},
{
"authors": [
"Michael B Sohn",
"Hongzhe Li"
],
"doi": "10.1214/18-aoas1210",
"ref_id": "b27",
"title": "Compositional mediation analysis for microbiome studies",
"year": "2019"
},
{
"authors": [
"James H Stock",
"Francesco Trebbi"
],
"doi": "10.1257/089533003769204416",
"ref_id": "b28",
"title": "Retrospectives: Who Invented Instrumental Variable Regression?",
"year": "2003"
},
{
"authors": [
"S Sussex",
"C Uhler",
"A Krause"
],
"doi": "",
"ref_id": "b29",
"title": "Near-optimal multiperturbation experimental design for causal structure learning",
"year": "2021"
},
{
"authors": [
"P Tigas",
"Y Annadani",
"A Jesson",
"B Schölkopf",
"Y Gal",
"S Bauer"
],
"doi": "",
"ref_id": "b30",
"title": "Interventions, where and how? experimental design for causal models at scale",
"year": "2022"
},
{
"authors": [
"C Wang",
"J Hu",
"M J Blaser",
"H Li",
"I Birol"
],
"doi": "10.1093/bioinformatics/btz565",
"ref_id": "b31",
"title": "Estimating and testing the microbial causal mediation effect with high-dimensional and compositional microbiome data",
"year": "2020"
},
{
"authors": [
"P G Wright"
],
"doi": "10.1086/ahr/17.3.632",
"ref_id": "b32",
"title": "<i>The Tariff in Our Times</i>. by <scp>Ida M. Tarbell</scp>. (New York: The Macmillan Company. 1911. Pp. ix, 375.)",
"year": "1928"
},
{
"authors": [
"Rui Zhang",
"Masaaki Imaizumi",
"Bernhard Schölkopf",
"Krikamol Muandet"
],
"doi": "10.1515/jci-2022-0073",
"ref_id": "b33",
"title": "Instrumental variable regression via kernel maximum moment loss",
"year": "2020"
},
{
"authors": [
"Xiao-Hui Zhang",
"Louis Y Tee",
"Xiao-Gang Wang",
"Qun-Shan Huang",
"Shi-Hua Yang"
],
"doi": "10.1038/mtna.2015.37",
"ref_id": "b34",
"title": "Off-target Effects in CRISPR/Cas9-mediated Genome Engineering",
"year": "2015"
}
] |
[
"4ee02bf7cabd7012",
"fc7264bc2244754d",
"2818fbb470d55cea"
] |
[
"b5462ce8d11012a5",
"4ee02bf7cabd7012",
"61871ed1b8b9d0a3",
"7e13ecdaf7b05cda",
"fe8da3022f79abab",
"c87cfaa6380f6cf3",
"1b1d808f5a64e87a",
"c03ba63fe1f0e385",
"2818fbb470d55cea",
"0c98b9a7e22013bc",
"c35b09e06d539cd1",
"e14822823972d309",
"8e621636c2eb2265",
"6778d149069c3c14",
"fc7264bc2244754d",
"aca440107559bb73",
"d160d9fa21a5608d",
"70e79a72a9e8c992",
"868085f625e6f501",
"81afd4f782b102d0",
"a83f991dd8f50040",
"a9b264e1e06c1a1e",
"ee0f34dbd508b67d",
"2996af52966ea9d6",
"92f35b21680a068c",
"f2ca14ee6ba229d6",
"dd1ab4283b308f7f",
"7b4ac09c7012a213",
"79706a2cc0dfd0e0",
"2623cc7b07c2531b",
"1d609ced080117bc",
"d77c1385b92708de",
"fbd73e8ed3f92193",
"870ff260cfdaffe8",
"d0736709ed066cab"
] |
9TbDVDX7de
|
Do Perceptually Aligned Gradients Imply Robustness?
|
data/openreview_paper/ICML_2023_oral/9TbDVDX7de//paper.pdf
| 84
| 2
|
[
{
"authors": [
"Daniel Jakubovitz",
"Raja Giryes"
],
"doi": "10.1007/978-3-030-01258-8_32",
"ref_id": "b34",
"title": "Improving DNN Robustness to Adversarial Attacks Using Jacobian Regularization",
"year": "2018"
},
{
"authors": [
"Chris Finlay",
"Adam M Oberman"
],
"doi": "10.1016/j.mlwa.2020.100017",
"ref_id": "b24",
"title": "Scaleable input gradient regularization for adversarial robustness",
"year": "2021"
}
] |
[
{
"authors": [
"G Aggarwal",
"A Sinha",
"N Kumari",
"M K Singh"
],
"doi": "",
"ref_id": "b0",
"title": "On the benefits of models with perceptually-aligned gradients",
"year": "2020"
},
{
"authors": [
"Tomer Amit",
"Shmuel Shichrur",
"Tal Shaharabany",
"Lior Wolf"
],
"doi": "10.1007/978-3-031-43901-8_52",
"ref_id": "b1",
"title": "Annotator Consensus Prediction for Medical Image Segmentation with Diffusion Models",
"year": "2021"
},
{
"authors": [
"Maksym Andriushchenko",
"Francesco D'angelo",
"Nicolas Flammarion",
"Aditya Varre"
],
"doi": "10.52202/079017-0730",
"ref_id": "b2",
"title": "Why Do We Need Weight Decay in Modern Deep Learning?",
"year": "2020"
},
{
"authors": [
"A Athalye",
"L Engstrom",
"A Ilyas",
"K Kwok"
],
"doi": "",
"ref_id": "b3",
"title": "Synthesizing robust adversarial examples",
"year": "2018"
},
{
"authors": [
"Omri Avrahami",
"Dani Lischinski",
"Ohad Fried"
],
"doi": "10.1109/cvpr52688.2022.01767",
"ref_id": "b4",
"title": "Blended Diffusion for Text-driven Editing of Natural Images",
"year": "2022"
},
{
"authors": [
"Tao Bai",
"Jinqi Luo",
"Jun Zhao",
"Bihan Wen",
"Qian Wang"
],
"doi": "10.24963/ijcai.2021/591",
"ref_id": "b5",
"title": "Recent Advances in Adversarial Training for Adversarial Robustness",
"year": "2021"
},
{
"authors": [
"B Biggio",
"I Corona",
"D Maiorca",
"B Nelson",
"N Šrndić",
"P Laskov",
"G Giacinto",
"F Roli"
],
"doi": "",
"ref_id": "b6",
"title": "Evasion attacks against machine learning at test time",
"year": "2013"
},
{
"authors": [
"Nicholas Carlini",
"David Wagner"
],
"doi": "10.1109/sp.2017.49",
"ref_id": "b7",
"title": "Towards Evaluating the Robustness of Neural Networks",
"year": "2017"
},
{
"authors": [
"Nicholas Carlini",
"David Wagner"
],
"doi": "10.1145/3128572.3140444",
"ref_id": "b8",
"title": "Adversarial Examples Are Not Easily Detected",
"year": "2017"
},
{
"authors": [
"Alvin Chan",
"Yi Tay",
"Yew-Soon Ong"
],
"doi": "10.1109/cvpr42600.2020.00041",
"ref_id": "b9",
"title": "What It Thinks Is Important Is Important: Robustness Transfers Through Input Gradients",
"year": "June 13-19, 2020, 2020"
},
{
"authors": [
"Adam Coates",
"Blake Carpenter",
"Carl Case",
"Sanjeev Satheesh",
"Bipin Suresh",
"Tao Wang",
"David J Wu",
"Andrew Y Ng"
],
"doi": "10.1109/icdar.2011.95",
"ref_id": "b10",
"title": "Text Detection and Character Recognition in Scene Images with Unsupervised Feature Learning",
"year": "2011"
},
{
"authors": [
"J Cohen",
"E Rosenfeld",
"Z Kolter"
],
"doi": "",
"ref_id": "b11",
"title": "Certified adversarial robustness via randomized smoothing",
"year": "2019"
},
{
"authors": [
"J M Cohen",
"E Rosenfeld",
"J Z Kolter"
],
"doi": "",
"ref_id": "b12",
"title": "Certified adversarial robustness via randomized smoothing",
"year": "2019"
},
{
"authors": [
"Francesco Croce",
"Matthias Hein"
],
"doi": "10.1109/satml59370.2024.00028",
"ref_id": "b13",
"title": "Segment (Almost) Nothing: Prompt-Agnostic Adversarial Attacks on Segmentation Models",
"year": "2020"
},
{
"authors": [
"Francesco Croce",
"Matthias Hein"
],
"doi": "10.1109/satml59370.2024.00028",
"ref_id": "b14",
"title": "Segment (Almost) Nothing: Prompt-Agnostic Adversarial Attacks on Segmentation Models",
"year": "2020"
},
{
"authors": [
"Jia Deng",
"Wei Dong",
"Richard Socher",
"Li-Jia Li",
"Kai Li",
"Li Fei-Fei"
],
"doi": "10.1109/cvpr.2009.5206848",
"ref_id": "b15",
"title": "ImageNet: A large-scale hierarchical image database",
"year": "2009"
},
{
"authors": [
"P Dhariwal",
"A Q Nichol"
],
"doi": "",
"ref_id": "b16",
"title": "Diffusion models beat GANs on image synthesis",
"year": "2021"
},
{
"authors": [
"Samuel Dodge",
"Lina Karam"
],
"doi": "10.1109/icccn.2017.8038465",
"ref_id": "b17",
"title": "A Study and Comparison of Human and Deep Learning Recognition Performance under Visual Distortions",
"year": "2017"
},
{
"authors": [
"Y Dong",
"F Liao",
"T Pang",
"H Su",
"J Zhu",
"X Hu",
"J Li"
],
"doi": "",
"ref_id": "b18",
"title": "Boosting adversarial attacks with momentum",
"year": "2018"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly",
"J Uszkoreit",
"N Houlsby"
],
"doi": "",
"ref_id": "b19",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2021"
},
{
"authors": [
"B Efron"
],
"doi": "",
"ref_id": "b20",
"title": "Tweedie's formula and selection bias",
"year": "2011"
},
{
"authors": [
"Andrew Elliott",
"Stephen Law",
"Chris Russell"
],
"doi": "10.1109/cvpr46437.2021.01055",
"ref_id": "b21",
"title": "Explaining Classifiers using Adversarial Perturbations on the Perceptual Ball",
"year": "2021"
},
{
"authors": [
"Logan Engstrom",
"Andrew Ilyas",
"Aleksander Madry",
"Shibani Santurkar",
"Brandon Tran",
"Dimitris Tsipras"
],
"doi": "10.23915/distill.00019.7",
"ref_id": "b22",
"title": "Discussion and Author Responses",
"year": "2019"
},
{
"authors": [
"C Etmann",
"S Lunz",
"P Maass",
"C Schoenlieb"
],
"doi": "",
"ref_id": "b23",
"title": "On the connection between adversarial robustness and saliency map interpretability",
"year": "2019"
},
{
"authors": [
"Chris Finlay",
"Adam M Oberman"
],
"doi": "10.1016/j.mlwa.2020.100017",
"ref_id": "b24",
"title": "Scaleable input gradient regularization for adversarial robustness",
"year": "2021"
},
{
"authors": [
"R Ganz",
"M Elad",
"Bigroc"
],
"doi": "",
"ref_id": "b25",
"title": "Boosting image generation via a robust classifier",
"year": "2021"
},
{
"authors": [
"Robert Geirhos",
"David Janssen",
"Heiko Schütt",
"Matthias Bethge",
"Felix Wichmann"
],
"doi": "10.1167/17.10.806",
"ref_id": "b26",
"title": "Of Human Observers and Deep Neural Networks: A Detailed Psychophysical Comparison",
"year": "2017"
},
{
"authors": [
"I Goodfellow",
"J Shlens",
"C Szegedy"
],
"doi": "",
"ref_id": "b27",
"title": "Explaining and Harnessing Adversarial Examples",
"year": "2015"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b28",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"D Hendrycks",
"N Carlini",
"J Schulman",
"J Steinhardt"
],
"doi": "",
"ref_id": "b29",
"title": "Unsolved problems in ml safety",
"year": "2021"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b30",
"title": "Denoising diffusion probabilistic models",
"year": "2020"
},
{
"authors": [
"J Ho",
"C Saharia",
"W Chan",
"D J Fleet",
"M Norouzi",
"T Salimans"
],
"doi": "",
"ref_id": "b31",
"title": "Cascaded diffusion models for high fidelity image generation",
"year": "2022"
},
{
"authors": [
"Hossein Hosseini",
"Baicen Xiao",
"Radha Poovendran"
],
"doi": "10.1109/icmla.2017.0-172",
"ref_id": "b32",
"title": "Google's Cloud Vision API is Not Robust to Noise",
"year": "2017"
},
{
"authors": [
"L Huang",
"C Zhang",
"H Zhang"
],
"doi": "",
"ref_id": "b33",
"title": "Self-adaptive training: beyond empirical risk minimization",
"year": "2020"
},
{
"authors": [
"Daniel Jakubovitz",
"Raja Giryes"
],
"doi": "10.1007/978-3-030-01258-8_32",
"ref_id": "b34",
"title": "Improving DNN Robustness to Adversarial Attacks Using Jacobian Regularization",
"year": "2018"
},
{
"authors": [
"S Kaur",
"J M Cohen",
"Z C Lipton"
],
"doi": "",
"ref_id": "b35",
"title": "Are perceptuallyaligned gradients a general property of robust classifiers?",
"year": "2019"
},
{
"authors": [
"B Kawar",
"G Vaksman",
"M Elad",
"Snips"
],
"doi": "",
"ref_id": "b36",
"title": "Solving noisy inverse problems stochastically",
"year": "2021"
},
{
"authors": [
"B Kawar",
"M Elad",
"S Ermon",
"J Song"
],
"doi": "",
"ref_id": "b37",
"title": "Denoising diffusion restoration models",
"year": "2022"
},
{
"authors": [
"Bahjat Kawar",
"Shiran Zada",
"Oran Lang",
"Omer Tov",
"Huiwen Chang",
"Tali Dekel",
"Inbar Mosseri",
"Michal Irani"
],
"doi": "10.1109/cvpr52729.2023.00582",
"ref_id": "b38",
"title": "Imagic: Text-Based Real Image Editing with Diffusion Models",
"year": "2022"
},
{
"authors": [
"A Krizhevsky",
"V Nair",
"G Hinton"
],
"doi": "",
"ref_id": "b39",
"title": "Cifar-100",
"year": ""
},
{
"authors": [
"Alex Krizhevsky",
"Ilya Sutskever",
"Geoffrey E Hinton"
],
"doi": "10.1145/3065386",
"ref_id": "b40",
"title": "ImageNet classification with deep convolutional neural networks",
"year": "2012"
},
{
"authors": [
"Alexey Kurakin",
"Ian J Goodfellow",
"Samy Bengio"
],
"doi": "10.1201/9781351251389-8",
"ref_id": "b41",
"title": "Adversarial Examples in the Physical World",
"year": "2017"
},
{
"authors": [
"Y Le",
"X Yang"
],
"doi": "10.4324/9781315726397-21",
"ref_id": "b42",
"title": "The lifespan chal lenge model re visited",
"year": "2015"
},
{
"authors": [
"Mathias Lecuyer",
"Vaggelis Atlidakis",
"Roxana Geambasu",
"Daniel Hsu",
"Suman Jana"
],
"doi": "10.1109/sp.2019.00044",
"ref_id": "b43",
"title": "Certified Robustness to Adversarial Examples with Differential Privacy",
"year": "2019"
},
{
"authors": [
"B Li",
"C Chen",
"W Wang",
"Carin",
"L"
],
"doi": "",
"ref_id": "b44",
"title": "Certified adversarial robustness with additive noise",
"year": "2019"
},
{
"authors": [
"Xihui Liu",
"Dong Huk Park",
"Samaneh Azadi",
"Gong Zhang",
"Arman Chopikyan",
"Yuxiao Hu",
"Humphrey Shi",
"Anna Rohrbach",
"Trevor Darrell"
],
"doi": "10.1109/wacv56688.2023.00037",
"ref_id": "b45",
"title": "More Control for Free! Image Synthesis with Semantic Diffusion Guidance",
"year": "2021"
},
{
"authors": [
"A Madry",
"A Makelov",
"L Schmidt",
"D Tsipras",
"A Vladu"
],
"doi": "",
"ref_id": "b46",
"title": "Towards deep learning models resistant to adversarial attacks",
"year": "2018"
},
{
"authors": [
"K Miyasawa"
],
"doi": "",
"ref_id": "b47",
"title": "An empirical Bayes estimator of the mean of a normal population",
"year": "1961"
},
{
"authors": [
"Y Mo",
"D Wu",
"Y Wang",
"Y Guo",
"Y Wang"
],
"doi": "10.48550/arXiv.2210.07540",
"ref_id": "b48",
"title": "When adversarial training meets vision transformers: Recipes from training to architecture",
"year": "2022"
},
{
"authors": [
"A M Nguyen",
"J Yosinski",
"J Clune"
],
"doi": "",
"ref_id": "b49",
"title": "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images",
"year": "2015"
},
{
"authors": [
"A Q Nichol",
"P Dhariwal"
],
"doi": "",
"ref_id": "b50",
"title": "Improved denoising diffusion probabilistic models",
"year": "2021"
},
{
"authors": [
"T Pang",
"X Yang",
"Y Dong",
"T Xu",
"J Zhu",
"H Su"
],
"doi": "",
"ref_id": "b51",
"title": "Boosting adversarial training with hypersphere embedding",
"year": "2020"
},
{
"authors": [
"C Qin",
"J Martens",
"S Gowal",
"D Krishnan",
"K Dvijotham",
"A Fawzi",
"S De",
"R Stanforth",
"P Kohli"
],
"doi": "",
"ref_id": "b52",
"title": "Adversarial robustness through local linearization",
"year": "2019"
},
{
"authors": [
"A Ramesh",
"P Dhariwal",
"A Nichol",
"C Chu",
"M Chen"
],
"doi": "",
"ref_id": "b53",
"title": "Hierarchical text-conditional image generation with CLIP latents",
"year": "2022"
},
{
"authors": [
"Robin Rombach",
"Andreas Blattmann",
"Dominik Lorenz",
"Patrick Esser",
"Bjorn Ommer"
],
"doi": "10.1109/cvpr52688.2022.01042",
"ref_id": "b54",
"title": "High-Resolution Image Synthesis with Latent Diffusion Models",
"year": "2022"
},
{
"authors": [
"Andrew Ross",
"Finale Doshi-Velez"
],
"doi": "10.1609/aaai.v32i1.11504",
"ref_id": "b55",
"title": "Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing Their Input Gradients",
"year": "2018"
},
{
"authors": [
"Andrew Ross",
"Finale Doshi-Velez"
],
"doi": "10.1609/aaai.v32i1.11504",
"ref_id": "b56",
"title": "Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing Their Input Gradients",
"year": "2018"
},
{
"authors": [
"Andrew Ross",
"Finale Doshi-Velez"
],
"doi": "10.1609/aaai.v32i1.11504",
"ref_id": "b57",
"title": "Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing Their Input Gradients",
"year": "2018"
},
{
"authors": [
"Daniel L Ruderman"
],
"doi": "10.1088/0954-898x/5/4/006",
"ref_id": "b58",
"title": "The statistics of natural images",
"year": "1994"
},
{
"authors": [
"Chitwan Saharia",
"William Chan",
"Huiwen Chang",
"Chris Lee",
"Jonathan Ho",
"Tim Salimans",
"David Fleet",
"Mohammad Norouzi"
],
"doi": "10.1145/3528233.3530757",
"ref_id": "b59",
"title": "Palette: Image-to-Image Diffusion Models",
"year": "2022"
},
{
"authors": [
"H Salman",
"J Li",
"I P Razenshteyn",
"P Zhang",
"H Zhang",
"S Bubeck",
"G Yang"
],
"doi": "",
"ref_id": "b60",
"title": "Provably robust deep learning via adversarially trained smoothed classifiers",
"year": "2019"
},
{
"authors": [
"S Santurkar",
"D Tsipras",
"B Tran",
"A Ilyas",
"L Engstrom",
"A Madry"
],
"doi": "",
"ref_id": "b61",
"title": "Image Synthesis with a Single (Robust) Classifier",
"year": "2019"
},
{
"authors": [
"L Schmidt",
"S Santurkar",
"D Tsipras",
"K Talwar",
"A Madry"
],
"doi": "",
"ref_id": "b62",
"title": "Adversarially robust generalization requires more data",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b63",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2018"
},
{
"authors": [
"A Shamir",
"O Melamed",
"O Benshmuel"
],
"doi": "",
"ref_id": "b64",
"title": "The dimpled manifold model of adversarial examples in machine learning",
"year": "2021"
},
{
"authors": [
"R Shao",
"J Yi",
"P Chen",
"C Hsieh"
],
"doi": "",
"ref_id": "b65",
"title": "How and when adversarial robustness transfers in knowledge distillation?",
"year": "2021"
},
{
"authors": [
"K Simonyan",
"A Zisserman"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b66",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"J Sohl-Dickstein",
"E Weiss",
"N Maheswaranathan",
"S Ganguli"
],
"doi": "",
"ref_id": "b67",
"title": "Deep unsupervised learning using nonequilibrium thermodynamics",
"year": "2015"
},
{
"authors": [
"Y Song",
"S Ermon"
],
"doi": "",
"ref_id": "b68",
"title": "Generative modeling by estimating gradients of the data distribution",
"year": "2019"
},
{
"authors": [
"Y Song",
"J Sohl-Dickstein",
"D P Kingma",
"A Kumar",
"S Ermon",
"B Poole"
],
"doi": "",
"ref_id": "b69",
"title": "Score-based generative modeling through stochastic differential equations",
"year": "2021"
},
{
"authors": [
"Charles M Stein"
],
"doi": "10.1214/aos/1176345632",
"ref_id": "b70",
"title": "Estimation of the Mean of a Multivariate Normal Distribution",
"year": "1981"
},
{
"authors": [
"C Szegedy",
"W Zaremba",
"I Sutskever",
"J Bruna",
"D Erhan",
"I Goodfellow",
"R Fergus"
],
"doi": "",
"ref_id": "b71",
"title": "Intriguing properties of neural networks",
"year": "2014"
},
{
"authors": [
"D Temel",
"G Alregib"
],
"doi": "",
"ref_id": "b72",
"title": "Traffic signs in the wild: Highlights from the IEEE video and image processing cup 2017 student competition",
"year": "2018"
},
{
"authors": [
"Dogancan Temel",
"Jinsol Lee",
"Ghassan Alregib"
],
"doi": "10.1109/icmla.2018.00028",
"ref_id": "b73",
"title": "CURE-OR: Challenging Unreal and Real Environments for Object Recognition",
"year": "2017"
},
{
"authors": [
"Dogancan Temel",
"Jinsol Lee",
"Ghassan Alregib"
],
"doi": "10.1109/icmla.2018.00028",
"ref_id": "b74",
"title": "CURE-OR: Challenging Unreal and Real Environments for Object Recognition",
"year": "2018"
},
{
"authors": [
"L Theis",
"T Salimans",
"M D Hoffman",
"F Mentzer"
],
"doi": "",
"ref_id": "b75",
"title": "Lossy compression with gaussian diffusion",
"year": "2022"
},
{
"authors": [
"I O Tolstikhin",
"N Houlsby",
"A Kolesnikov",
"L Beyer",
"X Zhai",
"T Unterthiner",
"J Yung",
"A Steiner",
"D Keysers",
"J Uszkoreit"
],
"doi": "",
"ref_id": "b76",
"title": "Mlp-mixer: An all-mlp architecture for vision",
"year": "2021"
},
{
"authors": [
"F Tramèr",
"N Carlini",
"W Brendel",
"A Madry"
],
"doi": "",
"ref_id": "b77",
"title": "On adaptive attacks to adversarial example defenses",
"year": "2020"
},
{
"authors": [
"D Tsipras",
"S Santurkar",
"L Engstrom",
"A Turner",
"A Madry"
],
"doi": "",
"ref_id": "b78",
"title": "Robustness May Be at Odds with Accuracy",
"year": "2019"
},
{
"authors": [
"A Vahdat",
"K Kreis",
"J Kautz"
],
"doi": "",
"ref_id": "b79",
"title": "Score-based generative modeling in latent space",
"year": "2021"
},
{
"authors": [
"Y Wang",
"D Zou",
"J Yi",
"J Bailey",
"X Ma",
"Q Gu"
],
"doi": "",
"ref_id": "b80",
"title": "Improving adversarial robustness requires revisiting misclassified examples",
"year": "2020"
},
{
"authors": [
"Cihang Xie",
"Yuxin Wu",
"Laurens Van Der Maaten",
"Alan L Yuille",
"Kaiming He"
],
"doi": "10.1109/cvpr.2019.00059",
"ref_id": "b81",
"title": "Feature Denoising for Improving Adversarial Robustness",
"year": "2019"
},
{
"authors": [
"R Zhai",
"T Cai",
"D He",
"C Dan",
"K He",
"J E Hopcroft",
"L Wang"
],
"doi": "",
"ref_id": "b82",
"title": "Adversarially robust generalization just requires more unlabeled data",
"year": "2019"
},
{
"authors": [
"H Zhang",
"Y Yu",
"J Jiao",
"E P Xing",
"L E Ghaoui",
"M I Jordan"
],
"doi": "",
"ref_id": "b83",
"title": "Theoretically principled trade-off between robustness and accuracy",
"year": "2019"
}
] |
[
"932b8fd5e5bc5ce7",
"aa3840895d1a607d"
] |
[
"7efd2818afccdc4b",
"27c73cdefb4134b0",
"60051d251bfbe364",
"aacd560b55f9df82",
"b8380b2a82b837a8",
"170606785bb730bd",
"f3546b8e57b5e95a",
"fd127452944b6556",
"5b890875ad142fac",
"154c797342dd324e",
"f90925502bdb0f47",
"b025692a131dfdb7",
"79728f9a7207d24e",
"b952c5869853f168",
"b952c5869853f168",
"bf47ebe4281f5463",
"b9dc3a377d323dd5",
"6899af540c02e607",
"a829e6288739c293",
"0b1cb47ac4ba5a71",
"e357dbed835fb85c",
"0896514c3a7f9d25",
"4354a6461a04bce9",
"733554059e51a80d",
"aa3840895d1a607d",
"fddbfbda72782a14",
"42e80432a43b118f",
"8b01062f93fa15e8",
"39ea51c87cdfdcfb",
"294ec45501c93ea0",
"7cb4584473814329",
"76e6439af70eb8e3",
"15cbfb581162fcbe",
"2d476fb30346aeb1",
"932b8fd5e5bc5ce7",
"0cafeb64be75d0d9",
"a5ca15befa188a72",
"58ebab7c08b04341",
"3ee5edbc1097b6e7",
"1be44ebe7528d3c2",
"b1e48a0ce339f341",
"b3d5ff85cbcc0d17",
"b80ef6c41c583a6e",
"02f6745d3a52dd39",
"c86eb63090d35b35",
"50270ab7eade5e06",
"a9fb8d929255c90d",
"25d22b60f203b93d",
"930d6d2483e8d435",
"ada6d569cb1e910c",
"b50b9f7623d35089",
"743b4018f4d1b030",
"8f223ff0c692743a",
"68b82b5cb5331481",
"1e1f042b021f7da2",
"39610a24263148cc",
"39610a24263148cc",
"39610a24263148cc",
"dfa8fd86745dcbb7",
"70d3b63a2322c839",
"a1a5537aafe6d6a7",
"3b01b25a99a4a0b4",
"9b4a9d8cc7493337",
"a6625968b7060b53",
"4e518eb53b1a5902",
"6d455f99fd1df245",
"539c22269c6b141f",
"26236d4d41c060e4",
"d3a70afe342f62b3",
"ff22ea63a3da7748",
"b62a1ee97499d292",
"5ff85232f1ccc86f",
"7d81ec17afbbf12e",
"a00d0a61a2431ba6",
"8e2b1bedb087a5fd",
"5fef2b02751b2d1f",
"4b63e87f9c327c71",
"01a3fc7b51431e18",
"16efcd157d7896e3",
"44c9b3b625634f37",
"97928b2636481cfd",
"4c5da3fbd129ad92",
"8085f90d451f37d5",
"30cf20252c6978aa"
] |
jJXuL3hQvt
|
HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption
|
data/openreview_paper/ICML_2023_oral/jJXuL3hQvt//paper.pdf
| 49
| 3
|
[
{
"authors": [
"Seungwan Hong",
"Jai Hyun Park",
"Wonhee Cho",
"Hyeongmin Choe",
"Jung Hee Cheon"
],
"doi": "10.1186/s12864-022-08469-w",
"ref_id": "b19",
"title": "Secure tumor classification by shallow neural network using homomorphic encryption",
"year": "2022"
},
{
"authors": [
"M K Titsias"
],
"doi": "",
"ref_id": "b40",
"title": "One-vs-each approximation to softmax for scalable estimation of probabilities",
"year": "2016"
},
{
"authors": [
"Chao Jin",
"Mohamed Ragab",
"Khin Mi Mi Aung"
],
"doi": "10.1007/978-3-030-62576-4_14",
"ref_id": "b22",
"title": "Secure Transfer Learning for Machine Fault Diagnosis Under Different Operating Conditions",
"year": "2020"
}
] |
[
{
"authors": [
"Ahmad Al Badawi",
"Louie Hoang",
"Chan Fook Mun",
"Kim Laine",
"Khin Mi Mi Aung"
],
"doi": "10.1109/access.2020.3045465",
"ref_id": "b0",
"title": "PrivFT: Private and Fast Text Classification With Homomorphic Encryption",
"year": "2020"
},
{
"authors": [
"N Chandran",
"D Gupta",
"S L B Obbattu",
"A Shah",
"Simc"
],
"doi": "",
"ref_id": "b1",
"title": "ML inference secure against malicious clients at semi-honest cost",
"year": "2022"
},
{
"authors": [
"Jung Hee Cheon",
"Andrey Kim",
"Miran Kim",
"Yongsoo Song"
],
"doi": "10.1007/978-3-319-70694-8_15",
"ref_id": "b2",
"title": "Homomorphic Encryption for Arithmetic of Approximate Numbers",
"year": "2017"
},
{
"authors": [
"Jung Hee Cheon",
"Kyoohyung Han",
"Andrey Kim",
"Miran Kim",
"Yongsoo Song"
],
"doi": "10.1007/978-3-319-78381-9_14",
"ref_id": "b3",
"title": "Bootstrapping for Approximate Homomorphic Encryption",
"year": "2018"
},
{
"authors": [
"J H Cheon",
"K Han",
"A Kim",
"M Kim",
"Y Song"
],
"doi": "",
"ref_id": "b4",
"title": "A full RNS variant of approximate homomorphic encryption",
"year": "2018"
},
{
"authors": [
"J H Cheon",
"D Kim",
"D Kim"
],
"doi": "",
"ref_id": "b5",
"title": "Efficient homomorphic comparison methods with optimal complexity",
"year": "2020"
},
{
"authors": [
"Jung Hee Cheon",
"Wootae Kim",
"Jai Hyun Park"
],
"doi": "10.1109/tifs.2022.3188145",
"ref_id": "b6",
"title": "Efficient Homomorphic Evaluation on Large Intervals",
"year": "2022"
},
{
"authors": [
"J H Cheon",
"Y Son",
"D Yhee"
],
"doi": "",
"ref_id": "b7",
"title": "Practical FHE parameters against lattice attacks",
"year": "2022"
},
{
"authors": [
"A Coucke",
"A Saade",
"A Ball",
"T Bluche",
"A Caulier",
"D Leroy",
"C Doumouro",
"T Gisselbrecht",
"F Caltagirone",
"T Lavril"
],
"doi": "",
"ref_id": "b8",
"title": "Snips voice platform: an embedded spoken language understanding system for private-bydesign voice interfaces",
"year": "2018"
},
{
"authors": [
"E Crockett"
],
"doi": "",
"ref_id": "b9",
"title": "A low-depth homomorphic circuit for logistic regression model training",
"year": "2020"
},
{
"authors": [
"Cryptolab",
"Heaan"
],
"doi": "",
"ref_id": "b10",
"title": "",
"year": "2022"
},
{
"authors": [
"L Deng"
],
"doi": "",
"ref_id": "b11",
"title": "The mnist database of handwritten digit images for machine learning research",
"year": "2012"
},
{
"authors": [
"Xingbo Dong",
"Zhihui Miao",
"Lan Ma",
"Jiajun Shen",
"Zhe Jin",
"Zhenhua Guo",
"Andrew Beng Jin Teoh"
],
"doi": "10.1016/j.cose.2022.103026",
"ref_id": "b12",
"title": "Reconstruct face from features based on genetic algorithm using GAN generator as a distribution constraint",
"year": "2023"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly",
"J Uszkoreit",
"N Houlsby"
],
"doi": "",
"ref_id": "b13",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2021"
},
{
"authors": [
"Peter Hustinx"
],
"doi": "10.1093/acprof:oso/9780198807216.003.0005",
"ref_id": "b14",
"title": "EU Data Protection Law: The Review of Directive 95/46/EC and the General Data Protection Regulation",
"year": "2016. 2016"
},
{
"authors": [
"O Goldreich"
],
"doi": "",
"ref_id": "b15",
"title": "Foundations of Cryptography",
"year": "2004"
},
{
"authors": [
"I Goodfellow",
"Y Bengio",
"A Courville"
],
"doi": "",
"ref_id": "b16",
"title": "Deep Learning",
"year": "2016"
},
{
"authors": [
"M Hao",
"H Li",
"H Chen",
"P Xing",
"G Xu",
"T Zhang"
],
"doi": "",
"ref_id": "b17",
"title": "Iron: Private inference on transformers",
"year": "2022"
},
{
"authors": [
"Charles R Harris",
"K Jarrod Millman",
"Stéfan J Van Der Walt",
"Ralf Gommers",
"Pauli Virtanen",
"David Cournapeau",
"Eric Wieser",
"Julian Taylor",
"Sebastian Berg",
"Nathaniel J Smith",
"Robert Kern",
"Matti Picus",
"Stephan Hoyer",
"Marten H Van Kerkwijk",
"Matthew Brett",
"Allan Haldane",
"Jaime Fernández Del Río",
"Mark Wiebe",
"Pearu Peterson",
"Pierre Gérard-Marchant",
"Kevin Sheppard",
"Tyler Reddy",
"Warren Weckesser",
"Hameer Abbasi",
"Christoph Gohlke",
"Travis E Oliphant"
],
"doi": "10.1038/s41586-020-2649-2",
"ref_id": "b18",
"title": "Array programming with NumPy",
"year": "September 2020"
},
{
"authors": [
"Seungwan Hong",
"Jai Hyun Park",
"Wonhee Cho",
"Hyeongmin Choe",
"Jung Hee Cheon"
],
"doi": "10.1186/s12864-022-08469-w",
"ref_id": "b19",
"title": "Secure tumor classification by shallow neural network using homomorphic encryption",
"year": "2022"
},
{
"authors": [
"Z Huang",
"C Hong",
"W.-J Lu",
"C Weng",
"H Qu"
],
"doi": "",
"ref_id": "b20",
"title": "More efficient secure matrix multiplication for unbalanced recommender systems",
"year": "2021"
},
{
"authors": [
"Xiaoqian Jiang",
"Miran Kim",
"Kristin Lauter",
"Yongsoo Song"
],
"doi": "10.1145/3243734.3243837",
"ref_id": "b21",
"title": "Secure Outsourced Matrix Computation and Application to Neural Networks",
"year": "2018"
},
{
"authors": [
"Chao Jin",
"Mohamed Ragab",
"Khin Mi Mi Aung"
],
"doi": "10.1007/978-3-030-62576-4_14",
"ref_id": "b22",
"title": "Secure Transfer Learning for Machine Fault Diagnosis Under Different Operating Conditions",
"year": "2020"
},
{
"authors": [
"M Kantarcioglu",
"C Clifton"
],
"doi": "10.1109/TKDE.2004",
"ref_id": "b23",
"title": "Privacy-preserving distributed mining of association rules on horizontally partitioned data",
"year": "2004"
},
{
"authors": [
"Andrey Kim",
"Yongsoo Song",
"Miran Kim",
"Keewoo Lee",
"Jung Hee Cheon"
],
"doi": "10.1186/s12920-018-0401-7",
"ref_id": "b24",
"title": "Logistic regression model training based on the approximate homomorphic encryption",
"year": "2018"
},
{
"authors": [
"Miran Kim",
"Yongsoo Song",
"Shuang Wang",
"Yuhou Xia",
"Xiaoqian Jiang"
],
"doi": "10.2196/preprints.8805",
"ref_id": "b25",
"title": "Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation (Preprint)",
"year": "2018"
},
{
"authors": [
"T Knauth",
"M Steiner",
"S Chakrabarti",
"L Lei",
"C Xing",
"M Vij"
],
"doi": "",
"ref_id": "b26",
"title": "Integrating remote attestation with transport layer security",
"year": "2018"
},
{
"authors": [
"A Krizhevsky",
"G Hinton"
],
"doi": "",
"ref_id": "b27",
"title": "Learning multiple layers of features from tiny images",
"year": "2009. 2020"
},
{
"authors": [
"Garam Lee",
"Minsoo Kim",
"Jai Hyun Park",
"Seung-Won Hwang",
"Jung Hee Cheon"
],
"doi": "10.18653/v1/2022.naacl-main.231",
"ref_id": "b28",
"title": "Privacy-Preserving Text Classification on BERT Embeddings with Homomorphic Encryption",
"year": "July 2022"
},
{
"authors": [
"Joon-Woo Lee",
"Hyungchul Kang",
"Yongwoo Lee",
"Woosuk Choi",
"Jieun Eom",
"Maxim Deryabin",
"Eunsang Lee",
"Junghyun Lee",
"Donghoon Yoo",
"Young-Sik Kim",
"Jong-Seon No"
],
"doi": "10.1109/access.2022.3159694",
"ref_id": "b29",
"title": "Privacy-Preserving Machine Learning With Fully Homomorphic Encryption for Deep Neural Network",
"year": "2022"
},
{
"authors": [
"R Lehmkuhl",
"P Mishra",
"A Srinivasan",
"R A Popa",
"Muse"
],
"doi": "10.1109/msp.2004.9",
"ref_id": "b30",
"title": "USENIX Security Symposium",
"year": "2021"
},
{
"authors": [
"Yang Liu",
"Yan Kang",
"Chaoping Xing",
"Tianjian Chen",
"Qiang Yang"
],
"doi": "10.1109/mis.2020.2988525",
"ref_id": "b31",
"title": "A Secure Federated Transfer Learning Framework",
"year": "2020"
},
{
"authors": [
"Guangcan Mai",
"Kai Cao",
"Pong C Yuen",
"Anil K Jain"
],
"doi": "10.1109/tpami.2018.2827389",
"ref_id": "b32",
"title": "On the Reconstruction of Face Images from Deep Face Templates",
"year": "2019"
},
{
"authors": [
"P Mohassel",
"Y Zhang"
],
"doi": "10.1109/SP.2017",
"ref_id": "b33",
"title": "SecureML: A system for scalable privacy-preserving machine learning",
"year": "2017"
},
{
"authors": [
"Y E Nesterov"
],
"doi": "10.1016/0011-7471(63)90317-6",
"ref_id": "b34",
"title": "Dokl. Akad. Nauk, SSSR",
"year": "1983"
},
{
"authors": [
"V Nikolaenko",
"U Weinsberg",
"S Ioannidis",
"M Joye",
"D Boneh",
"N Taft"
],
"doi": "10.1109/SP.2013",
"ref_id": "b35",
"title": "Privacy-preserving ridge regression on hundreds of millions of records",
"year": "2013"
},
{
"authors": [
"Sinno Jialin Pan",
"Qiang Yang"
],
"doi": "10.1109/tkde.2009.191",
"ref_id": "b36",
"title": "A Survey on Transfer Learning",
"year": "2010"
},
{
"authors": [
"Hatef Otroshi Shahreza",
"Vedrana Krivokuca Hahn",
"Sebastien Marcel"
],
"doi": "10.1109/icip46576.2022.9897535",
"ref_id": "b37",
"title": "Face Reconstruction from Deep Facial Embeddings using a Convolutional Neural Network",
"year": "2022"
},
{
"authors": [
"Congzheng Song",
"Ananth Raghunathan"
],
"doi": "10.1145/3372297.3417270",
"ref_id": "b38",
"title": "Information Leakage in Embedding Models",
"year": "2020"
},
{
"authors": [
"K Song",
"X Tan",
"T Qin",
"J Lu",
"T.-Y Liu",
"Mpnet"
],
"doi": "",
"ref_id": "b39",
"title": "Masked and permuted pre-training for language understanding",
"year": "2020"
},
{
"authors": [
"M K Titsias"
],
"doi": "",
"ref_id": "b40",
"title": "One-vs-each approximation to softmax for scalable estimation of probabilities",
"year": "2016"
},
{
"authors": [
"P Tschandl",
"C Rosendahl",
"H Kittler"
],
"doi": "",
"ref_id": "b41",
"title": "The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions",
"year": "2018"
},
{
"authors": [
"T Van Elsloo",
"G Patrini",
"H Ivey-Law",
"Sealion"
],
"doi": "",
"ref_id": "b42",
"title": "A framework for neural network inference on encrypted data",
"year": "2019"
},
{
"authors": [
"S Wagh",
"D Gupta",
"N Chandran"
],
"doi": "",
"ref_id": "b43",
"title": "Securenn: Efficient and private neural network training",
"year": "2018"
},
{
"authors": [
"R Walch",
"S Sousa",
"L Helminger",
"S Lindstaedt",
"C Rechberger",
"A Trügler"
],
"doi": "",
"ref_id": "b44",
"title": "CryptoTL: Private, efficient and secure transfer learning",
"year": "2022"
},
{
"authors": [
"L Wan",
"W K Ng",
"S Han",
"V C S Lee"
],
"doi": "10.1145/1281192.1281275",
"ref_id": "b45",
"title": "Privacypreservation for gradient descent methods",
"year": "2007"
},
{
"authors": [
"Yang Wang",
"Quanquan Gu",
"Donald Brown"
],
"doi": "10.1007/978-3-030-10928-8_48",
"ref_id": "b46",
"title": "Differentially Private Hypothesis Transfer Learning",
"year": "2019"
},
{
"authors": [
"Jiancheng Yang",
"Rui Shi",
"Donglai Wei",
"Zequan Liu",
"Lin Zhao",
"Bilian Ke",
"Hanspeter Pfister",
"Bingbing Ni"
],
"doi": "10.1038/s41597-022-01721-8",
"ref_id": "b47",
"title": "MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification",
"year": "2023"
},
{
"authors": [
"Tianqing Zhu",
"Dayong Ye",
"Wei Wang",
"Wanlei Zhou",
"Philip S Yu"
],
"doi": "10.1109/tkde.2020.3014246",
"ref_id": "b48",
"title": "More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence",
"year": "2022"
}
] |
[
"9f37bf19fc7e8432",
"d95ec0660a127c23",
"722a234755e73863"
] |
[
"eea6ccf689343f7d",
"65247463943554a1",
"5121e397407f6714",
"2bf64f81ec4fe122",
"99b33d8fcb854cbf",
"2ed28bbe666d7a1d",
"feb4e0bcdbae253c",
"6d39c5ba8e8dfef4",
"f8dc1d897507a166",
"6dcb399f2d22c7a3",
"11875903803a58f5",
"349f2afcf422e00f",
"48d0d211fdb784c2",
"0b1cb47ac4ba5a71",
"ca05ee2dc3c6ddf1",
"6bd2a3de44d76f19",
"9c7101bb335b968d",
"27db66319fac0d71",
"189143991c5a9eb1",
"9f37bf19fc7e8432",
"9651967be5f0cb52",
"3b2584228062ea0d",
"722a234755e73863",
"9ec49cc13b74d1ed",
"33f98a7ee5f0d867",
"24ee9f4a5bcfef90",
"23850a72a8ab35d7",
"762327b9a4dbbba7",
"936ea9030924461b",
"fdd1dd140cbf839e",
"910902116382c2f1",
"c2ae81b2dfa240a8",
"c1716449e6ad828f",
"8c8f6387ab6ed3fb",
"dd4ea1db6d71aeb5",
"1d7020395b01e6f2",
"76b0143f8f19b50f",
"e0929d0cfaead9e6",
"07973f4ca42033c9",
"4e5d1cd995df09e3",
"d95ec0660a127c23",
"2594b28fd8e4a088",
"6f7a2f166157e2d7",
"4382c8d3bba3b873",
"9dbf0287b8886044",
"658f87f3c42b5f5f",
"71512d582f614505",
"f41be9dc24b15ffa",
"5e4fbc6e861fbc61"
] |
3bkRh3ggAE
|
Tighter Lower Bounds for Shuffling SGD: Random Permutations and Beyond
|
data/openreview_paper/ICML_2023_oral/3bkRh3ggAE//paper.pdf
| 32
| 11
|
[
{
"authors": [
"Ayan Chaudhuri"
],
"doi": "10.55041/ijsrem55159",
"ref_id": "b12",
"title": "Lightweight Phishing URL Detection Using Hybrid Lexical–Metadata Features: A Machine Learning Approach",
"year": "09-15 Jun 2019"
},
{
"authors": [
"K Ahn",
"C Yun",
"S Sra"
],
"doi": "",
"ref_id": "b0",
"title": "SGD with shuffling: Optimal rates without component convexity and large epoch requirements",
"year": "2020"
},
{
"authors": [
"S Rajput",
"K Lee",
"D Papailiopoulos"
],
"doi": "",
"ref_id": "b22",
"title": "Permutationbased SGD: Is random optimal?",
"year": "2022"
},
{
"authors": [
"I Safran",
"O Shamir"
],
"doi": "",
"ref_id": "b26",
"title": "How good is SGD with random shuffling",
"year": "2020"
},
{
"authors": [
"H Cho",
"C Yun"
],
"doi": "",
"ref_id": "b10",
"title": "SGDA with shuffling: faster convergence for nonconvex-pł minimax optimization",
"year": "2023"
},
{
"authors": [
"A Mohtashami",
"S Stich",
"M Jaggi"
],
"doi": "",
"ref_id": "b18",
"title": "Characterizing & finding good data orderings for fast convergence of sequential gradient methods",
"year": "2022"
},
{
"authors": [
"Trang H Tran",
"Quoc Tran-Dinh",
"Lam M Nguyen"
],
"doi": "10.1007/s10013-024-00699-7",
"ref_id": "b29",
"title": "Shuffling Momentum Gradient Algorithm for Convex Optimization",
"year": "2022"
},
{
"authors": [
"S Rajput",
"A Gupta",
"D S Papailiopoulos"
],
"doi": "",
"ref_id": "b21",
"title": "Closing the convergence gap of SGD without replacement",
"year": "2020"
},
{
"authors": [
"M Gürbüzbalaban",
"A E Ozdaglar",
"P A Parrilo"
],
"doi": "10.1137/17M1147846",
"ref_id": "b11",
"title": "Convergence rate of incremental gradient and incremental Newton methods",
"year": "2019"
},
{
"authors": [
"D Nagaraj",
"P Jain",
"P Netrapalli"
],
"doi": "",
"ref_id": "b20",
"title": "SGD without replacement: Sharper rates for general smooth convex functions",
"year": "09-15 Jun 2019"
},
{
"authors": [
"C Yun",
"S Rajput",
"S Sra"
],
"doi": "",
"ref_id": "b31",
"title": "Minibatch vs local SGD with shuffling: Tight convergence bounds and beyond",
"year": "2022"
}
] |
[
{
"authors": [
"K Ahn",
"C Yun",
"S Sra"
],
"doi": "",
"ref_id": "b0",
"title": "SGD with shuffling: Optimal rates without component convexity and large epoch requirements",
"year": "2020"
},
{
"authors": [],
"doi": "",
"ref_id": "b1",
"title": "",
"year": ""
},
{
"authors": [
"R Alweiss",
"Y P Liu",
"M Sawhney"
],
"doi": "",
"ref_id": "b2",
"title": "Discrepancy minimization via a self-balancing walk",
"year": "2021"
},
{
"authors": [
"Nikhil Bansal",
"Shashwat Garg"
],
"doi": "10.1145/3055399.3055490",
"ref_id": "b3",
"title": "Algorithmic discrepancy beyond partial coloring",
"year": "2017"
},
{
"authors": [
"Imre Bárány"
],
"doi": "10.1007/978-3-540-85221-6_1",
"ref_id": "b4",
"title": "On the Power of Linear Dependencies",
"year": "2008"
},
{
"authors": [
"F A Behrend"
],
"doi": "10.4153/cjm-1954-013-0",
"ref_id": "b5",
"title": "The Steinitz-Gross Theorem on Sums of Vectors",
"year": "1954"
},
{
"authors": [
"M Benaïm"
],
"doi": "",
"ref_id": "b6",
"title": "Dynamics of stochastic approximation algorithms",
"year": "1999"
},
{
"authors": [
"L Bottou"
],
"doi": "10.1201/b11429-6",
"ref_id": "b7",
"title": "Large-Scale Machine Learning with Stochastic Gradient Descent Léon Bottou",
"year": "2009"
},
{
"authors": [
"Léon Bottou",
"Frank E Curtis",
"Jorge Nocedal"
],
"doi": "10.1137/16m1080173",
"ref_id": "b8",
"title": "Optimization Methods for Large-Scale Machine Learning",
"year": "2018"
},
{
"authors": [
"Sébastien Bubeck"
],
"doi": "10.1561/2200000050",
"ref_id": "b9",
"title": "Convex Optimization: Algorithms and Complexity",
"year": "2015"
},
{
"authors": [
"H Cho",
"C Yun"
],
"doi": "",
"ref_id": "b10",
"title": "SGDA with shuffling: faster convergence for nonconvex-pł minimax optimization",
"year": "2023"
},
{
"authors": [
"M Gürbüzbalaban",
"A E Ozdaglar",
"P A Parrilo"
],
"doi": "10.1137/17M1147846",
"ref_id": "b11",
"title": "Convergence rate of incremental gradient and incremental Newton methods",
"year": "2019"
},
{
"authors": [
"Ayan Chaudhuri"
],
"doi": "10.55041/ijsrem55159",
"ref_id": "b12",
"title": "Lightweight Phishing URL Detection Using Hybrid Lexical–Metadata Features: A Machine Learning Approach",
"year": "09-15 Jun 2019"
},
{
"authors": [
"N Harvey",
"S Samadi"
],
"doi": "10.36684/28",
"ref_id": "b13",
"title": "Second International Confer-ence on Integrable Systems and Nonlinear Dynamics - 2020",
"year": "2014"
},
{
"authors": [
"Y Lu",
"W Guo",
"C D Sa",
"Grab"
],
"doi": "",
"ref_id": "b14",
"title": "Finding provably better data permutations than random reshuffling",
"year": "2022"
},
{
"authors": [
"Y Lu",
"S Y Meng",
"C De Sa"
],
"doi": "",
"ref_id": "b15",
"title": "a general analysis of example-selection for stochastic gradient descent",
"year": "2022"
},
{
"authors": [
"K Mishchenko",
"A Khaled",
"P Richtarik"
],
"doi": "",
"ref_id": "b16",
"title": "Random reshuffling: Simple analysis with vast improvements",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b17",
"title": "",
"year": "2020"
},
{
"authors": [
"A Mohtashami",
"S Stich",
"M Jaggi"
],
"doi": "",
"ref_id": "b18",
"title": "Characterizing & finding good data orderings for fast convergence of sequential gradient methods",
"year": "2022"
},
{
"authors": [
"Cristinel Mortici"
],
"doi": "10.7153/jmi-05-53",
"ref_id": "b19",
"title": "On Gospers formula for the Gamma function",
"year": "2011"
},
{
"authors": [
"D Nagaraj",
"P Jain",
"P Netrapalli"
],
"doi": "",
"ref_id": "b20",
"title": "SGD without replacement: Sharper rates for general smooth convex functions",
"year": "09-15 Jun 2019"
},
{
"authors": [
"S Rajput",
"A Gupta",
"D S Papailiopoulos"
],
"doi": "",
"ref_id": "b21",
"title": "Closing the convergence gap of SGD without replacement",
"year": "2020"
},
{
"authors": [
"S Rajput",
"K Lee",
"D Papailiopoulos"
],
"doi": "",
"ref_id": "b22",
"title": "Permutationbased SGD: Is random optimal?",
"year": "2022"
},
{
"authors": [
"B Recht",
"C Re"
],
"doi": "",
"ref_id": "b23",
"title": "Toward a noncommutative arithmeticgeometric mean inequality: Conjectures, case-studies, and consequences",
"year": "25-27 Jun 2012"
},
{
"authors": [
"Benjamin Recht",
"Christopher Ré"
],
"doi": "10.1007/s12532-013-0053-8",
"ref_id": "b24",
"title": "Parallel stochastic gradient algorithms for large-scale matrix completion",
"year": "2013"
},
{
"authors": [
"H Robbins",
"S Monro"
],
"doi": "10.1214/aoms/1177729586",
"ref_id": "b25",
"title": "A Stochastic Approximation Method",
"year": "1951"
},
{
"authors": [
"I Safran",
"O Shamir"
],
"doi": "",
"ref_id": "b26",
"title": "How good is SGD with random shuffling",
"year": "2020"
},
{
"authors": [
"I Safran",
"O Shamir"
],
"doi": "",
"ref_id": "b27",
"title": "Random shuffling beats SGD only after many epochs on ill-conditioned problems",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b28",
"title": "",
"year": "2021"
},
{
"authors": [
"Trang H Tran",
"Quoc Tran-Dinh",
"Lam M Nguyen"
],
"doi": "10.1007/s10013-024-00699-7",
"ref_id": "b29",
"title": "Shuffling Momentum Gradient Algorithm for Convex Optimization",
"year": "2022"
},
{
"authors": [
"C Yun",
"S Sra",
"A Jadbabaie"
],
"doi": "",
"ref_id": "b30",
"title": "Open problem: Can Single-Shuffle SGD be better than Reshuffling SGD and GD?",
"year": "15-19 Aug 2021"
},
{
"authors": [
"C Yun",
"S Rajput",
"S Sra"
],
"doi": "",
"ref_id": "b31",
"title": "Minibatch vs local SGD with shuffling: Tight convergence bounds and beyond",
"year": "2022"
}
] |
[
"50dda5990bd0e368",
"e82dc63cd9ae05e2",
"29d6130ffbad2485",
"03501e0ee2b2e412",
"5d27a6239bb60623",
"9aa651abf475b10a",
"4f20a010e6c6e29c",
"021b71d6cc6a571f",
"e22cab6aed0e24c9",
"39a479d60c2410f3",
"96a90266f5841865"
] |
[
"e82dc63cd9ae05e2",
"34bd729596bd134e",
"2f973af2cb362267",
"0f0a2cedc579139c",
"a88d4e7edc063eb5",
"807669ff2023614f",
"4060aa52f3c58fd5",
"bb2f181044408d66",
"b78ee96c0e00d780",
"ca450327d2ce961a",
"5d27a6239bb60623",
"e22cab6aed0e24c9",
"50dda5990bd0e368",
"0b5d17e5b6aa19e1",
"0ee9847c481fa132",
"72624a2f1f3b6d34",
"2eaed5c4820f292d",
"c27b3e365f55765e",
"9aa651abf475b10a",
"c4da4b5b55dd1945",
"39a479d60c2410f3",
"021b71d6cc6a571f",
"29d6130ffbad2485",
"2dc052318fa97df3",
"013086e1ea087a54",
"0dc82db66faaf312",
"03501e0ee2b2e412",
"19a01515ebfb7d2d",
"8696f67e9de77f29",
"4f20a010e6c6e29c",
"36a4b0fd60d82fc2",
"96a90266f5841865"
] |
dEjB1SLDnt
|
Evaluating Self-Supervised Learning via Risk Decomposition
|
data/openreview_paper/ICML_2023_oral/dEjB1SLDnt//paper.pdf
| 71
| 14
|
[
{
"authors": [
"R Kohavi",
"D H Wolpert"
],
"doi": "",
"ref_id": "b45",
"title": "Bias plus variance decomposition for zero-one loss functions",
"year": "1996"
},
{
"authors": [
"Giorgio Valentini",
"Thomas G Dietterich"
],
"doi": "10.1007/3-540-45428-4_22",
"ref_id": "b70",
"title": "Bias—Variance Analysis and Ensembles of SVM",
"year": "2004"
},
{
"authors": [
"Y Dubois",
"B Bloem-Reddy",
"K Ullrich",
"C J Maddison"
],
"doi": "",
"ref_id": "b27",
"title": "Lossy compression for lossless prediction",
"year": "2021"
},
{
"authors": [
"K Gupta",
"T Ajanthan",
"A V D Hengel",
"S Gould"
],
"doi": "",
"ref_id": "b37",
"title": "Understanding and improving the role of projection head in self-supervised learning",
"year": "2022"
},
{
"authors": [
"L Jing",
"P Vincent",
"Y Lecun",
"Y Tian"
],
"doi": "",
"ref_id": "b43",
"title": "Understanding dimensional collapse in contrastive self-supervised learning",
"year": "2022"
},
{
"authors": [
"M Federici",
"A Dutta",
"P Forré",
"N Kushman",
"Z Akata"
],
"doi": "",
"ref_id": "b30",
"title": "Learning robust representations via multi-view information bottleneck",
"year": "2020"
},
{
"authors": [
"S Appalaraju",
"Y Zhu",
"Y Xie",
"I Fehérvári"
],
"doi": "",
"ref_id": "b0",
"title": "Towards good practices in self-supervised representation learning",
"year": "2020"
},
{
"authors": [
"Y H Tsai",
"Y Wu",
"R R Salakhutdinov",
"L Morency"
],
"doi": "",
"ref_id": "b69",
"title": "Self-supervised learning from a multi-view perspective",
"year": "2021"
},
{
"authors": [
"P Goyal",
"Q Duval",
"J Reizenstein",
"M Leavitt",
"M Xu",
"B Lefaudeux",
"M Singh",
"V Reis",
"M Caron",
"P Bojanowski",
"A Joulin",
"I Misra",
"Vissl"
],
"doi": "",
"ref_id": "b35",
"title": "",
"year": "2021"
},
{
"authors": [
"J Mitrovic",
"B Mcwilliams",
"J Walker",
"L Buesing",
"C Blundell"
],
"doi": "",
"ref_id": "b49",
"title": "Representation learning via invariant causal mechanisms",
"year": "2021"
},
{
"authors": [
"M Contributors",
"Mmselfsup"
],
"doi": "",
"ref_id": "b23",
"title": "Openmmlab self-supervised learning toolbox and benchmark",
"year": "2021"
},
{
"authors": [
"Y Dubois",
"T Hashimoto",
"S Ermon",
"P Liang"
],
"doi": "",
"ref_id": "b28",
"title": "Improving self-supervised learning by characterizing idealized representations",
"year": "2022. , 8, 9, 18, 22, 23, 27, 29, 30, 31, 40, 41"
},
{
"authors": [
"Y Bansal",
"G Kaplun",
"B Barak"
],
"doi": "",
"ref_id": "b4",
"title": "For self-supervised learning, rationality implies generalization, provably",
"year": "2021"
},
{
"authors": [
"Priya Goyal",
"Dhruv Mahajan",
"Abhinav Gupta",
"Ishan Misra"
],
"doi": "10.1109/iccv.2019.00649",
"ref_id": "b34",
"title": "Scaling and Benchmarking Self-Supervised Visual Representation Learning",
"year": "2019"
}
] |
[
{
"authors": [
"S Appalaraju",
"Y Zhu",
"Y Xie",
"I Fehérvári"
],
"doi": "",
"ref_id": "b0",
"title": "Towards good practices in self-supervised representation learning",
"year": "2020"
},
{
"authors": [
"Y M Asano",
"C Rupprecht",
"A Vedaldi"
],
"doi": "",
"ref_id": "b1",
"title": "Self-labelling via simultaneous clustering and representation learning",
"year": "2020"
},
{
"authors": [
"Mahmoud Assran",
"Mathilde Caron",
"Ishan Misra",
"Piotr Bojanowski",
"Florian Bordes",
"Pascal Vincent",
"Armand Joulin",
"Mike Rabbat",
"Nicolas Ballas"
],
"doi": "10.1007/978-3-031-19821-2_26",
"ref_id": "b2",
"title": "Masked Siamese Networks for Label-Efficient Learning",
"year": "2022"
},
{
"authors": [
"P Bachman",
"R D Hjelm",
"W Buchwalter"
],
"doi": "",
"ref_id": "b3",
"title": "Learning representations by maximizing mutual information across views",
"year": "2019"
},
{
"authors": [
"Y Bansal",
"G Kaplun",
"B Barak"
],
"doi": "",
"ref_id": "b4",
"title": "For self-supervised learning, rationality implies generalization, provably",
"year": "2021"
},
{
"authors": [
"H Bao",
"L Dong",
"S Piao",
"F Wei",
"Beit"
],
"doi": "",
"ref_id": "b5",
"title": "BERT pretraining of image transformers",
"year": "2022"
},
{
"authors": [
"A Bardes",
"J Ponce",
"Y Lecun"
],
"doi": "",
"ref_id": "b6",
"title": "VICReg: Varianceinvariance-covariance regularization for self-supervised learning",
"year": "2022"
},
{
"authors": [
"A Bardes",
"J Ponce",
"Y Lecun"
],
"doi": "",
"ref_id": "b7",
"title": "VICRegl: Selfsupervised learning of local visual features",
"year": "2022"
},
{
"authors": [
"Andrew R Barron"
],
"doi": "10.1023/a:1022650905902",
"ref_id": "b8",
"title": "Approximation and Estimation Bounds for Artificial Neural Networks",
"year": "1994"
},
{
"authors": [
"M Belkin",
"D Hsu",
"S Ma",
"S Mandal"
],
"doi": "",
"ref_id": "b9",
"title": "Reconciling modern machine-learning practice and the classical biasvariance trade-off",
"year": "2019"
},
{
"authors": [
"James Bergstra",
"Yoshua Bengio",
"Jérôme Louradour"
],
"doi": "10.1162/neco_a_00084",
"ref_id": "b10",
"title": "Suitability of V1 Energy Models for Object Classification",
"year": "2011"
},
{
"authors": [
"Léon Bottou",
"Olivier Bousquet"
],
"doi": "10.7551/mitpress/8996.003.0015",
"ref_id": "b11",
"title": "The Tradeoffs of Large-Scale Learning",
"year": "2007"
},
{
"authors": [
"O J Bousquet",
"A Daniely",
"H Kaplan",
"Y Mansour",
"S Moran",
"U Stemmer"
],
"doi": "",
"ref_id": "b12",
"title": "Monotone learning",
"year": "2022"
},
{
"authors": [
"Mathilde Caron",
"Piotr Bojanowski",
"Armand Joulin",
"Matthijs Douze"
],
"doi": "10.1007/978-3-030-01264-9_9",
"ref_id": "b13",
"title": "Deep Clustering for Unsupervised Learning of Visual Features",
"year": "2018"
},
{
"authors": [
"Mathilde Caron",
"Piotr Bojanowski",
"Julien Mairal",
"Armand Joulin"
],
"doi": "10.1109/iccv.2019.00305",
"ref_id": "b14",
"title": "Unsupervised Pre-Training of Image Features on Non-Curated Data",
"year": "2020"
},
{
"authors": [
"Mathilde Caron",
"Hugo Touvron",
"Ishan Misra",
"Herve Jegou",
"Julien Mairal",
"Piotr Bojanowski",
"Armand Joulin"
],
"doi": "10.1109/iccv48922.2021.00951",
"ref_id": "b15",
"title": "Emerging Properties in Self-Supervised Vision Transformers",
"year": "2021"
},
{
"authors": [
"J Chen",
"Z Gan",
"X Li",
"Q Guo",
"L Chen",
"S Gao",
"T Chung",
"Y Xu",
"B Zeng",
"W Lu",
"F Li",
"L Carin",
"C Tao",
"Simpler"
],
"doi": "",
"ref_id": "b16",
"title": "faster, stronger: Breaking the log-k curse on contrastive learners with flatnce",
"year": "2021"
},
{
"authors": [
"T Chen",
"C Guestrin"
],
"doi": "",
"ref_id": "b17",
"title": "Xgboost: A scalable tree boosting system",
"year": "2016"
},
{
"authors": [
"T Chen",
"S Kornblith",
"M Norouzi",
"G Hinton"
],
"doi": "",
"ref_id": "b18",
"title": "A simple framework for contrastive learning of visual representations",
"year": "2020"
},
{
"authors": [
"T Chen",
"S Kornblith",
"K Swersky",
"M Norouzi",
"G Hinton"
],
"doi": "",
"ref_id": "b19",
"title": "Big self-supervised models are strong semisupervised learners",
"year": "2020"
},
{
"authors": [
"X Chen",
"H Fan",
"R Girshick",
"K He"
],
"doi": "",
"ref_id": "b20",
"title": "Improved baselines with momentum contrastive learning",
"year": "2020"
},
{
"authors": [
"Xinlei Chen",
"Saining Xie",
"Kaiming He"
],
"doi": "10.1109/iccv48922.2021.00950",
"ref_id": "b21",
"title": "An Empirical Study of Training Self-Supervised Vision Transformers",
"year": "2021"
},
{
"authors": [
"Mehdi Cherti",
"Romain Beaumont",
"Ross Wightman",
"Mitchell Wortsman",
"Gabriel Ilharco",
"Cade Gordon",
"Christoph Schuhmann",
"Ludwig Schmidt",
"Jenia Jitsev"
],
"doi": "10.1109/cvpr52729.2023.00276",
"ref_id": "b22",
"title": "Reproducible Scaling Laws for Contrastive Language-Image Learning",
"year": "2022"
},
{
"authors": [
"M Contributors",
"Mmselfsup"
],
"doi": "",
"ref_id": "b23",
"title": "Openmmlab self-supervised learning toolbox and benchmark",
"year": "2021"
},
{
"authors": [
"Y Dar",
"V Muthukumar",
"R G Baraniuk"
],
"doi": "",
"ref_id": "b24",
"title": "A farewell to the bias-variance tradeoff? an overview of the theory of overparameterized machine learning",
"year": "2021"
},
{
"authors": [
"Jacob Devlin",
"Ming-Wei Chang",
"Kenton Lee",
"Kristina Toutanova"
],
"doi": "10.18653/v1/n19-1423",
"ref_id": "b25",
"title": "",
"year": "June 2019"
},
{
"authors": [
"Y Dubois",
"D Kiela",
"D J Schwab",
"R Vedantam"
],
"doi": "",
"ref_id": "b26",
"title": "Learning optimal representations with the decodable information bottleneck",
"year": "2020"
},
{
"authors": [
"Y Dubois",
"B Bloem-Reddy",
"K Ullrich",
"C J Maddison"
],
"doi": "",
"ref_id": "b27",
"title": "Lossy compression for lossless prediction",
"year": "2021"
},
{
"authors": [
"Y Dubois",
"T Hashimoto",
"S Ermon",
"P Liang"
],
"doi": "",
"ref_id": "b28",
"title": "Improving self-supervised learning by characterizing idealized representations",
"year": "2022. , 8, 9, 18, 22, 23, 27, 29, 30, 31, 40, 41"
},
{
"authors": [
"Linus Ericsson",
"Henry Gouk",
"Timothy M Hospedales"
],
"doi": "10.1109/cvpr46437.2021.00537",
"ref_id": "b29",
"title": "How Well Do Self-Supervised Models Transfer?",
"year": "2021"
},
{
"authors": [
"M Federici",
"A Dutta",
"P Forré",
"N Kushman",
"Z Akata"
],
"doi": "",
"ref_id": "b30",
"title": "Learning robust representations via multi-view information bottleneck",
"year": "2020"
},
{
"authors": [
"A Foster",
"R Pukdee",
"T Rainforth"
],
"doi": "",
"ref_id": "b31",
"title": "Improving transformation invariance in contrastive representation learning",
"year": "2021"
},
{
"authors": [
"Stuart Geman",
"Elie Bienenstock",
"René Doursat"
],
"doi": "10.1162/neco.1992.4.1.1",
"ref_id": "b32",
"title": "Neural Networks and the Bias/Variance Dilemma",
"year": "1992"
},
{
"authors": [
"Spyros Gidaris",
"Nikos Komodakis"
],
"doi": "10.1109/cvpr.2018.00459",
"ref_id": "b33",
"title": "Dynamic Few-Shot Visual Learning Without Forgetting",
"year": "2018"
},
{
"authors": [
"Priya Goyal",
"Dhruv Mahajan",
"Abhinav Gupta",
"Ishan Misra"
],
"doi": "10.1109/iccv.2019.00649",
"ref_id": "b34",
"title": "Scaling and Benchmarking Self-Supervised Visual Representation Learning",
"year": "2019"
},
{
"authors": [
"P Goyal",
"Q Duval",
"J Reizenstein",
"M Leavitt",
"M Xu",
"B Lefaudeux",
"M Singh",
"V Reis",
"M Caron",
"P Bojanowski",
"A Joulin",
"I Misra",
"Vissl"
],
"doi": "",
"ref_id": "b35",
"title": "",
"year": "2021"
},
{
"authors": [
"J B Grill",
"F Strub",
"F Altché",
"C Tallec",
"P H Richemond",
"E Buchatskaya",
"C Doersch",
"B A Pires",
"Z Guo",
"M G Azar",
"B Piot",
"K Kavukcuoglu",
"R Munos",
"M Valko"
],
"doi": "",
"ref_id": "b36",
"title": "Bootstrap Your Own Latent -a new approach to selfsupervised learning",
"year": "2020"
},
{
"authors": [
"K Gupta",
"T Ajanthan",
"A V D Hengel",
"S Gould"
],
"doi": "",
"ref_id": "b37",
"title": "Understanding and improving the role of projection head in self-supervised learning",
"year": "2022"
},
{
"authors": [
"J Z Haochen",
"C Wei",
"A Gaidon",
"T Ma"
],
"doi": "",
"ref_id": "b38",
"title": "Provable guarantees for self-supervised deep learning with spectral contrastive loss",
"year": "2021"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b39",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"Kaiming He",
"Haoqi Fan",
"Yuxin Wu",
"Saining Xie",
"Ross Girshick"
],
"doi": "10.1109/cvpr42600.2020.00975",
"ref_id": "b40",
"title": "Momentum Contrast for Unsupervised Visual Representation Learning",
"year": "2020"
},
{
"authors": [
"Kaiming He",
"Xinlei Chen",
"Saining Xie",
"Yanghao Li",
"Piotr Dollar",
"Ross Girshick"
],
"doi": "10.1109/cvpr52688.2022.01553",
"ref_id": "b41",
"title": "Masked Autoencoders Are Scalable Vision Learners",
"year": "2022"
},
{
"authors": [
"Tianyu Hua",
"Wenxiao Wang",
"Zihui Xue",
"Sucheng Ren",
"Yue Wang",
"Hang Zhao"
],
"doi": "10.1109/iccv48922.2021.00946",
"ref_id": "b42",
"title": "On Feature Decorrelation in Self-Supervised Learning",
"year": "2021"
},
{
"authors": [
"L Jing",
"P Vincent",
"Y Lecun",
"Y Tian"
],
"doi": "",
"ref_id": "b43",
"title": "Understanding dimensional collapse in contrastive self-supervised learning",
"year": "2022"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "",
"ref_id": "b44",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"R Kohavi",
"D H Wolpert"
],
"doi": "",
"ref_id": "b45",
"title": "Bias plus variance decomposition for zero-one loss functions",
"year": "1996"
},
{
"authors": [
"S M Lundberg",
"S Lee"
],
"doi": "",
"ref_id": "b46",
"title": "A unified approach to interpreting model predictions",
"year": "2017"
},
{
"authors": [
"N Miao",
"E Mathieu",
"Y Dubois",
"T Rainforth",
"Y W Teh",
"A Foster",
"H Kim"
],
"doi": "",
"ref_id": "b47",
"title": "Instance-specific augmentation: Capturing local invariances",
"year": "2022"
},
{
"authors": [
"Ishan Misra",
"Laurens Van Der Maaten"
],
"doi": "10.1109/cvpr42600.2020.00674",
"ref_id": "b48",
"title": "Self-Supervised Learning of Pretext-Invariant Representations",
"year": "2020"
},
{
"authors": [
"J Mitrovic",
"B Mcwilliams",
"J Walker",
"L Buesing",
"C Blundell"
],
"doi": "",
"ref_id": "b49",
"title": "Representation learning via invariant causal mechanisms",
"year": "2021"
},
{
"authors": [
"Sayan Mukherjee",
"Partha Niyogi",
"Tomaso Poggio",
"Ryan Rifkin"
],
"doi": "10.1007/s10444-004-7634-z",
"ref_id": "b50",
"title": "Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization",
"year": "2006"
},
{
"authors": [
"Preetum Nakkiran",
"Gal Kaplun",
"Yamini Bansal",
"Tristan Yang",
"Boaz Barak",
"Ilya Sutskever"
],
"doi": "10.1088/1742-5468/ac3a74",
"ref_id": "b51",
"title": "Deep double descent: where bigger models and more data hurt*",
"year": "2020"
},
{
"authors": [
"B Neal"
],
"doi": "",
"ref_id": "b52",
"title": "On the bias-variance tradeoff: Textbooks need an update",
"year": "2019"
},
{
"authors": [
"B Neal",
"S Mittal",
"A Baratin",
"V Tantia",
"M Scicluna",
"S Lacoste-Julien",
"I Mitliagkas"
],
"doi": "",
"ref_id": "b53",
"title": "A modern take on the bias-variance tradeoff in neural networks",
"year": "2018"
},
{
"authors": [
"B Neyshabur",
"R Tomioka",
"N Srebro"
],
"doi": "",
"ref_id": "b54",
"title": "In search of the real inductive bias: On the role of implicit regularization in deep learning",
"year": "2015"
},
{
"authors": [
"M Noroozi",
"P Favaro"
],
"doi": "",
"ref_id": "b55",
"title": "Unsupervised learning of visual representations by solving jigsaw puzzles",
"year": "2016"
},
{
"authors": [
"A Paszke",
"S Gross",
"F Massa",
"A Lerer",
"J Bradbury",
"G Chanan",
"T Killeen",
"Z Lin",
"N Gimelshein",
"L Antiga",
"A Desmaison",
"A Kopf",
"E Yang",
"Z Devito",
"M Raison",
"A Tejani",
"S Chilamkurthy",
"B Steiner",
"L Fang",
"J Bai",
"S Chintala"
],
"doi": "",
"ref_id": "b56",
"title": "Pytorch: An imperative style, high-performance deep learning library",
"year": "2019"
},
{
"authors": [
"F Pedregosa",
"G Varoquaux",
"A Gramfort",
"V Michel",
"B Thirion",
"O Grisel",
"M Blondel",
"P Prettenhofer",
"R Weiss",
"V Dubourg",
"J Vanderplas",
"A Passos",
"D Cournapeau",
"M Brucher",
"M Perrot",
"E Duchesnay"
],
"doi": "",
"ref_id": "b57",
"title": "Scikit-learn: Machine learning in Python",
"year": "2011"
},
{
"authors": [
"A Radford",
"J W Kim",
"C Hallacy",
"A Ramesh",
"G Goh",
"S Agarwal",
"G Sastry",
"A Askell",
"P Mishkin",
"J Clark",
"G Krueger",
"I Sutskever"
],
"doi": "",
"ref_id": "b58",
"title": "Learning transferable visual models from natural language supervision",
"year": "2021"
},
{
"authors": [
"J Rosenfeld",
"A Rosenfeld",
"Y Belinkov"
],
"doi": "",
"ref_id": "b59",
"title": "A constructive prediction of the generalization error across scales",
"year": "2020"
},
{
"authors": [
"J S Rosenfeld"
],
"doi": "",
"ref_id": "b60",
"title": "Scaling laws for deep learning",
"year": "2021"
},
{
"authors": [
"Y Ruan",
"Y Dubois",
"C J Maddison"
],
"doi": "",
"ref_id": "b61",
"title": "Optimal representations for covariate shift",
"year": "2022"
},
{
"authors": [
"S Santurkar",
"Y Dubois",
"R Taori",
"P Liang",
"T Hashimoto"
],
"doi": "",
"ref_id": "b62",
"title": "Is a caption worth a thousand images? a controlled study for representation learning",
"year": "2022"
},
{
"authors": [
"N Saunshi",
"O Plevrakis",
"S Arora",
"M Khodak",
"H Khandeparkar"
],
"doi": "",
"ref_id": "b63",
"title": "A theoretical analysis of contrastive unsupervised representation learning",
"year": "2019"
},
{
"authors": [
"N Saunshi",
"J T Ash",
"S Goel",
"D Misra",
"C Zhang",
"S Arora",
"S M Kakade",
"A Krishnamurthy"
],
"doi": "",
"ref_id": "b64",
"title": "Understanding contrastive learning requires incorporating inductive biases",
"year": "2022"
},
{
"authors": [
"S Shalev-Shwartz",
"S Ben-David"
],
"doi": "",
"ref_id": "b65",
"title": "Understanding Machine Learning: From Theory to Algorithms",
"year": "2014"
},
{
"authors": [
"Yonglong Tian",
"Dilip Krishnan",
"Phillip Isola"
],
"doi": "10.1007/978-3-030-58621-8_45",
"ref_id": "b66",
"title": "Contrastive Multiview Coding",
"year": "2020"
},
{
"authors": [
"Y Tian",
"C Sun",
"B Poole",
"D Krishnan",
"C Schmid",
"P Isola"
],
"doi": "",
"ref_id": "b67",
"title": "What makes for good views for contrastive learning?",
"year": "2020"
},
{
"authors": [
"C Tosh",
"A Krishnamurthy",
"D Hsu"
],
"doi": "",
"ref_id": "b68",
"title": "Contrastive learning, multi-view redundancy, and linear models",
"year": "2021"
},
{
"authors": [
"Y H Tsai",
"Y Wu",
"R R Salakhutdinov",
"L Morency"
],
"doi": "",
"ref_id": "b69",
"title": "Self-supervised learning from a multi-view perspective",
"year": "2021"
},
{
"authors": [
"Giorgio Valentini",
"Thomas G Dietterich"
],
"doi": "10.1007/3-540-45428-4_22",
"ref_id": "b70",
"title": "Bias—Variance Analysis and Ensembles of SVM",
"year": "2004"
}
] |
[
"4a646de57857d31e",
"86ec1295a6a9ce85",
"d726ca3fb60ec11f",
"53af28b09c74f013",
"1ee6d0ecf1ecb932",
"3594142f5c0a6833",
"e1baed790a843625",
"c7f2604de523c94b",
"3891e35791d9b4d3",
"e3eadd7a1dabafcf",
"b296e386b13cb0b2",
"0f64ab9e2225210a",
"074a8f14cbf49d5b",
"670497c3328ca9ce"
] |
[
"e1baed790a843625",
"b71c2d64d872e379",
"61bd1b3d2c1d6797",
"7e6b5b8b6ab75446",
"074a8f14cbf49d5b",
"bb2e3a9e53359082",
"e27821d41eff22ae",
"03b8a13c03ee07b6",
"4fc2bb82868a2333",
"081dc3a7d24cd740",
"763b2a7b375f06c2",
"59185d5f98dfcaa6",
"f4ccd5deeefa3b41",
"f47cc219d087a116",
"e6b7eeaf8ad6b223",
"c6633ba2d12ec124",
"310a06f9a137f18e",
"f9a636abc01730d1",
"9af835ad93ff8375",
"93062a57ae49a2f5",
"bfc468e6b9bf61d7",
"408364478d5c5bc3",
"136ced0d318d5079",
"b296e386b13cb0b2",
"fdcc94adc70c8739",
"e4723ee037bc0cdb",
"ca5c1cd459775131",
"d726ca3fb60ec11f",
"0f64ab9e2225210a",
"2b122cf7c10e3d36",
"3594142f5c0a6833",
"c1e45960cf0df45b",
"116adcc8f66f939c",
"ba91ea42c22e0e0c",
"670497c3328ca9ce",
"3891e35791d9b4d3",
"3ba4fc84a11621d5",
"53af28b09c74f013",
"0d5c69611c295307",
"39ea51c87cdfdcfb",
"26215087ab49e07e",
"1c87dfa921ba5632",
"310958592ae5da3f",
"1ee6d0ecf1ecb932",
"607031af669cefc7",
"4a646de57857d31e",
"bf70c1450c86575a",
"5d8605aa1b22ba36",
"8934da566acf8e19",
"e3eadd7a1dabafcf",
"1ae8d665fccd1e00",
"46755970ca41bdbf",
"334ce26a0f8b9009",
"6659a37f6731de59",
"5412f44a53c18b4f",
"a42876e267f87d74",
"e39313f99aa1bc1a",
"39532d491be5ad09",
"1aff0c58a293af2f",
"86e64c9db64fc5df",
"e53dc382d80a1d98",
"6ab78c44bf40db94",
"e0fb1dd3a9872a93",
"92c3b28e227a4ce9",
"e05662c371ecc4d3",
"7765bae650a3c88e",
"cb391135924aea4a",
"37d4ea1e7d49a35b",
"353a93a71f6a2956",
"c7f2604de523c94b",
"86ec1295a6a9ce85"
] |
skb34O7hFp
|
The Dormant Neuron Phenomenon in Deep Reinforcement Learning
|
data/openreview_paper/ICML_2023_oral/skb34O7hFp//paper.pdf
| 70
| 34
|
[
{
"authors": [
"L.-J Lin"
],
"doi": "10.1023/a:1022628806385",
"ref_id": "b43",
"title": "Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching",
"year": "1992"
},
{
"authors": [
"L Wu",
"D Wang",
"Q Liu"
],
"doi": "",
"ref_id": "b63",
"title": "Splitting steepest descent for growing neural architectures",
"year": "2019"
},
{
"authors": [
"Volodymyr Mnih",
"Koray Kavukcuoglu",
"David Silver",
"Andrei A Rusu",
"Joel Veness",
"Marc G Bellemare",
"Alex Graves",
"Martin Riedmiller",
"Andreas K Fidjeland",
"Georg Ostrovski",
"Stig Petersen",
"Charles Beattie",
"Amir Sadik",
"Ioannis Antonoglou",
"Helen King",
"Dharshan Kumaran",
"Daan Wierstra",
"Shane Legg",
"Demis Hassabis"
],
"doi": "10.1038/nature14236",
"ref_id": "b45",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"Y Tan",
"P Hu",
"L Pan",
"L Huang"
],
"doi": "",
"ref_id": "b56",
"title": "Rlx2: Training a sparse deep reinforcement learning model from scratch",
"year": "2022"
},
{
"authors": [
"L Graesser",
"U Evci",
"E Elsen",
"P S Castro"
],
"doi": "",
"ref_id": "b22",
"title": "The state of sparse training in deep reinforcement learning",
"year": "2022"
},
{
"authors": [
"X Li",
"H Xiong",
"H An",
"C.-Z Xu",
"D Dou",
"Rifle"
],
"doi": "",
"ref_id": "b41",
"title": "Backpropagation in depth for deep transfer learning through re-initializing the fully-connected layer",
"year": "2020"
},
{
"authors": [
"J Ash",
"R P Adams"
],
"doi": "",
"ref_id": "b5",
"title": "On warm-starting neural network training",
"year": "2020"
},
{
"authors": [
"I Alabdulmohsin",
"H Maennel",
"D Keysers"
],
"doi": "",
"ref_id": "b2",
"title": "The impact of reinitialization on generalization in convolutional neural networks",
"year": "2021"
},
{
"authors": [
"Robert Kirk",
"Amy Zhang",
"Edward Grefenstette",
"Tim Rocktäschel"
],
"doi": "10.1613/jair.1.14174",
"ref_id": "b37",
"title": "A Survey of Zero-shot Generalisation in Deep Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"Ghada Sokar",
"Elena Mocanu",
"Decebal Constantin Mocanu",
"Mykola Pechenizkiy",
"Peter Stone"
],
"doi": "10.24963/ijcai.2022/477",
"ref_id": "b52",
"title": "Dynamic Sparse Training for Deep Reinforcement Learning",
"year": "2022"
},
{
"authors": [
"Samin Yeasar Arnob",
"Riyasat Ohib",
"Sergey Plis",
"Doina Precup",
"Alessandro Sordoni",
"Amy Zhang"
],
"doi": "10.52202/079017-0592",
"ref_id": "b4",
"title": "Efficient Reinforcement Learning by Discovering Neural Pathways",
"year": "2021"
},
{
"authors": [
"S Dohare",
"A R Mahmood",
"R S Sutton"
],
"doi": "",
"ref_id": "b16",
"title": "Continual backprop: Stochastic gradient descent with persistent randomness",
"year": "2021"
},
{
"authors": [
"C Gulcehre",
"S Srinivasan",
"J Sygnowski",
"G Ostrovski",
"M Farajtabar",
"M Hoffman",
"R Pascanu",
"A Doucet"
],
"doi": "",
"ref_id": "b24",
"title": "An empirical study of implicit regularization in deep offline rl",
"year": "2022"
},
{
"authors": [
"J Fu",
"A Kumar",
"M Soh",
"S Levine"
],
"doi": "",
"ref_id": "b21",
"title": "Diagnosing bottlenecks in deep q-learning algorithms",
"year": "2019"
},
{
"authors": [
"M Janner",
"J Fu",
"M Zhang",
"S Levine"
],
"doi": "",
"ref_id": "b33",
"title": "When to trust your model: Model-based policy optimization",
"year": "2019"
},
{
"authors": [
"T Berariu",
"W Czarnecki",
"S De",
"J Bornschein",
"S L Smith",
"R Pascanu",
"C Clopath"
],
"doi": "",
"ref_id": "b11",
"title": "A study on the plasticity of neural networks",
"year": "2021"
},
{
"authors": [
"G Zhou",
"K Sohn",
"H Lee"
],
"doi": "",
"ref_id": "b68",
"title": "Online incremental feature learning with denoising autoencoders",
"year": "2012"
},
{
"authors": [
"E Nikishin",
"M Schwarzer",
"P D'oro",
"P.-L Bacon",
"A Courville"
],
"doi": "",
"ref_id": "b46",
"title": "The primacy bias in deep reinforcement learning",
"year": "2022"
},
{
"authors": [
"Xiaoliang Dai",
"Hongxu Yin",
"Niraj K Jha"
],
"doi": "10.1109/tc.2019.2914438",
"ref_id": "b15",
"title": "NeST: A Neural Network Synthesis Tool Based on a Grow-and-Prune Paradigm",
"year": "2019"
},
{
"authors": [
"W Fedus",
"P Ramachandran",
"R Agarwal",
"Y Bengio",
"H Larochelle",
"M Rowland",
"W Dabney"
],
"doi": "",
"ref_id": "b20",
"title": "Revisiting fundamentals of experience replay",
"year": "2020"
},
{
"authors": [
"M L Puterman"
],
"doi": "",
"ref_id": "b48",
"title": "Markov decision processes: discrete stochastic dynamic programming",
"year": "2014"
},
{
"authors": [
"R S Sutton"
],
"doi": "",
"ref_id": "b53",
"title": "Learning to predict by the methods of temporal differences",
"year": "1988"
},
{
"authors": [
"S Zaidi",
"T Berariu",
"H Kim",
"J Bornschein",
"C Clopath",
"Y W Teh",
"R Pascanu"
],
"doi": "",
"ref_id": "b66",
"title": "When does re-initialization work?",
"year": "2022"
},
{
"authors": [
"J Yoon",
"E Yang",
"J Lee",
"S J Hwang"
],
"doi": "",
"ref_id": "b65",
"title": "Lifelong learning with dynamically expandable networks",
"year": "2018"
},
{
"authors": [
"H Zhou",
"A Vani",
"H Larochelle",
"A Courville"
],
"doi": "",
"ref_id": "b69",
"title": "Fortuitous forgetting in connectionist networks",
"year": "2021"
},
{
"authors": [
"T Hiraoka",
"T Imagawa",
"T Hashimoto",
"T Onishi",
"Y Tsuruoka"
],
"doi": "",
"ref_id": "b30",
"title": "Dropout q-functions for doubly efficient reinforcement learning",
"year": "2021"
},
{
"authors": [
"Ahmed Taha",
"Abhinav Shrivastava",
"Larry Davis"
],
"doi": "10.1109/cvpr46437.2021.01265",
"ref_id": "b55",
"title": "Knowledge Evolution in Neural Networks",
"year": "2021"
},
{
"authors": [
"T P Lillicrap",
"J J Hunt",
"A Pritzel",
"N Heess",
"T Erez",
"Y Tassa",
"D Silver",
"D Wierstra"
],
"doi": "",
"ref_id": "b42",
"title": "Continuous control with deep reinforcement learning",
"year": "2016"
},
{
"authors": [
"H P Van Hasselt",
"M Hessel",
"J Aslanides"
],
"doi": "",
"ref_id": "b59",
"title": "When to use parametric models in reinforcement learning? Advances in Neural Information Processing Systems",
"year": "2019"
},
{
"authors": [
"L Fan",
"G Wang",
"D.-A Huang",
"Z Yu",
"L Fei-Fei",
"Y Zhu",
"A Anandkumar"
],
"doi": "",
"ref_id": "b19",
"title": "Secant: Self-expert cloning for zero-shot generalization of visual policies",
"year": "2021"
},
{
"authors": [
"M Igl",
"G Farquhar",
"J Luketina",
"W Boehmer",
"S Whiteson"
],
"doi": "",
"ref_id": "b32",
"title": "Transient non-stationarity and generalisation in deep reinforcement learning",
"year": "2020"
},
{
"authors": [
"U Evci",
"B Van Merrienboer",
"T Unterthiner",
"F Pedregosa",
"M Vladymyrov",
"Gradmax"
],
"doi": "",
"ref_id": "b18",
"title": "Growing neural networks using gradient information",
"year": "2021"
},
{
"authors": [
"C Lyle",
"M Rowland",
"W Dabney"
],
"doi": "",
"ref_id": "b44",
"title": "Understanding and preventing capacity loss in reinforcement learning",
"year": "2021"
},
{
"authors": [
"X Chen",
"C Wang",
"Z Zhou",
"K W Ross"
],
"doi": "",
"ref_id": "b14",
"title": "Randomized ensembled double q-learning: Learning fast without a model",
"year": "2020"
}
] |
[
{
"authors": [
"R Agarwal",
"D Schuurmans",
"M Norouzi"
],
"doi": "",
"ref_id": "b0",
"title": "An optimistic perspective on offline reinforcement learning",
"year": "2020"
},
{
"authors": [
"R Agarwal",
"M Schwarzer",
"P S Castro",
"A C Courville",
"M Bellemare"
],
"doi": "",
"ref_id": "b1",
"title": "Deep reinforcement learning at the edge of the statistical precipice",
"year": "2021"
},
{
"authors": [
"I Alabdulmohsin",
"H Maennel",
"D Keysers"
],
"doi": "",
"ref_id": "b2",
"title": "The impact of reinitialization on generalization in convolutional neural networks",
"year": "2021"
},
{
"authors": [
"J G M Araújo",
"J S O Ceron",
"P S Castro"
],
"doi": "",
"ref_id": "b3",
"title": "Lifting the veil on hyper-parameters for value-based deep reinforcement learning",
"year": "2021. 2021"
},
{
"authors": [
"Samin Yeasar Arnob",
"Riyasat Ohib",
"Sergey Plis",
"Doina Precup",
"Alessandro Sordoni",
"Amy Zhang"
],
"doi": "10.52202/079017-0592",
"ref_id": "b4",
"title": "Efficient Reinforcement Learning by Discovering Neural Pathways",
"year": "2021"
},
{
"authors": [
"J Ash",
"R P Adams"
],
"doi": "",
"ref_id": "b5",
"title": "On warm-starting neural network training",
"year": "2020"
},
{
"authors": [
"M G Bellemare",
"Y Naddaf",
"J Veness",
"M Bowling"
],
"doi": "10.1613/jair.3912",
"ref_id": "b6",
"title": "The Arcade Learning Environment: An Evaluation Platform for General Agents",
"year": "2013"
},
{
"authors": [
"Marc G Bellemare",
"Salvatore Candido",
"Pablo Samuel Castro",
"Jun Gong",
"Marlos C Machado",
"Subhodeep Moitra",
"Sameera S Ponda",
"Ziyu Wang"
],
"doi": "10.1038/s41586-020-2939-8",
"ref_id": "b7",
"title": "Autonomous navigation of stratospheric balloons using reinforcement learning",
"year": "2020"
},
{
"authors": [
"Bruno Benedetti",
"Sebastien Couillard-Despres"
],
"doi": "10.3389/fnins.2022.877167",
"ref_id": "b8",
"title": "Why Would the Brain Need Dormant Neuronal Precursors?",
"year": "2022"
},
{
"authors": [
"Bruno Benedetti",
"Dominik Dannehl",
"Richard König",
"Simona Coviello",
"Christina Kreutzer",
"Pia Zaunmair",
"Dominika Jakubecova",
"Thomas M Weiger",
"Ludwig Aigner",
"Juan Nacher",
"Maren Engelhardt",
"Sébastien Couillard-Després"
],
"doi": "10.1093/cercor/bhz181",
"ref_id": "b9",
"title": "Functional Integration of Neuronal Precursors in the Adult Murine Piriform Cortex",
"year": "2020"
},
{
"authors": [
"E Bengio",
"J Pineau",
"D Precup"
],
"doi": "",
"ref_id": "b10",
"title": "Interference and generalization in temporal difference learning",
"year": "2020"
},
{
"authors": [
"T Berariu",
"W Czarnecki",
"S De",
"J Bornschein",
"S L Smith",
"R Pascanu",
"C Clopath"
],
"doi": "",
"ref_id": "b11",
"title": "A study on the plasticity of neural networks",
"year": "2021"
},
{
"authors": [
"J Bradbury",
"R Frostig",
"P Hawkins",
"M J Johnson",
"C Leary",
"D Maclaurin",
"G Necula",
"A Paszke",
"J Vanderplas",
"S Wanderman-Milne"
],
"doi": "",
"ref_id": "b12",
"title": "Jax: composable transformations of python+ numpy programs",
"year": "2018"
},
{
"authors": [
"P S Castro",
"S Moitra",
"C Gelada",
"S Kumar",
"M G Bellemare"
],
"doi": "",
"ref_id": "b13",
"title": "Dopamine: A Research Framework for Deep Reinforcement Learning",
"year": "2018"
},
{
"authors": [
"X Chen",
"C Wang",
"Z Zhou",
"K W Ross"
],
"doi": "",
"ref_id": "b14",
"title": "Randomized ensembled double q-learning: Learning fast without a model",
"year": "2020"
},
{
"authors": [
"Xiaoliang Dai",
"Hongxu Yin",
"Niraj K Jha"
],
"doi": "10.1109/tc.2019.2914438",
"ref_id": "b15",
"title": "NeST: A Neural Network Synthesis Tool Based on a Grow-and-Prune Paradigm",
"year": "2019"
},
{
"authors": [
"S Dohare",
"A R Mahmood",
"R S Sutton"
],
"doi": "",
"ref_id": "b16",
"title": "Continual backprop: Stochastic gradient descent with persistent randomness",
"year": "2021"
},
{
"authors": [
"L Espeholt",
"H Soyer",
"R Munos",
"K Simonyan",
"V Mnih",
"T Ward",
"Y Doron",
"V Firoiu",
"T Harley",
"I Dunning"
],
"doi": "",
"ref_id": "b17",
"title": "Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures",
"year": "2018"
},
{
"authors": [
"U Evci",
"B Van Merrienboer",
"T Unterthiner",
"F Pedregosa",
"M Vladymyrov",
"Gradmax"
],
"doi": "",
"ref_id": "b18",
"title": "Growing neural networks using gradient information",
"year": "2021"
},
{
"authors": [
"L Fan",
"G Wang",
"D.-A Huang",
"Z Yu",
"L Fei-Fei",
"Y Zhu",
"A Anandkumar"
],
"doi": "",
"ref_id": "b19",
"title": "Secant: Self-expert cloning for zero-shot generalization of visual policies",
"year": "2021"
},
{
"authors": [
"W Fedus",
"P Ramachandran",
"R Agarwal",
"Y Bengio",
"H Larochelle",
"M Rowland",
"W Dabney"
],
"doi": "",
"ref_id": "b20",
"title": "Revisiting fundamentals of experience replay",
"year": "2020"
},
{
"authors": [
"J Fu",
"A Kumar",
"M Soh",
"S Levine"
],
"doi": "",
"ref_id": "b21",
"title": "Diagnosing bottlenecks in deep q-learning algorithms",
"year": "2019"
},
{
"authors": [
"L Graesser",
"U Evci",
"E Elsen",
"P S Castro"
],
"doi": "",
"ref_id": "b22",
"title": "The state of sparse training in deep reinforcement learning",
"year": "2022"
},
{
"authors": [
"S Guadarrama",
"A Korattikara",
"O Ramirez",
"P Castro",
"E Holly",
"S Fishman",
"K Wang",
"E Gonina",
"N Wu",
"E Kokiopoulou",
"L Sbaiz",
"J Smith",
"G Bartók",
"J Berent",
"C Harris",
"V Vanhoucke",
"E Brevdo",
"Tf-"
],
"doi": "",
"ref_id": "b23",
"title": "Agents: A library for reinforcement learning in tensorflow",
"year": "2018. 25-June-2019"
},
{
"authors": [
"C Gulcehre",
"S Srinivasan",
"J Sygnowski",
"G Ostrovski",
"M Farajtabar",
"M Hoffman",
"R Pascanu",
"A Doucet"
],
"doi": "",
"ref_id": "b24",
"title": "An empirical study of implicit regularization in deep offline rl",
"year": "2022"
},
{
"authors": [
"T Haarnoja",
"A Zhou",
"P Abbeel",
"S Levine"
],
"doi": "",
"ref_id": "b25",
"title": "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor",
"year": "2018"
},
{
"authors": [
"N Hansen",
"H Su",
"X Wang"
],
"doi": "",
"ref_id": "b26",
"title": "Stabilizing deep q-learning with convnets and vision transformers under data augmentation",
"year": ""
},
{
"authors": [
"Charles R Harris",
"K Jarrod Millman",
"Stéfan J Van Der Walt",
"Ralf Gommers",
"Pauli Virtanen",
"David Cournapeau",
"Eric Wieser",
"Julian Taylor",
"Sebastian Berg",
"Nathaniel J Smith",
"Robert Kern",
"Matti Picus",
"Stephan Hoyer",
"Marten H Van Kerkwijk",
"Matthew Brett",
"Allan Haldane",
"Jaime Fernández Del Río",
"Mark Wiebe",
"Pearu Peterson",
"Pierre Gérard-Marchant",
"Kevin Sheppard",
"Tyler Reddy",
"Warren Weckesser",
"Hameer Abbasi",
"Christoph Gohlke",
"Travis E Oliphant"
],
"doi": "10.1038/s41586-020-2649-2",
"ref_id": "b27",
"title": "Array programming with NumPy",
"year": "2020"
},
{
"authors": [
"Matteo Hessel",
"Joseph Modayil",
"Hado Van Hasselt",
"Tom Schaul",
"Georg Ostrovski",
"Will Dabney",
"Dan Horgan",
"Bilal Piot",
"Mohammad Azar",
"David Silver"
],
"doi": "10.1609/aaai.v32i1.11796",
"ref_id": "b28",
"title": "Rainbow: Combining Improvements in Deep Reinforcement Learning",
"year": "2018"
},
{
"authors": [
"J Hestness",
"S Narang",
"N Ardalani",
"G Diamos",
"H Jun",
"H Kianinejad",
"M Patwary",
"M Ali",
"Y Yang",
"Y Zhou"
],
"doi": "",
"ref_id": "b29",
"title": "Deep learning scaling is predictable, empirically",
"year": "2017"
},
{
"authors": [
"T Hiraoka",
"T Imagawa",
"T Hashimoto",
"T Onishi",
"Y Tsuruoka"
],
"doi": "",
"ref_id": "b30",
"title": "Dropout q-functions for doubly efficient reinforcement learning",
"year": "2021"
},
{
"authors": [
"John D Hunter"
],
"doi": "10.1109/mcse.2007.55",
"ref_id": "b31",
"title": "Matplotlib: A 2D Graphics Environment",
"year": "2007"
},
{
"authors": [
"M Igl",
"G Farquhar",
"J Luketina",
"W Boehmer",
"S Whiteson"
],
"doi": "",
"ref_id": "b32",
"title": "Transient non-stationarity and generalisation in deep reinforcement learning",
"year": "2020"
},
{
"authors": [
"M Janner",
"J Fu",
"M Zhang",
"S Levine"
],
"doi": "",
"ref_id": "b33",
"title": "When to trust your model: Model-based policy optimization",
"year": "2019"
},
{
"authors": [
"Ł Kaiser",
"M Babaeizadeh",
"P Miłos",
"B Osiński",
"R H Campbell",
"K Czechowski",
"D Erhan",
"C Finn",
"P Kozakowski",
"S Levine"
],
"doi": "",
"ref_id": "b34",
"title": "Model based reinforcement learning for atari",
"year": "2019"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T B Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "",
"ref_id": "b35",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "10.1007/978-3-319-23108-2",
"ref_id": "b36",
"title": "Information Processing in Cells and Tissues",
"year": "May 7-9, 2015. 2015"
},
{
"authors": [
"Robert Kirk",
"Amy Zhang",
"Edward Grefenstette",
"Tim Rocktäschel"
],
"doi": "10.1613/jair.1.14174",
"ref_id": "b37",
"title": "A Survey of Zero-shot Generalisation in Deep Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"A Krizhevsky",
"G Hinton"
],
"doi": "10.7717/peerjcs.633/fig-5",
"ref_id": "b38",
"title": "Figure 5: Initial cross entropy values of samples from CIFAR-100 (Krizhevsky, 2009) on SqueezeNet (Iandola et al., 2016) when learning 10 classes at a time using the same learning settings as shown in Table 1.",
"year": "2009"
},
{
"authors": [
"A Kumar",
"R Agarwal",
"D Ghosh",
"S Levine"
],
"doi": "",
"ref_id": "b39",
"title": "Implicit under-parameterization inhibits data-efficient deep reinforcement learning",
"year": "2021"
},
{
"authors": [
"A Kumar",
"R Agarwal",
"T Ma",
"A Courville",
"G Tucker",
"S Levine"
],
"doi": "",
"ref_id": "b40",
"title": "Dr3: Value-based deep reinforcement learning requires explicit regularization",
"year": "2021"
},
{
"authors": [
"X Li",
"H Xiong",
"H An",
"C.-Z Xu",
"D Dou",
"Rifle"
],
"doi": "",
"ref_id": "b41",
"title": "Backpropagation in depth for deep transfer learning through re-initializing the fully-connected layer",
"year": "2020"
},
{
"authors": [
"T P Lillicrap",
"J J Hunt",
"A Pritzel",
"N Heess",
"T Erez",
"Y Tassa",
"D Silver",
"D Wierstra"
],
"doi": "",
"ref_id": "b42",
"title": "Continuous control with deep reinforcement learning",
"year": "2016"
},
{
"authors": [
"L.-J Lin"
],
"doi": "10.1023/a:1022628806385",
"ref_id": "b43",
"title": "Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching",
"year": "1992"
},
{
"authors": [
"C Lyle",
"M Rowland",
"W Dabney"
],
"doi": "",
"ref_id": "b44",
"title": "Understanding and preventing capacity loss in reinforcement learning",
"year": "2021"
},
{
"authors": [
"Volodymyr Mnih",
"Koray Kavukcuoglu",
"David Silver",
"Andrei A Rusu",
"Joel Veness",
"Marc G Bellemare",
"Alex Graves",
"Martin Riedmiller",
"Andreas K Fidjeland",
"Georg Ostrovski",
"Stig Petersen",
"Charles Beattie",
"Amir Sadik",
"Ioannis Antonoglou",
"Helen King",
"Dharshan Kumaran",
"Daan Wierstra",
"Shane Legg",
"Demis Hassabis"
],
"doi": "10.1038/nature14236",
"ref_id": "b45",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"E Nikishin",
"M Schwarzer",
"P D'oro",
"P.-L Bacon",
"A Courville"
],
"doi": "",
"ref_id": "b46",
"title": "The primacy bias in deep reinforcement learning",
"year": "2022"
},
{
"authors": [
"T E Oliphant"
],
"doi": "10.1109/MCSE.2007",
"ref_id": "b47",
"title": "Python for scientific computing",
"year": "2007"
},
{
"authors": [
"M L Puterman"
],
"doi": "",
"ref_id": "b48",
"title": "Markov decision processes: discrete stochastic dynamic programming",
"year": "2014"
},
{
"authors": [
"Peter Rotheneichner",
"Maria Belles",
"Bruno Benedetti",
"Richard König",
"Dominik Dannehl",
"Christina Kreutzer",
"Pia Zaunmair",
"Maren Engelhardt",
"Ludwig Aigner",
"Juan Nacher",
"Sebastien Couillard-Despres"
],
"doi": "10.1093/cercor/bhy087",
"ref_id": "b49",
"title": "Cellular Plasticity in the Adult Murine Piriform Cortex: Continuous Maturation of Dormant Precursors Into Excitatory Neurons",
"year": "2018"
},
{
"authors": [
"K A Sankararaman",
"S De",
"Z Xu",
"W R Huang",
"T Goldstein"
],
"doi": "",
"ref_id": "b50",
"title": "The impact of neural network overparameterization on gradient confusion and stochastic gradient descent",
"year": "2020"
},
{
"authors": [
"David Silver",
"Aja Huang",
"Chris J Maddison",
"Arthur Guez",
"Laurent Sifre",
"George Van Den Driessche",
"Julian Schrittwieser",
"Ioannis Antonoglou",
"Veda Panneershelvam",
"Marc Lanctot",
"Sander Dieleman",
"Dominik Grewe",
"John Nham",
"Nal Kalchbrenner",
"Ilya Sutskever",
"Timothy Lillicrap",
"Madeleine Leach",
"Koray Kavukcuoglu",
"Thore Graepel",
"Demis Hassabis"
],
"doi": "10.1038/nature16961",
"ref_id": "b51",
"title": "Mastering the game of Go with deep neural networks and tree search",
"year": "2016"
},
{
"authors": [
"Ghada Sokar",
"Elena Mocanu",
"Decebal Constantin Mocanu",
"Mykola Pechenizkiy",
"Peter Stone"
],
"doi": "10.24963/ijcai.2022/477",
"ref_id": "b52",
"title": "Dynamic Sparse Training for Deep Reinforcement Learning",
"year": "2022"
},
{
"authors": [
"R S Sutton"
],
"doi": "",
"ref_id": "b53",
"title": "Learning to predict by the methods of temporal differences",
"year": "1988"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b54",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"Ahmed Taha",
"Abhinav Shrivastava",
"Larry Davis"
],
"doi": "10.1109/cvpr46437.2021.01265",
"ref_id": "b55",
"title": "Knowledge Evolution in Neural Networks",
"year": "2021"
},
{
"authors": [
"Y Tan",
"P Hu",
"L Pan",
"L Huang"
],
"doi": "",
"ref_id": "b56",
"title": "Rlx2: Training a sparse deep reinforcement learning model from scratch",
"year": "2022"
},
{
"authors": [
"Emanuel Todorov",
"Tom Erez",
"Yuval Tassa"
],
"doi": "10.1109/iros.2012.6386109",
"ref_id": "b57",
"title": "MuJoCo: A physics engine for model-based control",
"year": "2012. 2012"
},
{
"authors": [
"H Van Hasselt",
"Y Doron",
"F Strub",
"M Hessel",
"N Sonnerat",
"J Modayil"
],
"doi": "",
"ref_id": "b58",
"title": "Deep reinforcement learning and the deadly triad",
"year": "2018"
},
{
"authors": [
"H P Van Hasselt",
"M Hessel",
"J Aslanides"
],
"doi": "",
"ref_id": "b59",
"title": "When to use parametric models in reinforcement learning? Advances in Neural Information Processing Systems",
"year": "2019"
},
{
"authors": [
"G Van Rossum",
"F L Drake Jr"
],
"doi": "",
"ref_id": "b60",
"title": "Python reference manual",
"year": "1995"
},
{
"authors": [
"K Wang",
"B Kang",
"J Shao",
"J Feng"
],
"doi": "",
"ref_id": "b61",
"title": "Improving generalization in reinforcement learning with mixture regularization",
"year": ""
},
{
"authors": [
"Hyung Lee",
"William Vavrik",
"Hesham Abdualla"
],
"doi": "10.36501/0197-9191/20-015",
"ref_id": "b62",
"title": "Development of IDOT’s Proposed Smoothness Specification Based on the International Roughness Index",
"year": "2020"
},
{
"authors": [
"L Wu",
"D Wang",
"Q Liu"
],
"doi": "",
"ref_id": "b63",
"title": "Splitting steepest descent for growing neural architectures",
"year": "2019"
},
{
"authors": [
"D Yarats",
"I Kostrikov",
"R Fergus"
],
"doi": "",
"ref_id": "b64",
"title": "Image augmentation is all you need: Regularizing deep reinforcement learning from pixels",
"year": "2021"
},
{
"authors": [
"J Yoon",
"E Yang",
"J Lee",
"S J Hwang"
],
"doi": "",
"ref_id": "b65",
"title": "Lifelong learning with dynamically expandable networks",
"year": "2018"
},
{
"authors": [
"S Zaidi",
"T Berariu",
"H Kim",
"J Bornschein",
"C Clopath",
"Y W Teh",
"R Pascanu"
],
"doi": "",
"ref_id": "b66",
"title": "When does re-initialization work?",
"year": "2022"
},
{
"authors": [
"X Zhai",
"A Kolesnikov",
"N Houlsby",
"L Beyer"
],
"doi": "",
"ref_id": "b67",
"title": "Scaling vision transformers",
"year": "2022"
},
{
"authors": [
"G Zhou",
"K Sohn",
"H Lee"
],
"doi": "",
"ref_id": "b68",
"title": "Online incremental feature learning with denoising autoencoders",
"year": "2012"
},
{
"authors": [
"H Zhou",
"A Vani",
"H Larochelle",
"A Courville"
],
"doi": "",
"ref_id": "b69",
"title": "Fortuitous forgetting in connectionist networks",
"year": "2021"
}
] |
[
"941b59c0edcd5175",
"0af87c51fa6f4e2b",
"e700ad61395d2f72",
"c966d329207e2177",
"109a772a681cdcfc",
"47373c537c6020d4",
"ab85ecad3d10c9d2",
"a198fcbea21f17f8",
"f30653299776c92a",
"b4400fd8e0476f59",
"95a05288c191fe8d",
"06f060df56e63eec",
"c30c8d3cf584d89a",
"7296de2b3481a01c",
"79a2cbd44415e024",
"40e222f897387118",
"abdf38242e51756f",
"1fa6cdf1979640c4",
"d2a8064142ac1eb4",
"71a75305739a7725",
"a419112f82b6448f",
"f1fa50be8f2b2485",
"36526a50cbfb9b86",
"541d2a0c5698fe4c",
"804ddc3685e974e5",
"11a7ffe0a9bfb2e2",
"92684fc07e670bad",
"c992ecf711a795e5",
"3b537f8f675ac4db",
"f1472b4edac426fe",
"cb024bbbb2a7049c",
"cfe9803f7f99b7ae",
"a9a0c940e2600d8b",
"16c0453ac8e018b7"
] |
[
"e6bc04e2b9f585eb",
"37ae32f63454469a",
"a198fcbea21f17f8",
"b51523b5a87df03e",
"95a05288c191fe8d",
"ab85ecad3d10c9d2",
"105bee7b8d8132e0",
"e1ece8df55332d68",
"166702d208c3f7ae",
"aaca6afc61c3f1f7",
"40dab1bb3300d946",
"40e222f897387118",
"a2fb4b4e7ba4c7b0",
"9cf791ed67120f2d",
"16c0453ac8e018b7",
"d2a8064142ac1eb4",
"06f060df56e63eec",
"b58424e92e5eef73",
"cfe9803f7f99b7ae",
"f1472b4edac426fe",
"71a75305739a7725",
"7296de2b3481a01c",
"109a772a681cdcfc",
"1571217aa7f2eb2f",
"c30c8d3cf584d89a",
"e436392273aa8135",
"d52873503967ef05",
"25a0d0befd99d280",
"4a68593189ae925f",
"b8c288592e68ff88",
"11a7ffe0a9bfb2e2",
"1b02e51ba326f19e",
"cb024bbbb2a7049c",
"79a2cbd44415e024",
"2e94c2887243166d",
"e9b17f06b8676f55",
"ce126520a6649fb5",
"f30653299776c92a",
"ed10b7a0d3a6750e",
"935985bed9346dd5",
"c7d665edad2b9876",
"47373c537c6020d4",
"c992ecf711a795e5",
"941b59c0edcd5175",
"a9a0c940e2600d8b",
"e700ad61395d2f72",
"1fa6cdf1979640c4",
"db973250d66a862b",
"a419112f82b6448f",
"1bebfa51bc9e4141",
"70b068482558e86f",
"d1a13062e25096cd",
"b4400fd8e0476f59",
"f1fa50be8f2b2485",
"34dc3e64fa458b25",
"92684fc07e670bad",
"c966d329207e2177",
"97d7b543ed8aea08",
"6bcccd593aecd79f",
"3b537f8f675ac4db",
"2cab905340f9809c",
"94c928d38fbaaba4",
"0ebf528b4951c113",
"0af87c51fa6f4e2b",
"3d309341228baaea",
"541d2a0c5698fe4c",
"36526a50cbfb9b86",
"16a4c55f75c160b9",
"abdf38242e51756f",
"804ddc3685e974e5"
] |
tHvXrFQma5
|
Transformers Learn In-Context by Gradient Descent
|
data/openreview_paper/ICML_2023_oral/tHvXrFQma5//paper.pdf
| 58
| 0
|
[] |
[
{
"authors": [
"E Akyürek",
"D Schuurmans",
"J Andreas",
"T Ma",
"D Zhou"
],
"doi": "",
"ref_id": "b0",
"title": "What learning algorithm is in-context learning? investigations with linear models",
"year": "2023"
},
{
"authors": [
"B Amos",
"J Z Kolter"
],
"doi": "",
"ref_id": "b1",
"title": "Optnet: Differentiable optimization as a layer in neural networks",
"year": "2017"
},
{
"authors": [
"M Andrychowicz",
"M Denil",
"S Gomez",
"M W Hoffman",
"D Pfau",
"T Schaul",
"B Shillingford",
"N Freitas"
],
"doi": "",
"ref_id": "b2",
"title": "Learning to learn by gradient descent by gradient descent",
"year": "2016"
},
{
"authors": [
"J Ba",
"G E Hinton",
"V Mnih",
"J Z Leibo",
"C Ionescu"
],
"doi": "",
"ref_id": "b3",
"title": "Using fast weights to attend to the recent past",
"year": "2016"
},
{
"authors": [
"S Bai",
"J Z Kolter",
"V Koltun"
],
"doi": "",
"ref_id": "b4",
"title": "Deep equilibrium models",
"year": "2019"
},
{
"authors": [
"Alexander Petrov",
"Alessandra Mancas",
"Viviane Binet",
"Antoine Venant",
"François Lareau",
"Yves Lepage",
"Philippe Langlais"
],
"doi": "10.26615/978-954-452-098-4-110",
"ref_id": "b5",
"title": "Q&A-LF : A French Question-Answering Benchmark for Measuring Fine-Grained Lexical Knowledge",
"year": "1990"
},
{
"authors": [
"F Benzing",
"S Schug",
"R Meier",
"J Oswald",
"Y Akram",
"N Zucchet",
"L Aitchison",
"A Steger"
],
"doi": "",
"ref_id": "b6",
"title": "Random initialisations performing above chance and how to find them",
"year": "2022. 2022"
},
{
"authors": [
"L Bertinetto",
"J F Henriques",
"P H S Torr",
"A Vedaldi"
],
"doi": "",
"ref_id": "b7",
"title": "Meta-learning with differentiable closed-form solvers",
"year": "2019"
},
{
"authors": [
"T B Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell",
"S Agarwal",
"A Herbert-Voss",
"G Krueger",
"T Henighan",
"R Child",
"A Ramesh",
"D M Ziegler",
"J Wu",
"C Winter",
"C Hesse",
"M Chen",
"E Sigler",
"M Litwin",
"S Gray",
"B Chess",
"J Clark",
"C Berner",
"S Mccandlish",
"A Radford",
"I Sutskever",
"D Amodei"
],
"doi": "",
"ref_id": "b8",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"Nicolas Carion",
"Francisco Massa",
"Gabriel Synnaeve",
"Nicolas Usunier",
"Alexander Kirillov",
"Sergey Zagoruyko"
],
"doi": "10.1007/978-3-030-58452-8_13",
"ref_id": "b9",
"title": "End-to-End Object Detection with Transformers",
"year": "2020"
},
{
"authors": [
"David J Chalmers"
],
"doi": "10.1016/b978-1-4832-1448-1.50014-7",
"ref_id": "b10",
"title": "The Evolution of Learning: An Experiment in Genetic Connectionism",
"year": ""
},
{
"authors": [
"Morgan Kaufmann"
],
"doi": "",
"ref_id": "b11",
"title": "",
"year": "1991"
},
{
"authors": [
"S C Y Chan",
"I Dasgupta",
"J Kim",
"D Kumaran",
"A K Lampinen",
"F Hill"
],
"doi": "",
"ref_id": "b12",
"title": "Transformers generalize differently from information stored in context vs in weights",
"year": "2022"
},
{
"authors": [
"S C Y Chan",
"A Santoro",
"A K Lampinen",
"J X Wang",
"A Singh",
"P H Richemond",
"J Mcclelland",
"F Hill"
],
"doi": "",
"ref_id": "b13",
"title": "Data distributional properties drive emergent in-context learning in transformers",
"year": "2022"
},
{
"authors": [
"K M Choromanski",
"V Likhosherstov",
"D Dohan",
"X Song",
"A Gane",
"T Sarlos",
"P Hawkins",
"J Q Davis",
"A Mohiuddin",
"L Kaiser",
"D B Belanger",
"L J Colwell",
"A Weller"
],
"doi": "",
"ref_id": "b14",
"title": "Rethinking attention with performers",
"year": "2021"
},
{
"authors": [
"Damai Dai",
"Yutao Sun",
"Li Dong",
"Yaru Hao",
"Shuming Ma",
"Zhifang Sui",
"Furu Wei"
],
"doi": "10.18653/v1/2023.findings-acl.247",
"ref_id": "b15",
"title": "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta-Optimizers",
"year": "2023"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly",
"J Uszkoreit",
"N Houlsby"
],
"doi": "",
"ref_id": "b16",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2021"
},
{
"authors": [
"R Entezari",
"H Sedghi",
"O Saukh",
"B Neyshabur"
],
"doi": "",
"ref_id": "b17",
"title": "The role of permutation invariance in linear mode connectivity of neural networks",
"year": "2021"
},
{
"authors": [
"C Finn",
"S Levine"
],
"doi": "",
"ref_id": "b18",
"title": "Meta-learning and universality: Deep representations and gradient descent can approximate any learning algorithm",
"year": "2018"
},
{
"authors": [
"C Finn",
"P Abbeel",
"S Levine"
],
"doi": "",
"ref_id": "b19",
"title": "Model-agnostic metalearning for fast adaptation of deep networks",
"year": "2017"
},
{
"authors": [
"S Flennerhag",
"A A Rusu",
"R Pascanu",
"F Visin",
"H Yin",
"R Hadsell"
],
"doi": "",
"ref_id": "b20",
"title": "Meta-learning with warped gradient descent",
"year": "2020"
},
{
"authors": [
"Vikas Garg",
"Tuan Anh Pham"
],
"doi": "10.52202/079017-0351",
"ref_id": "b21",
"title": "What do Graph Neural Networks learn? Insights from Tropical Geometry",
"year": "2022"
},
{
"authors": [
"J Gordon",
"J Bronskill",
"M Bauer",
"S Nowozin",
"R Turner"
],
"doi": "",
"ref_id": "b22",
"title": "Meta-learning probabilistic inference for prediction",
"year": "2019"
},
{
"authors": [
"Stephen Gould",
"Richard Hartley",
"Dylan John Campbell"
],
"doi": "10.1109/tpami.2021.3059462",
"ref_id": "b23",
"title": "Deep Declarative Networks",
"year": "2021"
},
{
"authors": [
"Anmol Gulati",
"James Qin",
"Chung-Cheng Chiu",
"Niki Parmar",
"Yu Zhang",
"Jiahui Yu",
"Wei Han",
"Shibo Wang",
"Zhengdong Zhang",
"Yonghui Wu",
"Ruoming Pang"
],
"doi": "10.21437/interspeech.2020-3015",
"ref_id": "b24",
"title": "Conformer: Convolution-augmented Transformer for Speech Recognition",
"year": "2020"
},
{
"authors": [
"D Hendrycks",
"K Gimpel"
],
"doi": "",
"ref_id": "b25",
"title": "Gaussian error linear units (gelus)",
"year": "2016"
},
{
"authors": [
"G E Hinton",
"D C Plaut"
],
"doi": "",
"ref_id": "b26",
"title": "Using fast weights to deblur old memories",
"year": "1987"
},
{
"authors": [
"S Hochreiter",
"A S Younger",
"P R Conwell"
],
"doi": "",
"ref_id": "b27",
"title": "Learning to learn using gradient descent",
"year": "2001"
},
{
"authors": [
"E Hubinger",
"C Van Merwijk",
"V Mikulik",
"J Skalse",
"S Garrabrant"
],
"doi": "",
"ref_id": "b28",
"title": "Risks from learned optimization in advanced machine learning systems",
"year": "Jun 2019"
},
{
"authors": [
"Kazuki Irie",
"Róbert Csordás",
"Jürgen Schmidhuber"
],
"doi": "10.18653/v1/2023.emnlp-main.588",
"ref_id": "b29",
"title": "Practical Computational Power of Linear Transformers and Their Recurrent and Self-Referential Extensions",
"year": "2021"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "",
"ref_id": "b30",
"title": "A method for stochastic optimization",
"year": "2014"
},
{
"authors": [
"L Kirsch",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b31",
"title": "Meta learning backpropagation and improving it",
"year": "2021"
},
{
"authors": [
"L Kirsch",
"J Harrison",
"J Sohl-Dickstein",
"L Metz"
],
"doi": "",
"ref_id": "b32",
"title": "General-purpose in-context learning by meta-learning transformers",
"year": "2022"
},
{
"authors": [
"Kwonjoon Lee",
"Subhransu Maji",
"Avinash Ravichandran",
"Stefano Soatto"
],
"doi": "10.1109/cvpr.2019.01091",
"ref_id": "b33",
"title": "Meta-Learning With Differentiable Convex Optimization",
"year": "2019"
},
{
"authors": [
"Y Lee",
"S Choi"
],
"doi": "",
"ref_id": "b34",
"title": "Gradient-based meta-learning with learned layerwise metric and subspace",
"year": "2018"
},
{
"authors": [
"Z Li",
"F Zhou",
"F Chen",
"H Li"
],
"doi": "",
"ref_id": "b35",
"title": "Meta-SGD: Learning to learn quickly for few shot learning",
"year": "2017"
},
{
"authors": [
"P Liu",
"W Yuan",
"J Fu",
"Z Jiang",
"H Hayashi",
"G Neubig"
],
"doi": "",
"ref_id": "b36",
"title": "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing",
"year": "2021"
},
{
"authors": [
"E A Nadaraya"
],
"doi": "10.1137/1109020",
"ref_id": "b37",
"title": "On Estimating Regression",
"year": "1964"
},
{
"authors": [
"C Olsson",
"N Elhage",
"N Nanda",
"N Joseph",
"N Dassarma",
"T Henighan",
"B Mann",
"A Askell",
"Y Bai",
"A Chen",
"T Conerly",
"D Drain",
"D Ganguli",
"Z Hatfield-Dodds",
"D Hernandez",
"S Johnston",
"A Jones",
"J Kernion",
"L Lovitt",
"K Ndousse",
"D Amodei",
"T Brown",
"J Clark",
"J Kaplan",
"S Mccandlish",
"C Olah"
],
"doi": "",
"ref_id": "b38",
"title": "Incontext learning and induction heads",
"year": "2022"
},
{
"authors": [
"E Park",
"J B Oliva"
],
"doi": "",
"ref_id": "b39",
"title": "Meta-curvature",
"year": "2019"
},
{
"authors": [
"A Power",
"Y Burda",
"H Edwards",
"I Babuschkin",
"V Misra",
"Grokking"
],
"doi": "",
"ref_id": "b40",
"title": "Generalization beyond overfitting on small algorithmic datasets",
"year": "2022"
},
{
"authors": [
"Ananya Raghu",
"Anisha Raghu",
"Jillian F Wise"
],
"doi": "10.1101/2024.01.17.576064",
"ref_id": "b41",
"title": "Deep Learning Based Identification of Tissue of Origin for Carcinomas of Unknown Primary utilizing micro-RNA expression",
"year": "2020"
},
{
"authors": [
"H Ramsauer",
"B Schäfl",
"J Lehner",
"P Seidl",
"M Widrich",
"T Adler",
"L Gruber",
"M Holzleitner",
"M Pavlović",
"G K Sandve",
"V Greiff",
"D Kreil",
"M Kopp",
"G Klambauer",
"J Brandstetter",
"S Hochreiter"
],
"doi": "",
"ref_id": "b42",
"title": "Hopfield networks is all you need",
"year": "2020"
},
{
"authors": [
"A A Rusu",
"D Rao",
"J Sygnowski",
"O Vinyals",
"R Pascanu",
"S Osindero",
"R Hadsell"
],
"doi": "",
"ref_id": "b43",
"title": "Meta-learning with latent embedding optimization",
"year": "2019"
},
{
"authors": [
"I Schlag",
"K Irie",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b44",
"title": "Linear transformers are secretly fast weight programmers",
"year": "2021"
},
{
"authors": [
"Eva-Maria Dölker",
"Stephan Lau",
"Daniel Gröllich",
"Elke Haase",
"Sybille Krzywinski",
"Martin Schmauder",
"Jens Haueisen"
],
"doi": "10.17147/asu-2010-9157",
"ref_id": "b45",
"title": "Techniken zur Bestimmung von Parametern für die elektrische Personenwarnung",
"year": "1987"
},
{
"authors": [
"Jürgen Schmidhuber"
],
"doi": "10.1162/neco.1992.4.1.131",
"ref_id": "b46",
"title": "Learning to Control Fast-Weight Memories: An Alternative to Dynamic Recurrent Networks",
"year": "1992"
},
{
"authors": [
"S Thrun",
"L Pratt"
],
"doi": "10.1007/978-1-4615-5529-2",
"ref_id": "b47",
"title": "Learning to Learn",
"year": "1998"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b48",
"title": "Attention Is All You Need",
"year": "2017"
},
{
"authors": [
"J Von Oswald",
"D Zhao",
"S Kobayashi",
"S Schug",
"M Caccia",
"N Zucchet",
"J Sacramento"
],
"doi": "",
"ref_id": "b49",
"title": "Learning where to learn: Gradient sparsity in meta and continual learning",
"year": "2021"
},
{
"authors": [
"G S Watson"
],
"doi": "",
"ref_id": "b50",
"title": "Smooth regression analysis",
"year": "1964"
},
{
"authors": [
"B Widrow",
"M E Hoff"
],
"doi": "",
"ref_id": "b51",
"title": "Adaptive switching circuits",
"year": "1960. 1960"
},
{
"authors": [
"Ire"
],
"doi": "10.1109/jrproc.1948.232635",
"ref_id": "b52",
"title": "IRE People",
"year": ""
},
{
"authors": [
"S Yun",
"M Jeong",
"R Kim",
"J Kang",
"H J Kim"
],
"doi": "",
"ref_id": "b53",
"title": "Graph transformer networks",
"year": "2019"
},
{
"authors": [
"A Zhang",
"Z C Lipton",
"M Li",
"A J Smola"
],
"doi": "",
"ref_id": "b54",
"title": "Dive into deep learning",
"year": "2021"
},
{
"authors": [
"D Zhao",
"S Kobayashi",
"J Sacramento",
"J Oswald"
],
"doi": "",
"ref_id": "b55",
"title": "Meta-learning via hypernetworks",
"year": "2020"
},
{
"authors": [
"A Zhmoginov",
"M Sandler",
"M Vladymyrov"
],
"doi": "",
"ref_id": "b56",
"title": "Hy-perTransformer: Model generation for supervised and semi-supervised few-shot learning",
"year": "17-23 Jul 2022"
},
{
"authors": [
"Nicolas Zucchet",
"João Sacramento"
],
"doi": "10.1162/neco_a_01547",
"ref_id": "b57",
"title": "Beyond Backpropagation: Bilevel Optimization Through Implicit Differentiation and Equilibrium Propagation",
"year": "December 2022"
}
] |
[] |
[
"539fabfc7bda5982",
"7813061103790ac4",
"fcc7ca87e0e220be",
"8b6b5cb401406e93",
"5aeb906d3d5b6285",
"3e6a8c35277bcafa",
"b2f4f5d480130bec",
"30369870298d2b36",
"17af6d64fa1567f9",
"9c99a0082932256a",
"9b4940eeef85c9f3",
"7b169e33671e406b",
"7472d18c2cfb4622",
"38491723194980ea",
"e9e85fdf4087a02d",
"89c66de0bc1f2be7",
"0b1cb47ac4ba5a71",
"16a4fdb2d3008e71",
"ee38a941184c093d",
"2efc57d3f3b595b7",
"3e8aa1c29556aa18",
"b182a78e3e180f50",
"231b124f30d45b25",
"24a0c5b3c9d64acb",
"183e55139440e5e4",
"747951cddab9d91d",
"700534b1ff36ebd9",
"b22688bdc1627795",
"cbefce84bdb6c225",
"a142111379f9e83d",
"7c6d6a32e71abad8",
"3c2c9eb936a6e964",
"53694e3980adc19d",
"21f164f003bab8b5",
"cec107dd067adc2f",
"dc04e401c93ab81b",
"d936f1eafa592aec",
"061d285c8d8a4127",
"b1a4c328e74ced05",
"aeb1d8460bdbb62e",
"456ba664dbd9bf15",
"03ece5f16acc4f1c",
"33bc60e30d6e488e",
"ee006e31e073de3b",
"51af5346b6ad15f3",
"140f0e0cef0e72c2",
"93529ce80fdd0979",
"4fafdde7d2ce9921",
"2c0dc3d0f1ec41b0",
"c1db2d16f645e8f6",
"a17703909a8fc46a",
"b8132aa4f2bf2379",
"29513b0bd9f257cc",
"16d7a992b775e350",
"265ea8f5728f8f7b",
"227c368853174505",
"8e143e0b6ff38bfc",
"4bede8dfbfb70a74"
] |
b2GYLlhH4a
|
Why does Throwing Away Data Improve Worst-Group Error?
|
data/openreview_paper/ICML_2023_oral/b2GYLlhH4a//paper.pdf
| 29
| 0
|
[] |
[
{
"authors": [
"K P Bennett",
"E J Bredensteiner"
],
"doi": "",
"ref_id": "b0",
"title": "Duality and geometry in svm classifiers",
"year": "2000. 2000"
},
{
"authors": [
"J Buolamwini",
"T Gebru"
],
"doi": "",
"ref_id": "b1",
"title": "Gender shades: Intersectional accuracy disparities in commercial gender classification",
"year": "2018"
},
{
"authors": [
"L De Haan",
"A Ferreira"
],
"doi": "",
"ref_id": "b2",
"title": "Extreme value theory: an introduction",
"year": "2007"
},
{
"authors": [
"Laurens De Haan",
"Ana Ferreira"
],
"doi": "10.1007/0-387-34471-3",
"ref_id": "b3",
"title": "Extreme Value Theory",
"year": "2006"
},
{
"authors": [
"Dimitrios I Diochnos",
"Theodore B Trafalis"
],
"doi": "10.1137/1.9781611976700.4",
"ref_id": "b4",
"title": "Learning Reliable Rules under Class Imbalance",
"year": "2021"
},
{
"authors": [
"W Feller"
],
"doi": "",
"ref_id": "b5",
"title": "An Introduction to Probability Theory and Its Applications",
"year": "1968"
},
{
"authors": [
"N Haghtalab",
"M I Jordan",
"E Zhao"
],
"doi": "",
"ref_id": "b6",
"title": "On-demand sampling: Learning optimally from multiple distributions",
"year": "2022"
},
{
"authors": [
"David Haussler"
],
"doi": "10.1201/9780429492525-3",
"ref_id": "b7",
"title": "The Probably Approximately Correct (PAC) and Other Learning Models",
"year": "1990"
},
{
"authors": [
"D Hsu",
"S Sabato"
],
"doi": "",
"ref_id": "b8",
"title": "Loss minimization and parameter estimation with heavy tails",
"year": "2016"
},
{
"authors": [
"B Y Idrissi",
"M Arjovsky",
"M Pezeshki",
"D Lopez-Paz"
],
"doi": "",
"ref_id": "b9",
"title": "Simple data balancing achieves competitive worstgroup-accuracy",
"year": "2021"
},
{
"authors": [
"B Y Idrissi",
"M Arjovsky",
"M Pezeshki",
"D Lopez-Paz"
],
"doi": "",
"ref_id": "b10",
"title": "Simple data balancing achieves competitive worstgroup-accuracy",
"year": "2022"
},
{
"authors": [
"Justin M Johnson",
"Taghi M Khoshgoftaar"
],
"doi": "10.1186/s40537-019-0192-5",
"ref_id": "b11",
"title": "Survey on deep learning with class imbalance",
"year": "2019"
},
{
"authors": [
"P Kirichenko",
"P Izmailov",
"A G Wilson"
],
"doi": "",
"ref_id": "b12",
"title": "Last layer re-training is sufficient for robustness to spurious correlations",
"year": "2022"
},
{
"authors": [
"B Laurent",
"P Massart"
],
"doi": "10.1214/aos/1015957395",
"ref_id": "b13",
"title": "Adaptive estimation of a quadratic functional by model selection",
"year": "2000"
},
{
"authors": [
"Z Liu",
"P Luo",
"X Wang",
"X Tang"
],
"doi": "",
"ref_id": "b14",
"title": "Deep learning face attributes in the wild",
"year": "2015"
},
{
"authors": [
"A Menon",
"H Narasimhan",
"S Agarwal",
"S Chawla"
],
"doi": "10.1021/acs.chemrestox.2c00189.s001",
"ref_id": "b15",
"title": "Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data",
"year": "2013"
},
{
"authors": [
"V Nagarajan",
"A Andreassen",
"B Neyshabur"
],
"doi": "10.7717/peerj.14238/fig-4",
"ref_id": "b16",
"title": "Figure 4: Failure modes distribution (%) for the groups tested under immediate or aging condition.",
"year": "2020"
},
{
"authors": [
"V Nagarajan",
"A Andreassen",
"B Neyshabur"
],
"doi": "",
"ref_id": "b17",
"title": "Understanding the failure modes of out-of-distribution generalization",
"year": "2020"
},
{
"authors": [
"H Narasimhan",
"H Ramaswamy",
"A Saha",
"S Agarwal"
],
"doi": "",
"ref_id": "b18",
"title": "Consistent multiclass algorithms for complex performance measures",
"year": "2015"
},
{
"authors": [
"N Natarajan",
"I S Dhillon",
"P Ravikumar",
"A Tewari"
],
"doi": "",
"ref_id": "b19",
"title": "Cost-sensitive learning with noisy labels",
"year": "2017"
},
{
"authors": [
"W A G Rojas",
"S Diamos",
"K R Kini",
"D Kanter",
"V J Reddi",
"C Coleman"
],
"doi": "",
"ref_id": "b20",
"title": "The dollar street dataset: Images representing the geographic and socioeconomic diversity of the world",
"year": "2022"
},
{
"authors": [
"G N Rothblum",
"G Yona"
],
"doi": "",
"ref_id": "b21",
"title": "Multi-group agnostic pac learnability",
"year": "2021"
},
{
"authors": [
"S Sagawa",
"P W Koh",
"T B Hashimoto",
"P Liang"
],
"doi": "10.1126/science.z66g9k7",
"ref_id": "b22",
"title": "ArXiv preprint server clamps down on AI slop",
"year": "2019"
},
{
"authors": [
"S Sagawa",
"A Raghunathan",
"P W Koh",
"P Liang"
],
"doi": "10.4135/9781473997714",
"ref_id": "b23",
"title": "Correlation and Causation: Tyler Vigen's Spurious Correlations",
"year": "2020"
},
{
"authors": [
"D Soudry",
"E Hoffer",
"M S Nacson",
"S Gunasekar",
"N Srebro"
],
"doi": "",
"ref_id": "b24",
"title": "The implicit bias of gradient descent on separable data",
"year": "2018"
},
{
"authors": [
"Ingo Steinwart",
"Andreas Christmann"
],
"doi": "10.1007/978-0-387-77242-4_9",
"ref_id": "b25",
"title": "Support Vector Machines for Regression.",
"year": "2008"
},
{
"authors": [
"C J Tosh",
"D Hsu"
],
"doi": "",
"ref_id": "b26",
"title": "Simple and near-optimal algorithms for hidden stratification and multi-group learning",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "",
"ref_id": "b27",
"title": "",
"year": "2022"
},
{
"authors": [
"Vladimir N Vapnik"
],
"doi": "10.1007/978-1-4757-3264-1_8",
"ref_id": "b28",
"title": "Direct Methods in Statistical Learning Theory",
"year": "1999"
}
] |
[] |
[
"fdac923ea0b666f1",
"2986fa811b91d3c6",
"4e8914dd074eed7f",
"490b4c167d127367",
"56ff5464537e92ee",
"0776c63f30fc472b",
"b249365150af4005",
"0b007dbced868aa3",
"36bee989fdd9ce42",
"c06ea26552b0d1d8",
"bf189ceef79abd36",
"b1a0cb1d0965d9a2",
"36744179b86bef38",
"d5044c45b2af080f",
"c529a5d8335aa090",
"c32b1c5286d53bcd",
"489181199e7e7677",
"2c5c81e3aadde6fb",
"ea3213a87742a56c",
"dcd667af2b9bac78",
"d79b36e882e34ec6",
"9e97bc401c111ed9",
"459adbd9cb144c7f",
"b300f1d1151d61dd",
"681ad0a249b4be49",
"9c26319bdd84dc1d",
"2ff0ff92c5ee9f56",
"55ca403f38119f35",
"7290705e11b99cc5"
] |
yPUc796tVF
|
The Price of Differential Privacy under Continual Observation
|
data/openreview_paper/ICML_2023_oral/yPUc796tVF//paper.pdf
| 47
| 7
|
[
{
"authors": [
"C Dwork",
"M Naor",
"O Reingold",
"G N Rothblum"
],
"doi": "10.1007/978-3-662-48800-3",
"ref_id": "b18",
"title": "Advances in Cryptology – ASIACRYPT 2015",
"year": "November 29 -December 3, 2015. 9453. 2015"
},
{
"authors": [
"N Agarwal",
"K Singh"
],
"doi": "10.1145/1143844.1143848",
"ref_id": "b0",
"title": "Ranking on graph data",
"year": "Aug 2017"
},
{
"authors": [
"A R Cardoso",
"R Rogers"
],
"doi": "",
"ref_id": "b5",
"title": "Differentially private histograms under continual observation: Streaming selection into the unknown",
"year": "March 2022. 2022"
},
{
"authors": [
"P Jain",
"P Kothari",
"A Thakurta"
],
"doi": "",
"ref_id": "b27",
"title": "Differentially private online learning",
"year": "25-27 Jun 2012"
},
{
"authors": [
"H Fichtenberger",
"M Henzinger",
"W Ost"
],
"doi": "10.4230/LIPIcs.ESA.2021",
"ref_id": "b20",
"title": "Differentially private algorithms for graphs under continual observation",
"year": "September 6-8, 2021. 2021"
},
{
"authors": [
"T H Chan",
"Elaine Shi",
"Dawn Song"
],
"doi": "10.1145/2043621.2043626",
"ref_id": "b7",
"title": "Private and Continual Release of Statistics",
"year": "2011"
},
{
"authors": [
"S Song",
"S Little",
"S Mehta",
"S A Vinterbo",
"K Chaudhuri"
],
"doi": "",
"ref_id": "b38",
"title": "Differentially private continual release of graph statistics",
"year": "2018"
}
] |
[
{
"authors": [
"N Agarwal",
"K Singh"
],
"doi": "10.1145/1143844.1143848",
"ref_id": "b0",
"title": "Ranking on graph data",
"year": "Aug 2017"
},
{
"authors": [
"Apple"
],
"doi": "",
"ref_id": "b1",
"title": "Learning with privacy at scale",
"year": "2017"
},
{
"authors": [],
"doi": "10.1145/2448496.2448530",
"ref_id": "b2",
"title": "",
"year": "2013"
},
{
"authors": [
"M Bun",
"T Steinke"
],
"doi": "10.1007/978-3-662-53641-4",
"ref_id": "b3",
"title": "Theory of Cryptography",
"year": "October 31 -November 3, 2016. 9985. 2016"
},
{
"authors": [
"Mark Bun",
"Jonathan Ullman",
"Salil Vadhan"
],
"doi": "10.1137/15m1033587",
"ref_id": "b4",
"title": "Fingerprinting Codes and the Price of Approximate Differential Privacy",
"year": "2018"
},
{
"authors": [
"A R Cardoso",
"R Rogers"
],
"doi": "",
"ref_id": "b5",
"title": "Differentially private histograms under continual observation: Streaming selection into the unknown",
"year": "March 2022. 2022"
},
{
"authors": [
"T H Chan",
"E Shi",
"D Song"
],
"doi": "",
"ref_id": "b6",
"title": "Private and continual release of statistics",
"year": "2010. 2010"
},
{
"authors": [
"T H Chan",
"Elaine Shi",
"Dawn Song"
],
"doi": "10.1145/2043621.2043626",
"ref_id": "b7",
"title": "Private and Continual Release of Statistics",
"year": "2011"
},
{
"authors": [
"Albert Cheu",
"Jonathan Ullman"
],
"doi": "10.1145/3406325.3450995",
"ref_id": "b8",
"title": "The limits of pan privacy and shuffle privacy for learning and estimation",
"year": "June 21-25, 2021. 2021"
},
{
"authors": [
"E Cohen",
"X Lyu",
"J Nelson",
"T Sarlós",
"M Shechner",
"U Stemmer"
],
"doi": "",
"ref_id": "b9",
"title": "On the robustness of countsketch to adaptive inputs",
"year": "17-23 July 2022. 2022"
},
{
"authors": [
"S Denisov",
"H B Mcmahan",
"J Rush",
"A D Smith",
"A G Thakurta"
],
"doi": "",
"ref_id": "b10",
"title": "Improved differential privacy for SGD via optimal private linear operators on adaptive streams",
"year": "2022"
},
{
"authors": [
"John C Duchi",
"Michael I Jordan",
"Martin J Wainwright"
],
"doi": "10.1109/focs.2013.53",
"ref_id": "b11",
"title": "Local Privacy and Statistical Minimax Rates",
"year": "2013"
},
{
"authors": [
"D Durfee",
"R M Rogers"
],
"doi": "10.52591/lxai201912080",
"ref_id": "b12",
"title": "LatinX in AI at Neural Information Processing Systems Conference 2019",
"year": "2019. December 8-14, 2019. 2019"
},
{
"authors": [
"Cynthia Dwork",
"Krishnaram Kenthapadi",
"Frank Mcsherry",
"Ilya Mironov",
"Moni Naor"
],
"doi": "10.1007/11761679_29",
"ref_id": "b13",
"title": "Our Data, Ourselves: Privacy Via Distributed Noise Generation",
"year": "2006"
},
{
"authors": [
"Cynthia Dwork",
"Frank Mcsherry",
"Kobbi Nissim",
"Adam Smith"
],
"doi": "10.1007/11681878_14",
"ref_id": "b14",
"title": "Calibrating Noise to Sensitivity in Private Data Analysis",
"year": "2006"
},
{
"authors": [
"Cynthia Dwork",
"Moni Naor",
"Toniann Pitassi",
"Guy N Rothblum"
],
"doi": "10.1145/1806689.1806787",
"ref_id": "b15",
"title": "Differential privacy under continual observation",
"year": "5-8 June 2010. 2010"
},
{
"authors": [
"Yiping Li",
"Jianwen Chen",
"Ling Feng"
],
"doi": "10.7763/ijiet.2015.v5.568",
"ref_id": "b16",
"title": "Uncertainty Handling in a Tabular Representation",
"year": "January 5-7, 2010. 2010"
},
{
"authors": [
"C Dwork",
"G N Rothblum",
"S P Vadhan"
],
"doi": "10.1109/FOCS.2010",
"ref_id": "b17",
"title": "Boosting and differential privacy",
"year": "October 23-26, 2010. 2010"
},
{
"authors": [
"C Dwork",
"M Naor",
"O Reingold",
"G N Rothblum"
],
"doi": "10.1007/978-3-662-48800-3",
"ref_id": "b18",
"title": "Advances in Cryptology – ASIACRYPT 2015",
"year": "November 29 -December 3, 2015. 9453. 2015"
},
{
"authors": [
"Alexander Edmonds",
"Aleksandar Nikolov",
"Jonathan Ullman"
],
"doi": "10.1145/3357713.3384297",
"ref_id": "b19",
"title": "The power of factorization mechanisms in local and central differential privacy",
"year": "June 22-26, 2020. 2020"
},
{
"authors": [
"H Fichtenberger",
"M Henzinger",
"W Ost"
],
"doi": "10.4230/LIPIcs.ESA.2021",
"ref_id": "b20",
"title": "Differentially private algorithms for graphs under continual observation",
"year": "September 6-8, 2021. 2021"
},
{
"authors": [
"B Ghazi",
"R Kumar",
"J Nelson",
"P Manurangsi"
],
"doi": "10.4230/LIPIcs.ITCS.2023",
"ref_id": "b21",
"title": "Private counting of distinct and k-occurring items in time windows",
"year": "January 10-13, 2023. 2023"
},
{
"authors": [
"Moritz Hardt",
"Kunal Talwar"
],
"doi": "10.1145/1806689.1806786",
"ref_id": "b22",
"title": "On the geometry of differential privacy",
"year": "2010"
},
{
"authors": [
"M Hardt",
"K Ligett",
"F Mcsherry"
],
"doi": "",
"ref_id": "b23",
"title": "A simple and practical algorithm for differentially private data release",
"year": "2012"
},
{
"authors": [
"Avinatan Hassidim",
"Haim Kaplan",
"Yishay Mansour",
"Yossi Matias",
"Uri Stemmer"
],
"doi": "10.1145/3556972",
"ref_id": "b24",
"title": "Adversarially Robust Streaming Algorithms via Differential Privacy",
"year": "2022"
},
{
"authors": [
"Michael Hay",
"Vibhor Rastogi",
"Gerome Miklau",
"Dan Suciu"
],
"doi": "10.14778/1920841.1920970",
"ref_id": "b25",
"title": "Boosting the accuracy of differentially private histograms through consistency",
"year": "2010"
},
{
"authors": [
"Michael Hay",
"Ashwin Machanavajjhala",
"Gerome Miklau",
"Yan Chen",
"Dan Zhang"
],
"doi": "10.1145/2882903.2882931",
"ref_id": "b26",
"title": "Principled Evaluation of Differentially Private Algorithms using DPBench",
"year": "June 26 -July 01, 2016. 2016"
},
{
"authors": [
"P Jain",
"P Kothari",
"A Thakurta"
],
"doi": "",
"ref_id": "b27",
"title": "Differentially private online learning",
"year": "25-27 Jun 2012"
},
{
"authors": [
"Peter Kairouz",
"H Brendan Mcmahan"
],
"doi": "10.1561/2200000083",
"ref_id": "b28",
"title": "Advances and Open Problems in Federated Learning",
"year": "Jul 2021"
},
{
"authors": [
"Haim Kaplan",
"Yishay Mansour",
"Kobbi Nissim",
"Uri Stemmer"
],
"doi": "10.1007/978-3-030-84252-9_4",
"ref_id": "b29",
"title": "Separating Adaptive Streaming from Oblivious Streaming Using the Bounded Storage Model",
"year": "August 16-20, 2021. 2021"
},
{
"authors": [
"S P Kasiviswanathan",
"A D Smith"
],
"doi": "10.29012/jpc.v6i1.634",
"ref_id": "b30",
"title": "On the 'semantics' of differential privacy: A Bayesian formulation",
"year": "2014"
},
{
"authors": [
"Shiva Prasad Kasiviswanathan",
"Homin K Lee",
"Kobbi Nissim",
"Sofya Raskhodnikova",
"Adam Smith"
],
"doi": "10.1137/090756090",
"ref_id": "b31",
"title": "What Can We Learn Privately?",
"year": "2011"
},
{
"authors": [
"R Mckenna",
"D R Sheldon"
],
"doi": "",
"ref_id": "b32",
"title": "Permute-and-Flip: a new mechanism for differentially private selection",
"year": ""
},
{
"authors": [
"F Mcsherry",
"K Talwar"
],
"doi": "10.1109/FOCS.2007",
"ref_id": "b33",
"title": "Mechanism design via differential privacy",
"year": "2007"
},
{
"authors": [
"I Mironov",
"M Naor",
"G Segev"
],
"doi": "10.1137/080733772",
"ref_id": "b34",
"title": "Sketching in adversarial environments",
"year": "2011"
},
{
"authors": [
"Victor Perrier",
"Hassan Jameel Asghar",
"Dali Kaafar"
],
"doi": "10.14722/ndss.2019.23535",
"ref_id": "b35",
"title": "Private Continual Release of Real-Valued Data Streams",
"year": "February 24-27, 2019. 2019"
},
{
"authors": [
"G Qiao",
"W Su",
"L Zhang"
],
"doi": "",
"ref_id": "b36",
"title": "Oneshot differentially private top-k selection",
"year": "Jul 2021"
},
{
"authors": [
"A Rényi"
],
"doi": "",
"ref_id": "b37",
"title": "On measures of entropy and information",
"year": "1961. 1961"
},
{
"authors": [
"S Song",
"S Little",
"S Mehta",
"S A Vinterbo",
"K Chaudhuri"
],
"doi": "",
"ref_id": "b38",
"title": "Differentially private continual release of graph statistics",
"year": "2018"
},
{
"authors": [
"T Steinke",
"J R Ullman"
],
"doi": "10.1109/FOCS.2017",
"ref_id": "b39",
"title": "Tight lower bounds for differentially private selection",
"year": "October 15-17, 2017. 2017"
},
{
"authors": [
"K Talwar",
"A Thakurta",
"L Zhang"
],
"doi": "",
"ref_id": "b40",
"title": "Nearly optimal private LASSO",
"year": "December 7-12, 2015. 2015"
},
{
"authors": [
"A G Thakurta",
"A Smith"
],
"doi": "",
"ref_id": "b41",
"title": "Nearly) optimal algorithms for private online learning in full-information and bandit settings",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b42",
"title": "",
"year": "2013"
},
{
"authors": [
"J Ullman"
],
"doi": "10.1037/e513972011-003",
"ref_id": "b43",
"title": "Holistic health as a model of personal and social responsibility",
"year": "2021"
},
{
"authors": [
"Xiaokui Xiao",
"Guozhang Wang",
"Johannes Gehrke"
],
"doi": "10.1109/tkde.2010.247",
"ref_id": "b44",
"title": "Differential Privacy via Wavelet Transforms",
"year": "2011"
},
{
"authors": [
"T Yang",
"G Andrew",
"H Eichner",
"H Sun",
"W Li",
"N Kong",
"D Ramage",
"F Beaufays"
],
"doi": "",
"ref_id": "b45",
"title": "Applied federated learning: Improving google keyboard query suggestions",
"year": "2018"
},
{
"authors": [
"D Yu",
"S Naik",
"A Backurs",
"S Gopi",
"H A Inan",
"G Kamath",
"J Kulkarni",
"Y T Lee",
"A Manoel",
"L Wutschitz",
"S Yekhanin",
"H Zhang"
],
"doi": "",
"ref_id": "b46",
"title": "Differentially private fine-tuning of language models",
"year": "April 25-29, 2022. 2022"
}
] |
[
"c25c74f846bb7990",
"41c47ba301d21f7f",
"2b096180d61fbf45",
"e19ab76f0aa67fe7",
"fe438166b1470add",
"8b98999c9faf92c9",
"d790b7828244d783"
] |
[
"41c47ba301d21f7f",
"db9b519b091b31cf",
"7953aeb1476d4bb8",
"d5c0681736d49b7f",
"08b2c8cf0f9ac043",
"2b096180d61fbf45",
"ce27c22114d1ee91",
"8b98999c9faf92c9",
"763003a13ae6227b",
"b2006d1e58496862",
"e804bed69982e6a3",
"d4f4e324a3238aec",
"6d1ddd54da3e5043",
"d445022606fcbdbc",
"8ca672d841e344b7",
"7c2c43280cc1cd25",
"8825f50ffe8a160f",
"485eb327a20e07c7",
"c25c74f846bb7990",
"c561dc3113798455",
"fe438166b1470add",
"3b7b5ef147d7d0e7",
"d11b642ab4bd4b9f",
"4da31fd916b59ec5",
"151406497671abda",
"70127ee37b2b3720",
"eccef1493e047083",
"e19ab76f0aa67fe7",
"56e6429503c52a47",
"9d4c1fe04aeeb3fe",
"a358c4111b09c833",
"bc8d7d83b2701382",
"3d93598c5eca1b24",
"5856deb45655b800",
"c1666dde34efdd91",
"c38bad686dd514bf",
"40491b80e36737dc",
"5c04f626f90ca4c2",
"d790b7828244d783",
"b74dd004b4d6cc24",
"2f7713cb5aca4ee8",
"e6fdca159d14451e",
"5a382d9f197ef3a6",
"45496ed816e1f42a",
"0c70a4dd70ea23d3",
"a3c6c26da8626e33",
"de905221c9403cea"
] |
vZh3aw4TaF
|
Tight Data Access Bounds for Private Top-$k$ Selection
|
data/openreview_paper/ICML_2023_oral/vZh3aw4TaF//paper.pdf
| 28
| 7
|
[
{
"authors": [
"Zeyu Ding",
"Yuxin Wang",
"Yingtai Xiao",
"Guanhong Wang",
"Danfeng Zhang",
"Daniel Kifer"
],
"doi": "10.1007/s00778-022-00728-2",
"ref_id": "b6",
"title": "Free gap estimates from the exponential mechanism, sparse vector, noisy max and related algorithms",
"year": "2021"
},
{
"authors": [
"Cynthia Dwork",
"Aaron Roth"
],
"doi": "10.1561/0400000042",
"ref_id": "b8",
"title": "The Algorithmic Foundations of Differential Privacy",
"year": "2014"
},
{
"authors": [
"T Steinke",
"J R Ullman"
],
"doi": "",
"ref_id": "b24",
"title": "Tight lower bounds for differentially private selection",
"year": "October 15-17, 2017. 2017"
},
{
"authors": [
"Raghav Bhaskar",
"Srivatsan Laxman",
"Adam Smith",
"Abhradeep Thakurta"
],
"doi": "10.1145/1835804.1835869",
"ref_id": "b1",
"title": "Discovering frequent patterns in sensitive data",
"year": "2010"
},
{
"authors": [
"Frank Mcsherry",
"Kunal Talwar"
],
"doi": "10.1109/focs.2007.66",
"ref_id": "b19",
"title": "Mechanism Design via Differential Privacy",
"year": "-23, 2007. 2007"
},
{
"authors": [
"G Qiao",
"W J Su",
"L Zhang"
],
"doi": "",
"ref_id": "b21",
"title": "Oneshot differentially private top-k selection",
"year": "2021. July 2021. 2021"
},
{
"authors": [
"D Durfee",
"R M Rogers"
],
"doi": "10.52591/lxai201912080",
"ref_id": "b7",
"title": "LatinX in AI at Neural Information Processing Systems Conference 2019",
"year": "2019. December 8-14, 2019. 2019"
}
] |
[
{
"authors": [
"M Bafna",
"J R Ullman"
],
"doi": "",
"ref_id": "b0",
"title": "The price of selection in differential privacy",
"year": "7-10 July 2017. 2017"
},
{
"authors": [
"Raghav Bhaskar",
"Srivatsan Laxman",
"Adam Smith",
"Abhradeep Thakurta"
],
"doi": "10.1145/1835804.1835869",
"ref_id": "b1",
"title": "Discovering frequent patterns in sensitive data",
"year": "2010"
},
{
"authors": [
"J Blitzstein",
"J Hwang"
],
"doi": "",
"ref_id": "b2",
"title": "Introduction to Probability",
"year": "2014"
},
{
"authors": [
"Gilles Brassard",
"Sampath Kannan"
],
"doi": "10.1016/0020-0190(88)90210-4",
"ref_id": "b3",
"title": "The generation of random permutations on the fly",
"year": "1988"
},
{
"authors": [
"A R Cardoso",
"R Rogers"
],
"doi": "",
"ref_id": "b4",
"title": "Differentially private histograms under continual observation: Streaming selection into the unknown",
"year": "March 2022. 2022"
},
{
"authors": [
"L Devroye"
],
"doi": "",
"ref_id": "b5",
"title": "Non-Uniform Random Variate Generation",
"year": "1986"
},
{
"authors": [
"Zeyu Ding",
"Yuxin Wang",
"Yingtai Xiao",
"Guanhong Wang",
"Danfeng Zhang",
"Daniel Kifer"
],
"doi": "10.1007/s00778-022-00728-2",
"ref_id": "b6",
"title": "Free gap estimates from the exponential mechanism, sparse vector, noisy max and related algorithms",
"year": "2021"
},
{
"authors": [
"D Durfee",
"R M Rogers"
],
"doi": "10.52591/lxai201912080",
"ref_id": "b7",
"title": "LatinX in AI at Neural Information Processing Systems Conference 2019",
"year": "2019. December 8-14, 2019. 2019"
},
{
"authors": [
"Cynthia Dwork",
"Aaron Roth"
],
"doi": "10.1561/0400000042",
"ref_id": "b8",
"title": "The Algorithmic Foundations of Differential Privacy",
"year": "2014"
},
{
"authors": [
"Ronald Fagin"
],
"doi": "10.1006/jcss.1998.1600",
"ref_id": "b9",
"title": "Combining Fuzzy Information from Multiple Systems",
"year": "1999"
},
{
"authors": [
"Ronald Fagin",
"Amnon Lotem",
"Moni Naor"
],
"doi": "10.1016/s0022-0000(03)00026-6",
"ref_id": "b10",
"title": "Optimal aggregation algorithms for middleware",
"year": "2003"
},
{
"authors": [
"J E Gentle"
],
"doi": "",
"ref_id": "b11",
"title": "Computational Statistics. Statistics and Computing",
"year": "December 2009"
},
{
"authors": [
"I Gerontidis",
"R L Smith"
],
"doi": "",
"ref_id": "b12",
"title": "Monte carlo generation of order statistics from general distributions",
"year": "1982"
},
{
"authors": [
"A Guntuboyina"
],
"doi": "",
"ref_id": "b13",
"title": "Lecture Notes for 201A Fall",
"year": "2019. Oct. 21, 2022"
},
{
"authors": [
"Wassily Hoeffding"
],
"doi": "10.1007/978-1-4612-0865-5_26",
"ref_id": "b14",
"title": "Probability Inequalities for sums of Bounded Random Variables",
"year": "1994"
},
{
"authors": [
"Ihab F Ilyas",
"George Beskales",
"Mohamed A Soliman"
],
"doi": "10.1145/1391729.1391730",
"ref_id": "b15",
"title": "A survey of top- <i>k</i> query processing techniques in relational database systems",
"year": "2008"
},
{
"authors": [
"D Lurie",
"H O Hartley"
],
"doi": "10.1080/00031305.1972.10477319",
"ref_id": "b16",
"title": "Machine-Generation of Order Statistics for Monte Carlo Computations",
"year": "1972"
},
{
"authors": [
"J Matousek",
"J Nesetril"
],
"doi": "",
"ref_id": "b17",
"title": "Invitation to Discrete Mathematics",
"year": "2009"
},
{
"authors": [
"R Mckenna",
"D Sheldon"
],
"doi": "",
"ref_id": "b18",
"title": "Permute-and-flip: A new mechanism for differentially private selection",
"year": "2020. December 6-12, 2020. 2020"
},
{
"authors": [
"Frank Mcsherry",
"Kunal Talwar"
],
"doi": "10.1109/focs.2007.66",
"ref_id": "b19",
"title": "Mechanism Design via Differential Privacy",
"year": "-23, 2007. 2007"
},
{
"authors": [
"M Mitzenmacher",
"E Upfal"
],
"doi": "",
"ref_id": "b20",
"title": "Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis",
"year": "2017"
},
{
"authors": [
"G Qiao",
"W J Su",
"L Zhang"
],
"doi": "",
"ref_id": "b21",
"title": "Oneshot differentially private top-k selection",
"year": "2021. July 2021. 2021"
},
{
"authors": [
"Herbert Robbins"
],
"doi": "10.2307/2308012",
"ref_id": "b22",
"title": "A Remark on Stirling's Formula",
"year": "1955. 19300972"
},
{
"authors": [
"S Ross"
],
"doi": "",
"ref_id": "b23",
"title": "A First Course in Probability",
"year": "November 2018"
},
{
"authors": [
"T Steinke",
"J R Ullman"
],
"doi": "",
"ref_id": "b24",
"title": "Tight lower bounds for differentially private selection",
"year": "October 15-17, 2017. 2017"
},
{
"authors": [
"Salil P Vadhan"
],
"doi": "10.1007/978-3-319-57048-8_7",
"ref_id": "b25",
"title": "The Complexity of Differential Privacy",
"year": "2017"
},
{
"authors": [
"P Van Emde Boas"
],
"doi": "10.1109/sfcs.1975.26",
"ref_id": "b26",
"title": "Preserving order in a forest in less than logarithmic time",
"year": "October 13-15, 1975. 1975"
},
{
"authors": [
"H Zhang",
"I Mironov",
"M Hejazinia"
],
"doi": "",
"ref_id": "b27",
"title": "Wide network learning with differential privacy",
"year": "2021"
}
] |
[
"573d6ed507ae9dca",
"13dee622b725cef9",
"5ebe91915feede61",
"8a5642ab6f7761e4",
"28079758cacbc2d9",
"c2ee9bcf8c8c99f8",
"6d1ddd54da3e5043"
] |
[
"d341758d4f4fbff0",
"8a5642ab6f7761e4",
"2622d63239179a47",
"f63637a87c2cdb1d",
"2b096180d61fbf45",
"ce0e7aff53116447",
"573d6ed507ae9dca",
"6d1ddd54da3e5043",
"13dee622b725cef9",
"358ff1380f2c6abf",
"ba4bbec38392adca",
"419c46564dc12634",
"059ebe336df16ca2",
"44c78e9efdc5f846",
"33017cb9a6f77aea",
"5231f4fc56fc55ad",
"041178d1d8831493",
"cc1e218aa1fca463",
"537c17b482834199",
"28079758cacbc2d9",
"871a79d52f097ed0",
"c2ee9bcf8c8c99f8",
"e3c8e957412a3300",
"8e80be1720571d81",
"5ebe91915feede61",
"4d239f9636a69107",
"ec8e2f6659ccf3d3",
"05a73874f611d43c"
] |
nkals4A4Vs
|
Do the Rewards Justify the Means? Measuring Trade-Offs Between Rewards and Ethical Behavior in the Machiavelli Benchmark
|
data/openreview_paper/ICML_2023_oral/nkals4A4Vs//paper.pdf
| 83
| 14
|
[
{
"authors": [
"M O Riedl",
"B Harrison"
],
"doi": "",
"ref_id": "b62",
"title": "Using stories to teach human values to artificial agents",
"year": "2016"
},
{
"authors": [
"Prithviraj Ammanabrolu",
"Mark Riedl"
],
"doi": "10.18653/v1/d19-5301",
"ref_id": "b6",
"title": "Transfer in Deep Reinforcement Learning Using Knowledge Graphs",
"year": "2021"
},
{
"authors": [
"J Achiam",
"D Held",
"A Tamar",
"P Abbeel"
],
"doi": "",
"ref_id": "b0",
"title": "Constrained policy optimization",
"year": "Aug 2017"
},
{
"authors": [
"Dylan Hadfield-Menell",
"Anca Dragan",
"Pieter Abbeel",
"Stuart Russell"
],
"doi": "10.24963/ijcai.2017/32",
"ref_id": "b28",
"title": "The Off-Switch Game",
"year": "2016"
},
{
"authors": [
"M S A Nahian",
"S Frazier",
"B Harrison",
"M Riedl"
],
"doi": "",
"ref_id": "b49",
"title": "Training value-aligned reinforcement learning agents using a normative prior",
"year": "2021"
},
{
"authors": [
"S Reddy",
"A Dragan",
"S Levine",
"S Legg",
"J Leike"
],
"doi": "",
"ref_id": "b60",
"title": "Learning human objectives by evaluating hypothetical behavior",
"year": "Jul 2020"
},
{
"authors": [
"G Dalal",
"K Dvijotham",
"M Vecerik",
"T Hester",
"C Paduraru",
"Y Tassa"
],
"doi": "",
"ref_id": "b19",
"title": "Safe exploration in continuous action spaces",
"year": "2018"
},
{
"authors": [
"Ishika Singh",
"Gargi Singh",
"Ashutosh Modi"
],
"doi": "10.65109/gbmr8139",
"ref_id": "b67",
"title": "Pre-trained Language Models as Prior Knowledge for Playing Text-based Games",
"year": "2021"
},
{
"authors": [
"C Tessler",
"D J Mankowitz",
"S Mannor"
],
"doi": "",
"ref_id": "b72",
"title": "Reward constrained policy optimization",
"year": "2019"
},
{
"authors": [
"S Griffith",
"K Subramanian",
"J Scholz",
"C L Isbell",
"A L Thomaz"
],
"doi": "",
"ref_id": "b27",
"title": "Policy shaping: Integrating human feedback with reinforcement learning",
"year": "2013"
},
{
"authors": [
"Mohammed Alshiekh",
"Roderick Bloem",
"Rüdiger Ehlers",
"Bettina Könighofer",
"Scott Niekum",
"Ufuk Topcu"
],
"doi": "10.1609/aaai.v32i1.11797",
"ref_id": "b4",
"title": "Safe Reinforcement Learning via Shielding",
"year": "2018"
},
{
"authors": [
"Prithviraj Ammanabrolu",
"Liwei Jiang",
"Maarten Sap",
"Hannaneh Hajishirzi",
"Yejin Choi"
],
"doi": "10.18653/v1/2022.naacl-main.439",
"ref_id": "b8",
"title": "Aligning to Social Norms and Values in Interactive Narratives",
"year": "2022"
},
{
"authors": [
"A Adhikari",
"X Yuan",
"M.-A Côté",
"M Zelinka",
"M.-A Rondeau",
"R Laroche",
"P Poupart",
"J Tang",
"A Trischler",
"W Hamilton"
],
"doi": "",
"ref_id": "b1",
"title": "Learning dynamic belief graphs to generalize on text-based games",
"year": "2020"
},
{
"authors": [
"A Ray",
"J Achiam",
"D Amodei"
],
"doi": "",
"ref_id": "b59",
"title": "Benchmarking safe exploration in deep reinforcement learning",
"year": "2019"
}
] |
[
{
"authors": [
"J Achiam",
"D Held",
"A Tamar",
"P Abbeel"
],
"doi": "",
"ref_id": "b0",
"title": "Constrained policy optimization",
"year": "Aug 2017"
},
{
"authors": [
"A Adhikari",
"X Yuan",
"M.-A Côté",
"M Zelinka",
"M.-A Rondeau",
"R Laroche",
"P Poupart",
"J Tang",
"A Trischler",
"W Hamilton"
],
"doi": "",
"ref_id": "b1",
"title": "Learning dynamic belief graphs to generalize on text-based games",
"year": "2020"
},
{
"authors": [
"M Ahn",
"A Brohan",
"N Brown",
"Y Chebotar",
"O Cortes",
"B David",
"C Finn",
"K Gopalakrishnan",
"K Hausman",
"A Herzog"
],
"doi": "",
"ref_id": "b2",
"title": "Do as i can, not as i say: Grounding language in robotic affordances",
"year": "2022"
},
{
"authors": [
"L Alexander",
"M Moore"
],
"doi": "",
"ref_id": "b3",
"title": "Deontological Ethics",
"year": "2021. 2021"
},
{
"authors": [
"Mohammed Alshiekh",
"Roderick Bloem",
"Rüdiger Ehlers",
"Bettina Könighofer",
"Scott Niekum",
"Ufuk Topcu"
],
"doi": "10.1609/aaai.v32i1.11797",
"ref_id": "b4",
"title": "Safe Reinforcement Learning via Shielding",
"year": "2018"
},
{
"authors": [
"Prithviraj Ammanabrolu",
"Mark Riedl"
],
"doi": "10.18653/v1/d19-5301",
"ref_id": "b5",
"title": "Transfer in Deep Reinforcement Learning Using Knowledge Graphs",
"year": "2020"
},
{
"authors": [
"Prithviraj Ammanabrolu",
"Mark Riedl"
],
"doi": "10.18653/v1/d19-5301",
"ref_id": "b6",
"title": "Transfer in Deep Reinforcement Learning Using Knowledge Graphs",
"year": "2021"
},
{
"authors": [
"P Ammanabrolu",
"E Tien",
"M Hausknecht",
"M O Riedl"
],
"doi": "",
"ref_id": "b7",
"title": "How to avoid being eaten by a grue: Structured exploration strategies for textual worlds",
"year": "2020"
},
{
"authors": [
"Prithviraj Ammanabrolu",
"Liwei Jiang",
"Maarten Sap",
"Hannaneh Hajishirzi",
"Yejin Choi"
],
"doi": "10.18653/v1/2022.naacl-main.439",
"ref_id": "b8",
"title": "Aligning to Social Norms and Values in Interactive Narratives",
"year": "2022"
},
{
"authors": [
"Anton Bakhtin",
"Noam Brown",
"Emily Dinan",
"Gabriele Farina",
"Colin Flaherty",
"Daniel Fried",
"Andrew Goff",
"Jonathan Gray",
"Hengyuan Hu",
"Athul Paul Jacob",
"Mojtaba Komeili",
"Karthik Konath",
"Minae Kwon",
"Adam Lerer",
"Mike Lewis",
"Alexander H Miller",
"Sasha Mitts",
"Adithya Renduchintala",
"Stephen Roller",
"Dirk Rowe",
"Weiyan Shi",
"Joe Spisak",
"Alexander Wei",
"David Wu",
"Hugh Zhang",
"Markus Zijlstra"
],
"doi": "10.1126/science.ade9097",
"ref_id": "b9",
"title": "Human-level play in the game of<i>Diplomacy</i>by combining language models with strategic reasoning",
"year": "2022"
},
{
"authors": [
"David A Baldwin"
],
"doi": "10.4135/9781446247587.n11",
"ref_id": "b10",
"title": "Power and International Relations",
"year": "2013"
},
{
"authors": [
"Mark W Baldwin"
],
"doi": "10.1037/0033-2909.112.3.461",
"ref_id": "b11",
"title": "Relational schemas and the processing of social information.",
"year": "1992"
},
{
"authors": [
"S Bubeck",
"V Chandrasekaran",
"R Eldan",
"J Gehrke",
"E Horvitz",
"E Kamar",
"P Lee",
"Y T Lee",
"Y Li",
"S Lundberg",
"H Nori",
"H Palangi",
"M T Ribeiro",
"Y Zhang"
],
"doi": "",
"ref_id": "b12",
"title": "Sparks of artificial general intelligence: Early experiments with gpt-4",
"year": "2023"
},
{
"authors": [
"J Carlsmith"
],
"doi": "10.1126/science.z66g9k7",
"ref_id": "b13",
"title": "ArXiv preprint server clamps down on AI slop",
"year": "2022"
},
{
"authors": [
"M Castells"
],
"doi": "",
"ref_id": "b14",
"title": "The power of identity",
"year": "2011"
},
{
"authors": [
"Zhoujun Cheng",
"Jungo Kasai",
"Tao Yu"
],
"doi": "10.18653/v1/2023.emnlp-industry.74",
"ref_id": "b15",
"title": "Batch Prompting: Efficient Inference with Large Language Model APIs",
"year": "2023"
},
{
"authors": [
"M.-A Côté",
"A Kádár",
"X Yuan",
"B Kybartas",
"T Barnes",
"E Fine",
"J Moore",
"M Hausknecht",
"L E Asri",
"M Adada"
],
"doi": "",
"ref_id": "b16",
"title": "Textworld: A learning environment for textbased games",
"year": "2018"
},
{
"authors": [
"R Crisp",
"Well-Being"
],
"doi": "",
"ref_id": "b17",
"title": "The Stanford Encyclopedia of Philosophy",
"year": "2021. 2021"
},
{
"authors": [
"Robert A Dahl"
],
"doi": "10.1002/bs.3830020303",
"ref_id": "b18",
"title": "The concept of power",
"year": "1957"
},
{
"authors": [
"G Dalal",
"K Dvijotham",
"M Vecerik",
"T Hester",
"C Paduraru",
"Y Tassa"
],
"doi": "",
"ref_id": "b19",
"title": "Safe exploration in continuous action spaces",
"year": "2018"
},
{
"authors": [
"Charles Darwin"
],
"doi": "10.4324/9780203509104",
"ref_id": "b20",
"title": "On the Origin of Species, 1859",
"year": "1859"
},
{
"authors": [
"Rudiger Dornbusch"
],
"doi": "10.3386/w1591",
"ref_id": "b21",
"title": "Purchasing Power Parity",
"year": "1985"
},
{
"authors": [
"Esteban",
"J Ray",
"D"
],
"doi": "10.1257/aer.101.4.1345",
"ref_id": "b22",
"title": "Linking conflict to inequality and polarization",
"year": "June 2011"
},
{
"authors": [
"S T Fiske",
"J Berdahl"
],
"doi": "",
"ref_id": "b23",
"title": "Social power",
"year": "2007"
},
{
"authors": [
"J R French",
"B Raven",
"D Cartwright"
],
"doi": "",
"ref_id": "b24",
"title": "The bases of social power",
"year": "1959"
},
{
"authors": [
"Samuel Gehman",
"Suchin Gururangan",
"Maarten Sap",
"Yejin Choi",
"Noah A Smith"
],
"doi": "10.18653/v1/2020.findings-emnlp.301",
"ref_id": "b25",
"title": "RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models",
"year": "November 2020"
},
{
"authors": [
"Uri Gneezy"
],
"doi": "10.1257/0002828053828662",
"ref_id": "b26",
"title": "Deception: The Role of Consequences",
"year": "March 2005"
},
{
"authors": [
"S Griffith",
"K Subramanian",
"J Scholz",
"C L Isbell",
"A L Thomaz"
],
"doi": "",
"ref_id": "b27",
"title": "Policy shaping: Integrating human feedback with reinforcement learning",
"year": "2013"
},
{
"authors": [
"Dylan Hadfield-Menell",
"Anca Dragan",
"Pieter Abbeel",
"Stuart Russell"
],
"doi": "10.24963/ijcai.2017/32",
"ref_id": "b28",
"title": "The Off-Switch Game",
"year": "2016"
},
{
"authors": [
"D Halliday",
"R Resnick",
"J Walker"
],
"doi": "",
"ref_id": "b29",
"title": "Fundamentals of physics",
"year": "2013"
},
{
"authors": [
"M Hausknecht",
"R Loynd",
"G Yang",
"A Swaminathan",
"J D Williams"
],
"doi": "",
"ref_id": "b30",
"title": "Nail: A general interactive fiction agent",
"year": "2019"
},
{
"authors": [
"Matthew Hausknecht",
"Prithviraj Ammanabrolu",
"Marc-Alexandre Côté",
"Xingdi Yuan"
],
"doi": "10.1609/aaai.v34i05.6297",
"ref_id": "b31",
"title": "Interactive Fiction Games: A Colossal Adventure",
"year": "2020"
},
{
"authors": [
"Ji He",
"Jianshu Chen",
"Xiaodong He",
"Jianfeng Gao",
"Lihong Li",
"Li Deng",
"Mari Ostendorf"
],
"doi": "10.18653/v1/p16-1153",
"ref_id": "b32",
"title": "Deep Reinforcement Learning with a Natural Language Action Space",
"year": "August 2016"
},
{
"authors": [
"P He",
"X Liu",
"J Gao",
"W Chen",
"Deberta"
],
"doi": "",
"ref_id": "b33",
"title": "DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION",
"year": "2021"
},
{
"authors": [
"D Hendrycks"
],
"doi": "",
"ref_id": "b34",
"title": "Natural selection favors ais over humans",
"year": "2023"
},
{
"authors": [
"D Hendrycks",
"M Mazeika"
],
"doi": "10.1126/science.z66g9k7",
"ref_id": "b35",
"title": "ArXiv preprint server clamps down on AI slop",
"year": "2022"
},
{
"authors": [
"Dan Hendrycks",
"Kevin Zhao",
"Steven Basart",
"Jacob Steinhardt",
"Dawn Song"
],
"doi": "10.1109/cvpr46437.2021.01501",
"ref_id": "b36",
"title": "Natural Adversarial Examples",
"year": "2021"
},
{
"authors": [
"D Hendrycks",
"N Carlini",
"J Schulman",
"J Steinhardt"
],
"doi": "",
"ref_id": "b37",
"title": "Unsolved problems in ml safety",
"year": "2021"
},
{
"authors": [
"Dan Hendrycks",
"Andy Zou",
"Mantas Mazeika",
"Leonard Tang",
"Bo Li",
"Dawn Song",
"Jacob Steinhardt"
],
"doi": "10.1109/cvpr52688.2022.01628",
"ref_id": "b38",
"title": "PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures",
"year": "2021"
},
{
"authors": [
"Thomas Hobbes",
"M Thomas Missner",
"Thomas Hobbes"
],
"doi": "10.4324/9781315507613",
"ref_id": "b39",
"title": "Thomas Hobbes: Leviathan (Longman Library of Primary Sources in Philosophy)",
"year": "2016"
},
{
"authors": [
"R S Khemani"
],
"doi": "",
"ref_id": "b40",
"title": "Glossary of industrial organisation economics and competition law",
"year": "1993"
},
{
"authors": [
"P Liang",
"R Bommasani",
"T Lee",
"D Tsipras",
"D Soylu",
"M Yasunaga",
"Y Zhang",
"D Narayanan",
"Y Wu",
"A Kumar"
],
"doi": "",
"ref_id": "b41",
"title": "Holistic evaluation of language models",
"year": "2022"
},
{
"authors": [
"Yaobo Liang",
"Chenfei Wu",
"Ting Song",
"Wenshan Wu",
"Yan Xia",
"Yu Liu",
"Yang Ou",
"Shuai Lu",
"Lei Ji",
"Shaoguang Mao",
"Yun Wang",
"Linjun Shou",
"Ming Gong",
"Nan Duan"
],
"doi": "10.34133/icomputing.0063",
"ref_id": "b42",
"title": "TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs",
"year": "2023"
},
{
"authors": [
"Stephanie Lin",
"Jacob Hilton",
"Owain Evans"
],
"doi": "10.18653/v1/2022.acl-long.229",
"ref_id": "b43",
"title": "TruthfulQA: Measuring How Models Mimic Human Falsehoods",
"year": "May 2022"
},
{
"authors": [
"I.-J Liu",
"X Yuan",
"M.-A Côté",
"P.-Y Oudeyer",
"A Schwing"
],
"doi": "",
"ref_id": "b44",
"title": "Asking for knowledge (AFK): Training RL agents to query external knowledge using language",
"year": ""
},
{
"authors": [
"Jixiang Niu"
],
"doi": "10.1109/mlbdbi58171.2022.00076",
"ref_id": "b45",
"title": "Research on loan prediction based on interpretable machine learning",
"year": "Jul 2022"
},
{
"authors": [
"A H Maslow"
],
"doi": "10.1037/h0054346",
"ref_id": "b46",
"title": "A theory of human motivation.",
"year": "1943"
},
{
"authors": [
"Linda D Molm"
],
"doi": "10.1177/0190272510369079",
"ref_id": "b47",
"title": "The Structure of Reciprocity",
"year": "2010"
},
{
"authors": [
"Luke Muehlhauser",
"Anna Salamon"
],
"doi": "10.1007/978-3-642-32560-1_2",
"ref_id": "b48",
"title": "Intelligence Explosion: Evidence and Import",
"year": "2012"
},
{
"authors": [
"M S A Nahian",
"S Frazier",
"B Harrison",
"M Riedl"
],
"doi": "",
"ref_id": "b49",
"title": "Training value-aligned reinforcement learning agents using a normative prior",
"year": "2021"
},
{
"authors": [
"Kathryn M Neckerman",
"Florencia Torche"
],
"doi": "10.1146/annurev.soc.33.040406.131755",
"ref_id": "b50",
"title": "Inequality: Causes and Consequences",
"year": "2007"
},
{
"authors": [
"J Nitzan",
"S Bichler"
],
"doi": "",
"ref_id": "b51",
"title": "Capital as power: A study of order and creorder",
"year": "2009"
},
{
"authors": [
"S Okasha"
],
"doi": "",
"ref_id": "b52",
"title": "Biological Altruism",
"year": "Summer 2020. 2020"
},
{
"authors": [
"Openai"
],
"doi": "",
"ref_id": "b53",
"title": "",
"year": "2023"
},
{
"authors": [
"T Parsons"
],
"doi": "",
"ref_id": "b54",
"title": "On the concept of political power",
"year": "1963"
},
{
"authors": [
"Thomas Piketty"
],
"doi": "10.4159/9780674369542",
"ref_id": "b55",
"title": "Capital in the Twenty-First Century",
"year": "2014"
},
{
"authors": [
"Katharina Pistor"
],
"doi": "10.1016/j.jce.2013.03.003",
"ref_id": "b56",
"title": "A legal theory of finance",
"year": "2013"
},
{
"authors": [
"B Pratyusha"
],
"doi": "",
"ref_id": "b57",
"title": "World view",
"year": "2020"
},
{
"authors": [
"R Rajan"
],
"doi": "",
"ref_id": "b58",
"title": "The third pillar: How markets and the state leave the community behind",
"year": "2019"
},
{
"authors": [
"A Ray",
"J Achiam",
"D Amodei"
],
"doi": "",
"ref_id": "b59",
"title": "Benchmarking safe exploration in deep reinforcement learning",
"year": "2019"
},
{
"authors": [
"S Reddy",
"A Dragan",
"S Levine",
"S Legg",
"J Leike"
],
"doi": "",
"ref_id": "b60",
"title": "Learning human objectives by evaluating hypothetical behavior",
"year": "Jul 2020"
},
{
"authors": [
"S Reed",
"K Zolna",
"E Parisotto",
"S G Colmenarejo",
"A Novikov",
"G Barth-Maron",
"M Giménez",
"Y Sulsky",
"J Kay",
"J T Springenberg",
"T Eccles",
"J Bruce",
"A Razavi",
"A Edwards",
"N Heess",
"Y Chen",
"R Hadsell",
"O Vinyals",
"M Bordbar",
"N Freitas"
],
"doi": "",
"ref_id": "b61",
"title": "A generalist agent",
"year": "2022"
},
{
"authors": [
"M O Riedl",
"B Harrison"
],
"doi": "",
"ref_id": "b62",
"title": "Using stories to teach human values to artificial agents",
"year": "2016"
},
{
"authors": [
"B Russell"
],
"doi": "",
"ref_id": "b63",
"title": "Power: A new social analysis",
"year": "2004"
},
{
"authors": [
"T Schick",
"J Dwivedi-Yu",
"R Dessì",
"R Raileanu",
"M Lomeli",
"L Zettlemoyer",
"N Cancedda",
"T Scialom"
],
"doi": "",
"ref_id": "b64",
"title": "Toolformer: Language models can teach themselves to use tools",
"year": "2023"
},
{
"authors": [
"Mohit Shridhar",
"Jesse Thomason",
"Daniel Gordon",
"Yonatan Bisk",
"Winson Han",
"Roozbeh Mottaghi",
"Luke Zettlemoyer",
"Dieter Fox"
],
"doi": "10.1109/cvpr42600.2020.01075",
"ref_id": "b65",
"title": "ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks",
"year": "June 2020"
},
{
"authors": [
"M Shridhar",
"X Yuan",
"M.-A Côté",
"Y Bisk",
"A Trischler",
"M Hausknecht"
],
"doi": "",
"ref_id": "b66",
"title": "ALFWorld: Aligning Text and Embodied Environments for Interactive Learning",
"year": "2021"
},
{
"authors": [
"Ishika Singh",
"Gargi Singh",
"Ashutosh Modi"
],
"doi": "10.65109/gbmr8139",
"ref_id": "b67",
"title": "Pre-trained Language Models as Prior Knowledge for Playing Text-based Games",
"year": "2021"
},
{
"authors": [
"A Srivastava",
"A Rastogi",
"A Rao",
"A A M Shoeb",
"A Abid",
"A Fisch",
"A R Brown",
"A Santoro",
"A Gupta",
"A Garriga-Alonso"
],
"doi": "",
"ref_id": "b68",
"title": "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models",
"year": "2022"
},
{
"authors": [
"N N Taleb",
"Antifragile"
],
"doi": "",
"ref_id": "b69",
"title": "Things that gain from disorder",
"year": "2012"
},
{
"authors": [
"R Taori",
"I Gulrajani",
"T Zhang",
"Y Dubois",
"X Li",
"C Guestrin",
"P Liang",
"T B Hashimoto"
],
"doi": "",
"ref_id": "b70",
"title": "Stanford alpaca: An instruction-following llama model",
"year": "2023"
},
{
"authors": [
"Yi Tay",
"Mostafa Dehghani",
"Dara Bahri",
"Donald Metzler"
],
"doi": "10.1145/3530811",
"ref_id": "b71",
"title": "Efficient Transformers: A Survey",
"year": "2021"
},
{
"authors": [
"C Tessler",
"D J Mankowitz",
"S Mannor"
],
"doi": "",
"ref_id": "b72",
"title": "Reward constrained policy optimization",
"year": "2019"
},
{
"authors": [
"Alex Wang",
"Amanpreet Singh",
"Julian Michael",
"Felix Hill",
"Omer Levy",
"Samuel Bowman"
],
"doi": "10.18653/v1/w18-5446",
"ref_id": "b73",
"title": "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding",
"year": "2019"
},
{
"authors": [
"Max Weber"
],
"doi": "10.1002/9780470755679.ch3",
"ref_id": "b74",
"title": "Economy and Society: An Outline of Interpretive Sociology",
"year": "1978"
},
{
"authors": [
"J Wei",
"X Wang",
"D Schuurmans",
"M Bosma",
"F Xia",
"E H Chi",
"Q V Le",
"D Zhou"
],
"doi": "",
"ref_id": "b75",
"title": "Chain of thought prompting elicits reasoning in large language models",
"year": "2022"
},
{
"authors": [
"Laura Weidinger",
"Jonathan Uesato",
"Maribeth Rauh",
"Conor Griffin",
"Po-Sen Huang",
"John Mellor",
"Amelia Glaese",
"Myra Cheng",
"Borja Balle",
"Atoosa Kasirzadeh",
"Courtney Biles",
"Sasha Brown",
"Zac Kenton",
"Will Hawkins",
"Tom Stepleton",
"Abeba Birhane",
"Lisa Anne Hendricks",
"Laura Rimell",
"William Isaac",
"Julia Haas",
"Sean Legassick",
"Geoffrey Irving",
"Iason Gabriel"
],
"doi": "10.1145/3531146.3533088",
"ref_id": "b76",
"title": "Taxonomy of Risks posed by Language Models",
"year": "2022. 2022"
},
{
"authors": [
"S Yao",
"R Rao",
"M Hausknecht",
"K Narasimhan"
],
"doi": "10.4324/9781351211628-48",
"ref_id": "b77",
"title": "John L. Stoddard, Lectures, 10 vols. (Boston: Balch, 1899), vol. VII: MEXICO, pp. 89–90, 93–94, 97–98, 101–102, 105",
"year": "November 2020. 3 24.7 92 99 81 98 96 94"
},
{
"authors": [],
"doi": "10.7717/peerj-cs.1752/table-10",
"ref_id": "b78",
"title": "Table 10: Acronym table",
"year": "null"
},
{
"authors": [],
"doi": "10.5962/bhl.title.149293",
"ref_id": "b79",
"title": "36, 40-41, 44, 47, 49-50, 53, 58, 62-63, 67-68, 71, 74, 83, 87-88, 90-91, 93-96, 99-100",
"year": ""
},
{
"authors": [],
"doi": "10.7312/pres20440-005",
"ref_id": "b80",
"title": "1 The Altruistic Response Model",
"year": ""
},
{
"authors": [
"Katarzyna Wodniak",
"Anne Holohan"
],
"doi": "10.1108/s2050-206020190000019005",
"ref_id": "b81",
"title": "Do No Harm Lest Others Do Harm to You: Self-Protection and Risk Management by Generation Y on Social Media",
"year": ""
},
{
"authors": [
"Heather E Douglas",
"Mitchell L Cunningham",
"Jessika Tisdell",
"Justin Arneson"
],
"doi": "10.3389/fpsyg.2023.960013",
"ref_id": "b82",
"title": "The problem with confidence: too much and too little results in poorer achievement, inner conflict, and social inhibition",
"year": ""
}
] |
[
"8148a97ceec53ecb",
"dbda11c3a14d4cab",
"2e09dcc45e41d76b",
"b17913b9ea1988c3",
"9d501771b013a60f",
"77a51a5bddbe6fa6",
"639b2d84deb37b87",
"2fb431e71a803b26",
"d3e30383b03d19b7",
"11bfbd0c3208c8c5",
"ce2719e284eeca02",
"21b95f40fe72a3ff",
"7557c08cdf41f7b9",
"4e3616613cd4aa2c"
] |
[
"2e09dcc45e41d76b",
"7557c08cdf41f7b9",
"1f88c394f9f744fe",
"c2de2ec3f019389c",
"ce2719e284eeca02",
"62cf85c003058b8f",
"dbda11c3a14d4cab",
"c5b4c8624f591cb5",
"21b95f40fe72a3ff",
"cd466969b0ed06cb",
"129f30dcd24c3fa9",
"2e5d0119f01a7ba5",
"d28ca8d5affcaa14",
"bdec7073a04b815e",
"0c23adcbabf8c464",
"5874b9e525100c60",
"95d178107a786578",
"6f4671298c075eb1",
"76542b8c384bcc7d",
"639b2d84deb37b87",
"db016f9dfd9d6586",
"b3c5aeb2b634fa0d",
"afe89d048293aa1e",
"7db249f7f5f2ab97",
"bf729fa1b54aed84",
"5d34b2d9ceff502b",
"f987fbc92e1e6235",
"11bfbd0c3208c8c5",
"b17913b9ea1988c3",
"2cc94a1f6dddfd7c",
"c975dae35a388a58",
"4e9bb5625e1cdc28",
"7769fd47cecc28d1",
"dae8f5e9c0b676d7",
"72e1ce6fb838a586",
"e1b4d82f0b37ff7d",
"ac7017d6f8dfa6d4",
"294ec45501c93ea0",
"ccfc59194357fa30",
"d8acb96d34b50a4c",
"27d5e0d55bf05c82",
"41c16cba527387ed",
"0c993e9d0738b857",
"09566fcd6eeb0abb",
"5c9660e58b446a32",
"188795d65bc86566",
"9257e959815480d9",
"229cb1d6f154442e",
"ff8a08cf33e31a8c",
"9d501771b013a60f",
"8f9ea1146ea3dcc5",
"09ade1ad5b633a32",
"e80f74291f1dcc1e",
"002fca8fafc30948",
"e06efb0e04ebf404",
"5edf2138fedaf1da",
"bbc272e8ba766cac",
"6cf8d6aeaf32d52a",
"8d08e0b785fdd537",
"4e3616613cd4aa2c",
"77a51a5bddbe6fa6",
"9599d4a979ad5301",
"8148a97ceec53ecb",
"12e143f72e8bc18c",
"5a7c5b5c84dbd66c",
"1c44cd396f904460",
"609ffa581e99ba98",
"2fb431e71a803b26",
"127acbea4c906f7c",
"512bc3e3a20acd28",
"7995c862286897fa",
"0a9f08c4aa572be8",
"d3e30383b03d19b7",
"c295fb8a02e46efe",
"ed138c3759aff1de",
"526f5711042f1a37",
"600cce69367bcad7",
"7765f5879630fea3",
"56444b9942eb558a",
"4a668a0e1633bb66",
"88c5c1e6c569fef9",
"b03b064a7655449e",
"3a289d7226df7906"
] |
4RvcXByvnR
|
Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning
|
data/openreview_paper/ICML_2023_oral/4RvcXByvnR//paper.pdf
| 57
| 1
|
[
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b49",
"title": "Reinforcement learning: An introduction",
"year": "2018"
}
] |
[
{
"authors": [
"C Allen",
"N Parikh",
"O Gottesman",
"G Konidaris"
],
"doi": "",
"ref_id": "b0",
"title": "Learning markov state abstractions for deep reinforcement learning",
"year": "2021"
},
{
"authors": [
"P Auer"
],
"doi": "",
"ref_id": "b1",
"title": "Using confidence bounds for exploitationexploration trade-offs",
"year": "Nov. 2002"
},
{
"authors": [
"M G Azar",
"I Osband",
"R Munos"
],
"doi": "",
"ref_id": "b2",
"title": "Minimax regret bounds for reinforcement learning",
"year": "06-11 Aug 2017"
},
{
"authors": [
"A P Badia",
"B Piot",
"S Kapturowski",
"P Sprechmann",
"A Vitvitskyi",
"Z D Guo",
"C Blundell"
],
"doi": "",
"ref_id": "b3",
"title": "Agent57: Outperforming the atari human benchmark",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "10.1109/tpas.1980.319831",
"ref_id": "b4",
"title": "IEEE Power Engineering Society Committee Chairmen",
"year": "2020"
},
{
"authors": [
"A P Badia",
"P Sprechmann",
"A Vitvitskyi",
"D Guo",
"B Piot",
"S Kapturowski",
"O Tieleman",
"M Arjovsky",
"A Pritzel",
"A Bolt"
],
"doi": "",
"ref_id": "b5",
"title": "Never give up: Learning directed exploration strategies",
"year": "2020"
},
{
"authors": [
"Akhil Bagaria",
"Jason Senthil",
"Matthew Slivinski",
"George Konidaris"
],
"doi": "10.24963/ijcai.2021/298",
"ref_id": "b6",
"title": "Robustly Learning Composable Options in Deep Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"M Bellemare",
"S Srinivasan",
"G Ostrovski",
"T Schaul",
"D Saxton",
"R Munos"
],
"doi": "",
"ref_id": "b7",
"title": "Unifying count-based exploration and intrinsic motivation",
"year": "2016"
},
{
"authors": [
"M G Bellemare",
"Y Naddaf",
"J Veness",
"M Bowling"
],
"doi": "10.1613/jair.3912",
"ref_id": "b8",
"title": "The Arcade Learning Environment: An Evaluation Platform for General Agents",
"year": "2013"
},
{
"authors": [
"Ronen I Brafman",
"Moshe Tennenholtz"
],
"doi": "10.1016/s0004-3702(00)00039-4",
"ref_id": "b9",
"title": "A near-optimal polynomial time algorithm for learning in certain classes of stochastic games",
"year": "Oct. 2002"
},
{
"authors": [
"Y Burda",
"H Edwards",
"D Pathak",
"A Storkey",
"T Darrell",
"A A Efros"
],
"doi": "",
"ref_id": "b10",
"title": "Large-scale study of curiosity-driven learning",
"year": "2018"
},
{
"authors": [
"Korawat Charoenpitaks"
],
"doi": "10.58837/chula.the.2019.162",
"ref_id": "b11",
"title": "Path exploration with random network distillation on multi-agent reinforcement learning",
"year": "2019"
},
{
"authors": [
"P S Castro",
"S Moitra",
"C Gelada",
"S Kumar",
"M G Bellemare"
],
"doi": "",
"ref_id": "b12",
"title": "Dopamine: A Research Framework for Deep Reinforcement Learning",
"year": "2018"
},
{
"authors": [
"P Dayan"
],
"doi": "",
"ref_id": "b13",
"title": "Improving generalization for temporal difference learning: The successor Neural computation",
"year": "1993"
},
{
"authors": [
"T Dietterich"
],
"doi": "",
"ref_id": "b14",
"title": "The MAXQ method for hierarchical reinforcement learning",
"year": "1998"
},
{
"authors": [
"Carlos Diuk",
"Andre Cohen",
"Michael L Littman"
],
"doi": "10.1145/1390156.1390187",
"ref_id": "b15",
"title": "An object-oriented representation for efficient reinforcement learning",
"year": "2008"
},
{
"authors": [
"A Ecoffet",
"J Huizinga",
"J Lehman",
"K O Stanley",
"J Clune"
],
"doi": "",
"ref_id": "b16",
"title": "First return, then explore",
"year": "2021"
},
{
"authors": [
"A Ermolov",
"N Sebe"
],
"doi": "",
"ref_id": "b17",
"title": "Latent world models for intrinsically motivated exploration",
"year": "2020"
},
{
"authors": [
"J Fu",
"A Kumar",
"O Nachum",
"G Tucker",
"S Levine"
],
"doi": "",
"ref_id": "b18",
"title": "D4rl: Datasets for deep data-driven reinforcement learning",
"year": "2020"
},
{
"authors": [
"G H Golub",
"C Reinsch"
],
"doi": "10.1007/978-3-662-39778-7_10",
"ref_id": "b19",
"title": "Singular Value Decomposition and Least Squares Solutions",
"year": "1971"
},
{
"authors": [
"Z D Guo",
"S Thakoor",
"M Pîslar",
"B A Pires",
"F Altché",
"C Tallec",
"A Saade",
"D Calandriello",
"J.-B Grill",
"Y Tang"
],
"doi": "",
"ref_id": "b20",
"title": "Byol-explore: Exploration by bootstrapped prediction",
"year": "2022"
},
{
"authors": [
"T Haarnoja",
"A Zhou",
"P Abbeel",
"S Levine"
],
"doi": "",
"ref_id": "b21",
"title": "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor",
"year": "2018"
},
{
"authors": [
"Matteo Hessel",
"Joseph Modayil",
"Hado Van Hasselt",
"Tom Schaul",
"Georg Ostrovski",
"Will Dabney",
"Dan Horgan",
"Bilal Piot",
"Mohammad Azar",
"David Silver"
],
"doi": "10.1609/aaai.v32i1.11796",
"ref_id": "b22",
"title": "Rainbow: Combining Improvements in Deep Reinforcement Learning",
"year": "2018"
},
{
"authors": [
"R Houthooft",
"X Chen",
"Y Duan",
"J Schulman",
"F De Turck",
"P Abbeel"
],
"doi": "",
"ref_id": "b23",
"title": "Vime: Variational information maximizing exploration",
"year": "2016"
},
{
"authors": [
"C Jin",
"Z Allen-Zhu",
"S Bubeck",
"M I Jordan"
],
"doi": "",
"ref_id": "b24",
"title": "Is q-learning provably efficient? Advances in neural information processing systems",
"year": "2018"
},
{
"authors": [
"S Kakade",
"M J Kearns",
"J Langford"
],
"doi": "",
"ref_id": "b25",
"title": "Exploration in metric state spaces",
"year": "2003"
},
{
"authors": [
"S Kapturowski",
"V Campos",
"R Jiang",
"N Rakićević",
"H Van Hasselt",
"C Blundell",
"A P Badia"
],
"doi": "",
"ref_id": "b26",
"title": "Human-level atari 200x faster",
"year": "2022"
},
{
"authors": [
"Michael Kearns",
"Satinder Singh"
],
"doi": "10.1023/a:1017984413808",
"ref_id": "b27",
"title": "Near-Optimal Reinforcement Learning in Polynomial Time",
"year": "2002"
},
{
"authors": [
"T P Lillicrap",
"J J Hunt",
"A Pritzel",
"N Heess",
"T Erez",
"Y Tassa",
"D Silver",
"D Wierstra"
],
"doi": "",
"ref_id": "b28",
"title": "Continuous control with deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"Sam Lobel",
"Omer Gottesman",
"Cameron Allen",
"Akhil Bagaria",
"George Konidaris"
],
"doi": "10.1609/aaai.v36i7.20727",
"ref_id": "b29",
"title": "Optimistic Initialization for Exploration in Continuous Control",
"year": "2022"
},
{
"authors": [
"M C Machado",
"S Srinivasan",
"M Bowling"
],
"doi": "",
"ref_id": "b30",
"title": "Domainindependent optimistic initialization for reinforcement learning",
"year": "2015"
},
{
"authors": [
"Marlos C Machado",
"Marc G Bellemare",
"Erik Talvitie",
"Joel Veness",
"Matthew Hausknecht",
"Michael Bowling"
],
"doi": "10.1613/jair.5699",
"ref_id": "b31",
"title": "Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents",
"year": "2018"
},
{
"authors": [
"Marlos C Machado",
"Marc G Bellemare",
"Michael Bowling"
],
"doi": "10.1609/aaai.v34i04.5955",
"ref_id": "b32",
"title": "Count-Based Exploration with the Successor Representation",
"year": "2020"
},
{
"authors": [
"Volodymyr Mnih",
"Koray Kavukcuoglu",
"David Silver",
"Andrei A Rusu",
"Joel Veness",
"Marc G Bellemare",
"Alex Graves",
"Martin Riedmiller",
"Andreas K Fidjeland",
"Georg Ostrovski",
"Stig Petersen",
"Charles Beattie",
"Amir Sadik",
"Ioannis Antonoglou",
"Helen King",
"Dharshan Kumaran",
"Daan Wierstra",
"Shane Legg",
"Demis Hassabis"
],
"doi": "10.1038/nature14236",
"ref_id": "b33",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"I Osband",
"C Blundell",
"A Pritzel",
"B Van Roy"
],
"doi": "",
"ref_id": "b34",
"title": "Deep exploration via bootstrapped dqn",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b35",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2016"
},
{
"authors": [
"I Osband",
"J Aslanides",
"A Cassirer"
],
"doi": "",
"ref_id": "b36",
"title": "Randomized prior functions for deep reinforcement learning",
"year": "2018"
},
{
"authors": [
"G Ostrovski",
"M G Bellemare",
"A Oord",
"R Munos"
],
"doi": "",
"ref_id": "b37",
"title": "Count-based exploration with neural density models",
"year": "2017"
},
{
"authors": [
"B O'donoghue",
"I Osband",
"R Munos",
"V Mnih"
],
"doi": "",
"ref_id": "b38",
"title": "The uncertainty bellman equation and exploration",
"year": "2018"
},
{
"authors": [
"D Pathak",
"P Agrawal",
"A A Efros",
"T Darrell"
],
"doi": "",
"ref_id": "b39",
"title": "Curiosity-driven exploration by self-supervised prediction",
"year": "2017"
},
{
"authors": [
"S Pitis",
"H Chan",
"S Zhao",
"B Stadie",
"J Ba"
],
"doi": "",
"ref_id": "b40",
"title": "Maximum entropy gain exploration for long horizon multi-goal reinforcement learning",
"year": "2020"
},
{
"authors": [
"M Plappert",
"M Andrychowicz",
"A Ray",
"B Mcgrew",
"B Baker",
"G Powell",
"J Schneider",
"J Tobin",
"M Chociej",
"P Welinder",
"V Kumar",
"W Zaremba"
],
"doi": "",
"ref_id": "b41",
"title": "Multi-goal reinforcement learning: Challenging robotics environments and request for research",
"year": "2018"
},
{
"authors": [
"V H Pong",
"M Dalal",
"S Lin",
"A Nair",
"S Bahl",
"S Levine"
],
"doi": "",
"ref_id": "b42",
"title": "Skew-fit: State-covering self-supervised reinforcement learning",
"year": "2019"
},
{
"authors": [
"R Raileanu",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b43",
"title": "Ride: Rewarding impactdriven exploration for procedurally-generated environments",
"year": "2020"
},
{
"authors": [
"Aravind Rajeswaran",
"Vikash Kumar",
"Abhishek Gupta",
"Giulia Vezzani",
"John Schulman",
"Emanuel Todorov",
"Sergey Levine"
],
"doi": "10.15607/rss.2018.xiv.049",
"ref_id": "b44",
"title": "Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations",
"year": "2018"
},
{
"authors": [
"T Rashid",
"B Peng",
"W Boehmer",
"S Whiteson"
],
"doi": "",
"ref_id": "b45",
"title": "Optimistic exploration even with a pessimistic initialisation",
"year": "2020"
},
{
"authors": [
"T Schaul",
"J Quan",
"I Antonoglou",
"D Silver"
],
"doi": "",
"ref_id": "b46",
"title": "Prioritized experience replay",
"year": "2015"
},
{
"authors": [
"B C Stadie",
"S Levine",
"P Abbeel"
],
"doi": "",
"ref_id": "b47",
"title": "Incentivizing exploration in reinforcement learning with deep predictive models",
"year": "2015"
},
{
"authors": [
"Alexander L Strehl",
"Michael L Littman"
],
"doi": "10.1016/j.jcss.2007.08.009",
"ref_id": "b48",
"title": "An analysis of model-based Interval Estimation for Markov Decision Processes",
"year": "2008"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b49",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"R S Sutton",
"M H Bowling",
"P M Pilarski"
],
"doi": "10.1126/science.z66g9k7",
"ref_id": "b50",
"title": "ArXiv preprint server clamps down on AI slop",
"year": "2022"
},
{
"authors": [
"A A Taiga",
"W Fedus",
"M C Machado",
"A Courville",
"M G Bellemare"
],
"doi": "",
"ref_id": "b51",
"title": "On bonus based exploration methods in the arcade learning environment",
"year": "2020"
},
{
"authors": [
"H Tang",
"R Houthooft",
"D Foote",
"A Stooke",
"O Xi Chen",
"Y Duan",
"J Schulman",
"F Deturck",
"P Abbeel"
],
"doi": "",
"ref_id": "b52",
"title": "# exploration: A study of count-based exploration for deep reinforcement learning",
"year": "2017"
},
{
"authors": [
"W R Thompson"
],
"doi": "10.1093/biomet/25.3-4.285",
"ref_id": "b53",
"title": "ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES",
"year": "1933"
},
{
"authors": [
"Christopher J C H Watkins",
"Peter Dayan"
],
"doi": "10.1023/a:1022676722315",
"ref_id": "b54",
"title": "Technical Note: Q-Learning",
"year": "1992"
},
{
"authors": [
"S Zhang",
"R S Sutton"
],
"doi": "",
"ref_id": "b55",
"title": "A deeper look at experience replay",
"year": "2017"
},
{
"authors": [
"T Zhang",
"H Xu",
"X Wang",
"Y Wu",
"K Keutzer",
"J E Gonzalez",
"Y Tian"
],
"doi": "",
"ref_id": "b56",
"title": "Noveld: A simple yet effective exploration criterion",
"year": "2021"
}
] |
[
"34dc3e64fa458b25"
] |
[
"2a97b36b7a563cd7",
"b374a1c012039b92",
"6ebeaa9cd763e736",
"49c30b1f9ed77ca7",
"64c8218e8a31379c",
"8cc53cf288199f2d",
"2f25c03702537f7c",
"141644058347c923",
"105bee7b8d8132e0",
"d47b0910212c83c9",
"7d344a014c4a1f94",
"b6da965a9c632219",
"9cf791ed67120f2d",
"006ce4a44c44e57f",
"7c1a07e54d0ea11b",
"bc57fa716089121e",
"1e4a7bf12c6e0191",
"c8116087aa265856",
"e6dc9c6cbbbebadc",
"7f9d1952d7c8ce6c",
"caa37953e005635f",
"e436392273aa8135",
"4a68593189ae925f",
"32781a8a201182c4",
"b4b3f009234f2995",
"40be2909c605aa1d",
"6b8a2f0b9f8419c9",
"fd5a6e4599e72ac8",
"7a8b7780292f50e3",
"ef2fa99c5b4aac44",
"10add98d60c68e40",
"090beb013a52c1cb",
"45d573d092646419",
"e700ad61395d2f72",
"07750954b1104a78",
"eb5bad296f401be0",
"1a0610fc5bf088f2",
"a29f7cd24b06fcd0",
"5da265c1638bc2b0",
"9563aa37dac3dda2",
"545061f62074c3a0",
"614d5e2bd9bed995",
"1cc461c9b05aa408",
"acc0fdd12612ee36",
"8c498a696d9fc6e6",
"d352580460b115f5",
"82077fd4043e438a",
"7686d4db6d52e493",
"aa9b99fe43f44730",
"34dc3e64fa458b25",
"d2eff36d3c02ca2a",
"5e6d058786b88193",
"08c29e501bb34835",
"b0cccdf011b89cf8",
"8ea63a22aaec6400",
"f23ae83d0d5838fe",
"b8c9ccb73daee416"
] |
22WDLG6fBO
|
Pre-training for Speech Translation: CTC Meets Optimal Transport
|
data/openreview_paper/ICML_2023_oral/22WDLG6fBO//paper.pdf
| 90
| 37
|
[
{
"authors": [
"Chi Han",
"Mingxuan Wang",
"Heng Ji",
"Lei Li"
],
"doi": "10.18653/v1/2021.findings-acl.195",
"ref_id": "b39",
"title": "Learning Shared Semantic Space for Speech-to-Text Translation",
"year": "2021"
},
{
"authors": [
"E Grave",
"A Joulin",
"Q Berthet"
],
"doi": "",
"ref_id": "b36",
"title": "Unsupervised alignment of embeddings with wasserstein procrustes",
"year": "2019"
},
{
"authors": [
"Di Gangi",
"M A Cattoni",
"R Bentivogli",
"L Negri",
"M Turchi",
"M"
],
"doi": "",
"ref_id": "b27",
"title": "Must-c: a multilingual speech translation corpus",
"year": "2019. 2019"
},
{
"authors": [
"Zhehuai Chen",
"Yu Zhang",
"Andrew Rosenberg",
"Bhuvana Ramabhadran",
"Pedro J Moreno",
"Ankur Bapna",
"Heiga Zen"
],
"doi": "10.21437/interspeech.2022-10937",
"ref_id": "b21",
"title": "MAESTRO: Matched Speech Text Representations through Modality Matching",
"year": "2022"
},
{
"authors": [
"A Haubold",
"J R Kender"
],
"doi": "",
"ref_id": "b40",
"title": "Alignment of speech to highly imperfect text transcriptions",
"year": "2007"
},
{
"authors": [
"A Bapna",
"C Cherry",
"Y Zhang",
"Y Jia",
"M Johnson",
"Y Cheng",
"S Khanuja",
"J Riesa",
"A Conneau",
"Mslam"
],
"doi": "",
"ref_id": "b15",
"title": "Massively multilingual joint pre-training for speech and text",
"year": "2022"
},
{
"authors": [
"David Alvarez-Melis",
"Tommi Jaakkola"
],
"doi": "10.18653/v1/d18-1214",
"ref_id": "b3",
"title": "Gromov-Wasserstein Alignment of Word Embedding Spaces",
"year": "2019"
},
{
"authors": [
"Biao Zhang",
"Ivan Titov",
"Barry Haddow",
"Rico Sennrich"
],
"doi": "10.18653/v1/2020.findings-emnlp.230",
"ref_id": "b86",
"title": "Adaptive Feature Selection for End-to-End Speech Translation",
"year": "2020"
},
{
"authors": [
"Liqun Chen",
"Guoyin Wang",
"Chenyang Tao",
"Dinghan Shen",
"Pengyu Cheng",
"Xinyuan Zhang",
"Wenlin Wang",
"Yizhe Zhang",
"Lawrence Carin"
],
"doi": "10.18653/v1/p19-1512",
"ref_id": "b20",
"title": "Improving Textual Network Embedding with Global Attention via Optimal Transport",
"year": "2019"
},
{
"authors": [
"J Yuan",
"M Liberman"
],
"doi": "",
"ref_id": "b85",
"title": "Speaker identification on the scotus corpus",
"year": "2008"
},
{
"authors": [
"H Inaguma",
"K Duh",
"T Kawahara",
"S Watanabe"
],
"doi": "10.1109/ASRU46091.2019.9003832",
"ref_id": "b41",
"title": "Multilingual end-to-end speech translation",
"year": "December 14-18, 2019. 2019"
},
{
"authors": [
"Xian Li",
"Changhan Wang",
"Yun Tang",
"Chau Tran",
"Yuqing Tang",
"Juan Pino",
"Alexei Baevski",
"Alexis Conneau",
"Michael Auli"
],
"doi": "10.18653/v1/2021.acl-long.68",
"ref_id": "b54",
"title": "Multilingual Speech Translation from Efficient Finetuning of Pretrained Models",
"year": "2020"
},
{
"authors": [
"Yun Tang",
"Hongyu Gong",
"Ning Dong",
"Changhan Wang",
"Wei-Ning Hsu",
"Jiatao Gu",
"Alexei Baevski",
"Xian Li",
"Abdelrahman Mohamed",
"Michael Auli",
"Juan Pino"
],
"doi": "10.18653/v1/2022.acl-long.105",
"ref_id": "b73",
"title": "Unified Speech-Text Pre-training for Speech Translation and Recognition",
"year": "2022"
},
{
"authors": [
"Alexandre Berard",
"Laurent Besacier",
"Ali Can Kocabiyikoglu",
"Olivier Pietquin"
],
"doi": "10.1109/icassp.2018.8461690",
"ref_id": "b17",
"title": "End-to-End Automatic Speech Translation of Audiobooks",
"year": "2016"
},
{
"authors": [
"Long Duong",
"Antonios Anastasopoulos",
"David Chiang",
"Steven Bird",
"Trevor Cohn"
],
"doi": "10.18653/v1/n16-1109",
"ref_id": "b30",
"title": "An Attentional Model for Speech Translation Without Transcription",
"year": "2016"
},
{
"authors": [
"A Bapna",
"Y Chung",
"N Wu",
"A Gulati",
"Y Jia",
"J H Clark",
"M Johnson",
"J Riesa",
"A Conneau",
"Y Zhang"
],
"doi": "",
"ref_id": "b14",
"title": "SLAM: A unified encoder for speech and language modeling via speech-text joint pre-training",
"year": "2021"
},
{
"authors": [
"H Sakoe",
"S Chiba"
],
"doi": "10.1109/tassp.1978.1163055",
"ref_id": "b67",
"title": "Dynamic programming algorithm optimization for spoken word recognition",
"year": "1978"
},
{
"authors": [
"L Muda",
"M Begam",
"I Elamvazuthi"
],
"doi": "",
"ref_id": "b58",
"title": "Voice recognition algorithms using mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques",
"year": "2010"
},
{
"authors": [
"Antonios Anastasopoulos",
"David Chiang"
],
"doi": "10.18653/v1/n18-1008",
"ref_id": "b4",
"title": "Tied Multitask Learning for Neural Speech Translation",
"year": "June 1-6, 2018. 2018"
},
{
"authors": [
"Hang Le",
"Juan Pino",
"Changhan Wang",
"Jiatao Gu",
"Didier Schwab",
"Laurent Besacier"
],
"doi": "10.18653/v1/2020.coling-main.314",
"ref_id": "b51",
"title": "Dual-decoder Transformer for Joint Automatic Speech Recognition and Multilingual Speech Translation",
"year": "December 8-13, 2020. 2020"
},
{
"authors": [
"Q Dong",
"R Ye",
"M Wang",
"H Zhou",
"S Xu",
"B Xu",
"L Li",
"Listen"
],
"doi": "",
"ref_id": "b28",
"title": "understand and translate: Triple supervision decouples end-to-end speech-to-text translation",
"year": "2021"
},
{
"authors": [
"Sawsan Alqahtani",
"Garima Lalwani",
"Yi Zhang",
"Salvatore Romeo",
"Saab Mansour"
],
"doi": "10.18653/v1/2021.findings-emnlp.329",
"ref_id": "b1",
"title": "Using Optimal Transport as Alignment Objective for fine-tuning Multilingual Contextualized Embeddings",
"year": "2021"
},
{
"authors": [
"Sowmya Ramesh Kumar",
"Samarth Ramesh Kedilaya"
],
"doi": "10.47363/jeast/2023(5)219",
"ref_id": "b19",
"title": "Navigating Complexity: Harnessing AI for Multivariate Time Series Forecasting in Dynamic Environments",
"year": "1994"
},
{
"authors": [
"Y Liu",
"J Zhu",
"J Zhang",
"C Zong"
],
"doi": "",
"ref_id": "b57",
"title": "Bridging the modality gap for speech-to-text translation",
"year": "2020"
},
{
"authors": [
"H Ney"
],
"doi": "10.1109/icassp.1999.758176",
"ref_id": "b59",
"title": "Speech translation: coupling of recognition and translation",
"year": "1999"
},
{
"authors": [
"Siqi Ouyang",
"Rong Ye",
"Lei Li"
],
"doi": "10.18653/v1/2023.acl-long.216",
"ref_id": "b60",
"title": "WACO: Word-Aligned Contrastive Learning for Speech Translation",
"year": "2022"
},
{
"authors": [
"Rong Ye",
"Mingxuan Wang",
"Lei Li"
],
"doi": "10.21437/interspeech.2021-1065",
"ref_id": "b83",
"title": "End-to-End Speech Translation via Cross-Modal Progressive Training",
"year": "2021"
},
{
"authors": [
"H Lin",
"H Tseng",
"X Lu",
"Y Tsao"
],
"doi": "",
"ref_id": "b56",
"title": "Unsupervised noise adaptive speech enhancement by discriminatorconstrained optimal transport",
"year": "2021"
},
{
"authors": [
"Ashkan Alinejad",
"Anoop Sarkar"
],
"doi": "10.18653/v1/2020.emnlp-main.644",
"ref_id": "b0",
"title": "Effectively pretraining a speech translation decoder with Machine Translation data",
"year": "2020"
},
{
"authors": [
"P Bahar",
"T Bieschke",
"H Ney"
],
"doi": "",
"ref_id": "b10",
"title": "A comparative study on end-to-end speech to text translation",
"year": "2019"
},
{
"authors": [
"Luisa Bentivogli",
"Mauro Cettolo",
"Marco Gaido",
"Alina Karakanta",
"Alberto Martinelli",
"Matteo Negri",
"Marco Turchi"
],
"doi": "10.18653/v1/2021.acl-long.224",
"ref_id": "b16",
"title": "Cascade versus Direct Speech Translation: Do the Differences Still Make a Difference?",
"year": "2021"
},
{
"authors": [
"Rong Ye",
"Mingxuan Wang",
"Lei Li"
],
"doi": "10.18653/v1/2022.naacl-main.376",
"ref_id": "b84",
"title": "Cross-modal Contrastive Learning for Speech Translation",
"year": "2022"
},
{
"authors": [
"David Alvarez-Melis",
"Tommi Jaakkola"
],
"doi": "10.18653/v1/d18-1214",
"ref_id": "b2",
"title": "Gromov-Wasserstein Alignment of Word Embedding Spaces",
"year": "2018"
},
{
"authors": [
"H Inaguma",
"T Kawahara",
"S Watanabe"
],
"doi": "",
"ref_id": "b43",
"title": "Source and target bidirectional knowledge distillation for end-to-end speech translation",
"year": "2021"
},
{
"authors": [
"Ron J Weiss",
"Jan Chorowski",
"Navdeep Jaitly",
"Yonghui Wu",
"Zhifeng Chen"
],
"doi": "10.21437/interspeech.2017-503",
"ref_id": "b81",
"title": "Sequence-to-Sequence Models Can Directly Translate Foreign Speech",
"year": "August 20-24, 2017. 2017"
},
{
"authors": [
"Chen Xu",
"Bojie Hu",
"Yanyang Li",
"Yuhao Zhang",
"Shen Huang",
"Qi Ju",
"Tong Xiao",
"Jingbo Zhu"
],
"doi": "10.18653/v1/2021.acl-long.204",
"ref_id": "b82",
"title": "Stacked Acoustic-and-Textual Encoding: Integrating the Pre-trained Models into Speech Translation Encoders",
"year": "2021"
},
{
"authors": [
"B.-H Juang"
],
"doi": "",
"ref_id": "b45",
"title": "On the hidden markov model and dynamic time warping for speech recognition-a unified view",
"year": "1984"
}
] |
[
{
"authors": [
"Ashkan Alinejad",
"Anoop Sarkar"
],
"doi": "10.18653/v1/2020.emnlp-main.644",
"ref_id": "b0",
"title": "Effectively pretraining a speech translation decoder with Machine Translation data",
"year": "2020"
},
{
"authors": [
"Sawsan Alqahtani",
"Garima Lalwani",
"Yi Zhang",
"Salvatore Romeo",
"Saab Mansour"
],
"doi": "10.18653/v1/2021.findings-emnlp.329",
"ref_id": "b1",
"title": "Using Optimal Transport as Alignment Objective for fine-tuning Multilingual Contextualized Embeddings",
"year": "2021"
},
{
"authors": [
"David Alvarez-Melis",
"Tommi Jaakkola"
],
"doi": "10.18653/v1/d18-1214",
"ref_id": "b2",
"title": "Gromov-Wasserstein Alignment of Word Embedding Spaces",
"year": "2018"
},
{
"authors": [
"David Alvarez-Melis",
"Tommi Jaakkola"
],
"doi": "10.18653/v1/d18-1214",
"ref_id": "b3",
"title": "Gromov-Wasserstein Alignment of Word Embedding Spaces",
"year": "2019"
},
{
"authors": [
"Antonios Anastasopoulos",
"David Chiang"
],
"doi": "10.18653/v1/n18-1008",
"ref_id": "b4",
"title": "Tied Multitask Learning for Neural Speech Translation",
"year": "June 1-6, 2018. 2018"
},
{
"authors": [
"Antonios Anastasopoulos",
"Ondřej Bojar",
"Jacob Bremerman",
"Roldano Cattoni",
"Maha Elbayad",
"Marcello Federico",
"Xutai Ma",
"Satoshi Nakamura",
"Matteo Negri",
"Jan Niehues",
"Juan Pino",
"Elizabeth Salesky",
"Sebastian Stüker",
"Katsuhito Sudoh",
"Marco Turchi",
"Alexander Waibel",
"Changhan Wang",
"Matthew Wiesner"
],
"doi": "10.18653/v1/2021.iwslt-1.1",
"ref_id": "b5",
"title": "FINDINGS OF THE IWSLT 2021 EVALUATION CAMPAIGN",
"year": "2021"
},
{
"authors": [
"Antonios Anastasopoulos",
"Loïc Barrault",
"Luisa Bentivogli",
"Marcely Zanon Boito",
"Ondřej Bojar",
"Roldano Cattoni",
"Anna Currey",
"Georgiana Dinu",
"Kevin Duh",
"Maha Elbayad",
"Clara Emmanuel",
"Yannick Estève",
"Marcello Federico",
"Christian Federmann",
"Souhir Gahbiche",
"Hongyu Gong",
"Roman Grundkiewicz",
"Barry Haddow",
"Benjamin Hsu",
"Dávid Javorský",
"Vĕra Kloudová",
"Surafel Lakew",
"Xutai Ma",
"Prashant Mathur",
"Paul Mcnamee",
"Kenton Murray",
"Maria Nǎdejde",
"Satoshi Nakamura",
"Matteo Negri",
"Jan Niehues",
"Xing Niu",
"John Ortega",
"Juan Pino",
"Elizabeth Salesky",
"Jiatong Shi",
"Matthias Sperber",
"Sebastian Stüker",
"Katsuhito Sudoh",
"Marco Turchi",
"Yogesh Virkar",
"Alexander Waibel",
"Changhan Wang",
"Shinji Watanabe"
],
"doi": "10.18653/v1/2022.iwslt-1.10",
"ref_id": "b6",
"title": "Findings of the IWSLT 2022 Evaluation Campaign",
"year": "2022"
},
{
"authors": [
"Junyi Ao",
"Rui Wang",
"Long Zhou",
"Chengyi Wang",
"Shuo Ren",
"Yu Wu",
"Shujie Liu",
"Tom Ko",
"Qing Li",
"Yu Zhang",
"Zhihua Wei",
"Yao Qian",
"Jinyu Li",
"Furu Wei"
],
"doi": "10.18653/v1/2022.acl-long.393",
"ref_id": "b7",
"title": "SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing",
"year": "2022"
},
{
"authors": [
"Junyi Ao",
"Ziqiang Zhang",
"Long Zhou",
"Shujie Liu",
"Haizhou Li",
"Tom Ko",
"Lirong Dai",
"Jinyu Li",
"Yao Qian",
"Furu Wei"
],
"doi": "10.21437/interspeech.2022-10368",
"ref_id": "b8",
"title": "Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data",
"year": "2022"
},
{
"authors": [
"R Ardila",
"M Branson",
"K Davis",
"M Kohler",
"J Meyer",
"M Henretty",
"R Morais",
"L Saunders",
"F Tyers",
"G Weber"
],
"doi": "",
"ref_id": "b9",
"title": "Common voice: A massively-multilingual speech corpus",
"year": "2020"
},
{
"authors": [
"P Bahar",
"T Bieschke",
"H Ney"
],
"doi": "",
"ref_id": "b10",
"title": "A comparative study on end-to-end speech to text translation",
"year": "2019"
},
{
"authors": [
"D Bahdanau",
"K Cho",
"Y Bengio"
],
"doi": "",
"ref_id": "b11",
"title": "Neural machine translation by jointly learning to align and translate",
"year": "2015"
},
{
"authors": [
"Dzmitry Bahdanau",
"Jan Chorowski",
"Dmitriy Serdyuk",
"Philemon Brakel",
"Yoshua Bengio"
],
"doi": "10.1109/icassp.2016.7472618",
"ref_id": "b12",
"title": "End-to-end attention-based large vocabulary speech recognition",
"year": "2016"
},
{
"authors": [
"Sameer Bansal",
"Herman Kamper",
"Karen Livescu",
"Adam Lopez",
"Sharon Goldwater"
],
"doi": "10.18653/v1/n19-1006",
"ref_id": "b13",
"title": "Pre-training on high-resource speech recognition improves low-resource speech-to-text translation",
"year": "2019"
},
{
"authors": [
"A Bapna",
"Y Chung",
"N Wu",
"A Gulati",
"Y Jia",
"J H Clark",
"M Johnson",
"J Riesa",
"A Conneau",
"Y Zhang"
],
"doi": "",
"ref_id": "b14",
"title": "SLAM: A unified encoder for speech and language modeling via speech-text joint pre-training",
"year": "2021"
},
{
"authors": [
"A Bapna",
"C Cherry",
"Y Zhang",
"Y Jia",
"M Johnson",
"Y Cheng",
"S Khanuja",
"J Riesa",
"A Conneau",
"Mslam"
],
"doi": "",
"ref_id": "b15",
"title": "Massively multilingual joint pre-training for speech and text",
"year": "2022"
},
{
"authors": [
"Luisa Bentivogli",
"Mauro Cettolo",
"Marco Gaido",
"Alina Karakanta",
"Alberto Martinelli",
"Matteo Negri",
"Marco Turchi"
],
"doi": "10.18653/v1/2021.acl-long.224",
"ref_id": "b16",
"title": "Cascade versus Direct Speech Translation: Do the Differences Still Make a Difference?",
"year": "2021"
},
{
"authors": [
"Alexandre Berard",
"Laurent Besacier",
"Ali Can Kocabiyikoglu",
"Olivier Pietquin"
],
"doi": "10.1109/icassp.2018.8461690",
"ref_id": "b17",
"title": "End-to-End Automatic Speech Translation of Audiobooks",
"year": "2016"
},
{
"authors": [
"Alexandre Berard",
"Laurent Besacier",
"Ali Can Kocabiyikoglu",
"Olivier Pietquin"
],
"doi": "10.1109/icassp.2018.8461690",
"ref_id": "b18",
"title": "End-to-End Automatic Speech Translation of Audiobooks",
"year": "2018"
},
{
"authors": [
"Sowmya Ramesh Kumar",
"Samarth Ramesh Kedilaya"
],
"doi": "10.47363/jeast/2023(5)219",
"ref_id": "b19",
"title": "Navigating Complexity: Harnessing AI for Multivariate Time Series Forecasting in Dynamic Environments",
"year": "1994"
},
{
"authors": [
"Liqun Chen",
"Guoyin Wang",
"Chenyang Tao",
"Dinghan Shen",
"Pengyu Cheng",
"Xinyuan Zhang",
"Wenlin Wang",
"Yizhe Zhang",
"Lawrence Carin"
],
"doi": "10.18653/v1/p19-1512",
"ref_id": "b20",
"title": "Improving Textual Network Embedding with Global Attention via Optimal Transport",
"year": "2019"
},
{
"authors": [
"Zhehuai Chen",
"Yu Zhang",
"Andrew Rosenberg",
"Bhuvana Ramabhadran",
"Pedro J Moreno",
"Ankur Bapna",
"Heiga Zen"
],
"doi": "10.21437/interspeech.2022-10937",
"ref_id": "b21",
"title": "MAESTRO: Matched Speech Text Representations through Modality Matching",
"year": "2022"
},
{
"authors": [
"Shun-Po Chuang",
"Tzu-Wei Sung",
"Alexander H Liu",
"Hung-Yi Lee"
],
"doi": "10.18653/v1/2020.acl-main.533",
"ref_id": "b22",
"title": "Worse WER, but Better BLEU? Leveraging Word Embedding as Intermediate in Multitask End-to-End Speech Translation",
"year": ""
},
{
"authors": [
"Marcel Bollmann",
"Desmond Elliott"
],
"doi": "10.18653/v1/2020.acl-main.699",
"ref_id": "b23",
"title": "On Forgetting to Cite Older Papers: An Analysis of the ACL Anthology",
"year": "July 5-10, 2020. 2020"
},
{
"authors": [
"Marco Cuturi",
"Parnian Kassraie",
"Michal Klein",
"Jonathan Niles-Weed",
"Aram-Alexandre Pooladian",
"James Thornton"
],
"doi": "10.52202/079017-0618",
"ref_id": "b24",
"title": "Progressive Entropic Optimal Transport Solvers",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b25",
"title": "",
"year": "2013"
},
{
"authors": [
"M Cuturi",
"M Blondel"
],
"doi": "",
"ref_id": "b26",
"title": "Soft-dtw: a differentiable loss function for time-series",
"year": "2017"
},
{
"authors": [
"Di Gangi",
"M A Cattoni",
"R Bentivogli",
"L Negri",
"M Turchi",
"M"
],
"doi": "",
"ref_id": "b27",
"title": "Must-c: a multilingual speech translation corpus",
"year": "2019. 2019"
},
{
"authors": [
"Q Dong",
"R Ye",
"M Wang",
"H Zhou",
"S Xu",
"B Xu",
"L Li",
"Listen"
],
"doi": "",
"ref_id": "b28",
"title": "understand and translate: Triple supervision decouples end-to-end speech-to-text translation",
"year": "2021"
},
{
"authors": [
"Yichao Du",
"Zhirui Zhang",
"Weizhi Wang",
"Boxing Chen",
"Jun Xie",
"Tong Xu"
],
"doi": "10.1609/aaai.v36i10.21303",
"ref_id": "b29",
"title": "Regularizing End-to-End Speech Translation with Triangular Decomposition Agreement",
"year": "2022"
},
{
"authors": [
"Long Duong",
"Antonios Anastasopoulos",
"David Chiang",
"Steven Bird",
"Trevor Cohn"
],
"doi": "10.18653/v1/n16-1109",
"ref_id": "b30",
"title": "An Attentional Model for Speech Translation Without Transcription",
"year": "2016"
},
{
"authors": [
"Qingkai Fang",
"Rong Ye",
"Lei Li",
"Yang Feng",
"Mingxuan Wang"
],
"doi": "10.18653/v1/2022.acl-long.486",
"ref_id": "b31",
"title": "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation",
"year": "2022"
},
{
"authors": [
"J Feydy",
"T Séjourné",
"F.-X Vialard",
"S.-I Amari",
"A Trouve",
"G Peyré"
],
"doi": "",
"ref_id": "b32",
"title": "Interpolating between optimal transport and mmd using sinkhorn divergences",
"year": "2019"
},
{
"authors": [
"C Frogner",
"C Zhang",
"H Mobahi",
"M Araya",
"T A Poggio"
],
"doi": "",
"ref_id": "b33",
"title": "Learning with a wasserstein loss",
"year": "2015"
},
{
"authors": [
"Yaroslav Ganin",
"Evgeniya Ustinova",
"Hana Ajakan",
"Pascal Germain",
"Hugo Larochelle",
"François Laviolette",
"Mario Marchand",
"Victor Lempitsky"
],
"doi": "10.1007/978-3-319-58347-1_10",
"ref_id": "b34",
"title": "Domain-Adversarial Training of Neural Networks",
"year": "2016"
},
{
"authors": [
"I J Goodfellow",
"J Pouget-Abadie",
"M Mirza",
"B Xu",
"D Warde-Farley",
"S Ozair",
"A C Courville",
"Y Bengio"
],
"doi": "",
"ref_id": "b35",
"title": "Generative adversarial nets",
"year": "December 8-13 2014. 2014"
},
{
"authors": [
"E Grave",
"A Joulin",
"Q Berthet"
],
"doi": "",
"ref_id": "b36",
"title": "Unsupervised alignment of embeddings with wasserstein procrustes",
"year": "2019"
},
{
"authors": [
"Alex Graves",
"Santiago Fernández",
"Faustino Gomez",
"Jürgen Schmidhuber"
],
"doi": "10.1145/1143844.1143891",
"ref_id": "b37",
"title": "Connectionist temporal classification",
"year": "2006"
},
{
"authors": [
"A Graves",
"G Wayne",
"I Danihelka"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b38",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"Chi Han",
"Mingxuan Wang",
"Heng Ji",
"Lei Li"
],
"doi": "10.18653/v1/2021.findings-acl.195",
"ref_id": "b39",
"title": "Learning Shared Semantic Space for Speech-to-Text Translation",
"year": "2021"
},
{
"authors": [
"A Haubold",
"J R Kender"
],
"doi": "",
"ref_id": "b40",
"title": "Alignment of speech to highly imperfect text transcriptions",
"year": "2007"
},
{
"authors": [
"H Inaguma",
"K Duh",
"T Kawahara",
"S Watanabe"
],
"doi": "10.1109/ASRU46091.2019.9003832",
"ref_id": "b41",
"title": "Multilingual end-to-end speech translation",
"year": "December 14-18, 2019. 2019"
},
{
"authors": [
"H Inaguma",
"S Kiyono",
"K Duh",
"S Karita",
"N E Y Soplin",
"T Hayashi",
"S Watanabe"
],
"doi": "",
"ref_id": "b42",
"title": "Espnet-st: All-in-one speech translation toolkit",
"year": "2020"
},
{
"authors": [
"H Inaguma",
"T Kawahara",
"S Watanabe"
],
"doi": "",
"ref_id": "b43",
"title": "Source and target bidirectional knowledge distillation for end-to-end speech translation",
"year": "2021"
},
{
"authors": [
"Sathish Indurthi",
"Mohd Abbas Zaidi",
"Nikhil Kumar Lakumarapu",
"Beomseok Lee",
"Hyojung Han",
"Seokchan Ahn",
"Sangha Kim",
"Chanwoo Kim",
"Inchul Hwang"
],
"doi": "10.1109/icassp39728.2021.9414703",
"ref_id": "b44",
"title": "Task Aware Multi-Task Learning for Speech to Text Tasks",
"year": "2021"
},
{
"authors": [
"B.-H Juang"
],
"doi": "",
"ref_id": "b45",
"title": "On the hidden markov model and dynamic time warping for speech recognition-a unified view",
"year": "1984"
},
{
"authors": [
"Shigeki Karita",
"Nanxin Chen",
"Tomoki Hayashi",
"Takaaki Hori",
"Hirofumi Inaguma",
"Ziyan Jiang",
"Masao Someki",
"Nelson Enrique Yalta Soplin",
"Ryuichi Yamamoto",
"Xiaofei Wang",
"Shinji Watanabe",
"Takenori Yoshimura",
"Wangyou Zhang"
],
"doi": "10.1109/asru46091.2019.9003750",
"ref_id": "b46",
"title": "A Comparative Study on Transformer vs RNN in Speech Applications",
"year": "2019"
},
{
"authors": [
"Suyoun Kim",
"Takaaki Hori",
"Shinji Watanabe"
],
"doi": "10.1109/icassp.2017.7953075",
"ref_id": "b47",
"title": "Joint CTC-attention based end-to-end speech recognition using multi-task learning",
"year": "2017"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "10.1007/978-3-319-23108-2",
"ref_id": "b48",
"title": "Information Processing in Cells and Tissues",
"year": "May 7-9, 2015. 2015"
},
{
"authors": [
"Taku Kudo",
"John Richardson"
],
"doi": "10.18653/v1/d18-2012",
"ref_id": "b49",
"title": "SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing",
"year": "October 31 -November 4, 2018. 2018"
},
{
"authors": [
"Guillaume Lample",
"Myle Ott",
"Alexis Conneau",
"Ludovic Denoyer",
"Marc’aurelio Ranzato"
],
"doi": "10.18653/v1/d18-1549",
"ref_id": "b50",
"title": "Phrase-Based & Neural Unsupervised Machine Translation",
"year": "2018"
},
{
"authors": [
"Hang Le",
"Juan Pino",
"Changhan Wang",
"Jiatao Gu",
"Didier Schwab",
"Laurent Besacier"
],
"doi": "10.18653/v1/2020.coling-main.314",
"ref_id": "b51",
"title": "Dual-decoder Transformer for Joint Automatic Speech Recognition and Multilingual Speech Translation",
"year": "December 8-13, 2020. 2020"
},
{
"authors": [
"Hang Le",
"Juan Pino",
"Changhan Wang",
"Jiatao Gu",
"Didier Schwab",
"Laurent Besacier"
],
"doi": "10.18653/v1/2021.acl-short.103",
"ref_id": "b52",
"title": "Lightweight Adapter Tuning for Multilingual Speech Translation",
"year": "2021"
},
{
"authors": [
"Y Lee",
"T Kim"
],
"doi": "",
"ref_id": "b53",
"title": "Learning pronunciation from a foreign language in speech synthesis networks",
"year": "2018"
},
{
"authors": [
"Xian Li",
"Changhan Wang",
"Yun Tang",
"Chau Tran",
"Yuqing Tang",
"Juan Pino",
"Alexei Baevski",
"Alexis Conneau",
"Michael Auli"
],
"doi": "10.18653/v1/2021.acl-long.68",
"ref_id": "b54",
"title": "Multilingual Speech Translation from Efficient Finetuning of Pretrained Models",
"year": "2020"
},
{
"authors": [
"Paul Pu Liang",
"Amir Zadeh",
"Louis-Philippe Morency"
],
"doi": "10.1145/3656580",
"ref_id": "b55",
"title": "Foundations & Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions",
"year": "2022"
},
{
"authors": [
"H Lin",
"H Tseng",
"X Lu",
"Y Tsao"
],
"doi": "",
"ref_id": "b56",
"title": "Unsupervised noise adaptive speech enhancement by discriminatorconstrained optimal transport",
"year": "2021"
},
{
"authors": [
"Y Liu",
"J Zhu",
"J Zhang",
"C Zong"
],
"doi": "",
"ref_id": "b57",
"title": "Bridging the modality gap for speech-to-text translation",
"year": "2020"
},
{
"authors": [
"L Muda",
"M Begam",
"I Elamvazuthi"
],
"doi": "",
"ref_id": "b58",
"title": "Voice recognition algorithms using mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques",
"year": "2010"
},
{
"authors": [
"H Ney"
],
"doi": "10.1109/icassp.1999.758176",
"ref_id": "b59",
"title": "Speech translation: coupling of recognition and translation",
"year": "1999"
},
{
"authors": [
"Siqi Ouyang",
"Rong Ye",
"Lei Li"
],
"doi": "10.18653/v1/2023.acl-long.216",
"ref_id": "b60",
"title": "WACO: Word-Aligned Contrastive Learning for Speech Translation",
"year": "2022"
},
{
"authors": [
"Sara Papi",
"Marco Gaido",
"Matteo Negri",
"Marco Turchi"
],
"doi": "10.18653/v1/2021.emnlp-main.127",
"ref_id": "b61",
"title": "Speechformer: Reducing Information Loss in Direct Speech Translation",
"year": "2021"
},
{
"authors": [
"Kishore Papineni",
"Salim Roukos",
"Todd Ward",
"Wei-Jing Zhu"
],
"doi": "10.3115/1073083.1073135",
"ref_id": "b62",
"title": "BLEU",
"year": "2002"
},
{
"authors": [
"Daniel S Park",
"William Chan",
"Yu Zhang",
"Chung-Cheng Chiu",
"Barret Zoph",
"Ekin D Cubuk",
"Quoc V Le"
],
"doi": "10.21437/interspeech.2019-2680",
"ref_id": "b63",
"title": "SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition",
"year": "15-19 September 2019. 2019"
},
{
"authors": [
"G Peyré",
"M Cuturi"
],
"doi": "",
"ref_id": "b64",
"title": "Computational optimal transport: With applications to data science",
"year": "2019"
},
{
"authors": [
"Juan Pino",
"Qiantong Xu",
"Xutai Ma",
"Mohammad Javad Dousti",
"Yun Tang"
],
"doi": "10.21437/interspeech.2020-2938",
"ref_id": "b65",
"title": "Self-Training for End-to-End Speech Translation",
"year": "2020"
},
{
"authors": [
"Matt Post"
],
"doi": "10.18653/v1/w18-6319",
"ref_id": "b66",
"title": "A Call for Clarity in Reporting BLEU Scores",
"year": "2018"
},
{
"authors": [
"H Sakoe",
"S Chiba"
],
"doi": "10.1109/tassp.1978.1163055",
"ref_id": "b67",
"title": "Dynamic programming algorithm optimization for spoken word recognition",
"year": "1978"
},
{
"authors": [
"Richard Sinkhorn",
"Paul Knopp"
],
"doi": "10.2140/pjm.1967.21.343",
"ref_id": "b68",
"title": "Concerning nonnegative matrices and doubly stochastic matrices",
"year": "1967"
},
{
"authors": [
"Matthias Sperber",
"Graham Neubig",
"Jan Niehues",
"Alex Waibel"
],
"doi": "10.1162/tacl_a_00270",
"ref_id": "b69",
"title": "Attention-Passing Models for Robust and Data-Efficient End-to-End Speech Translation",
"year": "2019"
},
{
"authors": [
"Christian Szegedy",
"Vincent Vanhoucke",
"Sergey Ioffe",
"Jon Shlens",
"Zbigniew Wojna"
],
"doi": "10.1109/cvpr.2016.308",
"ref_id": "b70",
"title": "Rethinking the Inception Architecture for Computer Vision",
"year": "2016"
},
{
"authors": [
"Yun Tang",
"Juan Pino",
"Changhan Wang",
"Xutai Ma",
"Dmitriy Genzel"
],
"doi": "10.1109/icassp39728.2021.9415058",
"ref_id": "b71",
"title": "A General Multi-Task Learning Framework to Leverage Text Data for Speech to Text Tasks",
"year": "2021"
},
{
"authors": [
"Y Tang",
"J M Pino",
"X Li",
"C Wang",
"D Genzel"
],
"doi": "",
"ref_id": "b72",
"title": "Improving speech translation by understanding and learning from the auxiliary text translation task",
"year": "2021"
},
{
"authors": [
"Yun Tang",
"Hongyu Gong",
"Ning Dong",
"Changhan Wang",
"Wei-Ning Hsu",
"Jiatao Gu",
"Alexei Baevski",
"Xian Li",
"Abdelrahman Mohamed",
"Michael Auli",
"Juan Pino"
],
"doi": "10.18653/v1/2022.acl-long.105",
"ref_id": "b73",
"title": "Unified Speech-Text Pre-training for Speech Translation and Recognition",
"year": "2022"
},
{
"authors": [
"A J Viterbi"
],
"doi": "",
"ref_id": "b74",
"title": "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm",
"year": "1967"
},
{
"authors": [
"Changhan Wang",
"Anne Wu",
"Jiatao Gu",
"Juan Pino"
],
"doi": "10.21437/interspeech.2021-2027",
"ref_id": "b75",
"title": "CoVoST 2 and Massively Multilingual Speech Translation",
"year": "May 2020"
},
{
"authors": [
"Changhan Wang",
"Yun Tang",
"Xutai Ma",
"Anne Wu",
"Dmytro Okhonko",
"Juan Pino"
],
"doi": "10.18653/v1/2020.aacl-demo.6",
"ref_id": "b76",
"title": "Fairseq S2T: Fast Speech-to-Text Modeling with Fairseq",
"year": "2020"
},
{
"authors": [
"Changhan Wang",
"Anne Wu",
"Jiatao Gu",
"Juan Pino"
],
"doi": "10.21437/interspeech.2021-2027",
"ref_id": "b77",
"title": "CoVoST 2 and Massively Multilingual Speech Translation",
"year": "2020"
},
{
"authors": [
"Chengyi Wang",
"Yu Wu",
"Shujie Liu",
"Zhenglu Yang",
"Ming Zhou"
],
"doi": "10.1609/aaai.v34i05.6452",
"ref_id": "b78",
"title": "Bridging the Gap between Pre-Training and Fine-Tuning for End-to-End Speech Translation",
"year": "2020"
},
{
"authors": [
"C Wang",
"Y Wu",
"S Liu",
"M Zhou",
"Z Yang"
],
"doi": "",
"ref_id": "b79",
"title": "Curriculum pre-training for end-to-end speech translation",
"year": "2020"
},
{
"authors": [
"S Watanabe",
"T Hori",
"S Kim",
"J R Hershey",
"T Hayashi"
],
"doi": "",
"ref_id": "b80",
"title": "Hybrid ctc/attention architecture for end-to-end speech recognition",
"year": "2017"
},
{
"authors": [
"Ron J Weiss",
"Jan Chorowski",
"Navdeep Jaitly",
"Yonghui Wu",
"Zhifeng Chen"
],
"doi": "10.21437/interspeech.2017-503",
"ref_id": "b81",
"title": "Sequence-to-Sequence Models Can Directly Translate Foreign Speech",
"year": "August 20-24, 2017. 2017"
},
{
"authors": [
"Chen Xu",
"Bojie Hu",
"Yanyang Li",
"Yuhao Zhang",
"Shen Huang",
"Qi Ju",
"Tong Xiao",
"Jingbo Zhu"
],
"doi": "10.18653/v1/2021.acl-long.204",
"ref_id": "b82",
"title": "Stacked Acoustic-and-Textual Encoding: Integrating the Pre-trained Models into Speech Translation Encoders",
"year": "2021"
},
{
"authors": [
"Rong Ye",
"Mingxuan Wang",
"Lei Li"
],
"doi": "10.21437/interspeech.2021-1065",
"ref_id": "b83",
"title": "End-to-End Speech Translation via Cross-Modal Progressive Training",
"year": "2021"
},
{
"authors": [
"Rong Ye",
"Mingxuan Wang",
"Lei Li"
],
"doi": "10.18653/v1/2022.naacl-main.376",
"ref_id": "b84",
"title": "Cross-modal Contrastive Learning for Speech Translation",
"year": "2022"
},
{
"authors": [
"J Yuan",
"M Liberman"
],
"doi": "",
"ref_id": "b85",
"title": "Speaker identification on the scotus corpus",
"year": "2008"
},
{
"authors": [
"Biao Zhang",
"Ivan Titov",
"Barry Haddow",
"Rico Sennrich"
],
"doi": "10.18653/v1/2020.findings-emnlp.230",
"ref_id": "b86",
"title": "Adaptive Feature Selection for End-to-End Speech Translation",
"year": "2020"
},
{
"authors": [
"Chengqi Zhao",
"Mingxuan Wang",
"Qianqian Dong",
"Rong Ye",
"Lei Li"
],
"doi": "10.18653/v1/2021.acl-demo.7",
"ref_id": "b87",
"title": "NeurST: Neural Speech Translation Toolkit",
"year": "2021"
},
{
"authors": [
"Jiawei Zhao",
"Wei Luo",
"Boxing Chen",
"Andrew Gilman"
],
"doi": "10.18653/v1/2021.emnlp-main.325",
"ref_id": "b88",
"title": "Mutual-Learning Improves End-to-End Speech Translation",
"year": "2021"
},
{
"authors": [
"R Zheng",
"J Chen",
"M Ma",
"L Huang"
],
"doi": "",
"ref_id": "b89",
"title": "Fused acoustic and text encoding for multimodal bilingual pretraining and speech translation",
"year": "2021"
}
] |
[
"d93a987e79cd1ae7",
"effb0aa2e04430d4",
"1a1d7dc6924490c1",
"704906a89d61f1e9",
"2e69cd1dc249beab",
"f1c7c59e835af1ba",
"d42c06c1342474cf",
"46839d9ad3b6e017",
"87ebc3a3f6239b34",
"611addd548d24a3d",
"a576c40849d271bf",
"cad48f61ceeaa295",
"8c9d3ce4c625c0d1",
"f9b2e0da6f2b4f3c",
"6f66dd4a79081233",
"8777714047a52a00",
"ffab09ea0441cd51",
"f84f09187da1f6b6",
"80c8348dd4ccbe85",
"4f7887191c441cc3",
"3213dcd624ec3030",
"b317037927924d31",
"f5e687b4b3056d05",
"0f1f164b3a644437",
"f74cc67593463c31",
"9cd73b0ea2db3308",
"17db8e1e424d6b4d",
"cc47aff5153ba974",
"8b02a8fc6d7d12ac",
"b4488fda127c3c43",
"55b1cdb9dc84414f",
"b21085dad44a2f75",
"304326f381d053d4",
"42891eea15b15e22",
"c5a2e84e03eae1ec",
"3fdf83792051e003",
"e8f37683438ea89c"
] |
[
"8b02a8fc6d7d12ac",
"b317037927924d31",
"304326f381d053d4",
"d42c06c1342474cf",
"80c8348dd4ccbe85",
"1186f22ca91eea94",
"00ee85ef7249dfc6",
"ea492974321ed114",
"1166a3741c5bb35a",
"00f036cc7f778804",
"b4488fda127c3c43",
"d5323632dd9c517a",
"3c1d469d8bf2566f",
"22c83f17fac25e63",
"8777714047a52a00",
"f1c7c59e835af1ba",
"55b1cdb9dc84414f",
"f9b2e0da6f2b4f3c",
"29a5f04dbad07a88",
"f5e687b4b3056d05",
"87ebc3a3f6239b34",
"704906a89d61f1e9",
"848cc3918c47aea5",
"d692488e71a9cf29",
"9201f73b7939ccf8",
"5a382d9f197ef3a6",
"36ca184dd5b69eea",
"1a1d7dc6924490c1",
"3213dcd624ec3030",
"fafd8fc8932522ea",
"6f66dd4a79081233",
"1a47d3494c7b5e2b",
"2be63851b233a3ed",
"cb87a9311b62c943",
"920462d574cd5c5c",
"8146bb9d82f682d9",
"effb0aa2e04430d4",
"3c1eb6fdabc96a43",
"f2617572e12999f4",
"d93a987e79cd1ae7",
"2e69cd1dc249beab",
"a576c40849d271bf",
"ec2cf380eaf57c21",
"42891eea15b15e22",
"1f007953300721b3",
"e8f37683438ea89c",
"b3f8fe20990e710c",
"f7de6684c971fb85",
"ce126520a6649fb5",
"522220e5a993bc6f",
"d11b616236042a5f",
"4f7887191c441cc3",
"c18ecf3d38875be5",
"97cc01bfc8d6392b",
"cad48f61ceeaa295",
"1332229ac2021fb6",
"cc47aff5153ba974",
"0f1f164b3a644437",
"f84f09187da1f6b6",
"f74cc67593463c31",
"9cd73b0ea2db3308",
"df59fee252af77a5",
"558b2987a0d83260",
"ee2a7b40a285dee7",
"9bbf7f41f9954db1",
"69bb0a07a2a597bd",
"26547201238cbfc6",
"ffab09ea0441cd51",
"0b5a282c2b483c22",
"4a202870dbf77ba0",
"dd773355e1f66d93",
"ff33c03a4558c582",
"41a2d0071f4eb589",
"8c9d3ce4c625c0d1",
"1fc1d1acf3b91413",
"fcc0e3324b27a849",
"f6801a4a0e762863",
"2e6589bb91b27dc6",
"de9ce455a5b2b818",
"2d420d6bdcf2da61",
"a5c97ba8f4b0dafb",
"c5a2e84e03eae1ec",
"3fdf83792051e003",
"17db8e1e424d6b4d",
"b21085dad44a2f75",
"611addd548d24a3d",
"46839d9ad3b6e017",
"2e6f3af13177f8ce",
"596c9bfe0c1b896b",
"08fc5a13f19d3644"
] |
1lqOZrdXeG
|
Direct Parameterization of Lipschitz-Bounded Deep Networks
|
data/openreview_paper/ICML_2023_oral/1lqOZrdXeG//paper.pdf
| 54
| 0
|
[] |
[
{
"authors": [
"A Araujo",
"A Havens",
"B Delattre",
"A Allauzen",
"B Hu"
],
"doi": "",
"ref_id": "b0",
"title": "A unified algebraic perspective on lipschitz neural networks",
"year": "2023"
},
{
"authors": [
"M Arjovsky",
"S Chintala",
"L Bottou"
],
"doi": "",
"ref_id": "b1",
"title": "Wasserstein generative adversarial networks",
"year": "2017"
},
{
"authors": [
"Peter Bartlett",
"Yuhang Cai",
"Michael Lindsey",
"Song Mei",
"Jingfeng Wu"
],
"doi": "10.52202/079017-2278",
"ref_id": "b2",
"title": "Large Stepsize Gradient Descent for Non-Homogeneous Two-Layer Networks: Margin Improvement and Fast Optimization",
"year": "2017"
},
{
"authors": [
"L Bethune",
"T Massena",
"T Boissin",
"Y Prudent",
"C Friedrich",
"F Mamalet",
"A Bellet",
"M Serrurier",
"D Vigouroux"
],
"doi": "",
"ref_id": "b3",
"title": "Dp-sgd without clipping: The lipschitz neural network way",
"year": "2023"
},
{
"authors": [
"Lukas Brunke",
"Melissa Greeff",
"Adam W Hall",
"Zhaocong Yuan",
"Siqi Zhou",
"Jacopo Panerati",
"Angela P Schoellig"
],
"doi": "10.1146/annurev-control-042920-020211",
"ref_id": "b4",
"title": "Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning",
"year": "2022"
},
{
"authors": [
"S Bubeck",
"M Sellke"
],
"doi": "",
"ref_id": "b5",
"title": "A universal law of robustness via isoperimetry",
"year": "2023"
},
{
"authors": [
"Samuel Burer",
"Renato D C Monteiro"
],
"doi": "10.1007/s10107-002-0352-8",
"ref_id": "b6",
"title": "A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization",
"year": "2003"
},
{
"authors": [
"Y.-C Chu",
"K Glover"
],
"doi": "",
"ref_id": "b7",
"title": "Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities",
"year": "1999"
},
{
"authors": [
"Cody Coleman",
"Daniel Kang",
"Deepak Narayanan",
"Luigi Nardi",
"Tian Zhao",
"Jian Zhang",
"Peter Bailis",
"Kunle Olukotun",
"Chris Ré",
"Matei Zaharia"
],
"doi": "10.1145/3352020.3352024",
"ref_id": "b8",
"title": "Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark",
"year": "2017"
},
{
"authors": [
"Francesco Croce",
"Matthias Hein"
],
"doi": "10.1109/satml59370.2024.00028",
"ref_id": "b9",
"title": "Segment (Almost) Nothing: Prompt-Agnostic Adversarial Attacks on Segmentation Models",
"year": "2020"
},
{
"authors": [
"F J D'amato",
"M A Rotea",
"A Megretski",
"U Jönsson"
],
"doi": "",
"ref_id": "b10",
"title": "New results for analysis of systems with repeated nonlinearities",
"year": "2001"
},
{
"authors": [
"Charles Dawson",
"Sicun Gao",
"Chuchu Fan"
],
"doi": "10.1109/tro.2022.3232542",
"ref_id": "b11",
"title": "Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control",
"year": "2023"
},
{
"authors": [
"F Farnia",
"J Zhang",
"D Tse"
],
"doi": "",
"ref_id": "b12",
"title": "Generalizable adversarial training via spectral normalization",
"year": "2019"
},
{
"authors": [
"M Fazlyab",
"A Robey",
"H Hassani",
"M Morari",
"G Pappas"
],
"doi": "",
"ref_id": "b13",
"title": "Efficient and accurate estimation of lipschitz constants for deep neural networks",
"year": "2019"
},
{
"authors": [
"I Goodfellow",
"Y Bengio",
"A Courville"
],
"doi": "",
"ref_id": "b14",
"title": "Deep learning",
"year": "2016"
},
{
"authors": [
"H Gouk",
"E Frank",
"B Pfahringer",
"M J Cree"
],
"doi": "",
"ref_id": "b15",
"title": "Regularisation of neural networks by enforcing lipschitz continuity",
"year": "2021"
},
{
"authors": [
"I Gulrajani",
"F Ahmed",
"M Arjovsky",
"V Dumoulin",
"A C Courville"
],
"doi": "",
"ref_id": "b16",
"title": "Improved training of wasserstein gans",
"year": "2017"
},
{
"authors": [
"A K Jain"
],
"doi": "",
"ref_id": "b17",
"title": "Fundamentals of digital image processing",
"year": "1989"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b18",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"V V Kulkarni",
"M G Safonov"
],
"doi": "10.1109/tac.2002.800642",
"ref_id": "b19",
"title": "All multipliers for repeated monotone nonlinearities",
"year": "2002"
},
{
"authors": [
"Q Li",
"S Haque",
"C Anil",
"J Lucas",
"R B Grosse",
"J.-H Jacobsen"
],
"doi": "",
"ref_id": "b20",
"title": "Preventing gradient attenuation in lipschitz constrained convolutional networks",
"year": "2019"
},
{
"authors": [
"Hsueh-Ti Derek Liu",
"Francis Williams",
"Alec Jacobson",
"Sanja Fidler",
"Or Litany"
],
"doi": "10.1145/3528233.3530713",
"ref_id": "b21",
"title": "Learning Smooth Neural Functions via Lipschitz Regularization",
"year": "2022"
},
{
"authors": [
"A Madry",
"A Makelov",
"L Schmidt",
"D Tsipras",
"A Vladu"
],
"doi": "",
"ref_id": "b22",
"title": "Towards deep learning models resistant to adversarial attacks",
"year": "2018"
},
{
"authors": [
"A Megretski",
"A Rantzer"
],
"doi": "10.1109/9.587335",
"ref_id": "b23",
"title": "System analysis via integral quadratic constraints",
"year": "1997"
},
{
"authors": [
"D Meunier",
"H Paugam-Moisy"
],
"doi": "10.1109/ijcnn.2005.1556097",
"ref_id": "b24",
"title": "Evolutionary supervision of a dynamical neural network allows learning with on-going weights",
"year": "2022"
},
{
"authors": [
"Takeru Miyato",
"Masanori Koyama"
],
"doi": "10.1007/978-3-030-03243-2_860-1",
"ref_id": "b25",
"title": "Generative Adversarial Network (GAN)",
"year": "2018"
},
{
"authors": [
"Preetum Nakkiran",
"Gal Kaplun",
"Yamini Bansal",
"Tristan Yang",
"Boaz Barak",
"Ilya Sutskever"
],
"doi": "10.1088/1742-5468/ac3a74",
"ref_id": "b26",
"title": "Deep double descent: where bigger models and more data hurt*",
"year": "2021. 2021"
},
{
"authors": [
"Preetum Nakkiran",
"Gal Kaplun",
"Yamini Bansal",
"Tristan Yang",
"Boaz Barak",
"Ilya Sutskever"
],
"doi": "10.1088/1742-5468/ac3a74",
"ref_id": "b27",
"title": "Deep double descent: where bigger models and more data hurt*",
"year": "2021"
},
{
"authors": [
"Patricia Pauli",
"Anne Koch",
"Julian Berberich",
"Paul Kohler",
"Frank Allgower"
],
"doi": "10.1109/lcsys.2021.3050444",
"ref_id": "b28",
"title": "Training Robust Neural Networks Using Lipschitz Bounds",
"year": "2021"
},
{
"authors": [
"P Pauli",
"D Gramlich",
"F Allgöwer"
],
"doi": "",
"ref_id": "b29",
"title": "Lipschitz constant estimation for 1d convolutional neural networks",
"year": "2022"
},
{
"authors": [
"Patricia Pauli",
"Ruigang Wang",
"Ian R Manchester",
"Frank Allgöwer"
],
"doi": "10.1109/cdc49753.2023.10383534",
"ref_id": "b30",
"title": "Lipschitz-Bounded 1D Convolutional Neural Networks using the Cayley Transform and the Controllability Gramian",
"year": "2023"
},
{
"authors": [
"Bernd Prach",
"Christoph H Lampert"
],
"doi": "10.1007/978-3-031-19803-8_21",
"ref_id": "b31",
"title": "Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks",
"year": "October 23-27, 2022. 2022"
},
{
"authors": [
"Max Revay",
"Ruigang Wang",
"Ian R Manchester"
],
"doi": "10.1109/lcsys.2020.3038221",
"ref_id": "b32",
"title": "A Convex Parameterization of Robust Recurrent Neural Networks",
"year": "2020"
},
{
"authors": [
"Max Revay",
"Ruigang Wang",
"Ian R Manchester"
],
"doi": "10.1109/cdc45484.2021.9683054",
"ref_id": "b33",
"title": "Recurrent Equilibrium Networks: Unconstrained Learning of Stable and Robust Dynamical Models",
"year": "2020"
},
{
"authors": [
"Max Revay",
"Ruigang Wang",
"Ian R Manchester"
],
"doi": "10.1109/tac.2023.3294101",
"ref_id": "b34",
"title": "Recurrent Equilibrium Networks: Flexible Dynamic Models With Guaranteed Stability and Robustness",
"year": "2023"
},
{
"authors": [
"M Rosca",
"T Weber",
"A Gretton",
"Mohamed",
"S"
],
"doi": "",
"ref_id": "b35",
"title": "A case for new neural network smoothness constraints",
"year": "2020"
},
{
"authors": [
"Alessio Russo",
"Alexandre Proutiere"
],
"doi": "10.23919/acc50511.2021.9483025",
"ref_id": "b36",
"title": "Towards Optimal Attacks on Reinforcement Learning Policies",
"year": "2021"
},
{
"authors": [
"Vasu Singla",
"Sahil Singla",
"Soheil Feizi",
"David Jacobs"
],
"doi": "10.1109/iccv48922.2021.01611",
"ref_id": "b37",
"title": "Low Curvature Activations Reduce Overfitting in Adversarial Training",
"year": "2021"
},
{
"authors": [
"S Singla",
"S Singla",
"S Feizi"
],
"doi": "10.7717/peerj-cs.1429/table-9",
"ref_id": "b38",
"title": "Appendix 1: Ablation experiments on CIFAR-10 and CIFAR-100 benchmark platforms.",
"year": "2022"
},
{
"authors": [
"C Szegedy",
"W Zaremba",
"I Sutskever",
"J Bruna",
"D Erhan",
"I Goodfellow",
"R Fergus"
],
"doi": "",
"ref_id": "b39",
"title": "Intriguing properties of neural networks",
"year": "2014"
},
{
"authors": [
"A Trockman",
"J Z Kolter"
],
"doi": "",
"ref_id": "b40",
"title": "Orthogonalizing convolutional layers with the cayley transform",
"year": "2021"
},
{
"authors": [
"Y Tsuzuku",
"I Sato",
"M Sugiyama"
],
"doi": "",
"ref_id": "b41",
"title": "Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks",
"year": "2018"
},
{
"authors": [
"A Virmaux",
"K Scaman"
],
"doi": "",
"ref_id": "b42",
"title": "Lipschitz regularity of deep neural networks: analysis and efficient estimation",
"year": "2018"
},
{
"authors": [
"Ruigang Wang",
"Ian R Manchester"
],
"doi": "10.23919/acc53348.2022.9867842",
"ref_id": "b43",
"title": "Youla-REN: Learning Nonlinear Feedback Policies with Robust Stability Guarantees",
"year": "2022"
},
{
"authors": [
"E Winston",
"J Z Kolter"
],
"doi": "",
"ref_id": "b44",
"title": "Monotone operator equilibrium networks",
"year": "2020"
},
{
"authors": [
"X Xu",
"L Li",
"B Li"
],
"doi": "",
"ref_id": "b45",
"title": "Lot: Layer-wise orthogonal training on improving l2 certified robustness",
"year": "2022"
},
{
"authors": [
"A Xue",
"L Lindemann",
"A Robey",
"H Hassani",
"G J Pappas",
"R Alur"
],
"doi": "",
"ref_id": "b46",
"title": "Chordal sparsity for lipschitz constant estimation of deep neural networks",
"year": "2022"
},
{
"authors": [
"T Yu",
"J Li",
"Y Cai",
"P Li"
],
"doi": "",
"ref_id": "b47",
"title": "Constructing orthogonal convolutions in an explicit manner",
"year": "2022"
},
{
"authors": [
"Y Zheng",
"G Fantuzzi",
"A Papachristodoulou"
],
"doi": "",
"ref_id": "b48",
"title": "128) SwConv(128,128,s=2) SwConv(128,128,s=2) SwConv(128,256) SwConv(128,256) SwConv(256,256,s=2) SwConv(256,256,s=2) -SwConv(256,512",
"year": "2021. 3,64"
},
{
"authors": [],
"doi": "10.7717/peerj-cs.3267/table-13",
"ref_id": "b49",
"title": "Table 13: Performance comparison of various CapsNet architectures on MNIST, fashion MNIST, CIFAR-10, and BM datasets.",
"year": "null"
},
{
"authors": [],
"doi": "10.7717/peerj-cs.497/fig-3",
"ref_id": "b50",
"title": "Figure 3: Train and test accuracy curves of LeNet with DBAP layer are demonstrated on state-of-the art benchmark data sets: (A) MNIST, (B) CIFAR-10, (C) FASHION-MNIST and (D) SVHN.",
"year": "null"
},
{
"authors": [],
"doi": "",
"ref_id": "b51",
"title": "For the experiment of empirical robustness, model architectures with different sizes are reported in Table 5. The SLL model with small, medium and large size can be found",
"year": "2023"
},
{
"authors": [],
"doi": "10.7717/peerjcs.210/table-6",
"ref_id": "b52",
"title": "Table 6: Maximum percent accuracy after n epochs when trained with input and output lengths of 40 and using all training data at once.",
"year": "null"
},
{
"authors": [],
"doi": "10.7554/elife.31414.003",
"ref_id": "b53",
"title": "Figure 2. Reanalysis of data suggests that positive results may have been masked in Landler et al., 2018 by testing worms in both fed and starved states and omitting controls.",
"year": "2022"
}
] |
[] |
[
"6a03244dbba192ce",
"e7725019334abf55",
"24ceab497e726840",
"2e560d7da7644d68",
"c5fbed328be3e651",
"a46ee83d2a982180",
"044e7e239809794d",
"fee9e4422663c491",
"5243e2761e6ba54c",
"b952c5869853f168",
"c6b0a650ab35b967",
"1079c7cf17f274e7",
"ddd9003cba614d6c",
"5a95af7c949a5695",
"9c7101bb335b968d",
"0bc8b3c4ca3d6120",
"8e500c3bfbe6bd0d",
"a51c298c82953bc1",
"46c9e9a41e8bc923",
"01e525e4abfed58a",
"f818f763cb93fab1",
"490fab53f2b0039a",
"a9fb8d929255c90d",
"058e94094eb56129",
"f9cc62662ced8ff0",
"9ca4e7b59d570c54",
"4fbd2807f26c6f75",
"32d68d863ce40d53",
"f4c321a3606a0559",
"6a4ca3e37093c274",
"79675ffb222cabf8",
"fb4a0ed258690190",
"25c6b38b71d74b9e",
"74ff365926cad5b2",
"73c4aaded510e563",
"b76a8f92d0f1ab03",
"e8310927bbf5469a",
"3aa90004fec56f4a",
"8359e253d4542b93",
"5ff85232f1ccc86f",
"ddeb144267eaf36d",
"094d7e3dc87f0df2",
"6f45f66a94c8f251",
"4b531a7ea6a72a36",
"81d7179194f02c3c",
"7910d01066c6ec55",
"2628abd383bcf8a1",
"2dec18953318652a",
"6d43963177651238",
"6d6d1c41a025e464",
"7947085fb1b9bbc1",
"dbb5a452d6925747",
"68a8fafd52474983",
"e86fee4dab8752d6"
] |
RrusCGfAZ1
|
Multicalibration as Boosting for Regression
|
data/openreview_paper/ICML_2023_oral/RrusCGfAZ1//paper.pdf
| 31
| 19
|
[
{
"authors": [
"Ursula Hébert-Johnson",
"Michael Kim",
"Omer Reingold",
"Guy Rothblum"
],
"doi": "",
"ref_id": "b14",
"title": "Multicalibration: Calibration for the (computationally-identifiable) masses",
"year": "2018"
},
{
"authors": [
"Dawid Philip"
],
"doi": "",
"ref_id": "b2",
"title": "The well-calibrated bayesian",
"year": "1982"
},
{
"authors": [
"Christoph Michael P Kim",
"Shafi Kern",
"Frauke Goldwasser",
"Omer Kreuter",
"Reingold"
],
"doi": "",
"ref_id": "b21",
"title": "Universal adaptability: Target-independent inference that competes with propensity scoring",
"year": "2022"
},
{
"authors": [
"P Dean",
"Foster",
"M Sham",
"Kakade"
],
"doi": "",
"ref_id": "b5",
"title": "Calibration via regression",
"year": "2006. 2006"
},
{
"authors": [
"Jerome H Friedman"
],
"doi": "",
"ref_id": "b10",
"title": "Greedy function approximation: a gradient boosting machine",
"year": "2001"
},
{
"authors": [
"Amirata Michael P Kim",
"James Ghorbani",
"Zou"
],
"doi": "",
"ref_id": "b20",
"title": "Multiaccuracy: Black-box post-processing for fairness in classification",
"year": "2019"
},
{
"authors": [
"E Robert",
"Yoav Schapire",
"Freund"
],
"doi": "",
"ref_id": "b27",
"title": "Boosting: Foundations and algorithms",
"year": "2013"
},
{
"authors": [
"P Dean",
"Rakesh Foster",
"Vohra"
],
"doi": "",
"ref_id": "b6",
"title": "Regret in the on-line decision problem",
"year": "1999"
},
{
"authors": [
"Adam Kalai"
],
"doi": "10.1007/978-3-540-27819-1_34",
"ref_id": "b17",
"title": "Learning Monotonic Linear Functions",
"year": "2004"
},
{
"authors": [
"Nigel Duffy",
"David Helmbold"
],
"doi": "10.1023/a:1013685603443",
"ref_id": "b4",
"title": "Boosting Methods for Regression",
"year": "2002"
},
{
"authors": [
"Varun Kanade",
"Adam Kalai"
],
"doi": "",
"ref_id": "b19",
"title": "Potential-based agnostic boosting",
"year": "2009"
},
{
"authors": [
"Adam R Adam Tauman Kalai",
"Yishay Klivans",
"Rocco A Mansour",
"Servedio"
],
"doi": "",
"ref_id": "b18",
"title": "Agnostically learning halfspaces",
"year": "2008"
},
{
"authors": [
"Aaron Roth"
],
"doi": "",
"ref_id": "b25",
"title": "Uncertain: Modern topics in uncertainty estimation",
"year": "2022"
},
{
"authors": [
"Parikshit Gopalan",
"Adam Tauman Kalai",
"Omer Reingold",
"Sharan Vatsal",
"Udi Wieder"
],
"doi": "",
"ref_id": "b11",
"title": "Omnipredictors",
"year": "2022"
},
{
"authors": [
"Christopher Jung",
"Sampath Kannan",
"Changhwa Lee",
"Mallesh Pai",
"Aaron Roth",
"Rakesh Vohra"
],
"doi": "10.1145/3391403.3399473",
"ref_id": "b15",
"title": "Fair Prediction with Endogenous Behavior",
"year": "2021"
},
{
"authors": [
"Maya Burhanpurkar",
"Zhun Deng",
"Cynthia Dwork",
"Linjun Zhang"
],
"doi": "",
"ref_id": "b1",
"title": "Scaffolding sets",
"year": "2021"
},
{
"authors": [
"Dylan Foster",
"Alexander Rakhlin"
],
"doi": "10.1017/9781009093057.018",
"ref_id": "b7",
"title": "Contextual Bandits",
"year": "2020"
},
{
"authors": [
"Dylan Foster",
"Alekh Agarwal",
"Miroslav Dudík",
"Haipeng Luo",
"Robert Schapire"
],
"doi": "",
"ref_id": "b8",
"title": "Practical contextual bandits with regression oracles",
"year": "2018"
},
{
"authors": [
"Yoav Freund",
"Robert E Schapire"
],
"doi": "10.1006/jcss.1997.1504",
"ref_id": "b9",
"title": "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting",
"year": "1997"
}
] |
[
{
"authors": [
"Avrim Blum",
"Yishay Mansour"
],
"doi": "",
"ref_id": "b0",
"title": "From external to internal regret",
"year": "2005"
},
{
"authors": [
"Maya Burhanpurkar",
"Zhun Deng",
"Cynthia Dwork",
"Linjun Zhang"
],
"doi": "",
"ref_id": "b1",
"title": "Scaffolding sets",
"year": "2021"
},
{
"authors": [
"Dawid Philip"
],
"doi": "",
"ref_id": "b2",
"title": "The well-calibrated bayesian",
"year": "1982"
},
{
"authors": [
"Frances Ding",
"Moritz Hardt",
"John Miller",
"Ludwig Schmidt"
],
"doi": "",
"ref_id": "b3",
"title": "Retiring adult: New datasets for fair machine learning",
"year": "2021"
},
{
"authors": [
"Nigel Duffy",
"David Helmbold"
],
"doi": "10.1023/a:1013685603443",
"ref_id": "b4",
"title": "Boosting Methods for Regression",
"year": "2002"
},
{
"authors": [
"P Dean",
"Foster",
"M Sham",
"Kakade"
],
"doi": "",
"ref_id": "b5",
"title": "Calibration via regression",
"year": "2006. 2006"
},
{
"authors": [
"P Dean",
"Rakesh Foster",
"Vohra"
],
"doi": "",
"ref_id": "b6",
"title": "Regret in the on-line decision problem",
"year": "1999"
},
{
"authors": [
"Dylan Foster",
"Alexander Rakhlin"
],
"doi": "10.1017/9781009093057.018",
"ref_id": "b7",
"title": "Contextual Bandits",
"year": "2020"
},
{
"authors": [
"Dylan Foster",
"Alekh Agarwal",
"Miroslav Dudík",
"Haipeng Luo",
"Robert Schapire"
],
"doi": "",
"ref_id": "b8",
"title": "Practical contextual bandits with regression oracles",
"year": "2018"
},
{
"authors": [
"Yoav Freund",
"Robert E Schapire"
],
"doi": "10.1006/jcss.1997.1504",
"ref_id": "b9",
"title": "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting",
"year": "1997"
},
{
"authors": [
"Jerome H Friedman"
],
"doi": "",
"ref_id": "b10",
"title": "Greedy function approximation: a gradient boosting machine",
"year": "2001"
},
{
"authors": [
"Parikshit Gopalan",
"Adam Tauman Kalai",
"Omer Reingold",
"Sharan Vatsal",
"Udi Wieder"
],
"doi": "",
"ref_id": "b11",
"title": "Omnipredictors",
"year": "2022"
},
{
"authors": [
"Parikshit Gopalan",
"Lunjia Hu",
"Michael P Kim",
"Omer Reingold",
"Udi Wieder"
],
"doi": "",
"ref_id": "b12",
"title": "Loss minimization through the lens of outcome indistinguishability",
"year": "January 10-13, 2023. 2023"
},
{
"authors": [
"Michael P Parikshit Gopalan",
"Omer Kim",
"Reingold"
],
"doi": "",
"ref_id": "b13",
"title": "Characterizing notions of omniprediction via multicalibration",
"year": "2023"
},
{
"authors": [
"Ursula Hébert-Johnson",
"Michael Kim",
"Omer Reingold",
"Guy Rothblum"
],
"doi": "",
"ref_id": "b14",
"title": "Multicalibration: Calibration for the (computationally-identifiable) masses",
"year": "2018"
},
{
"authors": [
"Christopher Jung",
"Sampath Kannan",
"Changhwa Lee",
"Mallesh Pai",
"Aaron Roth",
"Rakesh Vohra"
],
"doi": "10.1145/3391403.3399473",
"ref_id": "b15",
"title": "Fair Prediction with Endogenous Behavior",
"year": "2021"
},
{
"authors": [
"Christopher Jung",
"Georgy Noarov",
"Ramya Ramalingam",
"Aaron Roth"
],
"doi": "",
"ref_id": "b16",
"title": "Batch multivalid conformal prediction",
"year": "2022"
},
{
"authors": [
"Adam Kalai"
],
"doi": "10.1007/978-3-540-27819-1_34",
"ref_id": "b17",
"title": "Learning Monotonic Linear Functions",
"year": "2004"
},
{
"authors": [
"Adam R Adam Tauman Kalai",
"Yishay Klivans",
"Rocco A Mansour",
"Servedio"
],
"doi": "",
"ref_id": "b18",
"title": "Agnostically learning halfspaces",
"year": "2008"
},
{
"authors": [
"Varun Kanade",
"Adam Kalai"
],
"doi": "",
"ref_id": "b19",
"title": "Potential-based agnostic boosting",
"year": "2009"
},
{
"authors": [
"Amirata Michael P Kim",
"James Ghorbani",
"Zou"
],
"doi": "",
"ref_id": "b20",
"title": "Multiaccuracy: Black-box post-processing for fairness in classification",
"year": "2019"
},
{
"authors": [
"Christoph Michael P Kim",
"Shafi Kern",
"Frauke Goldwasser",
"Omer Kreuter",
"Reingold"
],
"doi": "",
"ref_id": "b21",
"title": "Universal adaptability: Target-independent inference that competes with propensity scoring",
"year": "2022"
},
{
"authors": [
"Balas K Natarajan"
],
"doi": "",
"ref_id": "b22",
"title": "On learning sets and functions",
"year": "1989"
},
{
"authors": [
"F Pedregosa",
"G Varoquaux",
"A Gramfort",
"V Michel",
"B Thirion",
"O Grisel",
"M Blondel",
"P Prettenhofer",
"R Weiss",
"V Dubourg",
"J Vanderplas",
"A Passos",
"D Cournapeau",
"M Brucher",
"M Perrot",
"E Duchesnay"
],
"doi": "",
"ref_id": "b23",
"title": "Scikit-learn: Machine learning in Python",
"year": "2011"
},
{
"authors": [
"David Pollard"
],
"doi": "",
"ref_id": "b24",
"title": "Convergence of stochastic processes",
"year": "2012"
},
{
"authors": [
"Aaron Roth"
],
"doi": "",
"ref_id": "b25",
"title": "Uncertain: Modern topics in uncertainty estimation",
"year": "2022"
},
{
"authors": [
"Robert E Schapire"
],
"doi": "",
"ref_id": "b26",
"title": "The strength of weak learnability",
"year": "1990"
},
{
"authors": [
"E Robert",
"Yoav Schapire",
"Freund"
],
"doi": "",
"ref_id": "b27",
"title": "Boosting: Foundations and algorithms",
"year": "2013"
},
{
"authors": [
"Eliran Shabat",
"Lee Cohen",
"Yishay Mansour"
],
"doi": "",
"ref_id": "b28",
"title": "Sample complexity of uniform convergence for multicalibration",
"year": "2020"
},
{
"authors": [
"Shai Shalev",
"-Shwartz",
"Shai Ben-David"
],
"doi": "",
"ref_id": "b29",
"title": "Understanding machine learning: From theory to algorithms",
"year": "2014"
},
{
"authors": [
"V N Vapnik",
"A Ya. Chervonenkis"
],
"doi": "10.1007/978-3-319-21852-6_3",
"ref_id": "b30",
"title": "On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities",
"year": "1971"
}
] |
[
"c95cdd172bd2387d",
"092b8d24b2c4cb28",
"81510b8892fb36cb",
"61dcec607f53ef4c",
"d05299853d130ad1",
"4f30bcdf7601cf79",
"954738c698daec75",
"2344bd0db2418516",
"3fe7813427b35c95",
"3fe05a56b5698df2",
"2245fb521c67f40f",
"5a9a9ef12f0085f0",
"b0e158237b90cfdb",
"c8fcdc5e3cbb1f27",
"b01854b57b9d3a89",
"20659966767104f4",
"7550b0c94ce3740c",
"53dda73c33d7baa5",
"c33b12f06d347fbf"
] |
[
"fb9167874dfddf71",
"20659966767104f4",
"092b8d24b2c4cb28",
"2ca48f8bb1db27e9",
"3fe05a56b5698df2",
"61dcec607f53ef4c",
"2344bd0db2418516",
"7550b0c94ce3740c",
"53dda73c33d7baa5",
"c33b12f06d347fbf",
"d05299853d130ad1",
"c8fcdc5e3cbb1f27",
"8d8bb6bfefd6421e",
"efcb13a8beb381d3",
"c95cdd172bd2387d",
"b01854b57b9d3a89",
"9f02427b97ca0353",
"3fe7813427b35c95",
"5a9a9ef12f0085f0",
"2245fb521c67f40f",
"4f30bcdf7601cf79",
"81510b8892fb36cb",
"3d6c608978e85515",
"39532d491be5ad09",
"821ca80063d82896",
"b0e158237b90cfdb",
"082bd4bb597bc737",
"954738c698daec75",
"e2f6eec1c1d32959",
"a1a6324306bd12a5",
"5c6f4f7b2f63b2b1"
] |
bpRTAnJ8LW
|
Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling
|
data/openreview_paper/ICML_2023_oral/bpRTAnJ8LW//paper.pdf
| 99
| 0
|
[] |
[
{
"authors": [
"G Ahdritz",
"N Bouatta",
"S Kadyan",
"Q Xia",
"W Gerecke",
"T J O'donnell",
"D Berenberg",
"I Fisk",
"N Zanichelli",
"B Zhang"
],
"doi": "",
"ref_id": "b0",
"title": "Openfold: Retraining alphafold2 yields new insights into its learning mechanisms and capacity for generalization",
"year": "2022"
},
{
"authors": [
"A Andonian",
"Q Anthony",
"S Biderman",
"S Black",
"P Gali",
"L Gao",
"E Hallahan",
"J Levy-Kramer",
"C Leahy",
"L Nestler",
"K Parker",
"M Pieler",
"S Purohit",
"T Songz",
"W Phil",
"S Weinbach"
],
"doi": "",
"ref_id": "b1",
"title": "GPT-NeoX: Large scale autoregressive language modeling in PyTorch, 8",
"year": "2021"
},
{
"authors": [
"Stephen Bach",
"Victor Sanh",
"Zheng Xin Yong",
"Albert Webson",
"Colin Raffel",
"Nihal V Nayak",
"Abheesht Sharma",
"Taewoon Kim",
"M Saiful Bari",
"Thibault Fevry",
"Zaid Alyafeai",
"Manan Dey",
"Andrea Santilli",
"Zhiqing Sun",
"Srulik Ben-David",
"Canwen Xu",
"Gunjan Chhablani",
"Han Wang",
"Jason Fries",
"Maged Al-Shaibani",
"Shanya Sharma",
"Urmish Thakker",
"Khalid Almubarak",
"Xiangru Tang",
"Dragomir Radev",
"Mike Tian-Jian Jiang",
"Alexander Rush"
],
"doi": "10.18653/v1/2022.acl-demo.9",
"ref_id": "b2",
"title": "PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts",
"year": "2022"
},
{
"authors": [
"N Belrose",
"Z Furman",
"L Smith",
"D Halawi",
"I Ostrovsky",
"L Mckinney",
"S Biderman",
"J Steinhardt"
],
"doi": "",
"ref_id": "b3",
"title": "Eliciting latent predictions from transformers with the tuned lens",
"year": "2023"
},
{
"authors": [
"S Biderman",
"K Bicheno",
"L Gao"
],
"doi": "10.48550/arXiv.2201.07311",
"ref_id": "b4",
"title": "Datasheet for the Pile",
"year": "2022"
},
{
"authors": [
"S Biderman",
"U S Prashanth",
"L Sutawika",
"S Purohit",
"H Schoelkopf",
"Q Anthony",
"E Raff"
],
"doi": "",
"ref_id": "b5",
"title": "Emergent and predictable memorization in large language models",
"year": "2023"
},
{
"authors": [
"A Birhane",
"P Kalluri",
"D Card",
"W Agnew",
"R Dotan",
"M Bao"
],
"doi": "10.48550/arXiv.2106.15590",
"ref_id": "b6",
"title": "The values encoded in machine learning research",
"year": "2021"
},
{
"authors": [
"Sidney Black",
"Stella Biderman",
"Eric Hallahan",
"Quentin Anthony",
"Leo Gao",
"Laurence Golding",
"Horace He",
"Connor Leahy",
"Kyle Mcdonell",
"Jason Phang",
"Michael Pieler",
"Usvsn Sai Prashanth",
"Shivanshu Purohit",
"Laria Reynolds",
"Jonathan Tow",
"Ben Wang",
"Samuel Weinbach"
],
"doi": "10.18653/v1/2022.bigscience-1.9",
"ref_id": "b7",
"title": "GPT-NeoX-20B: An Open-Source Autoregressive Language Model",
"year": "2021"
},
{
"authors": [
"Sidney Black",
"Stella Biderman",
"Eric Hallahan",
"Quentin Anthony",
"Leo Gao",
"Laurence Golding",
"Horace He",
"Connor Leahy",
"Kyle Mcdonell",
"Jason Phang",
"Michael Pieler",
"Usvsn Sai Prashanth",
"Shivanshu Purohit",
"Laria Reynolds",
"Jonathan Tow",
"Ben Wang",
"Samuel Weinbach"
],
"doi": "10.18653/v1/2022.bigscience-1.9",
"ref_id": "b8",
"title": "GPT-NeoX-20B: An Open-Source Autoregressive Language Model",
"year": "2022"
},
{
"authors": [
"Su Lin Blodgett",
"Gilsinia Lopez",
"Alexandra Olteanu",
"Robert Sim",
"Hanna Wallach"
],
"doi": "10.18653/v1/2021.acl-long.81",
"ref_id": "b9",
"title": "Stereotyping Norwegian Salmon: An Inventory of Pitfalls in Fairness Benchmark Datasets",
"year": "August 2021"
},
{
"authors": [
"Shikha Bordia",
"Samuel R Bowman"
],
"doi": "10.18653/v1/n19-3002",
"ref_id": "b10",
"title": "Identifying and Reducing Gender Bias in Word-Level Language Models",
"year": "2019"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell",
"S Agarwal",
"A Herbert-Voss",
"G Krueger",
"T Henighan",
"R Child",
"A Ramesh",
"D Ziegler",
"J Wu",
"C Winter",
"C Hesse",
"M Chen",
"E Sigler",
"M Litwin",
"S Gray",
"B Chess",
"J Clark",
"C Berner",
"S Mccandlish",
"A Radford",
"I Sutskever",
"D Amodei"
],
"doi": "",
"ref_id": "b11",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"M.-E Brunet",
"C Alkalay-Houlihan",
"A Anderson",
"R Zemel"
],
"doi": "",
"ref_id": "b12",
"title": "Understanding the origins of bias in word embeddings",
"year": "2019"
},
{
"authors": [
"N Carlini",
"C Liu",
"Ú Erlingsson",
"J Kos",
"D Song"
],
"doi": "10.1109/msp.2004.9",
"ref_id": "b13",
"title": "USENIX Security Symposium",
"year": "2019"
},
{
"authors": [
"N Carlini",
"F Tramer",
"E Wallace",
"M Jagielski",
"A Herbert-Voss",
"K Lee",
"A Roberts",
"T Brown",
"D Song",
"U Erlingsson"
],
"doi": "",
"ref_id": "b14",
"title": "Extracting training data from large language models",
"year": "2021"
},
{
"authors": [
"N Carlini",
"D Ippolito",
"M Jagielski",
"K Lee",
"F Tramer",
"C Zhang"
],
"doi": "",
"ref_id": "b15",
"title": "Quantifying memorization across neural language models",
"year": "2022"
},
{
"authors": [
"I Caswell",
"T Breiner",
"D Van Esch",
"A Bapna"
],
"doi": "",
"ref_id": "b16",
"title": "Language id in the wild: Unexpected challenges on the path to a thousand-language web text corpus",
"year": "2020"
},
{
"authors": [
"M Chen",
"J Tworek",
"H Jun",
"Q Yuan",
"H P D O Pinto",
"J Kaplan",
"H Edwards",
"Y Burda",
"N Joseph",
"G Brockman",
"A Ray",
"R Puri",
"G Krueger",
"M Petrov",
"H Khlaaf",
"G Sastry",
"P Mishkin",
"B Chan",
"S Gray",
"N Ryder",
"M Pavlov",
"A Power",
"L Kaiser",
"M Bavarian",
"C Winter",
"P Tillet",
"F P Such",
"D Cummings",
"M Plappert",
"F Chantzis",
"E Barnes",
"A Herbert-Voss",
"W H Guss",
"A Nichol",
"A Paino",
"N Tezak",
"J Tang",
"I Babuschkin",
"S Balaji",
"S Jain",
"W Saunders",
"C Hesse",
"A N Carr",
"J Leike",
"J Achiam",
"V Misra",
"E Morikawa",
"A Radford",
"M Knight",
"M Brundage",
"M Murati",
"K Mayer",
"P Welinder",
"B Mcgrew",
"D Amodei",
"S Mccandlish",
"I Sutskever",
"W Zaremba"
],
"doi": "10.48550/arXiv.2107.03374",
"ref_id": "b17",
"title": "Evaluating large language models trained on code",
"year": "2021"
},
{
"authors": [
"Rochelle Choenni",
"Ekaterina Shutova",
"Robert Van Rooij"
],
"doi": "10.18653/v1/2021.emnlp-main.111",
"ref_id": "b18",
"title": "Stepmothers are mean and academics are pretentious: What do pretrained language models learn about you?",
"year": "2021"
},
{
"authors": [
"A Chowdhery",
"S Narang",
"J Devlin",
"M Bosma",
"G Mishra",
"A Roberts",
"P Barham",
"H W Chung",
"C Sutton",
"S Gehrmann"
],
"doi": "10.48550/arXiv.2204.0231",
"ref_id": "b19",
"title": "PaLM: Scaling language modeling with Pathways",
"year": "2022"
},
{
"authors": [
"Alexis Conneau",
"Kartikay Khandelwal",
"Naman Goyal",
"Vishrav Chaudhary",
"Guillaume Wenzek",
"Francisco Guzmán",
"Edouard Grave",
"Myle Ott",
"Luke Zettlemoyer",
"Veselin Stoyanov"
],
"doi": "10.18653/v1/2020.acl-main.747",
"ref_id": "b20",
"title": "Unsupervised Cross-lingual Representation Learning at Scale",
"year": ""
},
{
"authors": [
"Alexis Conneau",
"Kartikay Khandelwal",
"Naman Goyal",
"Vishrav Chaudhary",
"Guillaume Wenzek",
"Francisco Guzmán",
"Edouard Grave",
"Myle Ott",
"Luke Zettlemoyer",
"Veselin Stoyanov"
],
"doi": "10.18653/v1/2020.acl-main.747",
"ref_id": "b21",
"title": "Unsupervised Cross-lingual Representation Learning at Scale",
"year": "07 2020"
},
{
"authors": [
"K Crowson",
"S Biderman",
"D Kornis",
"D Stander",
"E Hallahan",
"L Castricato",
"E Raff"
],
"doi": "10.48550/arXiv.2204.08583",
"ref_id": "b22",
"title": "VQGAN-CLIP: Open domain image generation and editing with natural language guidance",
"year": "2022"
},
{
"authors": [
"T Dao",
"D Y Fu",
"S Ermon",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b23",
"title": "Flashattention: Fast and memory-efficient exact attention with io-awareness",
"year": "2022"
},
{
"authors": [
"Jesse Dodge",
"Maarten Sap",
"Ana Marasović",
"William Agnew",
"Gabriel Ilharco",
"Dirk Groeneveld",
"Margaret Mitchell",
"Matt Gardner"
],
"doi": "10.18653/v1/2021.emnlp-main.98",
"ref_id": "b24",
"title": "Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus",
"year": "2021"
},
{
"authors": [
"A D'amour",
"K Heller",
"D Moldovan",
"B Adlam",
"B Alipanahi",
"A Beutel",
"C Chen",
"J Deaton",
"J Eisenstein",
"M D Hoffman"
],
"doi": "",
"ref_id": "b25",
"title": "Underspecification presents challenges for credibility in modern machine learning",
"year": "2020"
},
{
"authors": [
"Yanai Elazar",
"Nora Kassner",
"Shauli Ravfogel",
"Abhilasha Ravichander",
"Eduard Hovy",
"Hinrich Schütze",
"Yoav Goldberg"
],
"doi": "10.1162/tacl_a_00410",
"ref_id": "b26",
"title": "Measuring and Improving Consistency in Pretrained Language Models",
"year": "2022"
},
{
"authors": [
"D Fried",
"A Aghajanyan",
"J Lin",
"S Wang",
"E Wallace",
"F Shi",
"R Zhong",
"W.-T Yih",
"L Zettlemoyer",
"M Lewis"
],
"doi": "10.48550/arXiv.2204.05999",
"ref_id": "b27",
"title": "InCoder: A generative model for code infilling and synthesis",
"year": "2022"
},
{
"authors": [
"L Gao"
],
"doi": "",
"ref_id": "b28",
"title": "On the sizes of openai api models",
"year": "2021"
},
{
"authors": [
"L Gao",
"S Biderman",
"S Black",
"L Golding",
"T Hoppe",
"C Foster",
"J Phang",
"H He",
"A Thite",
"N Nabeshima",
"S Presser",
"C Leahy"
],
"doi": "10.48550/arXiv.2101.00027",
"ref_id": "b29",
"title": "The Pile: An 800GB dataset of diverse text for language modeling",
"year": "2020"
},
{
"authors": [
"L Gao",
"J Tow",
"S Biderman",
"S Black",
"A Dipofi",
"C Foster",
"L Golding",
"J Hsu",
"K Mcdonell",
"N Muennighoff",
"J Phang",
"L Reynolds",
"E Tang",
"A Thite",
"B Wang",
"K Wang",
"A Zou"
],
"doi": "10.5281/zenodo.5371628",
"ref_id": "b30",
"title": "A framework for few-shot language model evaluation",
"year": "September 2021"
},
{
"authors": [
"B Ghorbani",
"O Firat",
"M Freitag",
"A Bapna",
"M Krikun",
"X Garcia",
"C Chelba",
"C Cherry"
],
"doi": "10.48550/arXiv.2109.07740",
"ref_id": "b31",
"title": "Scaling laws for neural machine translation",
"year": "2021"
},
{
"authors": [
"A Ginart",
"L Van Der Maaten",
"J Zou",
"C Guo"
],
"doi": "",
"ref_id": "b32",
"title": "Submix: Practical private prediction for large-scale language models",
"year": "2022"
},
{
"authors": [
"Michael Gira",
"Ruisu Zhang",
"Kangwook Lee"
],
"doi": "10.18653/v1/2022.ltedi-1.8",
"ref_id": "b33",
"title": "Debiasing Pre-Trained Language Models via Efficient Fine-Tuning",
"year": "2022"
},
{
"authors": [
"P Goyal",
"P Dollár",
"R B Girshick",
"P Noordhuis",
"L Wesolowski",
"A Kyrola",
"A Tulloch",
"Y Jia",
"K He",
"Accurate"
],
"doi": "",
"ref_id": "b34",
"title": "large minibatch SGD: training imagenet in 1 hour",
"year": "2017"
},
{
"authors": [
"M Hall",
"L Van Der Maaten",
"L Gustafson",
"A Adcock"
],
"doi": "",
"ref_id": "b35",
"title": "A systematic study of bias amplification",
"year": "2022"
},
{
"authors": [
"T Henighan",
"J Kaplan",
"M Katz",
"M Chen",
"C Hesse",
"J Jackson",
"H Jun",
"T B Brown",
"P Dhariwal",
"S Gray",
"C Hallacy",
"B Mann",
"A Radford",
"A Ramesh",
"N Ryder",
"D M Ziegler",
"J Schulman",
"D Amodei",
"S Mccandlish"
],
"doi": "10.48550/arXiv.2010.14701",
"ref_id": "b36",
"title": "Scaling laws for autoregressive generative modeling",
"year": "2020"
},
{
"authors": [
"D Hernandez",
"J Kaplan",
"T Henighan",
"S Mccandlish"
],
"doi": "10.48550/arXiv.2102.01293",
"ref_id": "b37",
"title": "Scaling laws for transfer",
"year": "2021"
},
{
"authors": [
"D Hernandez",
"T Brown",
"T Conerly",
"N Dassarma",
"D Drain",
"S El-Showk",
"N Elhage",
"Z Hatfield-Dodds",
"T Henighan",
"T Hume",
"S Johnston",
"B Mann",
"C Olah",
"C Olsson",
"D Amodei",
"N Joseph",
"J Kaplan",
"S Mccandlish"
],
"doi": "10.48550/arXiv.2205.10487",
"ref_id": "b38",
"title": "Scaling laws and interpretability of learning from repeated data",
"year": "05 2022"
},
{
"authors": [
"Yusuke Hirota",
"Yuta Nakashima",
"Noa Garcia"
],
"doi": "10.1109/cvpr52688.2022.01309",
"ref_id": "b39",
"title": "Quantifying Societal Bias Amplification in Image Captioning",
"year": "2022"
},
{
"authors": [
"J Hoffmann",
"S Borgeaud",
"A Mensch",
"E Buchatskaya",
"T Cai",
"E Rutherford",
"D D L Casas",
"L A Hendricks",
"J Welbl",
"A Clark"
],
"doi": "",
"ref_id": "b40",
"title": "Training compute-optimal large language models",
"year": "2022"
},
{
"authors": [
"H Hu",
"Z Salcic",
"L Sun",
"G Dobbie",
"P S Yu",
"X Zhang"
],
"doi": "",
"ref_id": "b41",
"title": "Membership inference attacks on machine learning: A survey",
"year": "2022"
},
{
"authors": [
"Jie Huang",
"Hanyin Shao",
"Kevin Chen-Chuan Chang"
],
"doi": "10.18653/v1/2022.findings-emnlp.148",
"ref_id": "b42",
"title": "Are Large Pre-Trained Language Models Leaking Your Personal Information?",
"year": "2022"
},
{
"authors": [
"Daphne Ippolito",
"Florian Tramer",
"Milad Nasr",
"Chiyuan Zhang",
"Matthew Jagielski",
"Katherine Lee",
"Christopher Choquette Choo",
"Nicholas Carlini"
],
"doi": "10.18653/v1/2023.inlg-main.3",
"ref_id": "b43",
"title": "Preventing Generation of Verbatim Memorization in Language Models Gives a False Sense of Privacy",
"year": "2022"
},
{
"authors": [
"M Jagielski",
"O Thakkar",
"F Tramer",
"D Ippolito",
"K Lee",
"N Carlini",
"E Wallace",
"S Song",
"A Thakurta",
"N Papernot"
],
"doi": "",
"ref_id": "b44",
"title": "Measuring forgetting of memorized training examples",
"year": "2022"
},
{
"authors": [
"Yacine Jernite",
"Huu Nguyen",
"Stella Biderman",
"Anna Rogers",
"Maraim Masoud",
"Valentin Danchev",
"Samson Tan",
"Alexandra Sasha Luccioni",
"Nishant Subramani",
"Isaac Johnson",
"Gerard Dupont",
"Jesse Dodge",
"Kyle Lo",
"Zeerak Talat",
"Dragomir Radev",
"Aaron Gokaslan",
"Somaieh Nikpoor",
"Peter Henderson",
"Rishi Bommasani",
"Margaret Mitchell"
],
"doi": "10.1145/3531146.3534637",
"ref_id": "b45",
"title": "Data Governance in the Age of Large-Scale Data-Driven Language Technology",
"year": "2022"
},
{
"authors": [
"Mandar Joshi",
"Eunsol Choi",
"Daniel Weld",
"Luke Zettlemoyer"
],
"doi": "10.18653/v1/p17-1147",
"ref_id": "b46",
"title": "TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension",
"year": "2017"
},
{
"authors": [
"John Jumper",
"Richard Evans",
"Alexander Pritzel",
"Tim Green",
"Michael Figurnov",
"Olaf Ronneberger",
"Kathryn Tunyasuvunakool",
"Russ Bates",
"Augustin Žídek",
"Anna Potapenko",
"Alex Bridgland",
"Clemens Meyer",
"Simon A A Kohl",
"Andrew J Ballard",
"Andrew Cowie",
"Bernardino Romera-Paredes",
"Stanislav Nikolov",
"Rishub Jain",
"Jonas Adler",
"Trevor Back",
"Stig Petersen",
"David Reiman",
"Ellen Clancy",
"Michal Zielinski",
"Martin Steinegger",
"Michalina Pacholska",
"Tamas Berghammer",
"Sebastian Bodenstein",
"David Silver",
"Oriol Vinyals",
"Andrew W Senior",
"Koray Kavukcuoglu",
"Pushmeet Kohli",
"Demis Hassabis"
],
"doi": "10.1038/s41586-021-03819-2",
"ref_id": "b47",
"title": "Highly accurate protein structure prediction with AlphaFold",
"year": "2021"
},
{
"authors": [
"N Kandpal",
"H Deng",
"A Roberts",
"E Wallace",
"C Raffel"
],
"doi": "",
"ref_id": "b48",
"title": "Large language models struggle to learn long-tail knowledge",
"year": "2022"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T B Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "10.48550/arXiv.2001.08361",
"ref_id": "b49",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"S Karamcheti",
"L Orr",
"J Bolton",
"T Zhang",
"K Goel",
"A Narayan",
"R Bommasani",
"D Narayanan",
"T Hashimoto",
"D Jurafsky",
"C D Manning",
"C Potts",
"C Ré",
"P Liang"
],
"doi": "",
"ref_id": "b50",
"title": "Mistral -a journey towards reproducible language model training",
"year": "2021"
},
{
"authors": [
"N Kirtane",
"V Manushree",
"A Kane"
],
"doi": "",
"ref_id": "b51",
"title": "Efficient gender debiasing of pre-trained indic language models",
"year": "2022"
},
{
"authors": [
"J Kreutzer",
"I Caswell",
"L Wang",
"A Wahab",
"D Van Esch",
"N Ulzii-Orshikh",
"A Tapo",
"N Subramani",
"A Sokolov",
"C Sikasote",
"M Setyawan",
"S Sarin",
"S Samb",
"B Sagot",
"C Rivera",
"A Rios",
"I Papadimitriou",
"S Osei",
"P O Suárez",
"I Orife",
"K Ogueji",
"A N Rubungo",
"T Q Nguyen",
"M Müller",
"A Müller",
"S H Muhammad",
"N Muhammad",
"A Mnyakeni",
"J Mirzakhalov",
"T Matangira",
"C Leong",
"N Lawson",
"S Kudugunta",
"Y Jernite",
"M Jenny",
"O Firat",
"B F P Dossou",
"S Dlamini",
"N De Silva",
"S Ballı",
"S Biderman",
"A Battisti",
"A Baruwa",
"A Bapna",
"P Baljekar",
"I A Azime",
"A Awokoya",
"D Ataman",
"O Ahia",
"O Ahia",
"S Agrawal",
"M Adeyemi"
],
"doi": "10.48550/arXiv.2103.12028",
"ref_id": "b52",
"title": "Quality at a glance: An audit of web-crawled multilingual datasets",
"year": "2021"
},
{
"authors": [
"Long Phan",
"Alice Gatti",
"Nathaniel Li",
"Adam Khoja",
"Ryan Kim",
"Richard Ren",
"Jason Hausenloy",
"Oliver Zhang",
"Mantas Mazeika",
"Dan Hendrycks",
"Ziwen Han",
"Josephina Hu",
"Hugh Zhang",
"Chen Bo Calvin Zhang",
"Mohamed Shaaban",
"John Ling",
"Sean Shi",
"Michael Choi",
"Anish Agrawal",
"Arnav Chopra",
"Aakaash Nattanmai",
"Gordon Mckellips",
"Anish Cheraku",
"Asim Suhail",
"Ethan Luo",
"Marvin Deng",
"Jason Luo",
"Ashley Zhang",
"Kavin Jindel",
"Jay Paek",
"Kasper Halevy",
"Allen Baranov",
"Michael Liu",
"Advaith Avadhanam",
"David Zhang",
"Vincent Cheng",
"Brad Ma",
"Evan Fu",
"Liam Do",
"Joshua Lass",
"Hubert Yang",
"Surya Sunkari",
"Vishruth Bharath",
"Violet Ai",
"James Leung",
"Rishit Agrawal",
"Alan Zhou",
"Kevin Chen",
"Tejas Kalpathi",
"Ziqi Xu",
"Gavin Wang",
"Tyler Xiao",
"Erik Maung",
"Sam Lee",
"Ryan Yang",
"Roy Yue",
"Ben Zhao",
"Julia Yoon",
"Xiangwan Sun",
"Aryan Singh",
"Clark Peng",
"Tyler Osbey",
"Taozhi Wang",
"Daryl Echeazu",
"Timothy Wu",
"Spandan Patel",
"Vidhi Kulkarni",
"Vijaykaarti Sundarapandiyan",
"Andrew Le",
"Zafir Nasim",
"Srikar Yalam",
"Ritesh Kasamsetty",
"Soham Samal",
"David Sun",
"Nihar Shah",
"Abhijeet Saha",
"Alex Zhang",
"Leon Nguyen",
"Laasya Nagumalli",
"Kaixin Wang",
"Aidan Wu",
"Anwith Telluri",
"Summer Yue",
"Alexandr Wang",
"Dmitry Dodonov",
"Tung Nguyen",
"Jaeho Lee",
"Daron Anderson",
"Mikhail Doroshenko",
"Alun Cennyth Stokes",
"Mobeen Mahmood",
"Oleksandr Pokutnyi",
"Oleg Iskra",
"Jessica P Wang",
"John-Clark Levin",
"Mstyslav Kazakov",
"Fiona Feng",
"Steven Y Feng",
"Haoran Zhao",
"Michael Yu",
"Varun Gangal",
"Chelsea Zou",
"Zihan Wang",
"Serguei Popov",
"Robert Gerbicz",
"Geoff Galgon",
"Johannes Schmitt",
"Will Yeadon",
"Yongki Lee",
"Scott Sauers",
"Alvaro Sanchez",
"Fabian Giska",
"Marc Roth",
"Søren Riis",
"Saiteja Utpala",
"Noah Burns",
"Gashaw M Goshu",
"Mohinder Maheshbhai Naiya",
"Chidozie Agu",
"Zachary Giboney",
"Antrell Cheatom",
"Francesco Fournier-Facio",
"Sarah-Jane Crowson",
"Lennart Finke",
"Zerui Cheng",
"Jennifer Zampese",
"Ryan G Hoerr",
"Mark Nandor",
"Hyunwoo Park",
"Tim Gehrunger",
"Jiaqi Cai",
"Ben Mccarty",
"Alexis C Garretson",
"Edwin Taylor",
"Damien Sileo",
"Qiuyu Ren",
"Usman Qazi",
"Lianghui Li",
"Jungbae Nam",
"John B Wydallis",
"Pavel Arkhipov",
"Jack Wei Lun Shi",
"Aras Bacho",
"Chris G Willcocks",
"Hangrui Cao",
"Sumeet Motwani",
"Emily De Oliveira Santos",
"Johannes Veith",
"Edward Vendrow",
"Doru Cojoc",
"Kengo Zenitani",
"Joshua Robinson",
"Longke Tang",
"Yuqi Li",
"Joshua Vendrow",
"Natanael Wildner Fraga",
"Vladyslav Kuchkin",
"Andrey Pupasov Maksimov",
"Pierre Marion",
"Denis Efremov",
"Jayson Lynch",
"Kaiqu Liang",
"Aleksandar Mikov",
"Andrew Gritsevskiy",
"Julien Guillod",
"Gözdenur Demir",
"Dakotah Martinez",
"Ben Pageler",
"Kevin Zhou",
"Saeed Soori",
"Ori Press",
"Henry Tang",
"Paolo Rissone",
"Sean R Green",
"Lina Brüssel",
"Moon Twayana",
"Aymeric Dieuleveut",
"Joseph Marvin Imperial",
"Ameya Prabhu",
"Jinzhou Yang",
"Nick Crispino",
"Arun Rao",
"Dimitri Zvonkine",
"Gabriel Loiseau",
"Mikhail Kalinin",
"Marco Lukas",
"Ciprian Manolescu",
"Nate Stambaugh",
"Subrata Mishra",
"Tad Hogg",
"Carlo Bosio",
"Brian P Coppola",
"Julian Salazar",
"Jaehyeok Jin",
"Rafael Sayous",
"Stefan Ivanov",
"Philippe Schwaller",
"Shaipranesh Senthilkumar",
"Andres M Bran",
"Andres Algaba",
"Kelsey Van Den Houte",
"Lynn Van Der Sypt",
"Brecht Verbeken",
"David Noever",
"Alexei Kopylov",
"Benjamin Myklebust",
"Bikun Li",
"Lisa Schut",
"Evgenii Zheltonozhskii",
"Qiaochu Yuan",
"Derek Lim",
"Richard Stanley",
"Tong Yang",
"John Maar",
"Julian Wykowski",
"Mart Oller",
"Anmol Sahu",
"Cesare Giulio Ardito",
"Yuzheng Hu",
"Ariel Ghislain Kemogne Kamdoum",
"Alvin Jin",
"Tobias Garcia Vilchis",
"Yuexuan Zu",
"Martin Lackner",
"James Koppel",
"Gongbo Sun",
"Daniil S Antonenko",
"Steffi Chern",
"Bingchen Zhao",
"Pierrot Arsene",
"Joseph M Cavanagh",
"Daofeng Li",
"Jiawei Shen",
"Donato Crisostomi",
"Wenjin Zhang",
"Ali Dehghan",
"Sergey Ivanov",
"David Perrella",
"Nurdin Kaparov",
"Allen Zang",
"Ilia Sucholutsky",
"Arina Kharlamova",
"Daniil Orel",
"Vladislav Poritski",
"Shalev Ben-David",
"Zachary Berger",
"Parker Whitfill",
"Michael Foster",
"Daniel Munro",
"Linh Ho",
"Shankar Sivarajan",
"Dan Bar Hava",
"Aleksey Kuchkin",
"David Holmes",
"Alexandra Rodriguez-Romero",
"Frank Sommerhage",
"Anji Zhang",
"Richard Moat",
"Keith Schneider",
"Zakayo Kazibwe",
"Don Clarke",
"Dae Hyun Kim",
"Felipe Meneguitti Dias",
"Sara Fish",
"Veit Elser",
"Tobias Kreiman",
"Victor Efren Guadarrama Vilchis",
"Immo Klose",
"Ujjwala Anantheswaran",
"Adam Zweiger",
"Kaivalya Rawal",
"Jeffery Li",
"Jeremy Nguyen",
"Nicolas Daans",
"Haline Heidinger",
"Maksim Radionov",
"Václav Rozhoň",
"Vincent Ginis",
"Christian Stump",
"Niv Cohen",
"Rafał Poświata",
"Josef Tkadlec",
"Alan Goldfarb",
"Chenguang Wang",
"Piotr Padlewski",
"Stanislaw Barzowski",
"Kyle Montgomery",
"Ryan Stendall",
"Jamie Tucker-Foltz",
"Jack Stade",
"T Ryan Rogers",
"Tom Goertzen",
"Declan Grabb",
"Abhishek Shukla",
"Alan Givré",
"John Arnold Ambay",
"Archan Sen",
"Muhammad Fayez Aziz",
"Mark H Inlow",
"Hao He",
"Ling Zhang",
"Younesse Kaddar",
"Ivar Ängquist",
"Yanxu Chen",
"Harrison K Wang",
"Kalyan Ramakrishnan",
"Elliott Thornley",
"Antonio Terpin",
"Hailey Schoelkopf",
"Eric Zheng",
"Avishy Carmi",
"Ethan D L Brown",
"Kelin Zhu",
"Max Bartolo",
"Richard Wheeler",
"Martin Stehberger",
"Peter Bradshaw",
"J P Heimonen",
"Kaustubh Sridhar",
"Ido Akov",
"Jennifer Sandlin",
"Yury Makarychev",
"Joanna Tam",
"Hieu Hoang",
"David M Cunningham",
"Vladimir Goryachev",
"Demosthenes Patramanis",
"Michael Krause",
"Andrew Redenti",
"David Aldous",
"Jesyin Lai",
"Shannon Coleman",
"Jiangnan Xu",
"Sangwon Lee",
"Ilias Magoulas",
"Sandy Zhao",
"Ning Tang",
"Michael K Cohen",
"Orr Paradise",
"Jan Hendrik Kirchner",
"Maksym Ovchynnikov",
"Jason O Matos",
"Adithya Shenoy",
"Michael Wang",
"Yuzhou Nie",
"Anna Sztyber-Betley",
"Paolo Faraboschi",
"Robin Riblet",
"Jonathan Crozier",
"Shiv Halasyamani",
"Shreyas Verma",
"Prashant Joshi",
"Eli Meril",
"Ziqiao Ma",
"Jérémy Andréoletti",
"Raghav Singhal",
"Jacob Platnick",
"Volodymyr Nevirkovets",
"Luke Basler",
"Alexander Ivanov",
"Seri Khoury",
"Nils Gustafsson",
"Marco Piccardo",
"Hamid Mostaghimi",
"Qijia Chen",
"Virendra Singh",
"Tran Quoc Khánh",
"Paul Rosu",
"Hannah Szlyk",
"Zachary Brown",
"Himanshu Narayan",
"Aline Menezes",
"Jonathan Roberts",
"William Alley",
"Kunyang Sun",
"Arkil Patel",
"Max Lamparth",
"Anka Reuel",
"Linwei Xin",
"Hanmeng Xu",
"Jacob Loader",
"Freddie Martin",
"Zixuan Wang",
"Andrea Achilleos",
"Thomas Preu",
"Tomek Korbak",
"Ida Bosio",
"Fereshteh Kazemi",
"Ziye Chen",
"Biró Bálint",
"Eve J Y Lo",
"Jiaqi Wang",
"Maria Inês S Nunes",
"Jeremiah Milbauer",
"M Saiful Bari",
"Zihao Wang",
"Behzad Ansarinejad",
"Yewen Sun",
"Stephane Durand",
"Hossam Elgnainy",
"Guillaume Douville",
"Daniel Tordera",
"George Balabanian",
"Hew Wolff",
"Lynna Kvistad",
"Hsiaoyun Milliron",
"Ahmad Sakor",
"Murat Eron",
"D O Andrew Favre",
"Shailesh Shah",
"Xiaoxiang Zhou",
"Firuz Kamalov",
"Sherwin Abdoli",
"Tim Santens",
"Shaul Barkan",
"Allison Tee",
"Robin Zhang",
"Alessandro Tomasiello",
"G Bruno De Luca",
"Shi-Zhuo Looi",
"Vinh-Kha Le",
"Noam Kolt",
"Jiayi Pan",
"Emma Rodman",
"Jacob Drori",
"Carl J Fossum",
"Niklas Muennighoff",
"Milind Jagota",
"Ronak Pradeep",
"Honglu Fan",
"Jonathan Eicher",
"Michael Chen",
"Kushal Thaman",
"William Merrill",
"Moritz Firsching",
"Carter Harris",
"Stefan Ciobâcă",
"Jason Gross",
"Rohan Pandey",
"Ilya Gusev",
"Adam Jones",
"Shashank Agnihotri",
"Pavel Zhelnov",
"Mohammadreza Mofayezi",
"Alexander Piperski",
"David K Zhang",
"Kostiantyn Dobarskyi",
"Roman Leventov",
"Ignat Soroko",
"Joshua Duersch",
"Vage Taamazyan",
"Andrew Ho",
"Wenjie Ma",
"William Held",
"Ruicheng Xian",
"Armel Randy Zebaze",
"Mohanad Mohamed",
"Julian Noah Leser",
"Michelle X Yuan",
"Laila Yacar",
"Johannes Lengler",
"Katarzyna Olszewska",
"Claudio Di Fratta",
"Edson Oliveira",
"Joseph W Jackson",
"Andy Zou",
"Muthu Chidambaram",
"Timothy Manik",
"Hector Haffenden",
"Dashiell Stander",
"Ali Dasouqi",
"Alexander Shen",
"Bita Golshani",
"David Stap",
"Egor Kretov",
"Mikalai Uzhou",
"Alina Borisovna Zhidkovskaya",
"Nick Winter",
"Miguel Orbegozo Rodriguez",
"Robert Lauff",
"Dustin Wehr",
"Colin Tang",
"Zaki Hossain",
"Shaun Phillips",
"Fortuna Samuele",
"Fredrik Ekström",
"Angela Hammon",
"Oam Patel",
"Faraz Farhidi",
"George Medley",
"Forough Mohammadzadeh",
"Madellene Peñaflor",
"Haile Kassahun",
"Alena Friedrich",
"Rayner Hernandez Perez",
"Daniel Pyda",
"Taom Sakal",
"Omkar Dhamane",
"Ali Khajegili Mirabadi",
"Eric Hallman",
"Kenchi Okutsu",
"Mike Battaglia",
"Mohammad Maghsoudimehrabani",
"Alon Amit",
"Dave Hulbert",
"Roberto Pereira",
"Simon Weber",
"Handoko",
"Anton Peristyy",
"Stephen Malina",
"Mustafa Mehkary",
"Rami Aly",
"Frank Reidegeld",
"Anna-Katharina Dick",
"Cary Friday",
"Mukhwinder Singh",
"Hassan Shapourian",
"Wanyoung Kim",
"Mariana Costa",
"Hubeyb Gurdogan",
"Harsh Kumar",
"Chiara Ceconello",
"Chao Zhuang",
"Haon Park",
"Micah Carroll",
"Andrew R Tawfeek",
"Stefan Steinerberger",
"Daattavya Aggarwal",
"Michael Kirchhof",
"Linjie Dai",
"Evan Kim",
"Johan Ferret",
"Jainam Shah",
"Yuzhou Wang",
"Minghao Yan",
"Krzysztof Burdzy",
"Lixin Zhang",
"Antonio Franca",
"Diana T Pham",
"Kang Yong Loh",
"Joshua Robinson",
"Abram Jackson",
"Paolo Giordano",
"Philipp Petersen",
"Adrian Cosma",
"Jesus Colino",
"Colin White",
"Jacob Votava",
"Vladimir Vinnikov",
"Ethan Delaney",
"Petr Spelda",
"Vit Stritecky",
"Syed M Shahid",
"Jean-Christophe Mourrat",
"Lavr Vetoshkin",
"Koen Sponselee",
"Renas Bacho",
"Zheng-Xin Yong",
"Florencia De La Rosa",
"Nathan Cho",
"Xiuyu Li",
"Guillaume Malod",
"Orion Weller",
"Guglielmo Albani",
"Leon Lang",
"Julien Laurendeau",
"Dmitry Kazakov",
"Fatimah Adesanya",
"Julien Portier",
"Lawrence Hollom",
"Victor Souza",
"Yuchen Anna Zhou",
"Julien Degorre",
"Yiğit Yaln",
"Gbenga Daniel Obikoya",
"Rai Michael Pokorny",
"Filippo Bigi",
"M C Boscá",
"Oleg Shumar",
"Kaniuar Bacho",
"Gabriel Recchia",
"Mara Popescu",
"Nikita Shulga",
"Ngefor Mildred Tanwie",
"Thomas C H Lux",
"Ben Rank",
"Colin Ni",
"Matthew Brooks",
"Alesia Yakimchyk",
"Huanxu Quinn Liu",
"Stefano Cavalleri",
"Olle Häggström",
"Emil Verkama",
"Joshua Newbould",
"Hans Gundlach",
"Leonor Brito-Santana",
"Brian Amaro",
"Vivek Vajipey",
"Rynaa Grover",
"Ting Wang",
"Yosi Kratish",
"Wen-Ding Li",
"Sivakanth Gopi",
"Andrea Caciolai",
"Christian Schroeder De Witt",
"Pablo Hernández-Cámara",
"Emanuele Rodolà",
"Jules Robins",
"Dominic Williamson",
"Brad Raynor",
"Hao Qi",
"Ben Segev",
"Jingxuan Fan",
"Sarah Martinson",
"Erik Y Wang",
"Kaylie Hausknecht",
"Michael P Brenner",
"Mao Mao",
"Christoph Demian",
"Peyman Kassani",
"Xinyu Zhang",
"David Avagian",
"Eshawn Jessica Scipio",
"Alon Ragoler",
"Justin Tan",
"Blake Sims",
"Rebeka Plecnik",
"Aaron Kirtland",
"Omer Faruk Bodur",
"D P Shinde",
"Yan Carlos Leyva Labrador",
"Zahra Adoul",
"Mohamed Zekry",
"Ali Karakoc",
"Tania C B Santos",
"Samir Shamseldeen",
"Loukmane Karim",
"Anna Liakhovitskaia",
"Nate Resman",
"Nicholas Farina",
"Juan Carlos Gonzalez",
"Gabe Maayan",
"Earth Anderson",
"Rodrigo De Oliveira Pena",
"Elizabeth Kelley",
"Hodjat Mariji",
"Rasoul Pouriamanesh",
"Wentao Wu",
"Ross Finocchio",
"Ismail Alarab",
"Joshua Cole",
"Danyelle Ferreira",
"Bryan Johnson",
"Mohammad Safdari",
"Liangti Dai",
"Siriphan Arthornthurasuk",
"Isaac C Mcalister",
"Alejandro José Moyano",
"Alexey Pronin",
"Jing Fan",
"Angel Ramirez-Trinidad",
"Yana Malysheva",
"Daphiny Pottmaier",
"Omid Taheri",
"Stanley Stepanic",
"Samuel Perry",
"Luke Askew",
"Raúl Adrián Huerta Rodrguez",
"Ali M R Minissi",
"Ricardo Lorena",
"Krishnamurthy Iyer",
"Arshad Anil Fasiludeen",
"Ronald Clark",
"Josh Ducey",
"Matheus Piza",
"Maja Somrak",
"Eric Vergo",
"Juehang Qin",
"Benjámin Borbás",
"Eric Chu",
"Jack Lindsey",
"Antoine Jallon",
"I M J Mcinnis",
"Evan Chen",
"Avi Semler",
"Luk Gloor",
"Tej Shah",
"Marc Carauleanu",
"Pascal Lauer",
"Tran Duc Huy",
"Hossein Shahrtash",
"Emilien Duc",
"Lukas Lewark",
"Assaf Brown",
"Samuel Albanie",
"Brian Weber",
"Warren S Vaz",
"Pierre Clavier",
"Yiyang Fan",
"Gabriel Poesia Reis E Silva",
"Long Tony Lian",
"Marcus Abramovitch",
"Xi Jiang",
"Sandra Mendoza",
"Murat Islam",
"Juan Gonzalez",
"Vasilios Mavroudis",
"Justin Xu",
"Pawan Kumar",
"Laxman Prasad Goswami",
"Daniel Bugas",
"Nasser Heydari",
"Ferenc Jeanplong",
"Thorben Jansen",
"Antonella Pinto",
"Archimedes Apronti",
"Abdallah Galal",
"Ng Ze-An",
"Ankit Singh",
"Tong Jiang",
"Joan Of Arc Xavier",
"Kanu Priya Agarwal",
"Mohammed Berkani",
"Gang Zhang",
"Zhehang Du",
"Benedito Alves De Oliveira Junior",
"Dmitry Malishev",
"Nicolas Remy",
"Taylor D Hartman",
"Tim Tarver",
"Stephen Mensah",
"Gautier Abou Loume",
"Wiktor Morak",
"Farzad Habibi",
"Sarah Hoback",
"Will Cai",
"Javier Gimenez",
"Roselynn Grace Montecillo",
"Jakub Łucki",
"Russell Campbell",
"Asankhaya Sharma",
"Khalida Meer",
"Shreen Gul",
"Daniel Espinosa Gonzalez",
"Xavier Alapont",
"Alex Hoover",
"Gunjan Chhablani",
"Freddie Vargus",
"Arunim Agarwal",
"Yibo Jiang",
"Deepakkumar Patil",
"David Outevsky",
"Kevin Joseph Scaria",
"Rajat Maheshwari",
"Abdelkader Dendane",
"Priti Shukla",
"Ashley Cartwright",
"Sergei Bogdanov",
"Niels Mündler",
"Sören Möller",
"Luca Arnaboldi",
"Kunvar Thaman",
"Muhammad Rehan Siddiqi",
"Prajvi Saxena",
"Himanshu Gupta",
"Tony Fruhauff",
"Glen Sherman",
"Mátyás Vincze",
"Siranut Usawasutsakorn",
"Dylan Ler",
"Anil Radhakrishnan",
"Innocent Enyekwe",
"Sk Md Salauddin",
"Jiang Muzhen",
"Aleksandr Maksapetyan",
"Vivien Rossbach",
"Chris Harjadi",
"Mohsen Bahaloohoreh",
"Claire Sparrow",
"Jasdeep Sidhu",
"Sam Ali",
"Song Bian",
"John Lai",
"Eric Singer",
"Justine Leon Uro",
"Greg Bateman",
"Mohamed Sayed",
"Ahmed Menshawy",
"Darling Duclosel",
"Dario Bezzi",
"Yashaswini Jain",
"Ashley Aaron",
"Murat Tiryakioglu",
"Sheeshram Siddh",
"Keith Krenek",
"Imad Ali Shah",
"Jun Jin",
"Scott Creighton",
"Denis Peskoff",
"Zienab El-Wasif",
"Michael Richmond",
"Joseph Mcgowan",
"Tejal Patwardhan",
"Hao-Yu Sun",
"Ting Sun",
"Nikola Zubić",
"Samuele Sala",
"Stephen Ebert",
"Jean Kaddour",
"Manuel Schottdorf",
"Dianzhuo Wang",
"Gerol Petruzella",
"Alex Meiburg",
"Tilen Medved",
"Ali Elsheikh",
"S Ashwin Hebbar",
"Lorenzo Vaquero",
"Xianjun Yang",
"Jason Poulos",
"Vilém Zouhar",
"Sergey Bogdanik",
"Mingfang Zhang",
"Jorge Sanz-Ros",
"David Anugraha",
"Yinwei Dai",
"Anh N Nhu",
"Xue Wang",
"Ali Anil Demircali",
"Zhibai Jia",
"Yuyin Zhou",
"Juncheng Wu",
"Mike He",
"Nitin Chandok",
"Aarush Sinha",
"Gaoxiang Luo",
"Long Le",
"Mickaël Noyé",
"Michał Perełkiewicz",
"Ioannis Pantidis",
"Tianbo Qi",
"Soham Sachin Purohit",
"Letitia Parcalabescu",
"Thai-Hoa Nguyen",
"Genta Indra Winata",
"Edoardo M Ponti",
"Hanchen Li",
"Kaustubh Dhole",
"Jongee Park",
"Dario Abbondanza",
"Yuanli Wang",
"Anupam Nayak",
"Diogo M Caetano",
"Antonio A W L Wong",
"Maria Del Rio-Chanona",
"Dániel Kondor",
"Pieter Francois",
"Ed Chalstrey",
"Jakob Zsambok",
"Dan Hoyer",
"Jenny Reddish",
"Jakob Hauser",
"Francisco-Javier Rodrigo-Ginés",
"Suchandra Datta",
"Maxwell Shepherd",
"Thom Kamphuis",
"Qizheng Zhang",
"Hyunjun Kim",
"Ruiji Sun",
"Jianzhu Yao",
"Franck Dernoncourt",
"Satyapriya Krishna",
"Sina Rismanchian",
"Bonan Pu",
"Francesco Pinto",
"Yingheng Wang",
"Kumar Shridhar",
"Kalon J Overholt",
"Glib Briia",
"Hieu Nguyen",
"David Quod Soler Bartomeu",
"Tony Cy Pang",
"Adam Wecker",
"Yifan Xiong",
"Fanfei Li",
"Lukas S Huber",
"Joshua Jaeger",
"Romano De Maddalena",
"Xing Han Lù",
"Yuhui Zhang",
"Claas Beger",
"Patrick Tser Jern Kon",
"Sean Li",
"Vivek Sanker",
"Ming Yin",
"Yihao Liang",
"Xinlu Zhang",
"Ankit Agrawal",
"Li S Yifei",
"Zechen Zhang",
"Mu Cai",
"Yasin Sonmez",
"Costin Cozianu",
"Changhao Li",
"Alex Slen",
"Shoubin Yu",
"Hyun Kyu Park",
"Gabriele Sarti",
"Marcin Briański",
"Alessandro Stolfo",
"Truong An Nguyen",
"Mike Zhang",
"Yotam Perlitz",
"Jose Hernandez-Orallo",
"Runjia Li",
"Amin Shabani",
"Felix Juefei-Xu",
"Shikhar Dhingra",
"Orr Zohar",
"My Chiffon Nguyen",
"Alexander Pondaven",
"Abdurrahim Yilmaz",
"Xuandong Zhao",
"Chuanyang Jin",
"Muyan Jiang",
"Stefan Todoran",
"Xinyao Han",
"Jules Kreuer",
"Brian Rabern",
"Anna Plassart",
"Martino Maggetti",
"Luther Yap",
"Robert Geirhos",
"Jonathon Kean",
"Dingsu Wang",
"Sina Mollaei",
"Chenkai Sun",
"Yifan Yin",
"Shiqi Wang",
"Rui Li",
"Yaowen Chang",
"Anjiang Wei",
"Alice Bizeul",
"Xiaohan Wang",
"Alexandre Oliveira Arrais",
"Kushin Mukherjee",
"Jorge Chamorro-Padial",
"Jiachen Liu",
"Xingyu Qu",
"Junyi Guan",
"Adam Bouyamourn",
"Shuyu Wu",
"Martyna Plomecka",
"Junda Chen",
"Mengze Tang",
"Jiaqi Deng",
"Shreyas Subramanian",
"Haocheng Xi",
"Haoxuan Chen",
"Weizhi Zhang",
"Yinuo Ren",
"Haoqin Tu",
"Sejong Kim",
"Yushun Chen",
"Sara Vera Marjanović",
"Junwoo Ha",
"Grzegorz Luczyna",
"Jeff J Ma",
"Zewen Shen",
"Dawn Song",
"Cedegao E Zhang",
"Zhun Wang",
"Gaël Gendron",
"Yunze Xiao",
"Leo Smucker",
"Erica Weng",
"Kwok Hao Lee",
"Zhe Ye",
"Stefano Ermon",
"Ignacio D Lopez-Miguel",
"Theo Knights",
"Anthony Gitter",
"Namkyu Park",
"Boyi Wei",
"Hongzheng Chen",
"Kunal Pai",
"Ahmed Elkhanany",
"Han Lin",
"Philipp D Siedler",
"Jichao Fang",
"Ritwik Mishra",
"Károly Zsolnai-Fehér",
"Xilin Jiang",
"Shadab Khan",
"Jun Yuan",
"Rishab Kumar Jain",
"Xi Lin",
"Mike Peterson",
"Zhe Wang",
"Aditya Malusare",
"Maosen Tang",
"Isha Gupta",
"Ivan Fosin",
"Timothy Kang",
"Barbara Dworakowska",
"Kazuki Matsumoto",
"Guangyao Zheng",
"Gerben Sewuster",
"Jorge Pretel Villanueva",
"Ivan Rannev",
"Igor Chernyavsky",
"Jiale Chen",
"Deepayan Banik",
"Ben Racz",
"Wenchao Dong",
"Jianxin Wang",
"Laila Bashmal",
"Duarte V Gonçalves",
"Wei Hu",
"Kaushik Bar",
"Ondrej Bohdal",
"Atharv Singh Patlan",
"Shehzaad Dhuliawala",
"Caroline Geirhos",
"Julien Wist",
"Yuval Kansal",
"Bingsen Chen",
"Kutay Tire",
"Atak Talay Yücel",
"Brandon Christof",
"Veerupaksh Singla",
"Zijian Song",
"Sanxing Chen",
"Jiaxin Ge",
"Kaustubh Ponkshe",
"Isaac Park",
"Tianneng Shi",
"Martin Q Ma",
"Joshua Mak",
"Sherwin Lai",
"Antoine Moulin",
"Zhuo Cheng",
"Zhanda Zhu",
"Ziyi Zhang",
"Vaidehi Patil",
"Ketan Jha",
"Qiutong Men",
"Jiaxuan Wu",
"Tianchi Zhang",
"Bruno Hebling Vieira",
"Alham Fikri Aji",
"Jae-Won Chung",
"Mohammed Mahfoud",
"Ha Thi Hoang",
"Marc Sperzel",
"Wei Hao",
"Kristof Meding",
"Sihan Xu",
"Vassilis Kostakos",
"Davide Manini",
"Yueying Liu",
"Christopher Toukmaji",
"Eunmi Yu",
"Arif Engin Demircali",
"Zhiyi Sun",
"Ivan Dewerpe",
"Hongsen Qin",
"Roman Pflugfelder",
"James Bailey",
"Johnathan Morris",
"Ville Heilala",
"Sybille Rosset",
"Zishun Yu",
"Peter E Chen",
"Woongyeong Yeo",
"Eeshaan Jain",
"Sreekar Chigurupati",
"Julia Chernyavsky",
"Sai Prajwal Reddy",
"Subhashini Venugopalan",
"Hunar Batra",
"Core Francisco Park",
"Hieu Tran",
"Guilherme Maximiano",
"Genghan Zhang",
"Yizhuo Liang",
"Hu Shiyu",
"Rongwu Xu",
"Rui Pan",
"Siddharth Suresh",
"Ziqi Liu",
"Samaksh Gulati",
"Songyang Zhang",
"Peter Turchin",
"Christopher W Bartlett",
"Christopher R Scotese",
"Phuong M Cao",
"Ben Wu",
"Jacek Karwowski",
"Davide Scaramuzza"
],
"doi": "10.1038/s41586-025-09962-4",
"ref_id": "b53",
"title": "A benchmark of expert-level academic questions to assess AI capabilities",
"year": "2022"
},
{
"authors": [
"Le Scao",
"T Wang",
"T Hesslow",
"D Saulnier",
"L Bekman",
"S Bari",
"M S Biderman",
"S Elsahar",
"H Phang",
"J Press",
"O"
],
"doi": "",
"ref_id": "b54",
"title": "What language model to train if you have one million GPU hours?",
"year": "2022"
},
{
"authors": [
"Katherine Lee",
"Daphne Ippolito",
"Andrew Nystrom",
"Chiyuan Zhang",
"Douglas Eck",
"Chris Callison-Burch",
"Nicholas Carlini"
],
"doi": "10.18653/v1/2022.acl-long.577",
"ref_id": "b55",
"title": "Deduplicating Training Data Makes Language Models Better",
"year": "2021"
},
{
"authors": [
"Shahar Levy",
"Koren Lazar",
"Gabriel Stanovsky"
],
"doi": "10.18653/v1/2021.findings-emnlp.211",
"ref_id": "b56",
"title": "Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution and Machine Translation",
"year": "2021"
},
{
"authors": [
"O Lieber",
"O Sharir",
"B Lenz",
"Y Shoham"
],
"doi": "",
"ref_id": "b57",
"title": "Jurassic-1: Technical details and evaluation",
"year": "2021"
},
{
"authors": [
"Alex Mallen",
"Akari Asai",
"Victor Zhong",
"Rajarshi Das",
"Daniel Khashabi",
"Hannaneh Hajishirzi"
],
"doi": "10.18653/v1/2023.acl-long.546",
"ref_id": "b58",
"title": "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories",
"year": "2022"
},
{
"authors": [
"S Mccandlish",
"J Kaplan",
"D Amodei",
"O D Team"
],
"doi": "",
"ref_id": "b59",
"title": "An empirical model of large-batch training",
"year": "2018"
},
{
"authors": [
"T Mcgrath",
"A Kapishnikov",
"N Tomašev",
"A Pearce",
"D Hassabis",
"B Kim",
"U Paquet",
"V Kramnik"
],
"doi": "10.48550/arXiv.2111.09259",
"ref_id": "b60",
"title": "Acquisition of chess knowledge in AlphaZero",
"year": "2021"
},
{
"authors": [
"A Mcmillan-Major",
"Z Alyafeai",
"S Biderman",
"K Chen",
"F De Toni",
"G Dupont",
"H Elsahar",
"C Emezue",
"A F Aji",
"S Ilić"
],
"doi": "10.48550/arXiv.2201.10066",
"ref_id": "b61",
"title": "Documenting geographically and contextually diverse data sources: The BigScience catalogue of language data and resources",
"year": "2022"
},
{
"authors": [
"H Mikami",
"K Fukumizu",
"S Murai",
"S Suzuki",
"Y Kikuchi",
"T Suzuki",
"S.-I Maeda",
"K Hayashi"
],
"doi": "10.48550/arXiv.2108.11018",
"ref_id": "b62",
"title": "A scaling law for synthetic-to-real transfer: How much is your pre-training effective",
"year": "2021"
},
{
"authors": [
"Nikita Nangia",
"Clara Vania",
"Rasika Bhalerao",
"Samuel R Bowman"
],
"doi": "10.18653/v1/2020.emnlp-main.154",
"ref_id": "b63",
"title": "CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models",
"year": "November 2020"
},
{
"authors": [
"Aurélie Névéol",
"Yoann Dupont",
"Julien Bezançon",
"Karën Fort"
],
"doi": "10.18653/v1/2022.acl-long.583",
"ref_id": "b64",
"title": "French CrowS-Pairs: Extending a challenge dataset for measuring social bias in masked language models to a language other than English",
"year": "May 2022"
},
{
"authors": [
"Denis Paperno",
"Germán Kruszewski",
"Angeliki Lazaridou",
"Ngoc Quan Pham",
"Raffaella Bernardi",
"Sandro Pezzelle",
"Marco Baroni",
"Gemma Boleda",
"Raquel Fernandez"
],
"doi": "10.18653/v1/p16-1144",
"ref_id": "b65",
"title": "The LAMBADA dataset: Word prediction requiring a broad discourse context",
"year": "2016"
},
{
"authors": [
"J Pfeiffer",
"N Goyal",
"X V Lin",
"X Li",
"J Cross",
"S Riedel",
"M Artetxe"
],
"doi": "10.48550/arXiv.2205.06266",
"ref_id": "b66",
"title": "Lifting the curse of multilinguality by pre-training modular transformers",
"year": "2022"
},
{
"authors": [
"J Phang",
"H Bradley",
"L Gao",
"L Castricato",
"S Biderman",
"Eleutherai"
],
"doi": "",
"ref_id": "b67",
"title": "Going beyond\" open science\" to\" science in the open",
"year": "2022"
},
{
"authors": [
"Jie Pu",
"Yuguang Yang",
"Ruirui Li",
"Oguz Elibol",
"Jasha Droppo"
],
"doi": "10.21437/interspeech.2021-1935",
"ref_id": "b68",
"title": "Scaling Effect of Self-Supervised Speech Models",
"year": "2021. 2021"
},
{
"authors": [
"A Radford",
"J Wu",
"R Child",
"D Luan",
"D Amodei",
"I Sutskever"
],
"doi": "",
"ref_id": "b69",
"title": "Language models are unsupervised multitask learners",
"year": "2019"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P J Liu"
],
"doi": "",
"ref_id": "b70",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "01 2020"
},
{
"authors": [
"S Rajbhandari",
"J Rasley",
"O Ruwase",
"Y He",
"Zero"
],
"doi": "10.5555/3433701.3433727",
"ref_id": "b71",
"title": "Memory optimizations toward training trillion parameter models",
"year": "2020"
},
{
"authors": [
"A Ramesh",
"P Dhariwal",
"A Nichol",
"C Chu",
"M Chen"
],
"doi": "",
"ref_id": "b72",
"title": "Hierarchical text-conditional image generation with clip latents",
"year": "2022"
},
{
"authors": [
"Y Razeghi",
"I V Logan",
"R L Gardner",
"M Singh",
"S"
],
"doi": "",
"ref_id": "b73",
"title": "Impact of pretraining term frequencies on few-shot reasoning",
"year": "2022"
},
{
"authors": [
"Robin Rombach",
"Andreas Blattmann",
"Dominik Lorenz",
"Patrick Esser",
"Bjorn Ommer"
],
"doi": "10.1109/cvpr52688.2022.01042",
"ref_id": "b74",
"title": "High-Resolution Image Synthesis with Latent Diffusion Models",
"year": "2022"
},
{
"authors": [
"V Sanh",
"A Webson",
"C Raffel",
"S H Bach",
"L Sutawika",
"Z Alyafeai",
"A Chaffin",
"A Stiegler",
"T L Scao",
"A Raja",
"M Dey",
"M S Bari",
"C Xu",
"U Thakker",
"S S Sharma",
"E Szczechla",
"T Kim",
"G Chhablani",
"N Nayak",
"D Datta",
"J Chang",
"M T Jiang",
"-J Wang",
"H Manica",
"M Shen",
"S Yong",
"Z X Pandey",
"H Bawden",
"R Wang",
"T Neeraj",
"T Rozen",
"J Sharma",
"A Santilli",
"A Févry",
"T Fries",
"J A Teehan",
"R Biderman",
"S Gao",
"L Bers",
"T Wolf",
"T Rush",
"A M"
],
"doi": "10.48550/arXiv.2110.08207",
"ref_id": "b75",
"title": "Multitask prompted training enables zero-shot task generalization",
"year": "2021"
},
{
"authors": [
"Long Phan",
"Alice Gatti",
"Nathaniel Li",
"Adam Khoja",
"Ryan Kim",
"Richard Ren",
"Jason Hausenloy",
"Oliver Zhang",
"Mantas Mazeika",
"Dan Hendrycks",
"Ziwen Han",
"Josephina Hu",
"Hugh Zhang",
"Chen Bo Calvin Zhang",
"Mohamed Shaaban",
"John Ling",
"Sean Shi",
"Michael Choi",
"Anish Agrawal",
"Arnav Chopra",
"Aakaash Nattanmai",
"Gordon Mckellips",
"Anish Cheraku",
"Asim Suhail",
"Ethan Luo",
"Marvin Deng",
"Jason Luo",
"Ashley Zhang",
"Kavin Jindel",
"Jay Paek",
"Kasper Halevy",
"Allen Baranov",
"Michael Liu",
"Advaith Avadhanam",
"David Zhang",
"Vincent Cheng",
"Brad Ma",
"Evan Fu",
"Liam Do",
"Joshua Lass",
"Hubert Yang",
"Surya Sunkari",
"Vishruth Bharath",
"Violet Ai",
"James Leung",
"Rishit Agrawal",
"Alan Zhou",
"Kevin Chen",
"Tejas Kalpathi",
"Ziqi Xu",
"Gavin Wang",
"Tyler Xiao",
"Erik Maung",
"Sam Lee",
"Ryan Yang",
"Roy Yue",
"Ben Zhao",
"Julia Yoon",
"Xiangwan Sun",
"Aryan Singh",
"Clark Peng",
"Tyler Osbey",
"Taozhi Wang",
"Daryl Echeazu",
"Timothy Wu",
"Spandan Patel",
"Vidhi Kulkarni",
"Vijaykaarti Sundarapandiyan",
"Andrew Le",
"Zafir Nasim",
"Srikar Yalam",
"Ritesh Kasamsetty",
"Soham Samal",
"David Sun",
"Nihar Shah",
"Abhijeet Saha",
"Alex Zhang",
"Leon Nguyen",
"Laasya Nagumalli",
"Kaixin Wang",
"Aidan Wu",
"Anwith Telluri",
"Summer Yue",
"Alexandr Wang",
"Dmitry Dodonov",
"Tung Nguyen",
"Jaeho Lee",
"Daron Anderson",
"Mikhail Doroshenko",
"Alun Cennyth Stokes",
"Mobeen Mahmood",
"Oleksandr Pokutnyi",
"Oleg Iskra",
"Jessica P Wang",
"John-Clark Levin",
"Mstyslav Kazakov",
"Fiona Feng",
"Steven Y Feng",
"Haoran Zhao",
"Michael Yu",
"Varun Gangal",
"Chelsea Zou",
"Zihan Wang",
"Serguei Popov",
"Robert Gerbicz",
"Geoff Galgon",
"Johannes Schmitt",
"Will Yeadon",
"Yongki Lee",
"Scott Sauers",
"Alvaro Sanchez",
"Fabian Giska",
"Marc Roth",
"Søren Riis",
"Saiteja Utpala",
"Noah Burns",
"Gashaw M Goshu",
"Mohinder Maheshbhai Naiya",
"Chidozie Agu",
"Zachary Giboney",
"Antrell Cheatom",
"Francesco Fournier-Facio",
"Sarah-Jane Crowson",
"Lennart Finke",
"Zerui Cheng",
"Jennifer Zampese",
"Ryan G Hoerr",
"Mark Nandor",
"Hyunwoo Park",
"Tim Gehrunger",
"Jiaqi Cai",
"Ben Mccarty",
"Alexis C Garretson",
"Edwin Taylor",
"Damien Sileo",
"Qiuyu Ren",
"Usman Qazi",
"Lianghui Li",
"Jungbae Nam",
"John B Wydallis",
"Pavel Arkhipov",
"Jack Wei Lun Shi",
"Aras Bacho",
"Chris G Willcocks",
"Hangrui Cao",
"Sumeet Motwani",
"Emily De Oliveira Santos",
"Johannes Veith",
"Edward Vendrow",
"Doru Cojoc",
"Kengo Zenitani",
"Joshua Robinson",
"Longke Tang",
"Yuqi Li",
"Joshua Vendrow",
"Natanael Wildner Fraga",
"Vladyslav Kuchkin",
"Andrey Pupasov Maksimov",
"Pierre Marion",
"Denis Efremov",
"Jayson Lynch",
"Kaiqu Liang",
"Aleksandar Mikov",
"Andrew Gritsevskiy",
"Julien Guillod",
"Gözdenur Demir",
"Dakotah Martinez",
"Ben Pageler",
"Kevin Zhou",
"Saeed Soori",
"Ori Press",
"Henry Tang",
"Paolo Rissone",
"Sean R Green",
"Lina Brüssel",
"Moon Twayana",
"Aymeric Dieuleveut",
"Joseph Marvin Imperial",
"Ameya Prabhu",
"Jinzhou Yang",
"Nick Crispino",
"Arun Rao",
"Dimitri Zvonkine",
"Gabriel Loiseau",
"Mikhail Kalinin",
"Marco Lukas",
"Ciprian Manolescu",
"Nate Stambaugh",
"Subrata Mishra",
"Tad Hogg",
"Carlo Bosio",
"Brian P Coppola",
"Julian Salazar",
"Jaehyeok Jin",
"Rafael Sayous",
"Stefan Ivanov",
"Philippe Schwaller",
"Shaipranesh Senthilkumar",
"Andres M Bran",
"Andres Algaba",
"Kelsey Van Den Houte",
"Lynn Van Der Sypt",
"Brecht Verbeken",
"David Noever",
"Alexei Kopylov",
"Benjamin Myklebust",
"Bikun Li",
"Lisa Schut",
"Evgenii Zheltonozhskii",
"Qiaochu Yuan",
"Derek Lim",
"Richard Stanley",
"Tong Yang",
"John Maar",
"Julian Wykowski",
"Mart Oller",
"Anmol Sahu",
"Cesare Giulio Ardito",
"Yuzheng Hu",
"Ariel Ghislain Kemogne Kamdoum",
"Alvin Jin",
"Tobias Garcia Vilchis",
"Yuexuan Zu",
"Martin Lackner",
"James Koppel",
"Gongbo Sun",
"Daniil S Antonenko",
"Steffi Chern",
"Bingchen Zhao",
"Pierrot Arsene",
"Joseph M Cavanagh",
"Daofeng Li",
"Jiawei Shen",
"Donato Crisostomi",
"Wenjin Zhang",
"Ali Dehghan",
"Sergey Ivanov",
"David Perrella",
"Nurdin Kaparov",
"Allen Zang",
"Ilia Sucholutsky",
"Arina Kharlamova",
"Daniil Orel",
"Vladislav Poritski",
"Shalev Ben-David",
"Zachary Berger",
"Parker Whitfill",
"Michael Foster",
"Daniel Munro",
"Linh Ho",
"Shankar Sivarajan",
"Dan Bar Hava",
"Aleksey Kuchkin",
"David Holmes",
"Alexandra Rodriguez-Romero",
"Frank Sommerhage",
"Anji Zhang",
"Richard Moat",
"Keith Schneider",
"Zakayo Kazibwe",
"Don Clarke",
"Dae Hyun Kim",
"Felipe Meneguitti Dias",
"Sara Fish",
"Veit Elser",
"Tobias Kreiman",
"Victor Efren Guadarrama Vilchis",
"Immo Klose",
"Ujjwala Anantheswaran",
"Adam Zweiger",
"Kaivalya Rawal",
"Jeffery Li",
"Jeremy Nguyen",
"Nicolas Daans",
"Haline Heidinger",
"Maksim Radionov",
"Václav Rozhoň",
"Vincent Ginis",
"Christian Stump",
"Niv Cohen",
"Rafał Poświata",
"Josef Tkadlec",
"Alan Goldfarb",
"Chenguang Wang",
"Piotr Padlewski",
"Stanislaw Barzowski",
"Kyle Montgomery",
"Ryan Stendall",
"Jamie Tucker-Foltz",
"Jack Stade",
"T Ryan Rogers",
"Tom Goertzen",
"Declan Grabb",
"Abhishek Shukla",
"Alan Givré",
"John Arnold Ambay",
"Archan Sen",
"Muhammad Fayez Aziz",
"Mark H Inlow",
"Hao He",
"Ling Zhang",
"Younesse Kaddar",
"Ivar Ängquist",
"Yanxu Chen",
"Harrison K Wang",
"Kalyan Ramakrishnan",
"Elliott Thornley",
"Antonio Terpin",
"Hailey Schoelkopf",
"Eric Zheng",
"Avishy Carmi",
"Ethan D L Brown",
"Kelin Zhu",
"Max Bartolo",
"Richard Wheeler",
"Martin Stehberger",
"Peter Bradshaw",
"J P Heimonen",
"Kaustubh Sridhar",
"Ido Akov",
"Jennifer Sandlin",
"Yury Makarychev",
"Joanna Tam",
"Hieu Hoang",
"David M Cunningham",
"Vladimir Goryachev",
"Demosthenes Patramanis",
"Michael Krause",
"Andrew Redenti",
"David Aldous",
"Jesyin Lai",
"Shannon Coleman",
"Jiangnan Xu",
"Sangwon Lee",
"Ilias Magoulas",
"Sandy Zhao",
"Ning Tang",
"Michael K Cohen",
"Orr Paradise",
"Jan Hendrik Kirchner",
"Maksym Ovchynnikov",
"Jason O Matos",
"Adithya Shenoy",
"Michael Wang",
"Yuzhou Nie",
"Anna Sztyber-Betley",
"Paolo Faraboschi",
"Robin Riblet",
"Jonathan Crozier",
"Shiv Halasyamani",
"Shreyas Verma",
"Prashant Joshi",
"Eli Meril",
"Ziqiao Ma",
"Jérémy Andréoletti",
"Raghav Singhal",
"Jacob Platnick",
"Volodymyr Nevirkovets",
"Luke Basler",
"Alexander Ivanov",
"Seri Khoury",
"Nils Gustafsson",
"Marco Piccardo",
"Hamid Mostaghimi",
"Qijia Chen",
"Virendra Singh",
"Tran Quoc Khánh",
"Paul Rosu",
"Hannah Szlyk",
"Zachary Brown",
"Himanshu Narayan",
"Aline Menezes",
"Jonathan Roberts",
"William Alley",
"Kunyang Sun",
"Arkil Patel",
"Max Lamparth",
"Anka Reuel",
"Linwei Xin",
"Hanmeng Xu",
"Jacob Loader",
"Freddie Martin",
"Zixuan Wang",
"Andrea Achilleos",
"Thomas Preu",
"Tomek Korbak",
"Ida Bosio",
"Fereshteh Kazemi",
"Ziye Chen",
"Biró Bálint",
"Eve J Y Lo",
"Jiaqi Wang",
"Maria Inês S Nunes",
"Jeremiah Milbauer",
"M Saiful Bari",
"Zihao Wang",
"Behzad Ansarinejad",
"Yewen Sun",
"Stephane Durand",
"Hossam Elgnainy",
"Guillaume Douville",
"Daniel Tordera",
"George Balabanian",
"Hew Wolff",
"Lynna Kvistad",
"Hsiaoyun Milliron",
"Ahmad Sakor",
"Murat Eron",
"D O Andrew Favre",
"Shailesh Shah",
"Xiaoxiang Zhou",
"Firuz Kamalov",
"Sherwin Abdoli",
"Tim Santens",
"Shaul Barkan",
"Allison Tee",
"Robin Zhang",
"Alessandro Tomasiello",
"G Bruno De Luca",
"Shi-Zhuo Looi",
"Vinh-Kha Le",
"Noam Kolt",
"Jiayi Pan",
"Emma Rodman",
"Jacob Drori",
"Carl J Fossum",
"Niklas Muennighoff",
"Milind Jagota",
"Ronak Pradeep",
"Honglu Fan",
"Jonathan Eicher",
"Michael Chen",
"Kushal Thaman",
"William Merrill",
"Moritz Firsching",
"Carter Harris",
"Stefan Ciobâcă",
"Jason Gross",
"Rohan Pandey",
"Ilya Gusev",
"Adam Jones",
"Shashank Agnihotri",
"Pavel Zhelnov",
"Mohammadreza Mofayezi",
"Alexander Piperski",
"David K Zhang",
"Kostiantyn Dobarskyi",
"Roman Leventov",
"Ignat Soroko",
"Joshua Duersch",
"Vage Taamazyan",
"Andrew Ho",
"Wenjie Ma",
"William Held",
"Ruicheng Xian",
"Armel Randy Zebaze",
"Mohanad Mohamed",
"Julian Noah Leser",
"Michelle X Yuan",
"Laila Yacar",
"Johannes Lengler",
"Katarzyna Olszewska",
"Claudio Di Fratta",
"Edson Oliveira",
"Joseph W Jackson",
"Andy Zou",
"Muthu Chidambaram",
"Timothy Manik",
"Hector Haffenden",
"Dashiell Stander",
"Ali Dasouqi",
"Alexander Shen",
"Bita Golshani",
"David Stap",
"Egor Kretov",
"Mikalai Uzhou",
"Alina Borisovna Zhidkovskaya",
"Nick Winter",
"Miguel Orbegozo Rodriguez",
"Robert Lauff",
"Dustin Wehr",
"Colin Tang",
"Zaki Hossain",
"Shaun Phillips",
"Fortuna Samuele",
"Fredrik Ekström",
"Angela Hammon",
"Oam Patel",
"Faraz Farhidi",
"George Medley",
"Forough Mohammadzadeh",
"Madellene Peñaflor",
"Haile Kassahun",
"Alena Friedrich",
"Rayner Hernandez Perez",
"Daniel Pyda",
"Taom Sakal",
"Omkar Dhamane",
"Ali Khajegili Mirabadi",
"Eric Hallman",
"Kenchi Okutsu",
"Mike Battaglia",
"Mohammad Maghsoudimehrabani",
"Alon Amit",
"Dave Hulbert",
"Roberto Pereira",
"Simon Weber",
"Handoko",
"Anton Peristyy",
"Stephen Malina",
"Mustafa Mehkary",
"Rami Aly",
"Frank Reidegeld",
"Anna-Katharina Dick",
"Cary Friday",
"Mukhwinder Singh",
"Hassan Shapourian",
"Wanyoung Kim",
"Mariana Costa",
"Hubeyb Gurdogan",
"Harsh Kumar",
"Chiara Ceconello",
"Chao Zhuang",
"Haon Park",
"Micah Carroll",
"Andrew R Tawfeek",
"Stefan Steinerberger",
"Daattavya Aggarwal",
"Michael Kirchhof",
"Linjie Dai",
"Evan Kim",
"Johan Ferret",
"Jainam Shah",
"Yuzhou Wang",
"Minghao Yan",
"Krzysztof Burdzy",
"Lixin Zhang",
"Antonio Franca",
"Diana T Pham",
"Kang Yong Loh",
"Joshua Robinson",
"Abram Jackson",
"Paolo Giordano",
"Philipp Petersen",
"Adrian Cosma",
"Jesus Colino",
"Colin White",
"Jacob Votava",
"Vladimir Vinnikov",
"Ethan Delaney",
"Petr Spelda",
"Vit Stritecky",
"Syed M Shahid",
"Jean-Christophe Mourrat",
"Lavr Vetoshkin",
"Koen Sponselee",
"Renas Bacho",
"Zheng-Xin Yong",
"Florencia De La Rosa",
"Nathan Cho",
"Xiuyu Li",
"Guillaume Malod",
"Orion Weller",
"Guglielmo Albani",
"Leon Lang",
"Julien Laurendeau",
"Dmitry Kazakov",
"Fatimah Adesanya",
"Julien Portier",
"Lawrence Hollom",
"Victor Souza",
"Yuchen Anna Zhou",
"Julien Degorre",
"Yiğit Yaln",
"Gbenga Daniel Obikoya",
"Rai Michael Pokorny",
"Filippo Bigi",
"M C Boscá",
"Oleg Shumar",
"Kaniuar Bacho",
"Gabriel Recchia",
"Mara Popescu",
"Nikita Shulga",
"Ngefor Mildred Tanwie",
"Thomas C H Lux",
"Ben Rank",
"Colin Ni",
"Matthew Brooks",
"Alesia Yakimchyk",
"Huanxu Quinn Liu",
"Stefano Cavalleri",
"Olle Häggström",
"Emil Verkama",
"Joshua Newbould",
"Hans Gundlach",
"Leonor Brito-Santana",
"Brian Amaro",
"Vivek Vajipey",
"Rynaa Grover",
"Ting Wang",
"Yosi Kratish",
"Wen-Ding Li",
"Sivakanth Gopi",
"Andrea Caciolai",
"Christian Schroeder De Witt",
"Pablo Hernández-Cámara",
"Emanuele Rodolà",
"Jules Robins",
"Dominic Williamson",
"Brad Raynor",
"Hao Qi",
"Ben Segev",
"Jingxuan Fan",
"Sarah Martinson",
"Erik Y Wang",
"Kaylie Hausknecht",
"Michael P Brenner",
"Mao Mao",
"Christoph Demian",
"Peyman Kassani",
"Xinyu Zhang",
"David Avagian",
"Eshawn Jessica Scipio",
"Alon Ragoler",
"Justin Tan",
"Blake Sims",
"Rebeka Plecnik",
"Aaron Kirtland",
"Omer Faruk Bodur",
"D P Shinde",
"Yan Carlos Leyva Labrador",
"Zahra Adoul",
"Mohamed Zekry",
"Ali Karakoc",
"Tania C B Santos",
"Samir Shamseldeen",
"Loukmane Karim",
"Anna Liakhovitskaia",
"Nate Resman",
"Nicholas Farina",
"Juan Carlos Gonzalez",
"Gabe Maayan",
"Earth Anderson",
"Rodrigo De Oliveira Pena",
"Elizabeth Kelley",
"Hodjat Mariji",
"Rasoul Pouriamanesh",
"Wentao Wu",
"Ross Finocchio",
"Ismail Alarab",
"Joshua Cole",
"Danyelle Ferreira",
"Bryan Johnson",
"Mohammad Safdari",
"Liangti Dai",
"Siriphan Arthornthurasuk",
"Isaac C Mcalister",
"Alejandro José Moyano",
"Alexey Pronin",
"Jing Fan",
"Angel Ramirez-Trinidad",
"Yana Malysheva",
"Daphiny Pottmaier",
"Omid Taheri",
"Stanley Stepanic",
"Samuel Perry",
"Luke Askew",
"Raúl Adrián Huerta Rodrguez",
"Ali M R Minissi",
"Ricardo Lorena",
"Krishnamurthy Iyer",
"Arshad Anil Fasiludeen",
"Ronald Clark",
"Josh Ducey",
"Matheus Piza",
"Maja Somrak",
"Eric Vergo",
"Juehang Qin",
"Benjámin Borbás",
"Eric Chu",
"Jack Lindsey",
"Antoine Jallon",
"I M J Mcinnis",
"Evan Chen",
"Avi Semler",
"Luk Gloor",
"Tej Shah",
"Marc Carauleanu",
"Pascal Lauer",
"Tran Duc Huy",
"Hossein Shahrtash",
"Emilien Duc",
"Lukas Lewark",
"Assaf Brown",
"Samuel Albanie",
"Brian Weber",
"Warren S Vaz",
"Pierre Clavier",
"Yiyang Fan",
"Gabriel Poesia Reis E Silva",
"Long Tony Lian",
"Marcus Abramovitch",
"Xi Jiang",
"Sandra Mendoza",
"Murat Islam",
"Juan Gonzalez",
"Vasilios Mavroudis",
"Justin Xu",
"Pawan Kumar",
"Laxman Prasad Goswami",
"Daniel Bugas",
"Nasser Heydari",
"Ferenc Jeanplong",
"Thorben Jansen",
"Antonella Pinto",
"Archimedes Apronti",
"Abdallah Galal",
"Ng Ze-An",
"Ankit Singh",
"Tong Jiang",
"Joan Of Arc Xavier",
"Kanu Priya Agarwal",
"Mohammed Berkani",
"Gang Zhang",
"Zhehang Du",
"Benedito Alves De Oliveira Junior",
"Dmitry Malishev",
"Nicolas Remy",
"Taylor D Hartman",
"Tim Tarver",
"Stephen Mensah",
"Gautier Abou Loume",
"Wiktor Morak",
"Farzad Habibi",
"Sarah Hoback",
"Will Cai",
"Javier Gimenez",
"Roselynn Grace Montecillo",
"Jakub Łucki",
"Russell Campbell",
"Asankhaya Sharma",
"Khalida Meer",
"Shreen Gul",
"Daniel Espinosa Gonzalez",
"Xavier Alapont",
"Alex Hoover",
"Gunjan Chhablani",
"Freddie Vargus",
"Arunim Agarwal",
"Yibo Jiang",
"Deepakkumar Patil",
"David Outevsky",
"Kevin Joseph Scaria",
"Rajat Maheshwari",
"Abdelkader Dendane",
"Priti Shukla",
"Ashley Cartwright",
"Sergei Bogdanov",
"Niels Mündler",
"Sören Möller",
"Luca Arnaboldi",
"Kunvar Thaman",
"Muhammad Rehan Siddiqi",
"Prajvi Saxena",
"Himanshu Gupta",
"Tony Fruhauff",
"Glen Sherman",
"Mátyás Vincze",
"Siranut Usawasutsakorn",
"Dylan Ler",
"Anil Radhakrishnan",
"Innocent Enyekwe",
"Sk Md Salauddin",
"Jiang Muzhen",
"Aleksandr Maksapetyan",
"Vivien Rossbach",
"Chris Harjadi",
"Mohsen Bahaloohoreh",
"Claire Sparrow",
"Jasdeep Sidhu",
"Sam Ali",
"Song Bian",
"John Lai",
"Eric Singer",
"Justine Leon Uro",
"Greg Bateman",
"Mohamed Sayed",
"Ahmed Menshawy",
"Darling Duclosel",
"Dario Bezzi",
"Yashaswini Jain",
"Ashley Aaron",
"Murat Tiryakioglu",
"Sheeshram Siddh",
"Keith Krenek",
"Imad Ali Shah",
"Jun Jin",
"Scott Creighton",
"Denis Peskoff",
"Zienab El-Wasif",
"Michael Richmond",
"Joseph Mcgowan",
"Tejal Patwardhan",
"Hao-Yu Sun",
"Ting Sun",
"Nikola Zubić",
"Samuele Sala",
"Stephen Ebert",
"Jean Kaddour",
"Manuel Schottdorf",
"Dianzhuo Wang",
"Gerol Petruzella",
"Alex Meiburg",
"Tilen Medved",
"Ali Elsheikh",
"S Ashwin Hebbar",
"Lorenzo Vaquero",
"Xianjun Yang",
"Jason Poulos",
"Vilém Zouhar",
"Sergey Bogdanik",
"Mingfang Zhang",
"Jorge Sanz-Ros",
"David Anugraha",
"Yinwei Dai",
"Anh N Nhu",
"Xue Wang",
"Ali Anil Demircali",
"Zhibai Jia",
"Yuyin Zhou",
"Juncheng Wu",
"Mike He",
"Nitin Chandok",
"Aarush Sinha",
"Gaoxiang Luo",
"Long Le",
"Mickaël Noyé",
"Michał Perełkiewicz",
"Ioannis Pantidis",
"Tianbo Qi",
"Soham Sachin Purohit",
"Letitia Parcalabescu",
"Thai-Hoa Nguyen",
"Genta Indra Winata",
"Edoardo M Ponti",
"Hanchen Li",
"Kaustubh Dhole",
"Jongee Park",
"Dario Abbondanza",
"Yuanli Wang",
"Anupam Nayak",
"Diogo M Caetano",
"Antonio A W L Wong",
"Maria Del Rio-Chanona",
"Dániel Kondor",
"Pieter Francois",
"Ed Chalstrey",
"Jakob Zsambok",
"Dan Hoyer",
"Jenny Reddish",
"Jakob Hauser",
"Francisco-Javier Rodrigo-Ginés",
"Suchandra Datta",
"Maxwell Shepherd",
"Thom Kamphuis",
"Qizheng Zhang",
"Hyunjun Kim",
"Ruiji Sun",
"Jianzhu Yao",
"Franck Dernoncourt",
"Satyapriya Krishna",
"Sina Rismanchian",
"Bonan Pu",
"Francesco Pinto",
"Yingheng Wang",
"Kumar Shridhar",
"Kalon J Overholt",
"Glib Briia",
"Hieu Nguyen",
"David Quod Soler Bartomeu",
"Tony Cy Pang",
"Adam Wecker",
"Yifan Xiong",
"Fanfei Li",
"Lukas S Huber",
"Joshua Jaeger",
"Romano De Maddalena",
"Xing Han Lù",
"Yuhui Zhang",
"Claas Beger",
"Patrick Tser Jern Kon",
"Sean Li",
"Vivek Sanker",
"Ming Yin",
"Yihao Liang",
"Xinlu Zhang",
"Ankit Agrawal",
"Li S Yifei",
"Zechen Zhang",
"Mu Cai",
"Yasin Sonmez",
"Costin Cozianu",
"Changhao Li",
"Alex Slen",
"Shoubin Yu",
"Hyun Kyu Park",
"Gabriele Sarti",
"Marcin Briański",
"Alessandro Stolfo",
"Truong An Nguyen",
"Mike Zhang",
"Yotam Perlitz",
"Jose Hernandez-Orallo",
"Runjia Li",
"Amin Shabani",
"Felix Juefei-Xu",
"Shikhar Dhingra",
"Orr Zohar",
"My Chiffon Nguyen",
"Alexander Pondaven",
"Abdurrahim Yilmaz",
"Xuandong Zhao",
"Chuanyang Jin",
"Muyan Jiang",
"Stefan Todoran",
"Xinyao Han",
"Jules Kreuer",
"Brian Rabern",
"Anna Plassart",
"Martino Maggetti",
"Luther Yap",
"Robert Geirhos",
"Jonathon Kean",
"Dingsu Wang",
"Sina Mollaei",
"Chenkai Sun",
"Yifan Yin",
"Shiqi Wang",
"Rui Li",
"Yaowen Chang",
"Anjiang Wei",
"Alice Bizeul",
"Xiaohan Wang",
"Alexandre Oliveira Arrais",
"Kushin Mukherjee",
"Jorge Chamorro-Padial",
"Jiachen Liu",
"Xingyu Qu",
"Junyi Guan",
"Adam Bouyamourn",
"Shuyu Wu",
"Martyna Plomecka",
"Junda Chen",
"Mengze Tang",
"Jiaqi Deng",
"Shreyas Subramanian",
"Haocheng Xi",
"Haoxuan Chen",
"Weizhi Zhang",
"Yinuo Ren",
"Haoqin Tu",
"Sejong Kim",
"Yushun Chen",
"Sara Vera Marjanović",
"Junwoo Ha",
"Grzegorz Luczyna",
"Jeff J Ma",
"Zewen Shen",
"Dawn Song",
"Cedegao E Zhang",
"Zhun Wang",
"Gaël Gendron",
"Yunze Xiao",
"Leo Smucker",
"Erica Weng",
"Kwok Hao Lee",
"Zhe Ye",
"Stefano Ermon",
"Ignacio D Lopez-Miguel",
"Theo Knights",
"Anthony Gitter",
"Namkyu Park",
"Boyi Wei",
"Hongzheng Chen",
"Kunal Pai",
"Ahmed Elkhanany",
"Han Lin",
"Philipp D Siedler",
"Jichao Fang",
"Ritwik Mishra",
"Károly Zsolnai-Fehér",
"Xilin Jiang",
"Shadab Khan",
"Jun Yuan",
"Rishab Kumar Jain",
"Xi Lin",
"Mike Peterson",
"Zhe Wang",
"Aditya Malusare",
"Maosen Tang",
"Isha Gupta",
"Ivan Fosin",
"Timothy Kang",
"Barbara Dworakowska",
"Kazuki Matsumoto",
"Guangyao Zheng",
"Gerben Sewuster",
"Jorge Pretel Villanueva",
"Ivan Rannev",
"Igor Chernyavsky",
"Jiale Chen",
"Deepayan Banik",
"Ben Racz",
"Wenchao Dong",
"Jianxin Wang",
"Laila Bashmal",
"Duarte V Gonçalves",
"Wei Hu",
"Kaushik Bar",
"Ondrej Bohdal",
"Atharv Singh Patlan",
"Shehzaad Dhuliawala",
"Caroline Geirhos",
"Julien Wist",
"Yuval Kansal",
"Bingsen Chen",
"Kutay Tire",
"Atak Talay Yücel",
"Brandon Christof",
"Veerupaksh Singla",
"Zijian Song",
"Sanxing Chen",
"Jiaxin Ge",
"Kaustubh Ponkshe",
"Isaac Park",
"Tianneng Shi",
"Martin Q Ma",
"Joshua Mak",
"Sherwin Lai",
"Antoine Moulin",
"Zhuo Cheng",
"Zhanda Zhu",
"Ziyi Zhang",
"Vaidehi Patil",
"Ketan Jha",
"Qiutong Men",
"Jiaxuan Wu",
"Tianchi Zhang",
"Bruno Hebling Vieira",
"Alham Fikri Aji",
"Jae-Won Chung",
"Mohammed Mahfoud",
"Ha Thi Hoang",
"Marc Sperzel",
"Wei Hao",
"Kristof Meding",
"Sihan Xu",
"Vassilis Kostakos",
"Davide Manini",
"Yueying Liu",
"Christopher Toukmaji",
"Eunmi Yu",
"Arif Engin Demircali",
"Zhiyi Sun",
"Ivan Dewerpe",
"Hongsen Qin",
"Roman Pflugfelder",
"James Bailey",
"Johnathan Morris",
"Ville Heilala",
"Sybille Rosset",
"Zishun Yu",
"Peter E Chen",
"Woongyeong Yeo",
"Eeshaan Jain",
"Sreekar Chigurupati",
"Julia Chernyavsky",
"Sai Prajwal Reddy",
"Subhashini Venugopalan",
"Hunar Batra",
"Core Francisco Park",
"Hieu Tran",
"Guilherme Maximiano",
"Genghan Zhang",
"Yizhuo Liang",
"Hu Shiyu",
"Rongwu Xu",
"Rui Pan",
"Siddharth Suresh",
"Ziqi Liu",
"Samaksh Gulati",
"Songyang Zhang",
"Peter Turchin",
"Christopher W Bartlett",
"Christopher R Scotese",
"Phuong M Cao",
"Ben Wu",
"Jacek Karwowski",
"Davide Scaramuzza"
],
"doi": "10.1038/s41586-025-09962-4",
"ref_id": "b76",
"title": "A benchmark of expert-level academic questions to assess AI capabilities",
"year": ""
},
{
"authors": [
"K A Bugaev",
"D R Oliinychenko",
"A S Sorin"
],
"doi": "10.15407/ujpe58.10.0939",
"ref_id": "b77",
"title": "A Scientific Analysis of the Preprint arXiv:1301.1828v1 [nucl-th]",
"year": "2021"
},
{
"authors": [
"U Sharma",
"J Kaplan"
],
"doi": "10.48550/arXiv.2004.10802",
"ref_id": "b78",
"title": "A neural scaling law from the dimension of the data manifold",
"year": "2020"
},
{
"authors": [
"Seongjin Shin",
"Sang-Woo Lee",
"Hwijeen Ahn",
"Sungdong Kim",
"Hyoungseok Kim",
"Boseop Kim",
"Kyunghyun Cho",
"Gichang Lee",
"Woomyoung Park",
"Jung-Woo Ha",
"Nako Sung"
],
"doi": "10.18653/v1/2022.naacl-main.380",
"ref_id": "b79",
"title": "On the Effect of Pretraining Corpora on In-context Learning by a Large-scale Language Model",
"year": "2022"
},
{
"authors": [
"M Shoeybi",
"M Patwary",
"R Puri",
"P Legresley",
"J Casper",
"B Catanzaro",
"Megatron-Lm"
],
"doi": "10.48550/arXiv.1909.08053",
"ref_id": "b80",
"title": "Training multibillion parameter language models using model parallelism",
"year": "2019"
},
{
"authors": [
"A Silva",
"R Chopra",
"M Gombolay"
],
"doi": "",
"ref_id": "b81",
"title": "Cross-loss influence functions to explain deep network representations",
"year": "2022"
},
{
"authors": [
"S Smith",
"M Patwary",
"B Norick",
"P Legresley",
"S Rajbhandari",
"J Casper",
"Z Liu",
"S Prabhumoye",
"G Zerveas",
"V Korthikanti",
"E Zhang",
"R Child",
"R Y Aminabadi",
"J Bernauer",
"X Song",
"M Shoeybi",
"Y He",
"M Houston",
"S Tiwary",
"B Catanzaro"
],
"doi": "10.48550/arXiv.2201.11990",
"ref_id": "b82",
"title": "Using deepspeed and megatron to train megatron-turing nlg 530b, a largescale generative language model",
"year": "2022"
},
{
"authors": [
"J Su",
"Y Lu",
"S Pan",
"B Wen",
"Y Liu",
"Ro-Former"
],
"doi": "10.48550/arXiv.2104.09864",
"ref_id": "b83",
"title": "Enhanced transformer with rotary position embedding",
"year": "2021"
},
{
"authors": [
"P J O Suárez",
"B Sagot",
"L Romary"
],
"doi": "",
"ref_id": "b84",
"title": "Asynchronous pipeline for processing huge corpora on medium to low resource infrastructures",
"year": "2019"
},
{
"authors": [
"J Tang",
"Wudao"
],
"doi": "",
"ref_id": "b85",
"title": "Pretrain the world",
"year": "2021"
},
{
"authors": [
"K N B Tirumala",
"A H Markosyan",
"L Zettlemoyer",
"A Aghajanyan"
],
"doi": "",
"ref_id": "b86",
"title": "Memorization without overfitting: Analyzing the training dynamics of large language models",
"year": "2022"
},
{
"authors": [
"Oskar Van Der Wal",
"Dominik Bachmann",
"Alina Leidinger",
"Leendert Van Maanen",
"Willem Zuidema",
"Katrin Schulz"
],
"doi": "10.1613/jair.1.15195",
"ref_id": "b87",
"title": "Undesirable Biases in NLP: Addressing Challenges of Measurement",
"year": "2022"
},
{
"authors": [
"Oskar Van Der Wal",
"Jaap Jumelet",
"Katrin Schulz",
"Willem Zuidema"
],
"doi": "10.18653/v1/2022.gebnlp-1.8",
"ref_id": "b88",
"title": "The Birth of Bias: A case study on the evolution of gender bias in an English language model",
"year": "2022"
},
{
"authors": [
"B Wang",
"A Komatsuzaki"
],
"doi": "",
"ref_id": "b89",
"title": "GPT-J-6B: A 6 billion parameter autoregressive language model",
"year": "2021"
},
{
"authors": [
"T Wolf",
"L Debut",
"V Sanh",
"J Chaumond",
"C Delangue",
"A Moi",
"P Cistac",
"T Rault",
"R Louf",
"M Funtowicz"
],
"doi": "",
"ref_id": "b90",
"title": "Huggingface's transformers: State-of-the-art natural language processing",
"year": "2019"
},
{
"authors": [
"Mengzhou Xia",
"Mikel Artetxe",
"Chunting Zhou",
"Xi Victoria Lin",
"Ramakanth Pasunuru",
"Danqi Chen",
"Luke Zettlemoyer",
"Veselin Stoyanov"
],
"doi": "10.18653/v1/2023.acl-long.767",
"ref_id": "b91",
"title": "Training Trajectories of Language Models Across Scales",
"year": "2022"
},
{
"authors": [
"F F Xu",
"U Alon",
"G Neubig",
"V J Hellendoorn"
],
"doi": "10.48550/arXiv.2202.13169",
"ref_id": "b92",
"title": "A systematic evaluation of large language models of code",
"year": "2022"
},
{
"authors": [
"S Yoon",
"H Lee"
],
"doi": "",
"ref_id": "b93",
"title": "Which model is helpful in solving privacy, memorization, and bias problems?",
"year": "2021"
},
{
"authors": [
"A Zeng",
"X Liu",
"Z Du",
"Z Wang",
"H Lai",
"M Ding",
"Z Yang",
"Y Xu",
"W Zheng",
"X Xia"
],
"doi": "",
"ref_id": "b94",
"title": "Glm-130b: An open bilingual pre-trained model",
"year": "2022"
},
{
"authors": [
"G Zhang",
"L Li",
"Z Nado",
"J Martens",
"S Sachdeva",
"G Dahl",
"C Shallue",
"R B Grosse"
],
"doi": "",
"ref_id": "b95",
"title": "Which algorithmic choices matter at which batch sizes? insights from a noisy quadratic model",
"year": "2019"
},
{
"authors": [
"S Zhang",
"S Roller",
"N Goyal",
"M Artetxe",
"M Chen",
"S Chen",
"C Dewan",
"M Diab",
"X Li",
"X V Lin",
"T Mihaylov",
"M Ott",
"S Shleifer",
"K Shuster",
"D Simig",
"P S Koura",
"A Sridhar",
"T Wang",
"L Zettlemoyer",
"Opt"
],
"doi": "10.48550/arXiv.2205.01068",
"ref_id": "b96",
"title": "Open pre-trained transformer language models",
"year": "2022"
},
{
"authors": [
"Jieyu Zhao",
"Tianlu Wang",
"Mark Yatskar",
"Vicente Ordonez",
"Kai-Wei Chang"
],
"doi": "10.18653/v1/d17-1323",
"ref_id": "b97",
"title": "Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints",
"year": "2017"
},
{
"authors": [
"J Zhao",
"T Wang",
"M Yatskar",
"V Ordonez",
"K.-W Chang"
],
"doi": "10.47688/rba_archives_2006/20998",
"ref_id": "b98",
"title": "State Savings Bank of Western Australia - Cottesloe - Signature Registers - Specimen Signature Cards, Accounts 23/005, 23/006, 23/008, 23/009, 23/010, 23/011, 23/013, 23/014, 23/017, 23/019 - 1928",
"year": "2018"
}
] |
[] |
[
"916525d3cd061f4d",
"2ec5d684a9dcfd4e",
"67b0bc6ec2d1748d",
"64754d60d4e04e6b",
"09324e0680b7a34a",
"0f8f285ea78f6b74",
"eb4c27e8f2bc844d",
"a198b6fcbd518e8d",
"7e538a59d9429972",
"b7d6eca8728dcef9",
"c6e6cb4c659047e3",
"34b83788701968fe",
"48e101ee4a5f5283",
"42bb526c41c91a1d",
"66fa713b0fbae5fd",
"a6a8bdbb87fe2197",
"625b79517327f244",
"c9fdf74fabb2f770",
"50c81bb7bad384f8",
"6bf385c9abc6ec6e",
"57f68864dfcce01a",
"447ca108b9d69017",
"65fa7c64ff47d4cc",
"c904913907ef12e1",
"78e992180aa4b04f",
"9569212971eb6b92",
"5a5d35c4558af730",
"0e96255a0ad66edc",
"be0c786d7b095378",
"df6f6994c6c2944a",
"2837dfc738efbe18",
"476c7be0ca6205f0",
"b142bf765b42dd52",
"5e5e840a827e22c2",
"38e380eec12a8cfe",
"5f7cb8ce9fd299d0",
"88355c1834ccb5b7",
"3c9396c02eb73325",
"2f05de5a229674c3",
"0ecfd67e6a00009f",
"49462dbc692e254a",
"1a8a511bde95d01c",
"1fdb7f1d156fa314",
"5f8e17b3c1d9319f",
"75d8518e5fea29a6",
"890a44c162a7dd73",
"d1c490c199caaf10",
"7852ecae2e08eaff",
"ff1a1fa42e997e1c",
"015cc782dc6209e0",
"2d91ecab86e10f0f",
"5c380c7b2b1b01e4",
"70b88d73cae62a95",
"be8b85457ce593b0",
"14c936c0886a75c5",
"e31774d7507e6358",
"8c5cc80ae36da886",
"699131a7ed8e790e",
"6ebbdceab9127080",
"345afde3f9613b16",
"e068ab2a4bafa861",
"f2e270e52ac32e52",
"e01cf5e41edeb3fb",
"7b6d265cf845a8e7",
"fef7b979a13b8ad5",
"c825e60ad84f1c9a",
"b4f018e82ef25077",
"0df1239504a04aaf",
"c1f18b679d2ec8ac",
"c8beab030d8be9cb",
"dcd70d0c329600e7",
"0149e55e1a7aac1d",
"68b82b5cb5331481",
"d45f4c50fc7b780e",
"1e1f042b021f7da2",
"b55278ec4d862aa9",
"cd27e4b67c407eb4",
"fcc22334a734a674",
"ca8ba88d8da06e8e",
"0b8bdab35dc628c4",
"8fd962881e7807fe",
"bc0b7a258caadaaa",
"4127a3f202a2e9db",
"24e745caf5cf5133",
"1098117a40d8f311",
"11555cabb66c312f",
"d54321772ebfd042",
"382fdc19f31daff4",
"a4574a051c11c6f0",
"3fbce292f13f3b24",
"d9cab048dbad2e58",
"15da32ce126916c1",
"3c51fbfed12a60f1",
"9d73135107409364",
"60d2b4bc195e1115",
"c6b8f4f2295d5076",
"ff46b56425037ed3",
"e37679670a0388bb",
"d16bb7426cfccf54"
] |
eSpbTG0TZN
|
Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels
|
data/openreview_paper/ICML_2023_oral/eSpbTG0TZN//paper.pdf
| 59
| 15
|
[
{
"authors": [
"Danijar Hafner",
"Jurgis Pasukonis",
"Jimmy Ba",
"Timothy Lillicrap"
],
"doi": "10.1038/s41586-025-08744-2",
"ref_id": "b19",
"title": "Mastering diverse control tasks through world models",
"year": "2021"
},
{
"authors": [
"H Sikchi",
"W Zhou",
"D Held"
],
"doi": "",
"ref_id": "b48",
"title": "Learning off-policy with online planning",
"year": "2021"
},
{
"authors": [
"D Pathak",
"D Gandhi",
"A Gupta"
],
"doi": "",
"ref_id": "b37",
"title": "Self-supervised exploration via disagreement",
"year": "2019"
},
{
"authors": [
"H Sikchi",
"W Zhou",
"D Held"
],
"doi": "",
"ref_id": "b47",
"title": "Learning off-policy with online planning",
"year": "2020"
},
{
"authors": [
"X Ma",
"S Chen",
"D Hsu",
"W S Lee"
],
"doi": "",
"ref_id": "b31",
"title": "Contrastive variational model-based reinforcement learning for complex observations",
"year": "2020"
},
{
"authors": [
"R Sasso",
"M Sabatelli",
"M A Wiering"
],
"doi": "",
"ref_id": "b42",
"title": "Multi-source transfer learning for deep model-based reinforcement learning",
"year": "2022"
},
{
"authors": [
"J Farebrother",
"M C Machado",
"M Bowling"
],
"doi": "",
"ref_id": "b14",
"title": "Generalization and regularization in dqn",
"year": "2018"
},
{
"authors": [
"M Janner",
"J Fu",
"M Zhang",
"S Levine"
],
"doi": "",
"ref_id": "b22",
"title": "When to trust your model: Model-based policy optimization",
"year": "2019"
},
{
"authors": [
"J Schrittwieser",
"I Antonoglou",
"T Hubert",
"K Simonyan",
"L Sifre",
"S Schmitt",
"A Guez",
"E Lockhart",
"D Hassabis",
"T Graepel"
],
"doi": "",
"ref_id": "b43",
"title": "Mastering atari, go, chess and shogi by planning with a learned model",
"year": "2020"
},
{
"authors": [
"R Sekar",
"O Rybkin",
"K Daniilidis",
"P Abbeel",
"D Hafner",
"D Pathak"
],
"doi": "",
"ref_id": "b46",
"title": "Planning to explore via self-supervised world models",
"year": "2020"
},
{
"authors": [
"Kendall Lowrey",
"Svetoslav Kolev",
"Jeremy Dao",
"Aravind Rajeswaran",
"Emanuel Todorov"
],
"doi": "10.1109/simpar.2018.8376268",
"ref_id": "b29",
"title": "Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system",
"year": "2018"
},
{
"authors": [
"F Deng",
"I Jang",
"S Ahn"
],
"doi": "",
"ref_id": "b11",
"title": "Dreamerpro: Reconstructionfree model-based reinforcement learning with prototypical representations",
"year": "2021"
},
{
"authors": [
"Y Burda",
"H Edwards",
"D Pathak",
"A Storkey",
"T Darrell",
"A A Efros"
],
"doi": "",
"ref_id": "b4",
"title": "Large-scale study of curiosity-driven learning",
"year": "2018"
},
{
"authors": [
"G Van Driessel",
"V Francois-Lavet"
],
"doi": "",
"ref_id": "b54",
"title": "Component transfer learning for deep rl based on abstract representations",
"year": "2021"
},
{
"authors": [
"N Hansen",
"X Wang",
"H Su"
],
"doi": "",
"ref_id": "b20",
"title": "Temporal difference learning for model predictive control",
"year": "2022"
}
] |
[
{
"authors": [
"M Ahn",
"A Brohan",
"N Brown",
"Y Chebotar",
"O Cortes",
"B David",
"C Finn",
"K Gopalakrishnan",
"K Hausman",
"A Herzog",
"D Ho",
"J Hsu",
"J Ibarz",
"B Ichter",
"A Irpan",
"E Jang",
"R J Ruano",
"K Jeffrey",
"S Jesmonth",
"N Joshi",
"R Julian",
"D Kalashnikov",
"Y Kuang",
"K.-H Lee",
"S Levine",
"Y Lu",
"L Luu",
"C Parada",
"P Pastor",
"J Quiambao",
"K Rao",
"J Rettinghouse",
"D Reyes",
"P Sermanet",
"N Sievers",
"C Tan",
"A Toshev",
"V Vanhoucke",
"F Xia",
"T Xiao",
"P Xu",
"S Xu",
"M Yan"
],
"doi": "",
"ref_id": "b0",
"title": "Do as i can and not as i say: Grounding language in robotic affordances",
"year": "2022"
},
{
"authors": [
"A Argenson",
"G Dulac-Arnold"
],
"doi": "",
"ref_id": "b1",
"title": "Model-based offline planning",
"year": "2020"
},
{
"authors": [
"A Barreto",
"W Dabney",
"R Munos",
"J J Hunt",
"T Schaul",
"H Van Hasselt",
"D Silver"
],
"doi": "",
"ref_id": "b2",
"title": "Successor features for transfer in reinforcement learning",
"year": "2016"
},
{
"authors": [
"M Bellemare",
"S Srinivasan",
"G Ostrovski",
"T Schaul",
"D Saxton",
"R Munos"
],
"doi": "",
"ref_id": "b3",
"title": "Unifying count-based exploration and intrinsic motivation",
"year": "2016"
},
{
"authors": [
"Y Burda",
"H Edwards",
"D Pathak",
"A Storkey",
"T Darrell",
"A A Efros"
],
"doi": "",
"ref_id": "b4",
"title": "Large-scale study of curiosity-driven learning",
"year": "2018"
},
{
"authors": [
"Y Burda",
"H Edwards",
"D Pathak",
"A Storkey",
"T Darrell",
"A A Efros"
],
"doi": "",
"ref_id": "b5",
"title": "Largescale study of curiosity-driven learning",
"year": "2019"
},
{
"authors": [
"Korawat Charoenpitaks"
],
"doi": "10.58837/chula.the.2019.162",
"ref_id": "b6",
"title": "Path exploration with random network distillation on multi-agent reinforcement learning",
"year": "2019"
},
{
"authors": [
"Victor Campos",
"Xavier Giro-I-Nieto",
"Brendan Jou",
"Jordi Torres",
"Shih-Fu Chang"
],
"doi": "10.1016/b978-0-12-814601-9.00018-3",
"ref_id": "b7",
"title": "Sentiment concept embedding for visual affect recognition",
"year": "2020"
},
{
"authors": [
"T Chen",
"S Kornblith",
"M Norouzi",
"G Hinton"
],
"doi": "",
"ref_id": "b8",
"title": "A simple framework for contrastive learning of visual representations",
"year": "2020"
},
{
"authors": [
"K Chua",
"R Calandra",
"R Mcallister",
"S Levine"
],
"doi": "",
"ref_id": "b9",
"title": "Deep reinforcement learning in a handful of trials using probabilistic dynamics models",
"year": "2018"
},
{
"authors": [
"J Chung",
"C Gulcehre",
"K Cho",
"Y Bengio"
],
"doi": "",
"ref_id": "b10",
"title": "Empirical evaluation of gated recurrent neural networks on sequence modeling",
"year": "2014. 2014"
},
{
"authors": [
"F Deng",
"I Jang",
"S Ahn"
],
"doi": "",
"ref_id": "b11",
"title": "Dreamerpro: Reconstructionfree model-based reinforcement learning with prototypical representations",
"year": "2021"
},
{
"authors": [
"Gabriel Dulac-Arnold",
"Nir Levine",
"Daniel J Mankowitz",
"Jerry Li",
"Cosmin Paduraru",
"Sven Gowal",
"Todd Hester"
],
"doi": "10.1007/s10994-021-05961-4",
"ref_id": "b12",
"title": "Challenges of real-world reinforcement learning: definitions, benchmarks and analysis",
"year": "2020"
},
{
"authors": [
"B Eysenbach",
"A Gupta",
"J Ibarz",
"S Levine"
],
"doi": "",
"ref_id": "b13",
"title": "Diversity is all you need: Learning skills without a reward function",
"year": "2019"
},
{
"authors": [
"J Farebrother",
"M C Machado",
"M Bowling"
],
"doi": "",
"ref_id": "b14",
"title": "Generalization and regularization in dqn",
"year": "2018"
},
{
"authors": [
"D Ha",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b15",
"title": "Recurrent world models facilitate policy evolution",
"year": "2018"
},
{
"authors": [
"T Haarnoja",
"A Zhou",
"P Abbeel",
"S Levine"
],
"doi": "",
"ref_id": "b16",
"title": "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor",
"year": "2018"
},
{
"authors": [
"Danijar Hafner",
"Jurgis Pasukonis",
"Jimmy Ba",
"Timothy Lillicrap"
],
"doi": "10.1038/s41586-025-08744-2",
"ref_id": "b17",
"title": "Mastering diverse control tasks through world models",
"year": "2019"
},
{
"authors": [
"D Hafner",
"T Lillicrap",
"I Fischer",
"R Villegas",
"D Ha",
"H Lee",
"J Davidson"
],
"doi": "",
"ref_id": "b18",
"title": "Learning latent dynamics for planning from pixels",
"year": "2019"
},
{
"authors": [
"Danijar Hafner",
"Jurgis Pasukonis",
"Jimmy Ba",
"Timothy Lillicrap"
],
"doi": "10.1038/s41586-025-08744-2",
"ref_id": "b19",
"title": "Mastering diverse control tasks through world models",
"year": "2021"
},
{
"authors": [
"N Hansen",
"X Wang",
"H Su"
],
"doi": "",
"ref_id": "b20",
"title": "Temporal difference learning for model predictive control",
"year": "2022"
},
{
"authors": [
"S Hansen",
"W Dabney",
"A Barreto",
"D Warde-Farley",
"T V De Wiele",
"V Mnih"
],
"doi": "",
"ref_id": "b21",
"title": "Fast task inference with variational intrinsic successor features",
"year": "2020"
},
{
"authors": [
"M Janner",
"J Fu",
"M Zhang",
"S Levine"
],
"doi": "",
"ref_id": "b22",
"title": "When to trust your model: Model-based policy optimization",
"year": "2019"
},
{
"authors": [
"M Laskin",
"D Yarats",
"H Liu",
"K Lee",
"A Zhan",
"K Lu",
"C Cang",
"L Pinto",
"P Abbeel"
],
"doi": "",
"ref_id": "b23",
"title": "URLB: Unsupervised reinforcement learning benchmark",
"year": "2021"
},
{
"authors": [
"Y Lecun"
],
"doi": "",
"ref_id": "b24",
"title": "A path towards autonomous machine intelligence version 0",
"year": "2022"
},
{
"authors": [
"S Levine",
"C Finn",
"T Darrell",
"P Abbeel"
],
"doi": "",
"ref_id": "b25",
"title": "End-to-end training of deep visuomotor policies",
"year": "2016"
},
{
"authors": [
"T P Lillicrap",
"J J Hunt",
"A Pritzel",
"N Heess",
"T Erez",
"Y Tassa",
"D Silver",
"D Wierstra"
],
"doi": "",
"ref_id": "b26",
"title": "Continuous control with deep reinforcement learning",
"year": "2016"
},
{
"authors": [
"H Liu",
"P Abbeel"
],
"doi": "",
"ref_id": "b27",
"title": "Aps: Active pretraining with successor features",
"year": "2021"
},
{
"authors": [
"H Liu",
"P Abbeel"
],
"doi": "",
"ref_id": "b28",
"title": "Unsupervised active pre-training for reinforcement learning",
"year": "2021"
},
{
"authors": [
"Kendall Lowrey",
"Svetoslav Kolev",
"Jeremy Dao",
"Aravind Rajeswaran",
"Emanuel Todorov"
],
"doi": "10.1109/simpar.2018.8376268",
"ref_id": "b29",
"title": "Reinforcement learning for non-prehensile manipulation: Transfer from simulation to physical system",
"year": "2018"
},
{
"authors": [
"Y Lu",
"K Hausman",
"Y Chebotar",
"M Yan",
"E Jang",
"A Herzog",
"T Xiao",
"A Irpan",
"M Khansari",
"D Kalashnikov",
"S Levine"
],
"doi": "",
"ref_id": "b30",
"title": "Learning robotic skills with imitation andreinforcement at scale",
"year": "2021"
},
{
"authors": [
"X Ma",
"S Chen",
"D Hsu",
"W S Lee"
],
"doi": "",
"ref_id": "b31",
"title": "Contrastive variational model-based reinforcement learning for complex observations",
"year": "2020"
},
{
"authors": [
"Y J Ma",
"S Sodhani",
"D Jayaraman",
"O Bastani",
"V Kumar",
"A Zhang"
],
"doi": "",
"ref_id": "b32",
"title": "Vip: Towards universal visual reward and representation via value-implicit pre-training",
"year": "2022"
},
{
"authors": [
"Pietro Mazzaglia",
"Ozan Catal",
"Tim Verbelen",
"Bart Dhoedt"
],
"doi": "10.1609/aaai.v36i7.20743",
"ref_id": "b33",
"title": "Curiosity-Driven Exploration via Latent Bayesian Surprise",
"year": "2021"
},
{
"authors": [
"Akkaya Openai",
"I Andrychowicz",
"M Chociej",
"M Litwin",
"M Mcgrew",
"B Petron",
"A Paino",
"A Plappert",
"M Powell",
"G Ribas",
"R Schneider",
"J Tezak",
"N A Tworek",
"J Welinder",
"P Weng",
"L Yuan",
"Q Zaremba",
"W Zhang",
"L M"
],
"doi": "",
"ref_id": "b34",
"title": "Solving rubik's cube with a robot hand",
"year": "2019"
},
{
"authors": [
"S Parisi",
"A Rajeswaran",
"S Purushwalkam",
"A Gupta"
],
"doi": "",
"ref_id": "b35",
"title": "The unsurprising effectiveness of pre-trained vision models for control",
"year": "2022"
},
{
"authors": [
"Deepak Pathak",
"Pulkit Agrawal",
"Alexei A Efros",
"Trevor Darrell"
],
"doi": "10.1109/cvprw.2017.70",
"ref_id": "b36",
"title": "Curiosity-Driven Exploration by Self-Supervised Prediction",
"year": "2017"
},
{
"authors": [
"D Pathak",
"D Gandhi",
"A Gupta"
],
"doi": "",
"ref_id": "b37",
"title": "Self-supervised exploration via disagreement",
"year": "2019"
},
{
"authors": [
"K Pertsch",
"Y Lee",
"J J Lim"
],
"doi": "",
"ref_id": "b38",
"title": "Accelerating reinforcement learning with learned skill priors",
"year": "2020"
},
{
"authors": [
"A Radford",
"J Wu",
"R Child",
"D Luan",
"D Amodei",
"I Sutskever"
],
"doi": "",
"ref_id": "b39",
"title": "Language models are unsupervised multitask learners",
"year": "2019"
},
{
"authors": [
"Marcin Cychowski"
],
"doi": "10.34719/bitw2612",
"ref_id": "b40",
"title": "Efficient Strategies For Robust Constrained Model Predictive Control",
"year": "2005"
},
{
"authors": [
"R Y Rubinstein",
"D P Kroese"
],
"doi": "",
"ref_id": "b41",
"title": "The cross-entropy method: a unified approach to combinatorial optimization",
"year": "2004"
},
{
"authors": [
"R Sasso",
"M Sabatelli",
"M A Wiering"
],
"doi": "",
"ref_id": "b42",
"title": "Multi-source transfer learning for deep model-based reinforcement learning",
"year": "2022"
},
{
"authors": [
"J Schrittwieser",
"I Antonoglou",
"T Hubert",
"K Simonyan",
"L Sifre",
"S Schmitt",
"A Guez",
"E Lockhart",
"D Hassabis",
"T Graepel"
],
"doi": "",
"ref_id": "b43",
"title": "Mastering atari, go, chess and shogi by planning with a learned model",
"year": "2020"
},
{
"authors": [
"J Schulman",
"P Moritz",
"S Levine",
"M Jordan",
"P Abbeel"
],
"doi": "",
"ref_id": "b44",
"title": "High-dimensional continuous control using generalized advantage estimation",
"year": "2016"
},
{
"authors": [
"J Schulman",
"F Wolski",
"P Dhariwal",
"A Radford",
"O Klimov"
],
"doi": "10.1007/springerreference_72080",
"ref_id": "b45",
"title": "ABS Algorithms for Optimization",
"year": "2017"
},
{
"authors": [
"R Sekar",
"O Rybkin",
"K Daniilidis",
"P Abbeel",
"D Hafner",
"D Pathak"
],
"doi": "",
"ref_id": "b46",
"title": "Planning to explore via self-supervised world models",
"year": "2020"
},
{
"authors": [
"H Sikchi",
"W Zhou",
"D Held"
],
"doi": "",
"ref_id": "b47",
"title": "Learning off-policy with online planning",
"year": "2020"
},
{
"authors": [
"H Sikchi",
"W Zhou",
"D Held"
],
"doi": "",
"ref_id": "b48",
"title": "Learning off-policy with online planning",
"year": "2021"
},
{
"authors": [
"Harshinder Singh",
"Neeraj Misra",
"Vladimir Hnizdo",
"Adam Fedorowicz",
"Eugene Demchuk"
],
"doi": "10.1080/01966324.2003.10737616",
"ref_id": "b49",
"title": "Nearest Neighbor Estimates of Entropy",
"year": "2003"
},
{
"authors": [
"Richard S Sutton",
"Dyna"
],
"doi": "10.1145/122344.122377",
"ref_id": "b50",
"title": "Dyna, an integrated architecture for learning, planning, and reacting",
"year": "jul 1991"
},
{
"authors": [
"E Talvitie"
],
"doi": "",
"ref_id": "b51",
"title": "Learning the reward function for a misspecified model",
"year": "10-15 Jul 2018"
},
{
"authors": [
"Y Tassa",
"Y Doron",
"A Muldal",
"T Erez",
"Y Li",
"D De Las Casas",
"D Budden",
"A Abdolmaleki",
"J Merel",
"A Lefrancq",
"T P Lillicrap",
"M A Riedmiller"
],
"doi": "",
"ref_id": "b52",
"title": "Deepmind control suite",
"year": "2018"
},
{
"authors": [
"A Touati",
"J Rapin",
"Y Ollivier"
],
"doi": "",
"ref_id": "b53",
"title": "Does zero-shot reinforcement learning exist?",
"year": "2023"
},
{
"authors": [
"G Van Driessel",
"V Francois-Lavet"
],
"doi": "",
"ref_id": "b54",
"title": "Component transfer learning for deep rl based on abstract representations",
"year": "2021"
},
{
"authors": [
"G Williams",
"A Aldrich",
"E Theodorou"
],
"doi": "",
"ref_id": "b55",
"title": "Model Predictive Path Integral Control using Covariance Variable Importance Sampling",
"year": "2015"
},
{
"authors": [
"P Wu",
"A Escontrela",
"D Hafner",
"K Goldberg",
"P Abbeel"
],
"doi": "",
"ref_id": "b56",
"title": "Daydreamer: World models for physical robot learning",
"year": "2022"
},
{
"authors": [
"Denis Yarats",
"Amy Zhang",
"Ilya Kostrikov",
"Brandon Amos",
"Joelle Pineau",
"Rob Fergus"
],
"doi": "10.1609/aaai.v35i12.17276",
"ref_id": "b57",
"title": "Improving Sample Efficiency in Model-Free Reinforcement Learning from Images",
"year": "2021"
},
{
"authors": [
"D Yarats",
"R Fergus",
"A Lazaric",
"L Pinto"
],
"doi": "10.1002/9781119808602.ch5",
"ref_id": "b58",
"title": "Structured Online Learning‐Based Control of Continuous‐Time Nonlinear Systems",
"year": "2022"
}
] |
[
"ad01ff0895e8fef9",
"3ecd376dc00ba6c3",
"54107120b424fd6e",
"9f7f33928d1d4fe8",
"f44ac8622f32e499",
"fde667a9f7846dd2",
"6b8e5b31198e0351",
"79a2cbd44415e024",
"ddff034edbe16061",
"3868899a114cfb92",
"be28d2e98bcb6ed9",
"56d2eab08b6b260b",
"7d344a014c4a1f94",
"77f96aa214e317d1",
"5d548dd61a75a35e"
] |
[
"d4e72632d9f534fb",
"85fe9b5584125a37",
"bf86bc12c8ebf366",
"141644058347c923",
"7d344a014c4a1f94",
"7bb5f00f83b1eacf",
"b6da965a9c632219",
"9a6b14e2d2c6bed6",
"9af835ad93ff8375",
"3f1bf964ce4f081a",
"639720969d38580b",
"56d2eab08b6b260b",
"985d2f093a85d1e4",
"5368a8bd107189b9",
"6b8e5b31198e0351",
"ffda31b4092b082a",
"e436392273aa8135",
"2f4d39745401932e",
"b0a73948120acbf8",
"ad01ff0895e8fef9",
"5d548dd61a75a35e",
"410b2a5d117d72ec",
"79a2cbd44415e024",
"7277ef9964ee0f0f",
"06a6b60ea22ba71e",
"632de823efae88de",
"c992ecf711a795e5",
"3512d3ff5553ccda",
"7fda7a1c08539496",
"be28d2e98bcb6ed9",
"d01b7375063e8f55",
"f44ac8622f32e499",
"fe6b5113364e16e4",
"a93ce2cda0388d4a",
"e44f7c55bcd8434e",
"ecd0e70b2047e5f7",
"bee39311dfe2a47c",
"54107120b424fd6e",
"1142412f1e45047f",
"c8beab030d8be9cb",
"4fb2d6cd118559e5",
"d642428aa0c1c1e3",
"fde667a9f7846dd2",
"ddff034edbe16061",
"8a07a7c0374399d2",
"ff77b60c132fd735",
"3868899a114cfb92",
"9f7f33928d1d4fe8",
"3ecd376dc00ba6c3",
"3e3e89df1ad97e0a",
"90e46a7edd556d33",
"9be698487c08777a",
"903dca0b5f73ae6f",
"596d1cca75690421",
"77f96aa214e317d1",
"11f92b4b6cad8e42",
"6318662e3fe50bb9",
"66c91424d1e1895e",
"8d79395537e4493e"
] |
M3Yd3QyRG4
|
Resurrecting Recurrent Neural Networks for Long Sequences
|
data/openreview_paper/ICML_2023_oral/M3Yd3QyRG4//paper.pdf
| 108
| 47
|
[
{
"authors": [
"K Helfrich",
"D Willmott",
"Q Ye"
],
"doi": "",
"ref_id": "b34",
"title": "Orthogonal recurrent neural networks with scaled cayley transform",
"year": "2018"
},
{
"authors": [
"M M Islam",
"G Bertasius"
],
"doi": "",
"ref_id": "b41",
"title": "Long movie clip classification with state-space video models",
"year": "2022"
},
{
"authors": [
"J J Hopfield"
],
"doi": "10.7551/mitpress/4943.003.0028",
"ref_id": "b38",
"title": "(1982) J. J. Hopfield, \"Neural networks and physical systems with emergent collective computational abilities,\" Proceedings of the National Academy of Sciences 79: 2554-2558",
"year": "1982"
},
{
"authors": [
"Shuai Li",
"Wanqing Li",
"Chris Cook",
"Ce Zhu",
"Yanbo Gao"
],
"doi": "10.1109/cvpr.2018.00572",
"ref_id": "b61",
"title": "Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN",
"year": "2018"
},
{
"authors": [
"Ramesh Nallapati",
"Bowen Zhou",
"Cicero Dos Santos",
"Caglar Gulcehre",
"Bing Xiang"
],
"doi": "10.18653/v1/k16-1028",
"ref_id": "b80",
"title": "Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond",
"year": "2016"
},
{
"authors": [
"X Zheng",
"M Zaheer",
"A Ahmed",
"Y Wang",
"E P Xing",
"A J Smola"
],
"doi": "",
"ref_id": "b105",
"title": "State space lstm models with particle mcmc inference",
"year": "2017"
},
{
"authors": [
"L Jing",
"Y Shen",
"T Dubcek",
"J Peurifoy",
"S Skirlo",
"Y Lecun",
"M Tegmark",
"M Soljačić"
],
"doi": "",
"ref_id": "b45",
"title": "Tunable efficient unitary neural networks (eunn) and their application to rnns",
"year": "2017"
},
{
"authors": [
"Enea Monzio Compagnoni",
"Anna Scampicchio",
"Luca Biggio",
"Antonio Orvieto",
"Thomas Hofmann",
"Josef Teichmann"
],
"doi": "10.1109/ijcnn54540.2023.10191624",
"ref_id": "b11",
"title": "On the effectiveness of Randomized Signatures as Reservoir for Learning Rough Dynamics",
"year": "2022"
},
{
"authors": [
"S Bai",
"J Z Kolter",
"V Koltun"
],
"doi": "",
"ref_id": "b3",
"title": "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling",
"year": "2018"
},
{
"authors": [
"J Stogin",
"A Mali",
"C L Giles"
],
"doi": "",
"ref_id": "b93",
"title": "A provably stable neural network turing machine",
"year": "2020"
},
{
"authors": [
"Ronald J Williams",
"David Zipser"
],
"doi": "10.1080/09540098908915631",
"ref_id": "b103",
"title": "Experimental Analysis of the Real-time Recurrent Learning Algorithm",
"year": "1989"
},
{
"authors": [
"Q V Le",
"N Jaitly",
"G E Hinton"
],
"doi": "",
"ref_id": "b58",
"title": "A simple way to initialize recurrent networks of rectified linear units",
"year": "2015"
},
{
"authors": [
"E Martin",
"C Cundy"
],
"doi": "",
"ref_id": "b72",
"title": "Parallelizing linear recurrent neural nets over sequence length",
"year": "2017"
},
{
"authors": [
"Herbert Jaeger",
"Harald Haas"
],
"doi": "10.1126/science.1091277",
"ref_id": "b43",
"title": "Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication",
"year": "2004"
},
{
"authors": [
"R Pascanu",
"T Mikolov",
"Y Bengio"
],
"doi": "",
"ref_id": "b85",
"title": "On the difficulty of training recurrent neural networks",
"year": "2013"
},
{
"authors": [
"M Lukoševičius",
"H Jaeger"
],
"doi": "",
"ref_id": "b66",
"title": "Reservoir computing approaches to recurrent neural network training",
"year": "2009"
},
{
"authors": [
"M Arjovsky",
"A Shah",
"Y Bengio"
],
"doi": "",
"ref_id": "b0",
"title": "Unitary evolution recurrent neural networks",
"year": "2016"
},
{
"authors": [
"Christian W Omlin",
"C Lee Giles"
],
"doi": "10.1145/235809.235811",
"ref_id": "b82",
"title": "Constructing deterministic finite-state automata in recurrent neural networks",
"year": "1996"
},
{
"authors": [
"A V D Oord",
"S Dieleman",
"H Zen",
"K Simonyan",
"O Vinyals",
"A Graves",
"N Kalchbrenner",
"A Senior",
"K Kavukcuoglu",
"Wavenet"
],
"doi": "",
"ref_id": "b83",
"title": "A generative model for raw audio",
"year": "2016"
},
{
"authors": [
"N R Ke",
"A G Goyal",
"O Bilaniuk",
"J Binas",
"M C Mozer",
"C Pal",
"Y Bengio"
],
"doi": "",
"ref_id": "b50",
"title": "Sparse attentive backtracking: Temporal credit assignment through reminding",
"year": "2018"
},
{
"authors": [
"T Zhou",
"Z Ma",
"Q Wen",
"L Sun",
"T Yao",
"R Jin"
],
"doi": "",
"ref_id": "b107",
"title": "Film: Frequency improved legendre memory model for long-term time series forecasting",
"year": "2022"
},
{
"authors": [
"Yi Tay",
"Mostafa Dehghani",
"Dara Bahri",
"Donald Metzler"
],
"doi": "10.1145/3530811",
"ref_id": "b96",
"title": "Efficient Transformers: A Survey",
"year": "2020"
},
{
"authors": [
"H Mehta",
"A Gupta",
"A Cutkosky",
"B Neyshabur"
],
"doi": "",
"ref_id": "b76",
"title": "Long range language modeling via gated state spaces",
"year": "2022"
},
{
"authors": [
"N B Erichson",
"O Azencot",
"A Queiruga",
"L Hodgkinson",
"M W Mahoney"
],
"doi": "",
"ref_id": "b20",
"title": "Lipschitz recurrent neural networks",
"year": "2021"
},
{
"authors": [
"Ramin Hasani",
"Mathias Lechner",
"Alexander Amini",
"Daniela Rus",
"Radu Grosu"
],
"doi": "10.1609/aaai.v35i9.16936",
"ref_id": "b32",
"title": "Liquid Time-constant Networks",
"year": "2021"
},
{
"authors": [
"Z Mhammedi",
"A Hellicar",
"A Rahman",
"J Bailey"
],
"doi": "",
"ref_id": "b77",
"title": "Efficient orthogonal parametrisation of recurrent neural networks using householder reflections",
"year": "2017"
},
{
"authors": [
"A Gu",
"T Dao",
"S Ermon",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b24",
"title": "Hippo: Recurrent memory with optimal polynomial projections",
"year": "2020"
},
{
"authors": [
"David E Rumelhart",
"Geoffrey E Hinton",
"Ronald J Williams"
],
"doi": "10.21236/ada164453",
"ref_id": "b88",
"title": "Learning Internal Representations by Error Propagation",
"year": "1985"
},
{
"authors": [
"N R Ke",
"A Goyal",
"O Bilaniuk",
"J Binas",
"L Charlin",
"C Pal",
"Y Bengio"
],
"doi": "",
"ref_id": "b49",
"title": "Sparse attentive backtracking: Longrange credit assignment in recurrent networks",
"year": "2017"
},
{
"authors": [
"A Voelker",
"I Kajić",
"C Eliasmith"
],
"doi": "",
"ref_id": "b98",
"title": "Legendre memory units: Continuous-time representation in recurrent neural networks",
"year": "2019"
},
{
"authors": [
"M Hardt",
"T Ma",
"B Recht"
],
"doi": "",
"ref_id": "b31",
"title": "Gradient descent learns linear dynamical systems",
"year": "2016"
},
{
"authors": [
"Nicola Bordin",
"Christian Dallago",
"Michael Heinzinger",
"Stephanie Kim",
"Maria Littmann",
"Clemens Rauer",
"Martin Steinegger",
"Burkhard Rost",
"Christine Orengo"
],
"doi": "10.1016/j.tibs.2022.11.001",
"ref_id": "b5",
"title": "Novel machine learning approaches revolutionize protein knowledge",
"year": "2022"
},
{
"authors": [
"M Lezcano-Casado",
"D Martınez-Rubio"
],
"doi": "",
"ref_id": "b60",
"title": "Cheap orthogonal constraints in neural networks: A simple parametrization of the orthogonal and unitary group",
"year": "2019"
},
{
"authors": [
"J T Smith",
"A Warrington",
"S W Linderman"
],
"doi": "",
"ref_id": "b91",
"title": "Simplified state space layers for sequence modeling",
"year": "2022"
},
{
"authors": [
"S Wisdom",
"T Powers",
"J Hershey",
"J Le Roux",
"L Atlas"
],
"doi": "",
"ref_id": "b104",
"title": "Full-capacity unitary recurrent neural networks",
"year": "2016"
},
{
"authors": [
"C Tallec",
"Y Ollivier"
],
"doi": "",
"ref_id": "b95",
"title": "Unbiased online recurrent optimization",
"year": "2017"
},
{
"authors": [
"E Nguyen",
"K Goel",
"A Gu",
"G Downs",
"P Shah",
"T Dao",
"S Baccus",
"C S Ré"
],
"doi": "",
"ref_id": "b81",
"title": "4nd: Modeling images and videos as multidimensional signals with state spaces",
"year": "2022"
},
{
"authors": [
"Stephanie Hyland",
"Gunnar Rätsch"
],
"doi": "10.1609/aaai.v31i1.10928",
"ref_id": "b39",
"title": "Learning Unitary Operators with Help From u(n)",
"year": "2017"
},
{
"authors": [
"Jeffrey L Elman"
],
"doi": "10.1207/s15516709cog1402_1",
"ref_id": "b19",
"title": "Finding Structure in Time",
"year": "1990"
},
{
"authors": [
"T Mikolov",
"M Karafiát",
"L Burget",
"J Cernockỳ",
"S Khudanpur"
],
"doi": "",
"ref_id": "b78",
"title": "Recurrent neural network based language model",
"year": "2010"
},
{
"authors": [
"Y Bengio",
"P Simard",
"P Frasconi"
],
"doi": "",
"ref_id": "b4",
"title": "Learning long-term dependencies with gradient descent is difficult",
"year": "1994"
},
{
"authors": [
"S Hochreiter",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b37",
"title": "Long short-term memory",
"year": "1997"
},
{
"authors": [
"Alexander Ororbia",
"Ankur Mali",
"C Lee Giles",
"Daniel Kifer"
],
"doi": "10.1109/tnnls.2019.2953622",
"ref_id": "b84",
"title": "Continual Learning of Recurrent Neural Networks by Locally Aligning Distributed Representations",
"year": "2020"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b97",
"title": "Attention Is All You Need",
"year": "2017"
},
{
"authors": [
"K Goel",
"A Gu",
"C Donahue",
"C Ré"
],
"doi": "",
"ref_id": "b23",
"title": "It's raw! audio generation with state-space models",
"year": "2022"
},
{
"authors": [
"X Ma",
"C Zhou",
"X Kong",
"J He",
"L Gui",
"G Neubig",
"J May",
"L Zettlemoyer"
],
"doi": "",
"ref_id": "b67",
"title": "Mega: moving average equipped gated attention",
"year": "2022"
},
{
"authors": [
"Nikolay Manchev",
"Michael Spratling"
],
"doi": "10.1111/coin.12691",
"ref_id": "b71",
"title": "Learning multi‐modal recurrent neural networks with target propagation",
"year": "2020"
}
] |
[
{
"authors": [
"M Arjovsky",
"A Shah",
"Y Bengio"
],
"doi": "",
"ref_id": "b0",
"title": "Unitary evolution recurrent neural networks",
"year": "2016"
},
{
"authors": [
"S Axler"
],
"doi": "",
"ref_id": "b1",
"title": "Linear algebra done right",
"year": "1997"
},
{
"authors": [
"J L Ba",
"J R Kiros",
"G E Hinton"
],
"doi": "",
"ref_id": "b2",
"title": "Layer normalization",
"year": "2016"
},
{
"authors": [
"S Bai",
"J Z Kolter",
"V Koltun"
],
"doi": "",
"ref_id": "b3",
"title": "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling",
"year": "2018"
},
{
"authors": [
"Y Bengio",
"P Simard",
"P Frasconi"
],
"doi": "",
"ref_id": "b4",
"title": "Learning long-term dependencies with gradient descent is difficult",
"year": "1994"
},
{
"authors": [
"Nicola Bordin",
"Christian Dallago",
"Michael Heinzinger",
"Stephanie Kim",
"Maria Littmann",
"Clemens Rauer",
"Martin Steinegger",
"Burkhard Rost",
"Christine Orengo"
],
"doi": "10.1016/j.tibs.2022.11.001",
"ref_id": "b5",
"title": "Novel machine learning approaches revolutionize protein knowledge",
"year": "2022"
},
{
"authors": [
"J Bradbury",
"R Frostig",
"P Hawkins",
"M J Johnson",
"C Leary",
"D Maclaurin",
"G Necula",
"A Paszke",
"J Vanderplas",
"S Wanderman-Milne"
],
"doi": "",
"ref_id": "b6",
"title": "JAX: composable transformations of python+ numpy programs",
"year": "2018"
},
{
"authors": [
"T B Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J Kaplan",
"P Dhariwal",
"A Neelakantan",
"S Shyam",
"G Sastry",
"A Askell"
],
"doi": "",
"ref_id": "b7",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"Kyunghyun Cho",
"Bart Van Merrienboer",
"Dzmitry Bahdanau",
"Yoshua Bengio"
],
"doi": "10.3115/v1/w14-4012",
"ref_id": "b8",
"title": "On the Properties of Neural Machine Translation: Encoder–Decoder Approaches",
"year": "2014"
},
{
"authors": [
"Kyunghyun Cho",
"Bart Van Merrienboer",
"Caglar Gulcehre",
"Dzmitry Bahdanau",
"Fethi Bougares",
"Holger Schwenk",
"Yoshua Bengio"
],
"doi": "10.3115/v1/d14-1179",
"ref_id": "b9",
"title": "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation",
"year": "2014"
},
{
"authors": [
"S Chung",
"H Siegelmann"
],
"doi": "",
"ref_id": "b10",
"title": "Turing completeness of bounded-precision recurrent neural networks",
"year": "2021"
},
{
"authors": [
"Enea Monzio Compagnoni",
"Anna Scampicchio",
"Luca Biggio",
"Antonio Orvieto",
"Thomas Hofmann",
"Josef Teichmann"
],
"doi": "10.1109/ijcnn54540.2023.10191624",
"ref_id": "b11",
"title": "On the effectiveness of Randomized Signatures as Reservoir for Learning Rough Dynamics",
"year": "2022"
},
{
"authors": [
"Romain Couillet",
"Gilles Wainrib",
"Harry Sevi",
"Hafiz Tiomoko Ali"
],
"doi": "10.1109/ssp.2016.7551721",
"ref_id": "b12",
"title": "Training performance of echo state neural networks",
"year": "2016"
},
{
"authors": [
"M Courbariaux",
"Y Bengio",
"J.-P David"
],
"doi": "",
"ref_id": "b13",
"title": "Binaryconnect: Training deep neural networks with binary weights during propagations",
"year": "2015"
},
{
"authors": [
"T Dao",
"D Y Fu",
"S Ermon",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b14",
"title": "Flashattention: Fast and memory-efficient exact attention with io-awareness",
"year": "2022"
},
{
"authors": [
"T Dao",
"D Y Fu",
"K K Saab",
"A W Thomas",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b15",
"title": "Hungry hungry hippos: Towards language modeling with state space models",
"year": "2022"
},
{
"authors": [
"Y N Dauphin",
"A Fan",
"M Auli",
"D Grangier"
],
"doi": "",
"ref_id": "b16",
"title": "Language modeling with gated convolutional networks",
"year": "2017"
},
{
"authors": [
"S De",
"S Smith"
],
"doi": "",
"ref_id": "b17",
"title": "Batch normalization biases residual blocks towards the identity function in deep networks",
"year": "2020"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"N Houlsby",
"S Gelly",
"X Zhang",
"J Uszkoreit"
],
"doi": "",
"ref_id": "b18",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2020"
},
{
"authors": [
"Jeffrey L Elman"
],
"doi": "10.1207/s15516709cog1402_1",
"ref_id": "b19",
"title": "Finding Structure in Time",
"year": "1990"
},
{
"authors": [
"N B Erichson",
"O Azencot",
"A Queiruga",
"L Hodgkinson",
"M W Mahoney"
],
"doi": "",
"ref_id": "b20",
"title": "Lipschitz recurrent neural networks",
"year": "2021"
},
{
"authors": [
"Jean Ginibre"
],
"doi": "10.1063/1.1704292",
"ref_id": "b21",
"title": "Statistical Ensembles of Complex, Quaternion, and Real Matrices",
"year": "1965"
},
{
"authors": [
"X Glorot",
"Y Bengio"
],
"doi": "",
"ref_id": "b22",
"title": "Understanding the difficulty of training deep feedforward neural networks",
"year": "2010"
},
{
"authors": [
"K Goel",
"A Gu",
"C Donahue",
"C Ré"
],
"doi": "",
"ref_id": "b23",
"title": "It's raw! audio generation with state-space models",
"year": "2022"
},
{
"authors": [
"A Gu",
"T Dao",
"S Ermon",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b24",
"title": "Hippo: Recurrent memory with optimal polynomial projections",
"year": "2020"
},
{
"authors": [
"A Gu",
"K Goel",
"C Re"
],
"doi": "",
"ref_id": "b25",
"title": "Efficiently modeling long sequences with structured state spaces",
"year": "2021"
},
{
"authors": [
"A Gu",
"I Johnson",
"K Goel",
"K Saab",
"T Dao",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b26",
"title": "Combining recurrent, convolutional, and continuous-time models with linear state space layers",
"year": "2021"
},
{
"authors": [
"A Gu",
"A Gupta",
"K Goel",
"C Ré"
],
"doi": "",
"ref_id": "b27",
"title": "On the parameterization and initialization of diagonal state space models",
"year": "2022"
},
{
"authors": [
"A Gu",
"I Johnson",
"A Timalsina",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b28",
"title": "How to train your hippo: State space models with generalized orthogonal basis projections",
"year": "2022"
},
{
"authors": [
"A Gupta",
"A Gu",
"J Berant"
],
"doi": "",
"ref_id": "b29",
"title": "Diagonal state spaces are as effective as structured state spaces",
"year": "2022"
},
{
"authors": [
"A Gupta",
"H Mehta",
"J Berant"
],
"doi": "",
"ref_id": "b30",
"title": "Simplifying and understanding state space models with diagonal linear rnns",
"year": "2022"
},
{
"authors": [
"M Hardt",
"T Ma",
"B Recht"
],
"doi": "",
"ref_id": "b31",
"title": "Gradient descent learns linear dynamical systems",
"year": "2016"
},
{
"authors": [
"Ramin Hasani",
"Mathias Lechner",
"Alexander Amini",
"Daniela Rus",
"Radu Grosu"
],
"doi": "10.1609/aaai.v35i9.16936",
"ref_id": "b32",
"title": "Liquid Time-constant Networks",
"year": "2021"
},
{
"authors": [
"R Hasani",
"M Lechner",
"T.-H Wang",
"M Chahine",
"A Amini",
"D Rus"
],
"doi": "",
"ref_id": "b33",
"title": "Liquid structural state-space models",
"year": "2022"
},
{
"authors": [
"K Helfrich",
"D Willmott",
"Q Ye"
],
"doi": "",
"ref_id": "b34",
"title": "Orthogonal recurrent neural networks with scaled cayley transform",
"year": "2018"
},
{
"authors": [
"T Hennigan",
"T Cai",
"T Norman",
"I Babuschkin"
],
"doi": "10.5040/9781666983890.ch-7",
"ref_id": "b35",
"title": "Kerouac’s Haiku and Classic Haiku Poetics",
"year": "2020"
},
{
"authors": [
"Chang Lee"
],
"doi": "10.31526/acp.ndm-2020.27",
"ref_id": "b36",
"title": "MADMAX: Post-Inflationary Axion Dark Matter Search",
"year": "1991"
},
{
"authors": [
"S Hochreiter",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b37",
"title": "Long short-term memory",
"year": "1997"
},
{
"authors": [
"J J Hopfield"
],
"doi": "10.7551/mitpress/4943.003.0028",
"ref_id": "b38",
"title": "(1982) J. J. Hopfield, \"Neural networks and physical systems with emergent collective computational abilities,\" Proceedings of the National Academy of Sciences 79: 2554-2558",
"year": "1982"
},
{
"authors": [
"Stephanie Hyland",
"Gunnar Rätsch"
],
"doi": "10.1609/aaai.v31i1.10928",
"ref_id": "b39",
"title": "Learning Unitary Operators with Help From u(n)",
"year": "2017"
},
{
"authors": [
"S Ioffe",
"C Szegedy"
],
"doi": "",
"ref_id": "b40",
"title": "Batch normalization: Accelerating deep network training by reducing internal covariate shift",
"year": "2015"
},
{
"authors": [
"M M Islam",
"G Bertasius"
],
"doi": "",
"ref_id": "b41",
"title": "Long movie clip classification with state-space video models",
"year": "2022"
},
{
"authors": [
"Raymond G Jacquot"
],
"doi": "10.1201/9780203746721",
"ref_id": "b42",
"title": "Modern Digital Control Systems",
"year": "2019"
},
{
"authors": [
"Herbert Jaeger",
"Harald Haas"
],
"doi": "10.1126/science.1091277",
"ref_id": "b43",
"title": "Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication",
"year": "2004"
},
{
"authors": [
"Harold Jeffreys"
],
"doi": "10.1093/oso/9780198503682.001.0001",
"ref_id": "b44",
"title": "Theory of Probability",
"year": "1998"
},
{
"authors": [
"L Jing",
"Y Shen",
"T Dubcek",
"J Peurifoy",
"S Skirlo",
"Y Lecun",
"M Tegmark",
"M Soljačić"
],
"doi": "",
"ref_id": "b45",
"title": "Tunable efficient unitary neural networks (eunn) and their application to rnns",
"year": "2017"
},
{
"authors": [
"J Jumper",
"R Evans",
"A Pritzel",
"T Green",
"M Figurnov",
"O Ronneberger",
"K Tunyasuvunakool",
"R Bates",
"A Žídek",
"A Potapenko"
],
"doi": "",
"ref_id": "b46",
"title": "Highly accurate protein structure prediction with alphafold",
"year": "2021"
},
{
"authors": [
"E Kaiser",
"J N Kutz",
"S L Brunton"
],
"doi": "",
"ref_id": "b47",
"title": "Data-driven discovery of koopman eigenfunctions for control",
"year": "2021"
},
{
"authors": [
"N Kalchbrenner",
"L Espeholt",
"K Simonyan",
"A V D Oord",
"A Graves",
"K Kavukcuoglu"
],
"doi": "",
"ref_id": "b48",
"title": "Neural machine translation in linear time",
"year": "2016"
},
{
"authors": [
"N R Ke",
"A Goyal",
"O Bilaniuk",
"J Binas",
"L Charlin",
"C Pal",
"Y Bengio"
],
"doi": "",
"ref_id": "b49",
"title": "Sparse attentive backtracking: Longrange credit assignment in recurrent networks",
"year": "2017"
},
{
"authors": [
"N R Ke",
"A G Goyal",
"O Bilaniuk",
"J Binas",
"M C Mozer",
"C Pal",
"Y Bengio"
],
"doi": "",
"ref_id": "b50",
"title": "Sparse attentive backtracking: Temporal credit assignment through reminding",
"year": "2018"
},
{
"authors": [
"Joe Kilian",
"Hava T Siegelmann"
],
"doi": "10.1006/inco.1996.0062",
"ref_id": "b51",
"title": "The Dynamic Universality of Sigmoidal Neural Networks",
"year": "1996"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b52",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"B O Koopman",
"J V Neumann"
],
"doi": "",
"ref_id": "b53",
"title": "Dynamical systems of continuous spectra",
"year": "1932"
},
{
"authors": [
"Milan Korda",
"Igor Mezić"
],
"doi": "10.1007/s00332-017-9423-0",
"ref_id": "b54",
"title": "On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator",
"year": "2018"
},
{
"authors": [
"Milan Korda",
"Igor Mezić"
],
"doi": "10.1007/978-3-030-35713-9_9",
"ref_id": "b55",
"title": "Koopman Model Predictive Control of Nonlinear Dynamical Systems",
"year": "2020"
},
{
"authors": [
"V R Kostic",
"P Novelli",
"A Maurer",
"C Ciliberto",
"L Rosasco"
],
"doi": "",
"ref_id": "b56",
"title": "Learning dynamical systems via koopman operator regression in reproducing kernel hilbert spaces",
"year": "2022"
},
{
"authors": [
"J Nathan Kutz",
"Steven L Brunton",
"Bingni W Brunton",
"Joshua L Proctor"
],
"doi": "10.1137/1.9781611974508",
"ref_id": "b57",
"title": "Dynamic Mode Decomposition",
"year": "2016"
},
{
"authors": [
"Q V Le",
"N Jaitly",
"G E Hinton"
],
"doi": "",
"ref_id": "b58",
"title": "A simple way to initialize recurrent networks of rectified linear units",
"year": "2015"
},
{
"authors": [
"J Lee-Thorp",
"J Ainslie",
"I Eckstein",
"S Ontanon",
"Fnet"
],
"doi": "",
"ref_id": "b59",
"title": "Mixing tokens with fourier transforms",
"year": "2021"
},
{
"authors": [
"M Lezcano-Casado",
"D Martınez-Rubio"
],
"doi": "",
"ref_id": "b60",
"title": "Cheap orthogonal constraints in neural networks: A simple parametrization of the orthogonal and unitary group",
"year": "2019"
},
{
"authors": [
"Shuai Li",
"Wanqing Li",
"Chris Cook",
"Ce Zhu",
"Yanbo Gao"
],
"doi": "10.1109/cvpr.2018.00572",
"ref_id": "b61",
"title": "Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN",
"year": "2018"
},
{
"authors": [
"Y Li",
"T Cai",
"Y Zhang",
"D Chen",
"D Dey"
],
"doi": "",
"ref_id": "b62",
"title": "What makes convolutional models great on long sequence modeling?",
"year": "2022"
},
{
"authors": [
"Z Li",
"J Han",
"E Weinan",
"Q Li"
],
"doi": "10.1109/ijcnn.1992.226997",
"ref_id": "b63",
"title": "Approximation theory and recurrent networks",
"year": "2022"
},
{
"authors": [
"L Liu",
"H Wang",
"J Lin",
"R Socher",
"C Xiong"
],
"doi": "",
"ref_id": "b64",
"title": "Mkd: a multi-task knowledge distillation approach for pretrained language models",
"year": "2019"
},
{
"authors": [
"I Loshchilov",
"F Hutter"
],
"doi": "",
"ref_id": "b65",
"title": "Decoupled weight decay regularization",
"year": "2017"
},
{
"authors": [
"M Lukoševičius",
"H Jaeger"
],
"doi": "",
"ref_id": "b66",
"title": "Reservoir computing approaches to recurrent neural network training",
"year": "2009"
},
{
"authors": [
"X Ma",
"C Zhou",
"X Kong",
"J He",
"L Gui",
"G Neubig",
"J May",
"L Zettlemoyer"
],
"doi": "",
"ref_id": "b67",
"title": "Mega: moving average equipped gated attention",
"year": "2022"
},
{
"authors": [
"A Mali",
"A Ororbia",
"D Kifer",
"L Giles"
],
"doi": "",
"ref_id": "b68",
"title": "Investigating backpropagation alternatives when learning to dynamically count with recurrent neural networks",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "10.1163/1873-5363_fgrh.2021a.bnjo-1-comm2-eng",
"ref_id": "b69",
"title": "Pinax to Hypotyposis (2021A)",
"year": "2021"
},
{
"authors": [
"Ankur Mali",
"Alexander G Ororbia",
"Daniel Kifer",
"C Lee Giles"
],
"doi": "10.1609/aaai.v35i6.16634",
"ref_id": "b70",
"title": "Recognizing and Verifying Mathematical Equations using Multiplicative Differential Neural Units",
"year": "2021"
},
{
"authors": [
"Nikolay Manchev",
"Michael Spratling"
],
"doi": "10.1111/coin.12691",
"ref_id": "b71",
"title": "Learning multi‐modal recurrent neural networks with target propagation",
"year": "2020"
},
{
"authors": [
"E Martin",
"C Cundy"
],
"doi": "",
"ref_id": "b72",
"title": "Parallelizing linear recurrent neural nets over sequence length",
"year": "2017"
},
{
"authors": [
"Alexandre Mauroy",
"Igor Mezic"
],
"doi": "10.1109/tac.2016.2518918",
"ref_id": "b73",
"title": "Global Stability Analysis Using the Eigenfunctions of the Koopman Operator",
"year": "2016"
},
{
"authors": [
"Alexandre Mauroy",
"Yoshihiko Susuki",
"Igor Mezić"
],
"doi": "10.1007/978-3-030-35713-9_1",
"ref_id": "b74",
"title": "Introduction to the Koopman Operator in Dynamical Systems and Control Theory",
"year": "2020"
},
{
"authors": [
"Warren S Mcculloch",
"Walter Pitts"
],
"doi": "10.1007/bf02478259",
"ref_id": "b75",
"title": "A logical calculus of the ideas immanent in nervous activity",
"year": "1943"
},
{
"authors": [
"H Mehta",
"A Gupta",
"A Cutkosky",
"B Neyshabur"
],
"doi": "",
"ref_id": "b76",
"title": "Long range language modeling via gated state spaces",
"year": "2022"
},
{
"authors": [
"Z Mhammedi",
"A Hellicar",
"A Rahman",
"J Bailey"
],
"doi": "",
"ref_id": "b77",
"title": "Efficient orthogonal parametrisation of recurrent neural networks using householder reflections",
"year": "2017"
},
{
"authors": [
"T Mikolov",
"M Karafiát",
"L Burget",
"J Cernockỳ",
"S Khudanpur"
],
"doi": "",
"ref_id": "b78",
"title": "Recurrent neural network based language model",
"year": "2010"
},
{
"authors": [
"Diganta Misra",
"Mish"
],
"doi": "10.5244/c.34.191",
"ref_id": "b79",
"title": "Mish: A Self Regularized Non-Monotonic Activation Function",
"year": "2019"
},
{
"authors": [
"Ramesh Nallapati",
"Bowen Zhou",
"Cicero Dos Santos",
"Caglar Gulcehre",
"Bing Xiang"
],
"doi": "10.18653/v1/k16-1028",
"ref_id": "b80",
"title": "Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond",
"year": "2016"
},
{
"authors": [
"E Nguyen",
"K Goel",
"A Gu",
"G Downs",
"P Shah",
"T Dao",
"S Baccus",
"C S Ré"
],
"doi": "",
"ref_id": "b81",
"title": "4nd: Modeling images and videos as multidimensional signals with state spaces",
"year": "2022"
},
{
"authors": [
"Christian W Omlin",
"C Lee Giles"
],
"doi": "10.1145/235809.235811",
"ref_id": "b82",
"title": "Constructing deterministic finite-state automata in recurrent neural networks",
"year": "1996"
},
{
"authors": [
"A V D Oord",
"S Dieleman",
"H Zen",
"K Simonyan",
"O Vinyals",
"A Graves",
"N Kalchbrenner",
"A Senior",
"K Kavukcuoglu",
"Wavenet"
],
"doi": "",
"ref_id": "b83",
"title": "A generative model for raw audio",
"year": "2016"
},
{
"authors": [
"Alexander Ororbia",
"Ankur Mali",
"C Lee Giles",
"Daniel Kifer"
],
"doi": "10.1109/tnnls.2019.2953622",
"ref_id": "b84",
"title": "Continual Learning of Recurrent Neural Networks by Locally Aligning Distributed Representations",
"year": "2020"
},
{
"authors": [
"R Pascanu",
"T Mikolov",
"Y Bengio"
],
"doi": "",
"ref_id": "b85",
"title": "On the difficulty of training recurrent neural networks",
"year": "2013"
},
{
"authors": [
"Joshua L Proctor",
"Steven L Brunton",
"J Nathan Kutz"
],
"doi": "10.1137/16m1062296",
"ref_id": "b86",
"title": "Generalizing Koopman Theory to Allow for Inputs and Control",
"year": "2018"
},
{
"authors": [
"Kanaka Rajan",
"L F Abbott"
],
"doi": "10.1103/physrevlett.97.188104",
"ref_id": "b87",
"title": "Eigenvalue Spectra of Random Matrices for Neural Networks",
"year": "2006"
},
{
"authors": [
"David E Rumelhart",
"Geoffrey E Hinton",
"Ronald J Williams"
],
"doi": "10.21236/ada164453",
"ref_id": "b88",
"title": "Learning Internal Representations by Error Propagation",
"year": "1985"
},
{
"authors": [
"P J Schmid"
],
"doi": "",
"ref_id": "b89",
"title": "Dynamic mode decomposition of numerical and experimental data",
"year": "2010"
},
{
"authors": [
"Hava T Siegelmann"
],
"doi": "10.1007/978-1-4612-0707-8_12",
"ref_id": "b90",
"title": "Computation Beyond the Turing Limit",
"year": "2012"
},
{
"authors": [
"J T Smith",
"A Warrington",
"S W Linderman"
],
"doi": "",
"ref_id": "b91",
"title": "Simplified state space layers for sequence modeling",
"year": "2022"
},
{
"authors": [
"J J Steil"
],
"doi": "10.1109/ijcnn.2004.1380039",
"ref_id": "b92",
"title": "Backpropagation-decorrelation: online recurrent learning with O(N) complexity",
"year": "2004. 2004"
},
{
"authors": [
"J Stogin",
"A Mali",
"C L Giles"
],
"doi": "",
"ref_id": "b93",
"title": "A provably stable neural network turing machine",
"year": "2020"
},
{
"authors": [
"A Surana"
],
"doi": "",
"ref_id": "b94",
"title": "Koopman operator based observer synthesis for control-affine nonlinear systems",
"year": "2016"
},
{
"authors": [
"C Tallec",
"Y Ollivier"
],
"doi": "",
"ref_id": "b95",
"title": "Unbiased online recurrent optimization",
"year": "2017"
},
{
"authors": [
"Yi Tay",
"Mostafa Dehghani",
"Dara Bahri",
"Donald Metzler"
],
"doi": "10.1145/3530811",
"ref_id": "b96",
"title": "Efficient Transformers: A Survey",
"year": "2020"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b97",
"title": "Attention Is All You Need",
"year": "2017"
},
{
"authors": [
"A Voelker",
"I Kajić",
"C Eliasmith"
],
"doi": "",
"ref_id": "b98",
"title": "Legendre memory units: Continuous-time representation in recurrent neural networks",
"year": "2019"
},
{
"authors": [
"Curtis R Vogel"
],
"doi": "10.1137/1.9780898717570",
"ref_id": "b99",
"title": "Computational Methods for Inverse Problems",
"year": "2002"
},
{
"authors": [
"S Wang",
"Z Li",
"Q Li"
],
"doi": "",
"ref_id": "b100",
"title": "The effects of nonlinearity on approximation capacity of recurrent neural networks",
"year": "2022"
},
{
"authors": [
"Steven H Weintraub"
],
"doi": "10.1007/978-3-031-02398-9",
"ref_id": "b101",
"title": "Jordan Canonical Form",
"year": "2009"
},
{
"authors": [
"Matthew O Williams",
"Ioannis G Kevrekidis",
"Clarence W Rowley"
],
"doi": "10.1007/s00332-015-9258-5",
"ref_id": "b102",
"title": "A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition",
"year": "2015"
},
{
"authors": [
"Ronald J Williams",
"David Zipser"
],
"doi": "10.1080/09540098908915631",
"ref_id": "b103",
"title": "Experimental Analysis of the Real-time Recurrent Learning Algorithm",
"year": "1989"
},
{
"authors": [
"S Wisdom",
"T Powers",
"J Hershey",
"J Le Roux",
"L Atlas"
],
"doi": "",
"ref_id": "b104",
"title": "Full-capacity unitary recurrent neural networks",
"year": "2016"
},
{
"authors": [
"X Zheng",
"M Zaheer",
"A Ahmed",
"Y Wang",
"E P Xing",
"A J Smola"
],
"doi": "",
"ref_id": "b105",
"title": "State space lstm models with particle mcmc inference",
"year": "2017"
},
{
"authors": [
"Z Zhinan"
],
"doi": "10.1201/9781420009934-15",
"ref_id": "b106",
"title": "Jordan Canonical Form",
"year": "2002"
},
{
"authors": [
"T Zhou",
"Z Ma",
"Q Wen",
"L Sun",
"T Yao",
"R Jin"
],
"doi": "",
"ref_id": "b107",
"title": "Film: Frequency improved legendre memory model for long-term time series forecasting",
"year": "2022"
}
] |
[
"166cdf192a01f4d7",
"0119a2fcff356869",
"c2ee722ce11a7602",
"0b47e826f24f0aff",
"c435a9d3f35bfc17",
"56a8ce02af1d7d83",
"f7d5681dbef82708",
"68f536f9d8631aad",
"a71f19d6ae598255",
"5a553c7ad0ecd12d",
"55134666ba0644d8",
"d7bac26565458180",
"d0174d1facf41f9e",
"d3261268650aaf82",
"13728e4d01c0ffe5",
"dbda973a98882822",
"41494c2a65f96edc",
"eb7fd49733656867",
"4203003c69726740",
"3e57517d183e9d3b",
"92817f575bee8bf6",
"7f34b4b8ed77cf54",
"6a506100aeb2cca9",
"4f5cb796d778dc8b",
"9cc90d6800dbe1a9",
"d86de32e534ec6f6",
"359f291a3b44c8d7",
"d1852e4641faf00b",
"64b80b7b546c67c8",
"90c9c7cfb9dfd953",
"1f38053dadbd9177",
"b34abf2080f300d1",
"3f8aac99b43af60a",
"2e3703473aa2e70a",
"a6d0caf35b63fde4",
"1df590fdaa0f3588",
"5252339767d80203",
"0210c02dcc478fc2",
"a127096bf2923347",
"dd34bbec4370fec3",
"7b0f228180b75270",
"27fd25ccee69c3e8",
"2f72373c9a4054ca",
"2c0dc3d0f1ec41b0",
"784409a8f450f5b3",
"956330df3b8d6379",
"3f914c3a7ae2072e"
] |
[
"41494c2a65f96edc",
"53dda75e5e11cb7d",
"d854968100edc429",
"a71f19d6ae598255",
"7b0f228180b75270",
"b34abf2080f300d1",
"a2fb4b4e7ba4c7b0",
"9894a8ba6660b145",
"126fb7eaba4739f4",
"b49ea5f93490335b",
"a2f5264787a6667d",
"68f536f9d8631aad",
"a5a333445ddfae87",
"59536d5353a3de81",
"c904913907ef12e1",
"64e2e90d2db5a55f",
"972ba112d276c9ba",
"b968c2ab2271da74",
"3766ff6b68a23031",
"a127096bf2923347",
"4f5cb796d778dc8b",
"05797668731ec1cb",
"b0688cacc056f41d",
"784409a8f450f5b3",
"359f291a3b44c8d7",
"9f9e6f7c43b6e0eb",
"d47b4114eeb8e466",
"99b3ba6e0f0bd81e",
"9410f49ebe0e003b",
"7cad38fb6738df1f",
"b24ac3351255e9ba",
"1f38053dadbd9177",
"9cc90d6800dbe1a9",
"acbbf3e51b17679f",
"166cdf192a01f4d7",
"7a4c19ab596f9db0",
"fcd33b606646b445",
"27fd25ccee69c3e8",
"c2ee722ce11a7602",
"0210c02dcc478fc2",
"bb3d19f5d2e304e2",
"0119a2fcff356869",
"b3976cc8b8fa4388",
"d3261268650aaf82",
"0ac6f2f220a45b0f",
"f7d5681dbef82708",
"c5e2c3ceb45ef19f",
"71be32cada69b385",
"f7eb86dce31b0743",
"64b80b7b546c67c8",
"3e57517d183e9d3b",
"abb2ab18d64e8ff7",
"46c9e9a41e8bc923",
"9059ebf6d73cffbf",
"23e30ae184304365",
"e950f424b323acae",
"784cda16dc03d81c",
"00cd1f011b8882d6",
"d7bac26565458180",
"13ae1b7a3ef4bf6d",
"3f8aac99b43af60a",
"0b47e826f24f0aff",
"bfcdc233aa459ec2",
"3906d893d0c5e969",
"8859556bd1d5cbac",
"226900f0f371bacb",
"dbda973a98882822",
"956330df3b8d6379",
"c06ff66551b5504e",
"58d4a3f2642ac48a",
"1298e11ec9895271",
"3f914c3a7ae2072e",
"d0174d1facf41f9e",
"76d08b7f4bdca985",
"457a2ad6edd8f62d",
"f31499e41c63c3a4",
"6a506100aeb2cca9",
"d86de32e534ec6f6",
"dd34bbec4370fec3",
"40a7a91ab6cf5baf",
"c435a9d3f35bfc17",
"5252339767d80203",
"eb7fd49733656867",
"4203003c69726740",
"2f72373c9a4054ca",
"13728e4d01c0ffe5",
"317526427e19280a",
"681cdd224b837e8d",
"d1852e4641faf00b",
"faadc60fb8ff838b",
"f6484c5a39dbd7cb",
"2e3703473aa2e70a",
"1dc67ea734e9975a",
"5a553c7ad0ecd12d",
"4f6442c791870946",
"1df590fdaa0f3588",
"7f34b4b8ed77cf54",
"2c0dc3d0f1ec41b0",
"90c9c7cfb9dfd953",
"82f1e333ffba5a55",
"9315d7a678450638",
"077fbb6030b0300e",
"9d83539fa263d33b",
"55134666ba0644d8",
"a6d0caf35b63fde4",
"56a8ce02af1d7d83",
"0772e707e5506ee4",
"92817f575bee8bf6"
] |
dZA7WtCULT
|
Bidirectional Adaptation for Robust Semi-Supervised Learning with Inconsistent Data Distributions
|
data/openreview_paper/ICML_2023_oral/dZA7WtCULT//paper.pdf
| 62
| 0
|
[] |
[
{
"authors": [
"Maria-Florina Balcan",
"Avrim Blum"
],
"doi": "10.1145/1706591.1706599",
"ref_id": "b0",
"title": "A discriminative model for semi-supervised learning",
"year": "2010"
},
{
"authors": [
"Shai Ben-David",
"Nicolò Cesa-Bianchi",
"Philip M Long"
],
"doi": "10.1145/130385.130423",
"ref_id": "b1",
"title": "Characterizations of learnability for classes of { <i>O, …, n</i> }-valued functions",
"year": "1992"
},
{
"authors": [
"S Ben-David",
"T Lu",
"D Pál"
],
"doi": "",
"ref_id": "b2",
"title": "Does unlabeled data provably help? worst-case analysis of the sample complexity of semi-supervised learning",
"year": "2008"
},
{
"authors": [
"K Cao",
"C Wei",
"A Gaidon",
"N Arechiga",
"T Ma"
],
"doi": "",
"ref_id": "b3",
"title": "Learning imbalanced datasets with label-distributionaware margin loss",
"year": "2019"
},
{
"authors": [
"B Caputo",
"H Müller",
"J Martinez-Gomez",
"M Villegas",
"B Acar",
"N Patricia",
"N Marvasti",
"S Üsküdarlı",
"R Paredes",
"M Cazorla",
"Imageclef"
],
"doi": "",
"ref_id": "b4",
"title": "Overview and analysis of the results",
"year": "2014. 2014"
},
{
"authors": [
"O Chapelle",
"B Scholkopf",
"A Zien"
],
"doi": "",
"ref_id": "b5",
"title": "Semi-Supervised Learning",
"year": "2006"
},
{
"authors": [
"Yanbei Chen",
"Xiatian Zhu",
"Wei Li",
"Shaogang Gong"
],
"doi": "10.1609/aaai.v34i04.5763",
"ref_id": "b6",
"title": "Semi-Supervised Learning under Class Distribution Mismatch",
"year": "2020"
},
{
"authors": [
"Nicolas Courty",
"Remi Flamary",
"Devis Tuia",
"Alain Rakotomamonjy"
],
"doi": "10.1109/tpami.2016.2615921",
"ref_id": "b7",
"title": "Optimal Transport for Domain Adaptation",
"year": "2017"
},
{
"authors": [
"J Donahue",
"Y Jia",
"O Vinyals",
"J Hoffman",
"N Zhang",
"E Tzeng",
"T Darrell",
"Decaf"
],
"doi": "",
"ref_id": "b8",
"title": "A deep convolutional activation feature for generic visual recognition",
"year": "2014"
},
{
"authors": [
"Abolfazl Farahani",
"Sahar Voghoei",
"Khaled Rasheed",
"Hamid R Arabnia"
],
"doi": "10.1007/978-3-030-71704-9_65",
"ref_id": "b9",
"title": "A Brief Review of Domain Adaptation",
"year": "2021"
},
{
"authors": [
"Y Ganin",
"V Lempitsky"
],
"doi": "",
"ref_id": "b10",
"title": "Unsupervised domain adaptation by backpropagation",
"year": "2015"
},
{
"authors": [
"X Glorot",
"A Bordes",
"Y Bengio"
],
"doi": "",
"ref_id": "b11",
"title": "Domain adaptation for large-scale sentiment classification: A deep learning approach",
"year": "2011"
},
{
"authors": [
"B Gong",
"Y Shi",
"F Sha",
"K Grauman"
],
"doi": "",
"ref_id": "b12",
"title": "Geodesic flow kernel for unsupervised domain adaptation",
"year": "2012"
},
{
"authors": [
"Raghuraman Gopalan",
"Ruonan Li",
"Rama Chellappa"
],
"doi": "10.1109/iccv.2011.6126344",
"ref_id": "b13",
"title": "Domain adaptation for object recognition: An unsupervised approach",
"year": "2011"
},
{
"authors": [
"Arthur Gretton",
"Karsten M Borgwardt",
"Malte Rasch",
"Bernhard Schölkopf",
"Alexander J Smola"
],
"doi": "10.7551/mitpress/7503.003.0069",
"ref_id": "b14",
"title": "A Kernel Method for the Two-Sample-Problem",
"year": "2006"
},
{
"authors": [
"L.-Z Guo",
"Y.-F Li"
],
"doi": "",
"ref_id": "b15",
"title": "Class-imbalanced semi-supervised learning with adaptive thresholding",
"year": "2022"
},
{
"authors": [
"L.-Z Guo",
"Z.-Y Zhang",
"Y Jiang",
"Y.-F Li",
"Z.-H Zhou"
],
"doi": "",
"ref_id": "b16",
"title": "Safe deep semi-supervised learning for unseen-class unlabeled data",
"year": "2020"
},
{
"authors": [
"K He",
"X Zhang",
"S Ren",
"J Sun"
],
"doi": "",
"ref_id": "b17",
"title": "Deep residual learning for image recognition",
"year": "2016"
},
{
"authors": [
"G Hinton",
"O Vinyals",
"J Dean"
],
"doi": "",
"ref_id": "b18",
"title": "Distilling the knowledge in a neural network",
"year": "2015"
},
{
"authors": [
"Jiayuan Huang",
"Alexander J Smola",
"Arthur Gretton",
"Karsten M Borgwardt",
"Bernhard Schölkopf"
],
"doi": "10.7551/mitpress/7503.003.0080",
"ref_id": "b19",
"title": "Correcting Sample Selection Bias by Unlabeled Data",
"year": "2006"
},
{
"authors": [
"Z Huang",
"C Xue",
"B Han",
"J Yang",
"C Gong"
],
"doi": "",
"ref_id": "b20",
"title": "Universal semi-supervised learning",
"year": "2021"
},
{
"authors": [
"J Jeong",
"S Lee",
"J Kim",
"N Kwak"
],
"doi": "",
"ref_id": "b21",
"title": "Consistencybased semi-supervised learning for object detection",
"year": "2019"
},
{
"authors": [
"Lin-Han Jia",
"Lan-Zhe Guo",
"Zhi Zhou",
"Yu-Feng Li"
],
"doi": "10.1007/s11432-022-3804-0",
"ref_id": "b22",
"title": "LAMDA-SSL: a comprehensive semi-supervised learning toolkit",
"year": "2023"
},
{
"authors": [
"Guoliang Kang",
"Lu Jiang",
"Yi Yang",
"Alexander G Hauptmann"
],
"doi": "10.1109/cvpr.2019.00503",
"ref_id": "b23",
"title": "Contrastive Adaptation Network for Unsupervised Domain Adaptation",
"year": "2019"
},
{
"authors": [
"S Laine",
"T Aila"
],
"doi": "",
"ref_id": "b24",
"title": "Temporal ensembling for semisupervised learning",
"year": "2017"
},
{
"authors": [
"D.-H Lee"
],
"doi": "",
"ref_id": "b25",
"title": "Pseudo-label: The simple and efficient semisupervised learning method for deep neural networks",
"year": "2013"
},
{
"authors": [
"Boaz Leskes"
],
"doi": "10.1007/11503415_7",
"ref_id": "b26",
"title": "The Value of Agreement, a New Boosting Algorithm",
"year": "2005"
},
{
"authors": [
"Y.-F Li",
"Z.-H Zhou"
],
"doi": "",
"ref_id": "b27",
"title": "Towards making unlabeled data never hurt",
"year": "2014"
},
{
"authors": [
"Yu-Feng Li",
"Lan-Zhe Guo",
"Zhi-Hua Zhou"
],
"doi": "10.1109/tpami.2019.2922396",
"ref_id": "b28",
"title": "Towards Safe Weakly Supervised Learning",
"year": "2021"
},
{
"authors": [
"Mingsheng Long",
"Yue Cao",
"Zhangjie Cao",
"Jianmin Wang",
"Michael I Jordan"
],
"doi": "10.1109/tpami.2018.2868685",
"ref_id": "b29",
"title": "Transferable Representation Learning with Deep Adaptation Networks",
"year": "2015"
},
{
"authors": [
"T Miyato",
"A M Dai",
"I J Goodfellow"
],
"doi": "",
"ref_id": "b30",
"title": "Adversarial training methods for semi-supervised text classification",
"year": "2017"
},
{
"authors": [
"Takeru Miyato",
"Shin-Ichi Maeda",
"Masanori Koyama",
"Shin Ishii"
],
"doi": "10.1109/tpami.2018.2858821",
"ref_id": "b31",
"title": "Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning",
"year": "2018"
},
{
"authors": [
"B K Natarajan"
],
"doi": "10.1023/a:1022605311895",
"ref_id": "b32",
"title": "On Learning Sets and Functions",
"year": "1989"
},
{
"authors": [
"A Oliver",
"A Odena",
"C A Raffel",
"E D Cubuk",
"I Goodfellow"
],
"doi": "",
"ref_id": "b33",
"title": "Realistic evaluation of deep semi-supervised learning algorithms",
"year": "2018"
},
{
"authors": [
"Xingchao Peng",
"Ben Usman",
"Neela Kaushik",
"Dequan Wang",
"Judy Hoffman",
"Kate Saenko"
],
"doi": "10.1109/cvprw.2018.00271",
"ref_id": "b34",
"title": "VisDA: A Synthetic-to-Real Benchmark for Visual Domain Adaptation",
"year": "2018"
},
{
"authors": [
"J Peters",
"D Janzing",
"B Schölkopf"
],
"doi": "",
"ref_id": "b35",
"title": "Elements of causal inference: foundations and learning algorithms",
"year": "2017"
},
{
"authors": [
"J Quinonero-Candela",
"M Sugiyama",
"A Schwaighofer",
"N D Lawrence"
],
"doi": "",
"ref_id": "b36",
"title": "Dataset shift in machine learning",
"year": "2008"
},
{
"authors": [
"P Rigollet"
],
"doi": "",
"ref_id": "b37",
"title": "Generalization error bounds in semi-supervised classification under the cluster assumption",
"year": "2007"
},
{
"authors": [
"Olga Russakovsky",
"Jia Deng",
"Hao Su",
"Jonathan Krause",
"Sanjeev Satheesh",
"Sean Ma",
"Zhiheng Huang",
"Andrej Karpathy",
"Aditya Khosla",
"Michael Bernstein",
"Alexander C Berg",
"Li Fei-Fei"
],
"doi": "10.1007/s11263-015-0816-y",
"ref_id": "b38",
"title": "ImageNet Large Scale Visual Recognition Challenge",
"year": "2015"
},
{
"authors": [
"Kate Saenko",
"Brian Kulis",
"Mario Fritz",
"Trevor Darrell"
],
"doi": "10.1007/978-3-642-15561-1_16",
"ref_id": "b39",
"title": "Adapting Visual Category Models to New Domains",
"year": "2010"
},
{
"authors": [
"D Sanz-Alonso",
"R Yang"
],
"doi": "",
"ref_id": "b40",
"title": "Unlabeled data help in graphbased semi-supervised learning: a bayesian nonparametrics perspective",
"year": "2022"
},
{
"authors": [
"M Seeger"
],
"doi": "",
"ref_id": "b41",
"title": "Input-dependent regularization of conditional density models",
"year": "2000"
},
{
"authors": [
"J.-J Shao",
"L.-Z Guo",
"X.-W Yang",
"Y.-F Li"
],
"doi": "",
"ref_id": "b42",
"title": "Log: Active model adaptation for label-efficient ood generalization",
"year": "2022"
},
{
"authors": [
"Jie-Jing Shao",
"Yunlu Xu",
"Zhanzhan Cheng",
"Yu-Feng Li"
],
"doi": "10.1145/3534678.3539262",
"ref_id": "b43",
"title": "Active Model Adaptation Under Unknown Shift",
"year": "2022"
},
{
"authors": [
"A Singh",
"R Nowak",
"J Zhu"
],
"doi": "",
"ref_id": "b44",
"title": "Unlabeled data: Now it helps, now it doesn't",
"year": "2008"
},
{
"authors": [
"K Sinha",
"M Belkin"
],
"doi": "",
"ref_id": "b45",
"title": "The value of labeled and unlabeled examples when the model is imperfect",
"year": "2007"
},
{
"authors": [
"K Sohn",
"D Berthelot",
"N Carlini",
"Z Zhang",
"H Zhang",
"C A Raffel",
"E D Cubuk",
"A Kurakin",
"C.-L Li",
"Fixmatch"
],
"doi": "",
"ref_id": "b46",
"title": "Simplifying semi-supervised learning with consistency and confidence",
"year": "2020"
},
{
"authors": [
"N Souly",
"C Spampinato",
"M Shah"
],
"doi": "",
"ref_id": "b47",
"title": "Semi supervised semantic segmentation using generative adversarial network",
"year": "2017"
},
{
"authors": [
"Masashi Sugiyama",
"Benjamin Blankertz",
"Matthias Krauledat",
"Guido Dornhege",
"Klaus-Robert Müller"
],
"doi": "10.1007/11861898_36",
"ref_id": "b48",
"title": "Importance-Weighted Cross-Validation for Covariate Shift",
"year": "2007"
},
{
"authors": [
"A Tarvainen",
"H Valpola"
],
"doi": "",
"ref_id": "b49",
"title": "Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results",
"year": "2017"
},
{
"authors": [
"V N Vapnik",
"A Ya. Chervonenkis"
],
"doi": "10.1137/1116025",
"ref_id": "b50",
"title": "On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities",
"year": "1971"
},
{
"authors": [
"Qin Wang",
"Wen Li",
"Luc Van Gool"
],
"doi": "10.1109/iccv.2019.00155",
"ref_id": "b51",
"title": "Semi-Supervised Learning by Augmented Distribution Alignment",
"year": "2022"
},
{
"authors": [
"L Wasserman",
"J Lafferty"
],
"doi": "",
"ref_id": "b52",
"title": "Statistical analysis of semisupervised regression",
"year": "2007"
},
{
"authors": [
"C Wei",
"K Shen",
"Y Chen",
"T Ma"
],
"doi": "",
"ref_id": "b53",
"title": "Theoretical analysis of self-training with deep networks on unlabeled data",
"year": "2020"
},
{
"authors": [
"Qizhe Xie",
"Minh-Thang Luong",
"Eduard Hovy",
"Quoc V Le"
],
"doi": "10.1109/cvpr42600.2020.01070",
"ref_id": "b54",
"title": "Self-Training With Noisy Student Improves ImageNet Classification",
"year": "2020"
},
{
"authors": [
"Y Xu",
"L Shang",
"J Ye",
"Q Qian",
"Y.-F Li",
"B Sun",
"H Li",
"R Jin"
],
"doi": "",
"ref_id": "b55",
"title": "Dash: Semi-supervised learning with dynamic thresholding",
"year": "2021"
},
{
"authors": [
"D Yarowsky"
],
"doi": "",
"ref_id": "b56",
"title": "Unsupervised word sense disambiguation rivaling supervised methods",
"year": "1995"
},
{
"authors": [
"Q Yu",
"D Ikami",
"G Irie",
"K Aizawa"
],
"doi": "",
"ref_id": "b57",
"title": "Multi-task curriculum framework for open-set semi-supervised learning",
"year": "2020"
},
{
"authors": [
"B Zhang",
"Y Wang",
"W Hou",
"H Wu",
"J Wang",
"M Okumura",
"T Shinozaki"
],
"doi": "",
"ref_id": "b58",
"title": "Flexmatch: Boosting semisupervised learning with curriculum pseudo labeling",
"year": "2021"
},
{
"authors": [
"D Zhou",
"O Bousquet",
"T Lal",
"J Weston",
"B Schölkopf"
],
"doi": "",
"ref_id": "b59",
"title": "Learning with local and global consistency",
"year": "2003"
},
{
"authors": [
"Z.-H Zhou",
"Y Jiang"
],
"doi": "",
"ref_id": "b60",
"title": "Nec4. 5: neural ensemble based c4. 5",
"year": "2004"
},
{
"authors": [
"Yongchun Zhu",
"Fuzhen Zhuang",
"Jindong Wang",
"Guolin Ke",
"Jingwu Chen",
"Jiang Bian",
"Hui Xiong",
"Qing He"
],
"doi": "10.1109/tnnls.2020.2988928",
"ref_id": "b61",
"title": "Deep Subdomain Adaptation Network for Image Classification",
"year": "2020"
}
] |
[] |
[
"210899f0f083e5cd",
"e7aedd8d1f1d3155",
"084bd132271d17a0",
"320cd2e5898e9475",
"22234de90ab93df6",
"f8ec87728269e854",
"86dd1c289fd7d656",
"a86a6f99a097c101",
"70a7774e3b6974de",
"17e7caa7143dd2c2",
"d19be8ac3cbf9aa2",
"746c8436c52d9e8e",
"4ea4b6d57a24bdc9",
"c5a217ff15a946a8",
"62328ad3c72e076e",
"cb2476f68ffb8910",
"f056ca161136cee3",
"de987cb6d24c1886",
"ad0c688e26ebaa3e",
"b55890b6b0fd8828",
"cecf7080edd0362e",
"49c43142ebebde71",
"f02d64f81e296b26",
"466973965bd57c15",
"e7e389ec508f5102",
"557f8fba6ea710f0",
"e562e2ebbbf98160",
"76bc46c092411d67",
"dae3e1a6ba19eaf8",
"a2eec3ada5a81eb7",
"0bf7c2d65fb70a1f",
"72787b492b8e8bef",
"2b18520843816552",
"a3d98687933b1221",
"98a626820a93f897",
"f2e7c079d09eb2c2",
"61aa30f266700e57",
"7310da2199505b6a",
"42226a7d0f45dffd",
"c71e63601a822274",
"3f03f3889619130e",
"23dc38c969c8fe87",
"f410f18ef5611c50",
"d109ae6bd858cbdb",
"d8eb131f6e98f9b5",
"63c13f68897d26b5",
"f4866451089cda4d",
"68f677343f071eef",
"28df71367ca7d442",
"520e8695221e7147",
"6b0cfcbeadb1a442",
"8f39d7907e8ae09c",
"1ce80e1952b3944f",
"f721379bdffd9b7b",
"969be7cead431b37",
"affe05c5c43a8a57",
"661551357be252ab",
"d2399cfcf5bb48ba",
"be6ab4d5f3e65444",
"da01a62676cffe0d",
"aaedafda0629af22",
"6c528a81c3e969f2"
] |
24wzmwrldX
|
Graphically Structured Diffusion Models
|
data/openreview_paper/ICML_2023_oral/24wzmwrldX//paper.pdf
| 61
| 23
|
[
{
"authors": [
"E Hoogeboom",
"V G Satorras",
"C Vignac",
"M Welling"
],
"doi": "",
"ref_id": "b20",
"title": "Equivariant diffusion for molecule generation in 3d",
"year": "2022"
},
{
"authors": [
"Yi Tay",
"Mostafa Dehghani",
"Dara Bahri",
"Donald Metzler"
],
"doi": "10.1145/3530811",
"ref_id": "b49",
"title": "Efficient Transformers: A Survey",
"year": "March 2022"
},
{
"authors": [
"E Hoogeboom",
"A A Gritsenko",
"J Bastings",
"B Poole",
"R V D Berg",
"T Salimans"
],
"doi": "",
"ref_id": "b19",
"title": "Autoregressive diffusion models",
"year": "2021"
},
{
"authors": [
"D Ritchie",
"P Horsfall",
"N D Goodman"
],
"doi": "",
"ref_id": "b38",
"title": "Deep Amortized Inference for Probabilistic Programs",
"year": "October 2016"
},
{
"authors": [
"M Zaheer",
"G Guruganesh",
"A Dubey",
"J Ainslie",
"C Alberti",
"S Ontanon",
"P Pham",
"A Ravula",
"Q Wang",
"L Yang",
"A Ahmed"
],
"doi": "",
"ref_id": "b59",
"title": "Big Bird: Transformers for Longer Sequences",
"year": "January 2021"
},
{
"authors": [
"J Austin",
"D D Johnson",
"J Ho",
"D Tarlow",
"R Van Den Berg"
],
"doi": "",
"ref_id": "b0",
"title": "Structured denoising diffusion models in discrete state-spaces",
"year": "2021"
},
{
"authors": [
"Z Dai",
"Z Yang",
"Y Yang",
"J Carbonell",
"Q V Le",
"R Salakhutdinov"
],
"doi": "",
"ref_id": "b9",
"title": "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context",
"year": "June 2019"
},
{
"authors": [
"R Child",
"S Gray",
"A Radford",
"I Sutskever"
],
"doi": "10.1093/ww/9780199540884.013.u201930",
"ref_id": "b7",
"title": "Radford, Edward, (22 April 1831–9 June 1920)",
"year": "April 2019"
},
{
"authors": [
"W Harvey",
"S Naderiparizi",
"V Masrani",
"C Weilbach",
"F Wood"
],
"doi": "",
"ref_id": "b12",
"title": "Flexible Diffusion Modeling of Long Videos",
"year": "May 2022"
},
{
"authors": [
"Jie Zhou",
"Ganqu Cui",
"Shengding Hu",
"Zhengyan Zhang",
"Cheng Yang",
"Zhiyuan Liu",
"Lifeng Wang",
"Changcheng Li",
"Maosong Sun"
],
"doi": "10.1016/j.aiopen.2021.01.001",
"ref_id": "b60",
"title": "Graph neural networks: A review of methods and applications",
"year": "2020"
},
{
"authors": [
"J Ho",
"X Chen",
"A Srinivas",
"Y Duan",
"P Abbeel"
],
"doi": "",
"ref_id": "b15",
"title": "Flow++: Improving flow-based generative models with variational dequantization and architecture design",
"year": "2019"
},
{
"authors": [
"D Selsam",
"M Lamm",
"B Bünz",
"P Liang",
"L De Moura",
"D L Dill"
],
"doi": "",
"ref_id": "b42",
"title": "Learning a SAT Solver from Single-Bit Supervision",
"year": "March 2019"
},
{
"authors": [
"N Kitaev",
"Ł Kaiser",
"A Levskaya"
],
"doi": "10.4324/9780080479149-9",
"ref_id": "b26",
"title": "Creating Effi cient, Effective Quality Systems",
"year": "February 2020"
},
{
"authors": [
"I Beltagy",
"M E Peters",
"A Cohan"
],
"doi": "",
"ref_id": "b2",
"title": "Longformer: The Long-Document Transformer",
"year": "December 2020"
},
{
"authors": [
"S Webb",
"A Golinski",
"R Zinkov",
"N Siddharth",
"T Rainforth",
"Y W Teh",
"F Wood"
],
"doi": "",
"ref_id": "b55",
"title": "Faithful Inversion of Generative Models for Effective Amortized Inference",
"year": "December 2017"
},
{
"authors": [
"Y Tashiro",
"J Song",
"Y Song",
"S Ermon"
],
"doi": "",
"ref_id": "b48",
"title": "CSDI: Conditional score-based diffusion models for probabilistic time series imputation",
"year": "2021"
},
{
"authors": [
"C Weilbach",
"B Beronov",
"F Wood",
"W Harvey"
],
"doi": "",
"ref_id": "b56",
"title": "Structured conditional continuous normalizing flows for efficient amortized inference in graphical models",
"year": "26-28 Aug 2020"
},
{
"authors": [
"K Freivalds",
"S Kozlovics"
],
"doi": "",
"ref_id": "b10",
"title": "Denoising diffusion for sampling sat solutions",
"year": "2022"
},
{
"authors": [
"J Ho",
"T Salimans",
"A Gritsenko",
"W Chan",
"M Norouzi",
"D J Fleet",
"Video"
],
"doi": "",
"ref_id": "b18",
"title": "Diffusion Models",
"year": "April 2022"
},
{
"authors": [
"S Gershman",
"N Goodman"
],
"doi": "",
"ref_id": "b11",
"title": "Amortized inference in probabilistic reasoning",
"year": "2014"
},
{
"authors": [
"Aurko Roy",
"Mohammad Saffar",
"Ashish Vaswani",
"David Grangier"
],
"doi": "10.1162/tacl_a_00353",
"ref_id": "b39",
"title": "Efficient Content-Based Sparse Attention with Routing Transformers",
"year": "October 2020"
},
{
"authors": [
"Y Song",
"J Sohl-Dickstein",
"D P Kingma",
"A Kumar",
"S Ermon",
"B Poole"
],
"doi": "",
"ref_id": "b47",
"title": "Score-Based Generative Modeling through Stochastic Differential Equations",
"year": "February 2021c"
},
{
"authors": [
"J.-W Van De Meent",
"B Paige",
"H Yang",
"F Wood"
],
"doi": "",
"ref_id": "b51",
"title": "An Introduction to Probabilistic Programming",
"year": "September 2018"
}
] |
[
{
"authors": [
"J Austin",
"D D Johnson",
"J Ho",
"D Tarlow",
"R Van Den Berg"
],
"doi": "",
"ref_id": "b0",
"title": "Structured denoising diffusion models in discrete state-spaces",
"year": "2021"
},
{
"authors": [
"A G Baydin",
"B A Pearlmutter",
"A A Radul",
"J M Siskind"
],
"doi": "",
"ref_id": "b1",
"title": "Automatic Differentiation in Machine Learning: A Survey",
"year": "2017"
},
{
"authors": [
"I Beltagy",
"M E Peters",
"A Cohan"
],
"doi": "",
"ref_id": "b2",
"title": "Longformer: The Long-Document Transformer",
"year": "December 2020"
},
{
"authors": [
"B Bloem-Reddy",
"Y W Teh"
],
"doi": "",
"ref_id": "b3",
"title": "Probabilistic Symmetries and Invariant Neural Networks",
"year": "2020"
},
{
"authors": [
"T B Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell",
"S Agarwal",
"A Herbert-Voss",
"G Krueger",
"T Henighan",
"R Child",
"A Ramesh",
"D M Ziegler",
"J Wu",
"C Winter",
"C Hesse",
"M Chen",
"E Sigler",
"M Litwin",
"S Gray",
"B Chess",
"J Clark",
"C Berner",
"S Mccandlish",
"A Radford",
"I Sutskever",
"D Amodei"
],
"doi": "",
"ref_id": "b4",
"title": "Language Models are Few-Shot Learners",
"year": "July 2020"
},
{
"authors": [
"Swarat Chaudhuri",
"Kevin Ellis",
"Oleksandr Polozov",
"Rishabh Singh",
"Armando Solar-Lezama",
"Yisong Yue"
],
"doi": "10.1561/2500000049",
"ref_id": "b5",
"title": "Neurosymbolic Programming",
"year": "December 2021"
},
{
"authors": [
"M Chen",
"J Tworek",
"H Jun",
"Q Yuan",
"H P D O Pinto",
"J Kaplan",
"H Edwards",
"Y Burda",
"N Joseph",
"G Brockman",
"A Ray",
"R Puri",
"G Krueger",
"M Petrov",
"H Khlaaf",
"G Sastry",
"P Mishkin",
"B Chan",
"S Gray",
"N Ryder",
"M Pavlov",
"A Power",
"L Kaiser",
"M Bavarian",
"C Winter",
"P Tillet",
"F P Such",
"D Cummings",
"M Plappert",
"F Chantzis",
"E Barnes",
"A Herbert-Voss",
"W H Guss",
"A Nichol",
"A Paino",
"N Tezak",
"J Tang",
"I Babuschkin",
"S Balaji",
"S Jain",
"W Saunders",
"C Hesse",
"A N Carr",
"J Leike",
"J Achiam",
"V Misra",
"E Morikawa",
"A Radford",
"M Knight",
"M Brundage",
"M Murati",
"K Mayer",
"P Welinder",
"B Mcgrew",
"D Amodei",
"S Mccandlish",
"I Sutskever",
"W Zaremba"
],
"doi": "",
"ref_id": "b6",
"title": "Evaluating Large Language Models Trained on Code",
"year": "July 2021"
},
{
"authors": [
"R Child",
"S Gray",
"A Radford",
"I Sutskever"
],
"doi": "10.1093/ww/9780199540884.013.u201930",
"ref_id": "b7",
"title": "Radford, Edward, (22 April 1831–9 June 1920)",
"year": "April 2019"
},
{
"authors": [
"Thomas Söderqvist"
],
"doi": "10.1017/s0007087410001226",
"ref_id": "b8",
"title": "Sherry Turkle (ed.), Evocative Objects: Things We Think With. Cambridge, MA and London: MIT Press, 2007. Pp. ix+385. ISBN 978-0-262-20168-1. £19.95 (hardback). - Sherry Turkle (ed.), Falling for Science: Objects in Mind. Cambridge, MA and London: MIT Press, 2008. Pp. xii+318. ISBN 978-0-262-20172-8. £19.95 (hardback). - Sherry Turkle (ed.), The Inner History of Devices. Cambridge, MA and London: MIT Press, 2008. Pp. x+208. ISBN 978-0-262-20176-6. £19.95 (hardback).",
"year": "2009"
},
{
"authors": [
"Z Dai",
"Z Yang",
"Y Yang",
"J Carbonell",
"Q V Le",
"R Salakhutdinov"
],
"doi": "",
"ref_id": "b9",
"title": "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context",
"year": "June 2019"
},
{
"authors": [
"K Freivalds",
"S Kozlovics"
],
"doi": "",
"ref_id": "b10",
"title": "Denoising diffusion for sampling sat solutions",
"year": "2022"
},
{
"authors": [
"S Gershman",
"N Goodman"
],
"doi": "",
"ref_id": "b11",
"title": "Amortized inference in probabilistic reasoning",
"year": "2014"
},
{
"authors": [
"W Harvey",
"S Naderiparizi",
"V Masrani",
"C Weilbach",
"F Wood"
],
"doi": "",
"ref_id": "b12",
"title": "Flexible Diffusion Modeling of Long Videos",
"year": "May 2022"
},
{
"authors": [
"K He",
"X Zhang",
"S Ren",
"J Sun"
],
"doi": "10.1109/CVPR.2016",
"ref_id": "b13",
"title": "Deep Residual Learning for Image Recognition",
"year": "June 27-30, 2016. 2016"
},
{
"authors": [
"D Hendrycks",
"K Gimpel"
],
"doi": "",
"ref_id": "b14",
"title": "Gaussian Error Linear Units",
"year": "July 2020"
},
{
"authors": [
"J Ho",
"X Chen",
"A Srinivas",
"Y Duan",
"P Abbeel"
],
"doi": "",
"ref_id": "b15",
"title": "Flow++: Improving flow-based generative models with variational dequantization and architecture design",
"year": "2019"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b16",
"title": "Denoising diffusion probabilistic models",
"year": ""
},
{
"authors": [
"Hyung Lee",
"William Vavrik",
"Hesham Abdualla"
],
"doi": "10.36501/0197-9191/20-015",
"ref_id": "b17",
"title": "Development of IDOT’s Proposed Smoothness Specification Based on the International Roughness Index",
"year": "2020"
},
{
"authors": [
"J Ho",
"T Salimans",
"A Gritsenko",
"W Chan",
"M Norouzi",
"D J Fleet",
"Video"
],
"doi": "",
"ref_id": "b18",
"title": "Diffusion Models",
"year": "April 2022"
},
{
"authors": [
"E Hoogeboom",
"A A Gritsenko",
"J Bastings",
"B Poole",
"R V D Berg",
"T Salimans"
],
"doi": "",
"ref_id": "b19",
"title": "Autoregressive diffusion models",
"year": "2021"
},
{
"authors": [
"E Hoogeboom",
"V G Satorras",
"C Vignac",
"M Welling"
],
"doi": "",
"ref_id": "b20",
"title": "Equivariant diffusion for molecule generation in 3d",
"year": "2022"
},
{
"authors": [],
"doi": "",
"ref_id": "b21",
"title": "Automatic Machine Learning: Methods, Systems, Challenges",
"year": "2018"
},
{
"authors": [
"O Ivanov",
"M Figurnov",
"D Vetrov"
],
"doi": "",
"ref_id": "b22",
"title": "Variational Autoencoder with Arbitrary Conditioning",
"year": "June 2019"
},
{
"authors": [
"A Karpathy"
],
"doi": "10.1093/benz/9780199773787.article.b00097262",
"ref_id": "b23",
"title": "Karpathy, Jeno",
"year": "Nov 2017"
},
{
"authors": [
"T Karras",
"M Aittala",
"T Aila",
"S Laine"
],
"doi": "",
"ref_id": "b24",
"title": "Elucidating the design space of diffusion-based generative models",
"year": "2022"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "",
"ref_id": "b25",
"title": "A method for stochastic optimization",
"year": "May 7-9, 2015. 2015"
},
{
"authors": [
"N Kitaev",
"Ł Kaiser",
"A Levskaya"
],
"doi": "10.4324/9780080479149-9",
"ref_id": "b26",
"title": "Creating Effi cient, Effective Quality Systems",
"year": "February 2020"
},
{
"authors": [
"D Koller",
"N Friedman"
],
"doi": "",
"ref_id": "b27",
"title": "Probabilistic Graphical Models: Principles and Techniques",
"year": "2009"
},
{
"authors": [
"D Kreuzer",
"D Beaini",
"W Hamilton",
"V Létourneau",
"P Tossou"
],
"doi": "",
"ref_id": "b28",
"title": "Rethinking graph transformers with spectral attention",
"year": "2021"
},
{
"authors": [
"Isadore Newman",
"Maria R Ligas",
"Steven Hecht",
"Gerene K Starratt",
"Russell Clement",
"Emilie Ney",
"Lauren Shure",
"Richard Baum",
"Jeff Stanley",
"Daniel Gohl"
],
"doi": "10.29034/ijmra.v11n2a3",
"ref_id": "b29",
"title": "Mixed Methods Assessment of the Dimensionality of Risk Indicators of School Failure: A Collaborative Approach to Bridge a Research-to-Practice Gap",
"year": "2017"
},
{
"authors": [
"Pmlr"
],
"doi": "",
"ref_id": "b30",
"title": "",
"year": ""
},
{
"authors": [
"Tuan Anh Le",
"Atilim Giines Baydin",
"Robert Zinkov",
"Frank Wood"
],
"doi": "10.1109/ijcnn.2017.7966298",
"ref_id": "b31",
"title": "Using synthetic data to train neural networks is model-based reasoning",
"year": "2017"
},
{
"authors": [
"S Marsland"
],
"doi": "",
"ref_id": "b32",
"title": "Machine Learning -an Algorithmic Perspective",
"year": "2009"
},
{
"authors": [
"Openai"
],
"doi": "10.7717/peerj-cs.3295/fig-1",
"ref_id": "b33",
"title": "Figure 1: The RLHF of ChatGPT training mechanism that OpenAI has applied.",
"year": "2021. March 17, 2023"
},
{
"authors": [
"L Ouyang",
"J Wu",
"X Jiang",
"D Almeida",
"C L Wainwright",
"P Mishkin",
"C Zhang",
"S Agarwal",
"K Slama",
"A Ray"
],
"doi": "",
"ref_id": "b34",
"title": "Training language models to follow instructions with human feedback",
"year": "2022"
},
{
"authors": [
"R Palm",
"U Paquet",
"O Winther"
],
"doi": "",
"ref_id": "b35",
"title": "Recurrent Relational Networks",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b36",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2018"
},
{
"authors": [
"F Pedregosa",
"G Varoquaux",
"A Gramfort",
"V Michel",
"B Thirion",
"O Grisel",
"M Blondel",
"P Prettenhofer",
"R Weiss",
"V Dubourg"
],
"doi": "",
"ref_id": "b37",
"title": "Scikit-learn: Machine learning in python",
"year": "2011"
},
{
"authors": [
"D Ritchie",
"P Horsfall",
"N D Goodman"
],
"doi": "",
"ref_id": "b38",
"title": "Deep Amortized Inference for Probabilistic Programs",
"year": "October 2016"
},
{
"authors": [
"Aurko Roy",
"Mohammad Saffar",
"Ashish Vaswani",
"David Grangier"
],
"doi": "10.1162/tacl_a_00353",
"ref_id": "b39",
"title": "Efficient Content-Based Sparse Attention with Routing Transformers",
"year": "October 2020"
},
{
"authors": [
"S Russell",
"P Norvig"
],
"doi": "",
"ref_id": "b40",
"title": "Artificial Intelligence: A Modern Approach",
"year": "2010"
},
{
"authors": [
"T Salimans",
"J Ho"
],
"doi": "",
"ref_id": "b41",
"title": "Progressive distillation for fast sampling of diffusion models",
"year": "2022"
},
{
"authors": [
"D Selsam",
"M Lamm",
"B Bünz",
"P Liang",
"L De Moura",
"D L Dill"
],
"doi": "",
"ref_id": "b42",
"title": "Learning a SAT Solver from Single-Bit Supervision",
"year": "March 2019"
},
{
"authors": [
"J Sohl-Dickstein",
"E Weiss",
"N Maheswaranathan",
"S Ganguli"
],
"doi": "",
"ref_id": "b43",
"title": "Deep Unsupervised Learning using Nonequilibrium Thermodynamics",
"year": "June 2015"
},
{
"authors": [
"J Song",
"C Meng",
"S Ermon"
],
"doi": "",
"ref_id": "b44",
"title": "Denoising Diffusion Implicit Models",
"year": "November 2021"
},
{
"authors": [
"Y Song",
"C Durkan",
"I Murray",
"S Ermon"
],
"doi": "",
"ref_id": "b45",
"title": "Maximum Likelihood Training of Score-Based Diffusion Models",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b46",
"title": "",
"year": "2021b"
},
{
"authors": [
"Y Song",
"J Sohl-Dickstein",
"D P Kingma",
"A Kumar",
"S Ermon",
"B Poole"
],
"doi": "",
"ref_id": "b47",
"title": "Score-Based Generative Modeling through Stochastic Differential Equations",
"year": "February 2021c"
},
{
"authors": [
"Y Tashiro",
"J Song",
"Y Song",
"S Ermon"
],
"doi": "",
"ref_id": "b48",
"title": "CSDI: Conditional score-based diffusion models for probabilistic time series imputation",
"year": "2021"
},
{
"authors": [
"Yi Tay",
"Mostafa Dehghani",
"Dara Bahri",
"Donald Metzler"
],
"doi": "10.1145/3530811",
"ref_id": "b49",
"title": "Efficient Transformers: A Survey",
"year": "March 2022"
},
{
"authors": [
"J Tönshoff",
"B Kisin",
"J Lindner",
"M One Grohe",
"Model"
],
"doi": "10.48550/arXiv.2208.10227",
"ref_id": "b50",
"title": "Any CSP: Graph Neural Networks as Fast Global Search Heuristics for Constraint Satisfaction",
"year": "August 2022"
},
{
"authors": [
"J.-W Van De Meent",
"B Paige",
"H Yang",
"F Wood"
],
"doi": "",
"ref_id": "b51",
"title": "An Introduction to Probabilistic Programming",
"year": "September 2018"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b52",
"title": "Attention Is All You Need",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b53",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2017"
},
{
"authors": [
"P.-W Wang",
"P L Donti",
"B Wilder",
"Z Kolter"
],
"doi": "",
"ref_id": "b54",
"title": "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver",
"year": "May 2019"
},
{
"authors": [
"S Webb",
"A Golinski",
"R Zinkov",
"N Siddharth",
"T Rainforth",
"Y W Teh",
"F Wood"
],
"doi": "",
"ref_id": "b55",
"title": "Faithful Inversion of Generative Models for Effective Amortized Inference",
"year": "December 2017"
},
{
"authors": [
"C Weilbach",
"B Beronov",
"F Wood",
"W Harvey"
],
"doi": "",
"ref_id": "b56",
"title": "Structured conditional continuous normalizing flows for efficient amortized inference in graphical models",
"year": "26-28 Aug 2020"
},
{
"authors": [
"D P Williamson",
"D B Shmoys"
],
"doi": "10.1017/CBO9780511921735",
"ref_id": "b57",
"title": "The Design of Approximation Algorithms",
"year": "2011"
},
{
"authors": [
"D Wingate",
"A Stuhlmüller",
"N D Goodman"
],
"doi": "",
"ref_id": "b58",
"title": "Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation",
"year": "2011"
},
{
"authors": [
"M Zaheer",
"G Guruganesh",
"A Dubey",
"J Ainslie",
"C Alberti",
"S Ontanon",
"P Pham",
"A Ravula",
"Q Wang",
"L Yang",
"A Ahmed"
],
"doi": "",
"ref_id": "b59",
"title": "Big Bird: Transformers for Longer Sequences",
"year": "January 2021"
},
{
"authors": [
"Jie Zhou",
"Ganqu Cui",
"Shengding Hu",
"Zhengyan Zhang",
"Cheng Yang",
"Zhiyuan Liu",
"Lifeng Wang",
"Changcheng Li",
"Maosong Sun"
],
"doi": "10.1016/j.aiopen.2021.01.001",
"ref_id": "b60",
"title": "Graph neural networks: A review of methods and applications",
"year": "2020"
}
] |
[
"509cbcd09ed3c416",
"ac81c39b9b154a8d",
"7b0c7ec80f6e2cb0",
"a27e19603607011b",
"b123a1aa1e5de350",
"d71c70eb17f25e6a",
"563ab199348182fb",
"0b19b98a557a11b1",
"cfe9d039ba82cefe",
"228bfbc2dd15611d",
"f7466b0e5ed9f091",
"07b1c738a62904c4",
"14da9a0e0e31832e",
"0b497b43eef4716e",
"a144c8e84a4a859e",
"e827fd5c5fa1057d",
"71349d72b8e29076",
"c1808ea06d265258",
"e6280728602ab2e1",
"e59cd271c195cffe",
"5fbc1a163025ee07",
"b38852d050b99463",
"23ce1ef137cd08ca"
] |
[
"d71c70eb17f25e6a",
"a893b894039b2d48",
"0b497b43eef4716e",
"895cfa5b95a6b3b1",
"60b8cbaf43740818",
"428bb94a3ea75be8",
"b6ef59058edb1a89",
"0b19b98a557a11b1",
"c1c4c2db8dd48b22",
"563ab199348182fb",
"c1808ea06d265258",
"e59cd271c195cffe",
"cfe9d039ba82cefe",
"e5723bd8b50b51f9",
"9edd21d2efc52a7d",
"f7466b0e5ed9f091",
"fe755877db018853",
"0ebf528b4951c113",
"e6280728602ab2e1",
"7b0c7ec80f6e2cb0",
"509cbcd09ed3c416",
"beb8262036dd66d1",
"c5532592af87636d",
"3971d0f91f653140",
"ef179c71868904cc",
"df08a2878fa19b16",
"14da9a0e0e31832e",
"91fcbdb000f60ef9",
"1b054d53a40938e6",
"19adb15a4db3ee0c",
"1fc3b0525c6de5be",
"21e2576efac71543",
"f16f0c6a13d4fb7a",
"311a6070ded2f1db",
"5925751896f18337",
"836af00513366797",
"a6625968b7060b53",
"f0188eb7d07d04ea",
"a27e19603607011b",
"5fbc1a163025ee07",
"517143106ba52a01",
"3cb5a3018f99af84",
"07b1c738a62904c4",
"ff341fe00f015af6",
"9e42c84679beb799",
"caf2ed7f8e4d3e72",
"cb8042657dc4a2ae",
"b38852d050b99463",
"e827fd5c5fa1057d",
"ac81c39b9b154a8d",
"e0bc10f5957dccce",
"23ce1ef137cd08ca",
"9c45de522f46cfb0",
"1a7cf40d6eca41d8",
"4687bed179eeb9eb",
"a144c8e84a4a859e",
"71349d72b8e29076",
"1d1189145e705aa0",
"460e2785353b607c",
"b123a1aa1e5de350",
"228bfbc2dd15611d"
] |
vD1R00hROK
|
Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape
|
data/openreview_paper/ICML_2023_oral/vD1R00hROK//paper.pdf
| 61
| 19
|
[
{
"authors": [
"Qiang Yang",
"Yang Liu",
"Yong Cheng",
"Yan Kang",
"Tianjian Chen",
"Han Yu"
],
"doi": "10.1007/978-3-031-01585-4_9",
"ref_id": "b55",
"title": "Federated Reinforcement Learning",
"year": "2019"
},
{
"authors": [
"H Yang",
"M Fang",
"J Liu"
],
"doi": "",
"ref_id": "b54",
"title": "Achieving linear speedup with partial worker participation in non-iid federated learning",
"year": "2021"
},
{
"authors": [
"P Foret",
"A Kleiner",
"H Mobahi",
"B Neyshabur"
],
"doi": "",
"ref_id": "b7",
"title": "Sharpness-aware minimization for efficiently improving generalization",
"year": "2020"
},
{
"authors": [
"Muhammad Asad",
"Ahmed Moustafa",
"Takayuki Ito"
],
"doi": "10.3390/app10082864",
"ref_id": "b1",
"title": "FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning",
"year": "2020"
},
{
"authors": [
"J Konečnỳ",
"H B Mcmahan",
"F X Yu",
"P Richtárik",
"A T Suresh",
"D Bacon"
],
"doi": "",
"ref_id": "b20",
"title": "Federated learning: Strategies for improving communication efficiency",
"year": "2016"
},
{
"authors": [
"G Malinovskiy",
"D Kovalev",
"E Gasanov",
"L Condat",
"P Richtarik"
],
"doi": "",
"ref_id": "b28",
"title": "From local sgd to local fixed-point methods for federated learning",
"year": "2020"
},
{
"authors": [
"J Kwon",
"J Kim",
"H Park",
"I K Choi",
"Asam"
],
"doi": "",
"ref_id": "b23",
"title": "Adaptive sharpness-aware minimization for scale-invariant learning of deep neural networks",
"year": "2021"
},
{
"authors": [
"S U Stich"
],
"doi": "",
"ref_id": "b40",
"title": "Local sgd converges fast and communicates little",
"year": "2018"
},
{
"authors": [
"Z Charles",
"J Konečnỳ"
],
"doi": "",
"ref_id": "b4",
"title": "Convergence and accuracy trade-offs in federated learning and meta-learning",
"year": "2021"
},
{
"authors": [
"P Mi",
"L Shen",
"T Ren",
"Y Zhou",
"X Sun",
"R Ji",
"D Tao"
],
"doi": "",
"ref_id": "b30",
"title": "Make sharpness-aware minimization stronger: A sparsified perturbation approach",
"year": "2022"
},
{
"authors": [
"B Mcmahan",
"E Moore",
"D Ramage",
"S Hampson",
"B A Arcas"
],
"doi": "",
"ref_id": "b29",
"title": "Communication-efficient learning of deep networks from decentralized data",
"year": "2017"
},
{
"authors": [
"Z Qu",
"X Li",
"R Duan",
"Y Liu",
"B Tang",
"Z Lu"
],
"doi": "",
"ref_id": "b35",
"title": "Generalized federated learning via sharpness aware minimization",
"year": "2022"
},
{
"authors": [
"F Hanzely",
"P Richtárik"
],
"doi": "",
"ref_id": "b10",
"title": "Federated learning of a mixture of global and local models",
"year": "2020"
},
{
"authors": [
"S P Karimireddy",
"S Kale",
"M Mohri",
"S Reddi",
"S Stich",
"A T Suresh"
],
"doi": "",
"ref_id": "b19",
"title": "Scaffold: Stochastic controlled averaging for federated learning",
"year": "2020"
},
{
"authors": [
"Ji Liu",
"Jizhou Huang",
"Yang Zhou",
"Xuhong Li",
"Shilei Ji",
"Haoyi Xiong",
"Dejing Dou"
],
"doi": "10.1007/s10115-022-01664-x",
"ref_id": "b27",
"title": "From distributed machine learning to federated learning: a survey",
"year": "2022"
},
{
"authors": [
"D Caldarola",
"B Caputo",
"M Ciccone"
],
"doi": "",
"ref_id": "b3",
"title": "Improving generalization in federated learning by seeking flat minima",
"year": "October 23-27, 2022. 2022"
},
{
"authors": [
"A K Sahu",
"T Li",
"M Sanjabi",
"M Zaheer",
"A Talwalkar",
"V Smith"
],
"doi": "",
"ref_id": "b37",
"title": "On the convergence of federated optimization in heterogeneous networks",
"year": "2018"
},
{
"authors": [
"A Hard",
"K Rao",
"R Mathews",
"S Ramaswamy",
"F Beaufays",
"S Augenstein",
"H Eichner",
"C Kiddon",
"D Ramage"
],
"doi": "",
"ref_id": "b11",
"title": "Federated learning for mobile keyboard prediction",
"year": "2018"
},
{
"authors": [
"B Woodworth",
"K K Patel",
"S Stich",
"Z Dai",
"B Bullins",
"B Mcmahan",
"O Shamir",
"N Srebro"
],
"doi": "",
"ref_id": "b51",
"title": "Is local sgd better than minibatch sgd",
"year": "2020"
}
] |
[
{
"authors": [
"D A E Acar",
"Y Zhao",
"R M Navarro",
"M Mattina",
"P N Whatmough",
"V Saligrama"
],
"doi": "",
"ref_id": "b0",
"title": "Federated learning based on dynamic regularization",
"year": "2021"
},
{
"authors": [
"Muhammad Asad",
"Ahmed Moustafa",
"Takayuki Ito"
],
"doi": "10.3390/app10082864",
"ref_id": "b1",
"title": "FedOpt: Towards Communication Efficiency and Privacy Preservation in Federated Learning",
"year": "2020"
},
{
"authors": [
"Christian Brownlees",
"Emilien Joly",
"Gábor Lugosi"
],
"doi": "10.1214/15-aos1350",
"ref_id": "b2",
"title": "Empirical risk minimization for heavy-tailed losses",
"year": "2015"
},
{
"authors": [
"D Caldarola",
"B Caputo",
"M Ciccone"
],
"doi": "",
"ref_id": "b3",
"title": "Improving generalization in federated learning by seeking flat minima",
"year": "October 23-27, 2022. 2022"
},
{
"authors": [
"Z Charles",
"J Konečnỳ"
],
"doi": "",
"ref_id": "b4",
"title": "Convergence and accuracy trade-offs in federated learning and meta-learning",
"year": "2021"
},
{
"authors": [
"R Das",
"A Acharya",
"A Hashemi",
"S Sanghavi",
"I S Dhillon",
"U Topcu"
],
"doi": "",
"ref_id": "b5",
"title": "Faster non-convex federated learning via global and local momentum",
"year": "2022"
},
{
"authors": [
"F Farnia",
"J M Zhang",
"D Tse"
],
"doi": "",
"ref_id": "b6",
"title": "Generalizable adversarial training via spectral normalization",
"year": "2018"
},
{
"authors": [
"P Foret",
"A Kleiner",
"H Mobahi",
"B Neyshabur"
],
"doi": "",
"ref_id": "b7",
"title": "Sharpness-aware minimization for efficiently improving generalization",
"year": "2020"
},
{
"authors": [
"Yonghai Gong",
"Yichuan Li",
"Nikolaos M Freris"
],
"doi": "10.1109/icde53745.2022.00238",
"ref_id": "b8",
"title": "FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to System Heterogeneity",
"year": "2022"
},
{
"authors": [
"F Haddadpour",
"M M Kamani",
"A Mokhtari",
"M Mahdavi"
],
"doi": "",
"ref_id": "b9",
"title": "Federated learning with compression: Unified analysis and sharp guarantees",
"year": "2021"
},
{
"authors": [
"F Hanzely",
"P Richtárik"
],
"doi": "",
"ref_id": "b10",
"title": "Federated learning of a mixture of global and local models",
"year": "2020"
},
{
"authors": [
"A Hard",
"K Rao",
"R Mathews",
"S Ramaswamy",
"F Beaufays",
"S Augenstein",
"H Eichner",
"C Kiddon",
"D Ramage"
],
"doi": "",
"ref_id": "b11",
"title": "Federated learning for mobile keyboard prediction",
"year": "2018"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b12",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"Sepp Hochreiter",
"Jürgen Schmidhuber"
],
"doi": "10.1162/neco.1997.9.1.1",
"ref_id": "b13",
"title": "Flat Minima",
"year": "1994"
},
{
"authors": [
"K Hsieh",
"A Phanishayee",
"O Mutlu",
"P Gibbons"
],
"doi": "",
"ref_id": "b14",
"title": "The non-iid data quagmire of decentralized machine learning",
"year": "2020"
},
{
"authors": [
"T.-M H Hsu",
"H Qi",
"M Brown"
],
"doi": "",
"ref_id": "b15",
"title": "Measuring the effects of non-identical data distribution for federated visual classification",
"year": "2019"
},
{
"authors": [
"T Huang",
"W Lin",
"L Shen",
"K Li",
"A Y Zomaya"
],
"doi": "",
"ref_id": "b16",
"title": "Stochastic client selection for federated learning with volatile clients",
"year": "2022"
},
{
"authors": [
"R Johnson",
"T Zhang"
],
"doi": "",
"ref_id": "b17",
"title": "Accelerating stochastic gradient descent using predictive variance reduction",
"year": "2013"
},
{
"authors": [
"Peter Kairouz",
"H Brendan Mcmahan"
],
"doi": "10.1561/2200000083",
"ref_id": "b18",
"title": "Advances and Open Problems in Federated Learning",
"year": "2021"
},
{
"authors": [
"S P Karimireddy",
"S Kale",
"M Mohri",
"S Reddi",
"S Stich",
"A T Suresh"
],
"doi": "",
"ref_id": "b19",
"title": "Scaffold: Stochastic controlled averaging for federated learning",
"year": "2020"
},
{
"authors": [
"J Konečnỳ",
"H B Mcmahan",
"F X Yu",
"P Richtárik",
"A T Suresh",
"D Bacon"
],
"doi": "",
"ref_id": "b20",
"title": "Federated learning: Strategies for improving communication efficiency",
"year": "2016"
},
{
"authors": [
"A Krizhevsky",
"G Hinton"
],
"doi": "10.7717/peerjcs.633/fig-5",
"ref_id": "b21",
"title": "Figure 5: Initial cross entropy values of samples from CIFAR-100 (Krizhevsky, 2009) on SqueezeNet (Iandola et al., 2016) when learning 10 classes at a time using the same learning settings as shown in Table 1.",
"year": "2009"
},
{
"authors": [
"V Kulkarni",
"M Kulkarni",
"A Pant"
],
"doi": "",
"ref_id": "b22",
"title": "Survey of personalization techniques for federated learning",
"year": "2020. 2020"
},
{
"authors": [
"J Kwon",
"J Kim",
"H Park",
"I K Choi",
"Asam"
],
"doi": "",
"ref_id": "b23",
"title": "Adaptive sharpness-aware minimization for scale-invariant learning of deep neural networks",
"year": "2021"
},
{
"authors": [
"L Li",
"Y Fan",
"M Tse",
"K.-Y Lin"
],
"doi": "",
"ref_id": "b24",
"title": "A review of applications in federated learning",
"year": "2020"
},
{
"authors": [
"Tian Li",
"Anit Kumar Sahu",
"Ameet Talwalkar",
"Virginia Smith"
],
"doi": "10.1109/msp.2020.2975749",
"ref_id": "b25",
"title": "Federated Learning: Challenges, Methods, and Future Directions",
"year": "2020"
},
{
"authors": [
"Xianfeng Liang",
"Shuheng Shen",
"Enhong Chen",
"Jinchang Liu",
"Qi Liu",
"Yifei Cheng",
"Zhen Pan"
],
"doi": "10.1007/s11704-021-1018-0",
"ref_id": "b26",
"title": "Accelerating local SGD for non-IID data using variance reduction",
"year": "2019"
},
{
"authors": [
"Ji Liu",
"Jizhou Huang",
"Yang Zhou",
"Xuhong Li",
"Shilei Ji",
"Haoyi Xiong",
"Dejing Dou"
],
"doi": "10.1007/s10115-022-01664-x",
"ref_id": "b27",
"title": "From distributed machine learning to federated learning: a survey",
"year": "2022"
},
{
"authors": [
"G Malinovskiy",
"D Kovalev",
"E Gasanov",
"L Condat",
"P Richtarik"
],
"doi": "",
"ref_id": "b28",
"title": "From local sgd to local fixed-point methods for federated learning",
"year": "2020"
},
{
"authors": [
"B Mcmahan",
"E Moore",
"D Ramage",
"S Hampson",
"B A Arcas"
],
"doi": "",
"ref_id": "b29",
"title": "Communication-efficient learning of deep networks from decentralized data",
"year": "2017"
},
{
"authors": [
"P Mi",
"L Shen",
"T Ren",
"Y Zhou",
"X Sun",
"R Ji",
"D Tao"
],
"doi": "",
"ref_id": "b30",
"title": "Make sharpness-aware minimization stronger: A sparsified perturbation approach",
"year": "2022"
},
{
"authors": [
"B Neyshabur",
"S Bhojanapalli",
"N Srebro"
],
"doi": "",
"ref_id": "b31",
"title": "A pac-bayesian approach to spectrally-normalized margin bounds for neural networks",
"year": "2017"
},
{
"authors": [
"Emre Ozfatura",
"Kerem Ozfatura",
"Deniz Gunduz"
],
"doi": "10.1109/isit45174.2021.9517850",
"ref_id": "b32",
"title": "FedADC: Accelerated Federated Learning with Drift Control",
"year": "2021. 2021"
},
{
"authors": [
"A Paszke",
"S Gross",
"F Massa",
"A Lerer",
"J Bradbury",
"G Chanan",
"T Killeen",
"Z Lin",
"N Gimelshein",
"L Antiga"
],
"doi": "",
"ref_id": "b33",
"title": "Pytorch: An imperative style, high-performance deep learning library",
"year": "2019"
},
{
"authors": [
"R Pathak",
"M J Wainwright"
],
"doi": "",
"ref_id": "b34",
"title": "Fedsplit: An algorithmic framework for fast federated optimization",
"year": "2020"
},
{
"authors": [
"Z Qu",
"X Li",
"R Duan",
"Y Liu",
"B Tang",
"Z Lu"
],
"doi": "",
"ref_id": "b35",
"title": "Generalized federated learning via sharpness aware minimization",
"year": "2022"
},
{
"authors": [
"S Reddi",
"Z Charles",
"M Zaheer",
"Z Garrett",
"K Rush",
"J Konečnỳ",
"S Kumar",
"H B Mcmahan"
],
"doi": "",
"ref_id": "b36",
"title": "Adaptive federated optimization",
"year": "2020"
},
{
"authors": [
"A K Sahu",
"T Li",
"M Sanjabi",
"M Zaheer",
"A Talwalkar",
"V Smith"
],
"doi": "",
"ref_id": "b37",
"title": "On the convergence of federated optimization in heterogeneous networks",
"year": "2018"
},
{
"authors": [
"Yifan Shi",
"Yingqi Liu",
"Kang Wei",
"Li Shen",
"Xueqian Wang",
"Dacheng Tao"
],
"doi": "10.1109/cvpr52729.2023.02352",
"ref_id": "b38",
"title": "Make Landscape Flatter in Differentially Private Federated Learning",
"year": "2023"
},
{
"authors": [
"Y Shi",
"L Shen",
"K Wei",
"Y Sun",
"B Yuan",
"X Wang",
"D Tao"
],
"doi": "",
"ref_id": "b39",
"title": "Improving the model consistency of decentralized federated learning",
"year": "2023"
},
{
"authors": [
"S U Stich"
],
"doi": "",
"ref_id": "b40",
"title": "Local sgd converges fast and communicates little",
"year": "2018"
},
{
"authors": [
"Hao Sun",
"Li Shen",
"Qihuang Zhong",
"Liang Ding",
"Shixiang Chen",
"Jingwei Sun",
"Jing Li",
"Guangzhong Sun",
"Dacheng Tao"
],
"doi": "10.1016/j.neunet.2023.10.044",
"ref_id": "b41",
"title": "AdaSAM: Boosting sharpness-aware minimization with adaptive learning rate and momentum for training deep neural networks",
"year": "2023"
},
{
"authors": [
"Y Sun",
"L Shen",
"T Huang",
"L Ding",
"D Tao"
],
"doi": "",
"ref_id": "b42",
"title": "Fedspeed: Larger local interval, less communication round, and higher generalization accuracy",
"year": "2023"
},
{
"authors": [
"Alysa Ziying Tan",
"Han Yu",
"Lizhen Cui",
"Qiang Yang"
],
"doi": "10.1109/tnnls.2022.3160699",
"ref_id": "b43",
"title": "Towards Personalized Federated Learning",
"year": "2022"
},
{
"authors": [
"Tran Dinh",
"Q Pham",
"N H Phan",
"D Nguyen",
"L"
],
"doi": "",
"ref_id": "b44",
"title": "Feddr-randomized douglas-rachford splitting algorithms for nonconvex federated composite optimization",
"year": "2021"
},
{
"authors": [
"Joel A Tropp"
],
"doi": "10.1007/s10208-011-9099-z",
"ref_id": "b45",
"title": "User-Friendly Tail Bounds for Sums of Random Matrices",
"year": "aug 2011"
},
{
"authors": [
"Han Wang",
"Siddartha Marella",
"James Anderson"
],
"doi": "10.1109/cdc51059.2022.9992745",
"ref_id": "b46",
"title": "FedADMM: A federated primal-dual algorithm allowing partial participation",
"year": "2022"
},
{
"authors": [
"J Wang",
"V Tantia",
"N Ballas",
"M Rabbat"
],
"doi": "",
"ref_id": "b47",
"title": "Slowmo: Improving communication-efficient distributed sgd with slow momentum",
"year": "2019"
},
{
"authors": [
"J Wang",
"Q Liu",
"H Liang",
"G Joshi",
"H V Poor"
],
"doi": "",
"ref_id": "b48",
"title": "Tackling the objective inconsistency problem in heterogeneous federated optimization",
"year": "2020"
},
{
"authors": [
"J Wang",
"Q Liu",
"H Liang",
"G Joshi",
"H V Poor"
],
"doi": "",
"ref_id": "b49",
"title": "Tackling the objective inconsistency problem in heterogeneous federated optimization",
"year": "2020"
},
{
"authors": [
"J Wang",
"Z Xu",
"Z Garrett",
"Z Charles",
"L Liu",
"G Joshi"
],
"doi": "",
"ref_id": "b50",
"title": "Local adaptivity in federated learning: Convergence and consistency",
"year": "2021"
},
{
"authors": [
"B Woodworth",
"K K Patel",
"S Stich",
"Z Dai",
"B Bullins",
"B Mcmahan",
"O Shamir",
"N Srebro"
],
"doi": "",
"ref_id": "b51",
"title": "Is local sgd better than minibatch sgd",
"year": "2020"
},
{
"authors": [
"Yuxin Wu",
"Kaiming He"
],
"doi": "10.1007/978-3-030-01261-8_1",
"ref_id": "b52",
"title": "Group Normalization",
"year": "2018"
},
{
"authors": [
"J Xu",
"S Wang",
"L Wang",
"A C Yao",
"-C Fedcm"
],
"doi": "",
"ref_id": "b53",
"title": "Federated learning with client-level momentum",
"year": "2021"
},
{
"authors": [
"H Yang",
"M Fang",
"J Liu"
],
"doi": "",
"ref_id": "b54",
"title": "Achieving linear speedup with partial worker participation in non-iid federated learning",
"year": "2021"
},
{
"authors": [
"Qiang Yang",
"Yang Liu",
"Yong Cheng",
"Yan Kang",
"Tianjian Chen",
"Han Yu"
],
"doi": "10.1007/978-3-031-01585-4_9",
"ref_id": "b55",
"title": "Federated Reinforcement Learning",
"year": "2019"
},
{
"authors": [
"Lin Zhang",
"Li Shen",
"Liang Ding",
"Dacheng Tao",
"Ling-Yu Duan"
],
"doi": "10.1109/cvpr52688.2022.00993",
"ref_id": "b56",
"title": "Fine-tuning Global Model via Data-Free Knowledge Distillation for Non-IID Federated Learning",
"year": "2022"
},
{
"authors": [
"Xinwei Zhang",
"Mingyi Hong",
"Sairaj Dhople",
"Wotao Yin",
"Yang Liu"
],
"doi": "10.1109/tsp.2021.3115952",
"ref_id": "b57",
"title": "FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data",
"year": "2021"
},
{
"authors": [
"Y Zhao",
"H Zhang",
"X Hu"
],
"doi": "",
"ref_id": "b58",
"title": "Penalizing gradient norm for efficiently improving generalization in deep learning",
"year": "2022"
},
{
"authors": [
"Qihuang Zhong",
"Liang Ding",
"Li Shen",
"Peng Mi",
"Juhua Liu",
"Bo Du",
"Dacheng Tao"
],
"doi": "10.18653/v1/2022.findings-emnlp.300",
"ref_id": "b59",
"title": "Improving Sharpness-Aware Minimization with Fisher Mask for Better Generalization on Language Models",
"year": "2022"
},
{
"authors": [
"J Zhuang",
"B Gong",
"L Yuan",
"Y Cui",
"H Adam",
"N Dvornek",
"S Tatikonda",
"J Duncan",
"T Liu"
],
"doi": "",
"ref_id": "b60",
"title": "Surrogate gap minimization improves sharpness-aware training",
"year": "2022"
}
] |
[
"c0f8d243914d2f05",
"55e00ddfabbebd68",
"e7311ef8992b126c",
"eb56fbc834357712",
"f6677943805ec412",
"150b91edb52e324b",
"bbc248549c3fe3b6",
"ca0f5efc455f3d35",
"0b65b1b3fda94c11",
"460ba880b0910176",
"515e522e81a09c0e",
"def918d34215a2cb",
"78c532ed4bd69f0d",
"25100c9f2b204f19",
"302d75dfd2479fad",
"72a5cb2de2aa2ca3",
"7e720f400771fb7c",
"343f69be0e10c0cd",
"6625ce512c58e047"
] |
[
"6539c157c38d3f10",
"eb56fbc834357712",
"1b5a53b2917c88d0",
"72a5cb2de2aa2ca3",
"0b65b1b3fda94c11",
"aa3b2339166ded88",
"ce749518c38bf5f0",
"e7311ef8992b126c",
"f40623ce114ba585",
"30049692af4f4be7",
"78c532ed4bd69f0d",
"343f69be0e10c0cd",
"39ea51c87cdfdcfb",
"40b0abb07629a0b2",
"5f9046f1ecee211f",
"f1f14ef4af551db3",
"3c7b87bd12b0817b",
"71bc670ae065a879",
"9575c1348f09cb7b",
"25100c9f2b204f19",
"f6677943805ec412",
"ed10b7a0d3a6750e",
"c9ce4e14d9191839",
"bbc248549c3fe3b6",
"5ca2eff1a538b7c5",
"2c1b5d40fd82d0f4",
"8a402483f3d5e485",
"302d75dfd2479fad",
"150b91edb52e324b",
"515e522e81a09c0e",
"460ba880b0910176",
"f258f8e5cf719f56",
"f85a957f2c8e93a3",
"8874921fdd4c2237",
"2c7a99eadcc56061",
"def918d34215a2cb",
"f02c47fae0e03f64",
"7e720f400771fb7c",
"395f909fe980d435",
"f0b822ff5e7dc08a",
"ca0f5efc455f3d35",
"1eba45ef4241e38b",
"fca44e97564ad5e5",
"11eb2b471693fa75",
"dea3c316ce955af4",
"300d35155b51b8b0",
"48c4028580009e0d",
"7309fef8a71bd7b0",
"dec147092ec96adb",
"dec147092ec96adb",
"e9efd293ea702d7f",
"6625ce512c58e047",
"75bc3e0fd680cc7a",
"05dd81188651fcf5",
"55e00ddfabbebd68",
"c0f8d243914d2f05",
"49a3bc7c2d4b42b9",
"1e1184924dd1c56f",
"0551e4f3685954f6",
"e4fbc79977c023bd",
"865d3f1df7d1b6ce"
] |
kNzaZ0jbIg
|
Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks
|
data/openreview_paper/ICML_2023_oral/kNzaZ0jbIg//paper.pdf
| 41
| 23
|
[
{
"authors": [
"Pmlr"
],
"doi": "",
"ref_id": "b34",
"title": "",
"year": "2020"
},
{
"authors": [
"Ronan Collobert",
"Samy Bengio",
"Yoshua Bengio"
],
"doi": "10.7551/mitpress/1120.003.0086",
"ref_id": "b16",
"title": "A Parallel Mixture of SVMs for Very Large Scale Problems",
"year": "2001"
},
{
"authors": [
"Difan Zou",
"Yuan Cao",
"Dongruo Zhou",
"Quanquan Gu"
],
"doi": "10.1007/s10994-019-05839-6",
"ref_id": "b40",
"title": "Gradient descent optimizes over-parameterized deep ReLU networks",
"year": "2020"
},
{
"authors": [
"Lénaïc Chizat",
"Praneeth Netrapalli"
],
"doi": "10.52202/079017-1993",
"ref_id": "b15",
"title": "The Feature Speed Formula: a flexible approach to scale hyper-parameters of deep neural networks",
"year": "2019"
},
{
"authors": [
"S Du",
"J Lee",
"H Li",
"L Wang",
"X Zhai"
],
"doi": "",
"ref_id": "b19",
"title": "Gradient descent finds global minima of deep neural networks",
"year": "2019"
},
{
"authors": [
"A Vaswani",
"N Shazeer",
"N Parmar",
"J Uszkoreit",
"L Jones",
"A N Gomez",
"Ł Kaiser",
"I Polosukhin"
],
"doi": "",
"ref_id": "b28",
"title": "Attention is all you need",
"year": "2017"
},
{
"authors": [
"V Tresp"
],
"doi": "",
"ref_id": "b27",
"title": "Mixtures of gaussian processes",
"year": "2000"
},
{
"authors": [
"D Eigen",
"M Ranzato",
"I Sutskever"
],
"doi": "",
"ref_id": "b20",
"title": "Learning factored representations in a deep mixture of experts",
"year": "2013"
},
{
"authors": [
"K Chen",
"L Xu",
"Chi",
"H"
],
"doi": "",
"ref_id": "b13",
"title": "Improved learning algorithms for mixture of experts in multiclass classification",
"year": "1999"
},
{
"authors": [
"Ronan Collobert",
"Yoshua Bengio",
"Samy Bengio"
],
"doi": "10.1142/s0218001403002411",
"ref_id": "b17",
"title": "SCALING LARGE LEARNING PROBLEMS WITH HARD PARALLEL MIXTURES",
"year": "2003"
},
{
"authors": [
"Haoyu Fu",
"Yuejie Chi",
"Yingbin Liang"
],
"doi": "10.1109/tsp.2020.2993153",
"ref_id": "b22",
"title": "Guaranteed Recovery of One-Hidden-Layer Neural Networks via Cross Entropy",
"year": "2020"
},
{
"authors": [
"S Arora",
"S Du",
"W Hu",
"Z Li",
"R Wang"
],
"doi": "10.1016/bs.hna.2024.05.007",
"ref_id": "b8",
"title": "Two-layer neural networks for partial differential equations: optimization and generalization theory",
"year": "2019"
},
{
"authors": [
"Y Bai",
"J D Lee"
],
"doi": "",
"ref_id": "b9",
"title": "Beyond linearization: On quadratic and higher-order approximation of wide neural networks",
"year": "2019"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li"
],
"doi": "",
"ref_id": "b4",
"title": "Feature purification: How adversarial training performs robust deep learning",
"year": "2021. 2022"
},
{
"authors": [
"A Daniely",
"E Malach"
],
"doi": "",
"ref_id": "b18",
"title": "Learning parities with neural networks",
"year": "2020"
},
{
"authors": [
"Y Bengio",
"N Léonard",
"A Courville"
],
"doi": "",
"ref_id": "b10",
"title": "Estimating or propagating gradients through stochastic neurons for conditional computation",
"year": "2013"
},
{
"authors": [
"W Fedus",
"B Zoph",
"N Shazeer"
],
"doi": "10.1021/acs.chemmater.8b02837.s001",
"ref_id": "b21",
"title": "Machine Learning Constrained with Dimensional Analysis and Scaling Laws: Simple, Transferable, and Interpretable Models of Materials from Small Datasets",
"year": "2022"
},
{
"authors": [
"Behrooz Ghorbani",
"Song Mei",
"Theodor Misiakiewicz",
"Andrea Montanari"
],
"doi": "10.1214/20-aos1990",
"ref_id": "b25",
"title": "Linearized two-layers neural networks in high dimension",
"year": "2021"
},
{
"authors": [
"Y Zhou",
"T Lei",
"H Liu",
"N Du",
"Y Huang",
"V Y Zhao",
"A M Dai",
"Z Chen",
"Q V Le",
"J Laudon"
],
"doi": "",
"ref_id": "b39",
"title": "Mixture-of-experts with expert choice routing",
"year": "2022"
},
{
"authors": [
"K Ahmed",
"M H Baig",
"L Torresani"
],
"doi": "",
"ref_id": "b0",
"title": "Network of experts for large-scale image categorization",
"year": "2016"
},
{
"authors": [
"B Yang",
"G Bender",
"Q V Le",
"J Ngiam"
],
"doi": "",
"ref_id": "b29",
"title": "Condconv: Conditionally parameterized convolutions for efficient inference",
"year": "2019"
},
{
"authors": [
"B Ghorbani",
"S Mei",
"T Misiakiewicz",
"A Montanari"
],
"doi": "",
"ref_id": "b23",
"title": "Limitations of lazy training of two-layers neural network",
"year": "2019"
},
{
"authors": [
"G Yehudai",
"O Shamir"
],
"doi": "",
"ref_id": "b30",
"title": "On the power and limitations of random features for understanding neural networks",
"year": "2019"
}
] |
[
{
"authors": [
"K Ahmed",
"M H Baig",
"L Torresani"
],
"doi": "",
"ref_id": "b0",
"title": "Network of experts for large-scale image categorization",
"year": "2016"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li"
],
"doi": "",
"ref_id": "b1",
"title": "What can resnet learn efficiently, going beyond kernels",
"year": "2019"
},
{
"authors": [
"Zeyuan Allen-Zhu",
"Yuanzhi Li"
],
"doi": "10.1109/focs52979.2021.00098",
"ref_id": "b2",
"title": "Feature Purification: How Adversarial Training Performs Robust Deep Learning",
"year": "2020"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li"
],
"doi": "",
"ref_id": "b3",
"title": "Towards understanding ensemble, knowledge distillation and self-distillation in deep learning",
"year": "2020"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li"
],
"doi": "",
"ref_id": "b4",
"title": "Feature purification: How adversarial training performs robust deep learning",
"year": "2021. 2022"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li",
"Y Liang"
],
"doi": "",
"ref_id": "b5",
"title": "Learning and generalization in overparameterized neural networks, going beyond two layers",
"year": "2019"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li",
"Z Song"
],
"doi": "10.1017/cbo9781107298019.005",
"ref_id": "b6",
"title": "Learning via Uniform Convergence",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "10.7717/peerj.9254/table-1",
"ref_id": "b7",
"title": "Table 1: List of age-structured species groups for CRAM (McGregor et al., 2019b).",
"year": "2019b"
},
{
"authors": [
"S Arora",
"S Du",
"W Hu",
"Z Li",
"R Wang"
],
"doi": "10.1016/bs.hna.2024.05.007",
"ref_id": "b8",
"title": "Two-layer neural networks for partial differential equations: optimization and generalization theory",
"year": "2019"
},
{
"authors": [
"Y Bai",
"J D Lee"
],
"doi": "",
"ref_id": "b9",
"title": "Beyond linearization: On quadratic and higher-order approximation of wide neural networks",
"year": "2019"
},
{
"authors": [
"Y Bengio",
"N Léonard",
"A Courville"
],
"doi": "",
"ref_id": "b10",
"title": "Estimating or propagating gradients through stochastic neurons for conditional computation",
"year": "2013"
},
{
"authors": [
"A Brutzkus",
"A Globerson"
],
"doi": "",
"ref_id": "b11",
"title": "An optimization and generalization analysis for max-pooling networks",
"year": "2021"
},
{
"authors": [
"A Brutzkus",
"A Globerson",
"E Malach",
"S Shalev-Shwartz"
],
"doi": "",
"ref_id": "b12",
"title": "SGD learns over-parameterized networks that provably generalize on linearly separable data",
"year": "2018"
},
{
"authors": [
"K Chen",
"L Xu",
"Chi",
"H"
],
"doi": "",
"ref_id": "b13",
"title": "Improved learning algorithms for mixture of experts in multiclass classification",
"year": "1999"
},
{
"authors": [
"Z Chen",
"Y Deng",
"Y Wu",
"Q Gu",
"Y Li"
],
"doi": "",
"ref_id": "b14",
"title": "Towards understanding mixture of experts in deep learning",
"year": "2022"
},
{
"authors": [
"Lénaïc Chizat",
"Praneeth Netrapalli"
],
"doi": "10.52202/079017-1993",
"ref_id": "b15",
"title": "The Feature Speed Formula: a flexible approach to scale hyper-parameters of deep neural networks",
"year": "2019"
},
{
"authors": [
"Ronan Collobert",
"Samy Bengio",
"Yoshua Bengio"
],
"doi": "10.7551/mitpress/1120.003.0086",
"ref_id": "b16",
"title": "A Parallel Mixture of SVMs for Very Large Scale Problems",
"year": "2001"
},
{
"authors": [
"Ronan Collobert",
"Yoshua Bengio",
"Samy Bengio"
],
"doi": "10.1142/s0218001403002411",
"ref_id": "b17",
"title": "SCALING LARGE LEARNING PROBLEMS WITH HARD PARALLEL MIXTURES",
"year": "2003"
},
{
"authors": [
"A Daniely",
"E Malach"
],
"doi": "",
"ref_id": "b18",
"title": "Learning parities with neural networks",
"year": "2020"
},
{
"authors": [
"S Du",
"J Lee",
"H Li",
"L Wang",
"X Zhai"
],
"doi": "",
"ref_id": "b19",
"title": "Gradient descent finds global minima of deep neural networks",
"year": "2019"
},
{
"authors": [
"D Eigen",
"M Ranzato",
"I Sutskever"
],
"doi": "",
"ref_id": "b20",
"title": "Learning factored representations in a deep mixture of experts",
"year": "2013"
},
{
"authors": [
"W Fedus",
"B Zoph",
"N Shazeer"
],
"doi": "10.1021/acs.chemmater.8b02837.s001",
"ref_id": "b21",
"title": "Machine Learning Constrained with Dimensional Analysis and Scaling Laws: Simple, Transferable, and Interpretable Models of Materials from Small Datasets",
"year": "2022"
},
{
"authors": [
"Haoyu Fu",
"Yuejie Chi",
"Yingbin Liang"
],
"doi": "10.1109/tsp.2020.2993153",
"ref_id": "b22",
"title": "Guaranteed Recovery of One-Hidden-Layer Neural Networks via Cross Entropy",
"year": "2020"
},
{
"authors": [
"B Ghorbani",
"S Mei",
"T Misiakiewicz",
"A Montanari"
],
"doi": "",
"ref_id": "b23",
"title": "Limitations of lazy training of two-layers neural network",
"year": "2019"
},
{
"authors": [
"B Ghorbani",
"S Mei",
"T Misiakiewicz",
"A Montanari"
],
"doi": "",
"ref_id": "b24",
"title": "When do neural networks outperform kernel methods",
"year": "2020"
},
{
"authors": [
"Behrooz Ghorbani",
"Song Mei",
"Theodor Misiakiewicz",
"Andrea Montanari"
],
"doi": "10.1214/20-aos1990",
"ref_id": "b25",
"title": "Linearized two-layers neural networks in high dimension",
"year": "2021"
},
{
"authors": [
"Mohsan Ali",
"Alina Sabir",
"Mehdi Hassan"
],
"doi": "10.1109/icrai54018.2021.9651401",
"ref_id": "b26",
"title": "Fake audio detection using Hierarchical Representations Learning and Spectrogram Features",
"year": "2021"
},
{
"authors": [
"V Tresp"
],
"doi": "",
"ref_id": "b27",
"title": "Mixtures of gaussian processes",
"year": "2000"
},
{
"authors": [
"A Vaswani",
"N Shazeer",
"N Parmar",
"J Uszkoreit",
"L Jones",
"A N Gomez",
"Ł Kaiser",
"I Polosukhin"
],
"doi": "",
"ref_id": "b28",
"title": "Attention is all you need",
"year": "2017"
},
{
"authors": [
"B Yang",
"G Bender",
"Q V Le",
"J Ngiam"
],
"doi": "",
"ref_id": "b29",
"title": "Condconv: Conditionally parameterized convolutions for efficient inference",
"year": "2019"
},
{
"authors": [
"G Yehudai",
"O Shamir"
],
"doi": "",
"ref_id": "b30",
"title": "On the power and limitations of random features for understanding neural networks",
"year": "2019"
},
{
"authors": [
"B Yu",
"J Zhang",
"Z Zhu"
],
"doi": "",
"ref_id": "b31",
"title": "On the learning dynamics of two-layer nonlinear convolutional neural networks",
"year": "2019"
},
{
"authors": [
"Sergey Zagoruyko",
"Nikos Komodakis"
],
"doi": "10.5244/c.30.87",
"ref_id": "b32",
"title": "Wide Residual Networks",
"year": "2016"
},
{
"authors": [
"S Zhang",
"M Wang",
"S Liu",
"P.-Y Chen",
"J Xiong"
],
"doi": "",
"ref_id": "b33",
"title": "Fast learning of graph neural networks with guaranteed generalizability: one-hidden-layer case",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "",
"ref_id": "b34",
"title": "",
"year": "2020"
},
{
"authors": [
"Shuai Zhang",
"Meng Wang",
"Jinjun Xiong",
"Sijia Liu",
"Pin-Yu Chen"
],
"doi": "10.1109/tnnls.2020.3007399",
"ref_id": "b35",
"title": "Improved Linear Convergence of Training CNNs With Generalizability Guarantees: A One-Hidden-Layer Case",
"year": "2020"
},
{
"authors": [
"K Zhong",
"Z Song",
"I S Dhillon"
],
"doi": "",
"ref_id": "b36",
"title": "Learning nonoverlapping convolutional neural networks with multiple kernels",
"year": "2017"
},
{
"authors": [
"K Zhong",
"Z Song",
"P Jain",
"P L Bartlett",
"I S Dhillon"
],
"doi": "",
"ref_id": "b37",
"title": "Recovery guarantees for one-hidden-layer neural networks",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "10.7717/peerj.4004/supp-9",
"ref_id": "b38",
"title": "Supplemental Information 1: Díaz-Castillo (2017b) [In press reference]",
"year": "2017b"
},
{
"authors": [
"Y Zhou",
"T Lei",
"H Liu",
"N Du",
"Y Huang",
"V Y Zhao",
"A M Dai",
"Z Chen",
"Q V Le",
"J Laudon"
],
"doi": "",
"ref_id": "b39",
"title": "Mixture-of-experts with expert choice routing",
"year": "2022"
},
{
"authors": [
"Difan Zou",
"Yuan Cao",
"Dongruo Zhou",
"Quanquan Gu"
],
"doi": "10.1007/s10994-019-05839-6",
"ref_id": "b40",
"title": "Gradient descent optimizes over-parameterized deep ReLU networks",
"year": "2020"
}
] |
[
"7cf91f2214d855fe",
"b4954336c5b0461d",
"bfdac2dbecf59e3d",
"7c11b531b72790bc",
"ed9e8e73401460d9",
"f3e09d57e222da76",
"e1f8d29e0acfacd2",
"30d2421bb814810c",
"c5ed05726464ec9f",
"dfb1a66b92297443",
"b1e1e5d1fefeb26f",
"1a975813306f8409",
"a940b39a1c73bb99",
"c8907309aa3d31e9",
"e3e7a43f472f6080",
"f0128dbd81ab6bdf",
"46b4aa06cd092fdb",
"724eda716a7b44be",
"7bd2e8d9f7203f39",
"9e62122f63d77e9a",
"373962fcbdf2a2bb",
"50b97a95e71e6210",
"9764e1f7e5251dc7"
] |
[
"9e62122f63d77e9a",
"45fba243faa6f5eb",
"7046be4a498ef0d1",
"1619c3134f06bd3e",
"c8907309aa3d31e9",
"1a6eb36c21cdb731",
"7037889d2e053f2a",
"6a51f54214399ef3",
"1a975813306f8409",
"a940b39a1c73bb99",
"f0128dbd81ab6bdf",
"3d580325e411759c",
"8e0f82462b5d2b47",
"c5ed05726464ec9f",
"dafdeec93ef10655",
"7c11b531b72790bc",
"b4954336c5b0461d",
"dfb1a66b92297443",
"e3e7a43f472f6080",
"ed9e8e73401460d9",
"30d2421bb814810c",
"46b4aa06cd092fdb",
"b1e1e5d1fefeb26f",
"50b97a95e71e6210",
"015a74b6ef32a8f1",
"724eda716a7b44be",
"421f01fc4c2f8539",
"e1f8d29e0acfacd2",
"f3e09d57e222da76",
"373962fcbdf2a2bb",
"9764e1f7e5251dc7",
"3a2fc58a05988ba9",
"b00596fd2a39226b",
"d37b2e747d612692",
"7cf91f2214d855fe",
"87e741397930cfdc",
"92e29711326ea919",
"6be0c1e6f1a8b667",
"3b64bdff797588cd",
"7bd2e8d9f7203f39",
"bfdac2dbecf59e3d"
] |
wbs1fKLfOe
|
Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression: Fast Convergence and Partial Participation
|
data/openreview_paper/ICML_2023_oral/wbs1fKLfOe//paper.pdf
| 32
| 0
|
[] |
[
{
"authors": [
"Peter Richtárik",
"Igor Sokolov",
"Ilyas Fatkhullin"
],
"doi": "",
"ref_id": "b0",
"title": "EF21: A new, simpler, theoretically better, and practically faster error feedback",
"year": "2021"
},
{
"authors": [
"Nicola Rieke",
"Jonny Hancox",
"Wenqi Li",
"Fausto Milletarì",
"Holger R Roth",
"Shadi Albarqouni",
"Spyridon Bakas",
"Mathieu N Galtier",
"Bennett A Landman",
"Klaus Maier-Hein",
"Sébastien Ourselin",
"Micah Sheller",
"Ronald M Summers",
"Andrew Trask",
"Daguang Xu",
"Maximilian Baust",
"M Jorge Cardoso"
],
"doi": "10.1038/s41746-020-00323-1",
"ref_id": "b1",
"title": "The future of digital health with federated learning",
"year": "2020"
},
{
"authors": [
"Felix Sattler",
"Simon Wiedemann",
"Klaus-Robert Muller",
"Wojciech Samek"
],
"doi": "10.1109/ijcnn.2019.8852172",
"ref_id": "b2",
"title": "Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication",
"year": "2019"
},
{
"authors": [
"Frank Seide",
"Hao Fu",
"Jasha Droppo",
"Gang Li",
"Dong Yu"
],
"doi": "",
"ref_id": "b3",
"title": "1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs",
"year": "2014"
},
{
"authors": [
"Zebang Shen",
"Aryan Mokhtari",
"Tengfei Zhou",
"Peilin Zhao",
"Hui Qian"
],
"doi": "",
"ref_id": "b4",
"title": "Towards more efficient stochastic decentralized learning: Faster convergence and sparse communication",
"year": "2018"
},
{
"authors": [
"Shaohuai Shi",
"Kaiyong Zhao",
"Qiang Wang",
"Zhenheng Tang",
"Xiaowen Chu"
],
"doi": "",
"ref_id": "b5",
"title": "A convergence analysis of distributed SGD with communication-efficient gradient sparsification",
"year": "2019"
},
{
"authors": [
"Sebastian U Stich"
],
"doi": "",
"ref_id": "b6",
"title": "Local SGD converges fast and communicates little",
"year": "2019"
},
{
"authors": [
"U Sebastian",
"Sai Stich",
"Karimireddy Praneeth"
],
"doi": "",
"ref_id": "b7",
"title": "The errorfeedback framework: Better rates for sgd with delayed gradients and compressed communication",
"year": "2019"
},
{
"authors": [
"Sebastian U Stich",
"Jean-Baptiste Cordonnier",
"Martin Jaggi"
],
"doi": "",
"ref_id": "b8",
"title": "Sparsified SGD with memory",
"year": "2018"
},
{
"authors": [
"Thijs Vogels",
"Sai Praneeth Karimireddy",
"Martin Jaggi"
],
"doi": "",
"ref_id": "b9",
"title": "PowerSGD: Practical low-rank gradient compression for distributed optimization",
"year": "2019"
},
{
"authors": [
"Jun-Kun Wang",
"Xiaoyun Li",
"Belhal Karimi",
"Ping Li"
],
"doi": "",
"ref_id": "b10",
"title": "An optimistic acceleration of AMSGrad for nonconvex optimization",
"year": "2021"
},
{
"authors": [
"Yujia Wang",
"Lu Lin",
"Jinghui Chen"
],
"doi": "",
"ref_id": "b11",
"title": "Communicationefficient adaptive federated learning",
"year": "2022"
},
{
"authors": [
"Jianqiao Wangni",
"Jialei Wang",
"Ji Liu",
"Tong Zhang"
],
"doi": "",
"ref_id": "b12",
"title": "Gradient sparsification for communication-efficient distributed optimization",
"year": "Mon-. 2018"
},
{
"authors": [
"Jiaxiang Wu",
"Weidong Huang",
"Junzhou Huang",
"Tong Zhang"
],
"doi": "",
"ref_id": "b13",
"title": "Error compensated quantized SGD and its applications to large-scale distributed optimization",
"year": "2018"
},
{
"authors": [
"Han Xiao",
"Kashif Rasul",
"Roland Vollgraf"
],
"doi": "10.7717/peerj-cs.3589/fig-5",
"ref_id": "b14",
"title": "Figure 5: Federated learning with fashion-MNIST dataset.",
"year": "2017"
},
{
"authors": [
"Zhiqiang Xu",
"Dong Li",
"Weijie Zhao",
"Xing Shen",
"Tianbo Huang",
"Xiaoyun Li",
"Ping Li"
],
"doi": "",
"ref_id": "b15",
"title": "Agile and accurate CTR prediction model training for massive-scale online advertising systems",
"year": "2021"
},
{
"authors": [
"Haibo Yang",
"Minghong Fang",
"Jia Liu"
],
"doi": "",
"ref_id": "b16",
"title": "Achieving linear speedup with partial worker participation in non-iid federated learning",
"year": "2021"
},
{
"authors": [
"Kai Yang",
"Tao Jiang",
"Yuanming Shi",
"Zhi Ding"
],
"doi": "10.1109/twc.2019.2961673",
"ref_id": "b17",
"title": "Federated Learning via Over-the-Air Computation",
"year": "2020"
},
{
"authors": [
"Qiang Yang",
"Yang Liu",
"Tianjian Chen",
"Yongxin Tong"
],
"doi": "10.1145/3298981",
"ref_id": "b18",
"title": "Federated Machine Learning",
"year": "2019"
},
{
"authors": [
"Wensi Yang",
"Yuhang Zhang",
"Kejiang Ye",
"Li Li",
"Cheng-Zhong Xu"
],
"doi": "10.1007/978-3-030-23551-2_2",
"ref_id": "b19",
"title": "FFD: A Federated Learning Based Method for Credit Card Fraud Detection",
"year": "2019"
},
{
"authors": [
"Zhaohui Yang",
"Mingzhe Chen",
"Kai-Kit Wong",
"H Vincent Poor",
"Shuguang Cui"
],
"doi": "10.1016/j.eng.2021.12.002",
"ref_id": "b20",
"title": "Federated Learning for 6G: Applications, Challenges, and Opportunities",
"year": "2021"
},
{
"authors": [
"Jin Yu",
"S V N Vishwanathan",
"Simon Günter",
"Nicol N Schraudolph"
],
"doi": "10.1145/1390156.1390309",
"ref_id": "b21",
"title": "A quasi-Newton approach to non-smooth convex optimization",
"year": "2019"
},
{
"authors": [
"Mingchao Yu",
"Zhifeng Lin",
"Krishna Narra",
"Songze Li",
"Youjie Li",
"Nam Sung Kim",
"Alexander G Schwing",
"Murali Annavaram",
"Salman Avestimehr"
],
"doi": "",
"ref_id": "b22",
"title": "GradiVeQ: Vector quantization for bandwidth-efficient gradient aggregation in distributed CNN training",
"year": "2018"
},
{
"authors": [
"Xiaotong Yuan",
"Ping Li"
],
"doi": "",
"ref_id": "b23",
"title": "On convergence of FedProx: Local dissimilarity invariant bounds, non-smoothness and beyond",
"year": "2022"
},
{
"authors": [
"D Matthew",
"Zeiler"
],
"doi": "",
"ref_id": "b24",
"title": "Adadelta: an adaptive learning rate method",
"year": "2012"
},
{
"authors": [
"Hantian Zhang",
"Jerry Li",
"Kaan Kara",
"Dan Alistarh",
"Ji Liu",
"Ce Zhang"
],
"doi": "",
"ref_id": "b25",
"title": "ZipML: Training linear models with endto-end low precision, and a little bit of deep learning",
"year": "2017"
},
{
"authors": [
"Jingzhao Zhang",
"Sai Praneeth Karimireddy",
"Andreas Veit",
"Seungyeon Kim",
"Sashank J Reddi",
"Sanjiv Kumar",
"Suvrit Sra"
],
"doi": "",
"ref_id": "b26",
"title": "Why are adaptive methods good for attention models?",
"year": "2020"
},
{
"authors": [
"Weijie Zhao",
"Xuewu Jiao",
"Mingqing Hu",
"Xiaoyun Li",
"Xiangyu Zhang",
"Ping Li"
],
"doi": "10.1109/bigdata55660.2022.10021133",
"ref_id": "b27",
"title": "PaddleBox: Communication-Efficient TeraByte-Scale Model Training Framework for Online Advertising",
"year": "2022"
},
{
"authors": [
"Yue Zhao",
"Meng Li",
"Liangzhen Lai",
"Naveen Suda",
"Damon Civin",
"Vikas Chandra"
],
"doi": "",
"ref_id": "b28",
"title": "Federated learning with non-IID data",
"year": "2018"
},
{
"authors": [
"Shuai Zheng",
"Ziyue Huang",
"James T Kwok"
],
"doi": "",
"ref_id": "b29",
"title": "Communication-efficient distributed blockwise momentum SGD with error-feedback",
"year": "2019"
},
{
"authors": [
"Dongruo Zhou",
"Jinghui Chen",
"Yuan Cao",
"Yiqi Tang",
"Ziyan Yang",
"Quanquan Gu"
],
"doi": "",
"ref_id": "b30",
"title": "On the convergence of adaptive gradient methods for nonconvex optimization",
"year": "2018"
},
{
"authors": [
"Yingxue Zhou",
"Belhal Karimi",
"Jinxing Yu",
"Zhiqiang Xu",
"Ping Li"
],
"doi": "",
"ref_id": "b31",
"title": "Towards better generalization of adaptive gradient methods",
"year": "2020"
}
] |
[] |
[
"42256a7ceee8beb1",
"c5db606136fc8593",
"c83fd2e4adde9f17",
"d883216a74d19ec6",
"9b655a3427747799",
"bb413014eabdba3f",
"4a20b239494924f3",
"3b45c68b586528d5",
"5793adf88a160a11",
"0414075873f4d614",
"e98ac0b5ebf035f4",
"cca8f57d796a3122",
"c08bfa3d3f7b32d5",
"553f5386580bd446",
"e4f6b8071d0370ba",
"5b356a797747b3be",
"98af9308382fa271",
"932d061f1905e2ab",
"e2636ceba4a3f63c",
"767bd88cf0493cb0",
"3d447fb375893868",
"56d14af15a321302",
"cd9f9914098080f4",
"56cacfb2c0e813b4",
"bb4fe94d799780e6",
"65c9eafb74a4da1c",
"668886b3997b26d6",
"828780b1937b8163",
"d1e4ecb5a449bcdd",
"c6013d7c90c7d632",
"67e0c10fb21fb7c1",
"fa4eacf0eac66009"
] |
5h42xM0pwn
|
Robust Budget Pacing with a Single Sample
|
data/openreview_paper/ICML_2023_oral/5h42xM0pwn//paper.pdf
| 28
| 7
|
[
{
"authors": [
"Nikhil R Devanur",
"Thomas P Hayes"
],
"doi": "10.1145/1566374.1566384",
"ref_id": "b13",
"title": "The adwords problem",
"year": "2009"
},
{
"authors": [
"Santiago R Balseiro",
"Yonatan Gur"
],
"doi": "10.1287/mnsc.2018.3174",
"ref_id": "b5",
"title": "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium",
"year": "2019"
},
{
"authors": [
"Yunhong Zhou",
"Deeparnab Chakrabarty",
"Rajan Lukose"
],
"doi": "10.1007/978-3-540-92185-1_63",
"ref_id": "b26",
"title": "Budget Constrained Bidding in Keyword Auctions and Online Knapsack Problems",
"year": "2008"
},
{
"authors": [
"Jon Feldman",
"Monika Henzinger",
"Nitish Korula",
"Vahab S Mirrokni",
"Cliff Stein"
],
"doi": "10.1007/978-3-642-15775-2_16",
"ref_id": "b16",
"title": "Online Stochastic Packing Applied to Display Ad Allocation",
"year": "2010"
},
{
"authors": [
"B Kumar",
"J Morgenstern",
"O Schrijvers"
],
"doi": "",
"ref_id": "b22",
"title": "Optimal spend rate estimation and pacing for ad campaigns with budgets",
"year": "2022"
},
{
"authors": [
"Xi Chen",
"Christian Kroer",
"Rachitesh Kumar"
],
"doi": "10.1145/3465456.3467578",
"ref_id": "b11",
"title": "The Complexity of Pacing for Second-Price Auctions",
"year": "2021"
},
{
"authors": [
"J Gaitonde",
"Y Li",
"B Light",
"B Lucier",
"A Slivkins"
],
"doi": "",
"ref_id": "b17",
"title": "Budget pacing in repeated auctions: Regret and efficiency without convergence",
"year": "2022"
}
] |
[
{
"authors": [
"Shipra Agrawal",
"Nikhil R Devanur"
],
"doi": "10.1137/1.9781611973730.93",
"ref_id": "b0",
"title": "Fast Algorithms for Online Stochastic Convex Programming",
"year": "2014"
},
{
"authors": [
"S Agrawal",
"Z Wang",
"Y Ye"
],
"doi": "",
"ref_id": "b1",
"title": "A dynamic near-optimal algorithm for online linear programming",
"year": "2014"
},
{
"authors": [
"Alessandro Arlotto",
"Itai Gurvich"
],
"doi": "10.1287/stsy.2018.0028",
"ref_id": "b2",
"title": "Uniformly Bounded Regret in the Multisecretary Problem",
"year": "2019"
},
{
"authors": [
"P D Azar",
"R Kleinberg",
"S M Weinberg"
],
"doi": "",
"ref_id": "b3",
"title": "Prophet inequalities with limited information",
"year": "2014"
},
{
"authors": [
"S Balseiro",
"C Kroer",
"R Kumar"
],
"doi": "",
"ref_id": "b4",
"title": "Online resource allocation under horizon uncertainty",
"year": "2022"
},
{
"authors": [
"Santiago R Balseiro",
"Yonatan Gur"
],
"doi": "10.1287/mnsc.2018.3174",
"ref_id": "b5",
"title": "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium",
"year": "2019"
},
{
"authors": [
"Santiago R Balseiro",
"Haihao Lu",
"Vahab Mirrokni"
],
"doi": "10.1287/opre.2021.2242",
"ref_id": "b6",
"title": "The Best of Many Worlds: Dual Mirror Descent for Online Allocation Problems",
"year": "2022"
},
{
"authors": [
"Siddhartha Banerjee",
"Daniel Freund"
],
"doi": "10.1145/3393691.3394224",
"ref_id": "b7",
"title": "Uniform Loss Algorithms for Online Stochastic Decision-Making With Applications to Bin Packing",
"year": "2020"
},
{
"authors": [
"S Banerjee",
"I Gurvich",
"A Vera"
],
"doi": "",
"ref_id": "b8",
"title": "Constant regret in online allocation: On the sufficiency of a single historical trace",
"year": "2020"
},
{
"authors": [
"Dimitri P Bertsekas"
],
"doi": "10.7551/mitpress/8996.003.0006",
"ref_id": "b9",
"title": "Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey",
"year": "2009"
},
{
"authors": [
"C Caramanis",
"P Dütting",
"M Faw",
"F Fusco",
"P Lazos",
"S Leonardi",
"O Papadigenopoulos",
"E Pountourakis",
"R Reiffenhäuser"
],
"doi": "",
"ref_id": "b10",
"title": "Single-sample prophet inequalities via greedy-ordered selection",
"year": "2022"
},
{
"authors": [
"Xi Chen",
"Christian Kroer",
"Rachitesh Kumar"
],
"doi": "10.1145/3465456.3467578",
"ref_id": "b11",
"title": "The Complexity of Pacing for Second-Price Auctions",
"year": "2021"
},
{
"authors": [
"José Correa",
"Paul Dütting",
"Felix Fischer",
"Kevin Schewior"
],
"doi": "10.1145/3328526.3329627",
"ref_id": "b12",
"title": "Prophet Inequalities for I.I.D. Random Variables from an Unknown Distribution",
"year": "2019"
},
{
"authors": [
"Nikhil R Devanur",
"Thomas P Hayes"
],
"doi": "10.1145/1566374.1566384",
"ref_id": "b13",
"title": "The adwords problem",
"year": "2009"
},
{
"authors": [
"Nikhil R Devanur",
"Kamal Jain",
"Balasubramanian Sivan",
"Christopher A Wilkens"
],
"doi": "10.1145/1993574.1993581",
"ref_id": "b14",
"title": "Near optimal online algorithms and fast approximation algorithms for resource allocation problems",
"year": "2011"
},
{
"authors": [],
"doi": "10.1007/978-1-4302-0970-6_3",
"ref_id": "b15",
"title": "Learning Facebook Platform Fundamentals",
"year": "2023-01-19"
},
{
"authors": [
"Jon Feldman",
"Monika Henzinger",
"Nitish Korula",
"Vahab S Mirrokni",
"Cliff Stein"
],
"doi": "10.1007/978-3-642-15775-2_16",
"ref_id": "b16",
"title": "Online Stochastic Packing Applied to Display Ad Allocation",
"year": "2010"
},
{
"authors": [
"J Gaitonde",
"Y Li",
"B Light",
"B Lucier",
"A Slivkins"
],
"doi": "",
"ref_id": "b17",
"title": "Budget pacing in repeated auctions: Regret and efficiency without convergence",
"year": "2022"
},
{
"authors": [
"Anupam Gupta",
"Marco Molinaro"
],
"doi": "10.1287/moor.2016.0782",
"ref_id": "b18",
"title": "How the Experts Algorithm Can Help Solve LPs Online",
"year": "2016"
},
{
"authors": [
"Elad Hazan"
],
"doi": "10.1561/2400000013",
"ref_id": "b19",
"title": "Introduction to Online Convex Optimization",
"year": "2016"
},
{
"authors": [
"J Jiang",
"X Li",
"J Zhang"
],
"doi": "",
"ref_id": "b20",
"title": "Online stochastic optimization with wasserstein based non-stationarity",
"year": "2020"
},
{
"authors": [
"Thomas Kesselheim",
"Andreas Tönnis",
"Klaus Radke",
"Berthold Vöcking"
],
"doi": "10.1145/2591796.2591810",
"ref_id": "b21",
"title": "Primal beats dual on online packing LPs in the random-order model",
"year": "2014"
},
{
"authors": [
"B Kumar",
"J Morgenstern",
"O Schrijvers"
],
"doi": "",
"ref_id": "b22",
"title": "Optimal spend rate estimation and pacing for ad campaigns with budgets",
"year": "2022"
},
{
"authors": [
"A Rubinstein",
"J Z Wang",
"S M Weinberg"
],
"doi": "",
"ref_id": "b23",
"title": "Optimal single-choice prophet inequalities from samples",
"year": "2020"
},
{
"authors": [
"Shai Shalev-Shwartz",
"Shai Ben-David"
],
"doi": "10.1017/cbo9781107298019",
"ref_id": "b24",
"title": "Understanding Machine Learning",
"year": "2014"
},
{
"authors": [
"Shai Shalev-Shwartz"
],
"doi": "10.1561/2200000018",
"ref_id": "b25",
"title": "Online Learning and Online Convex Optimization",
"year": "2012"
},
{
"authors": [
"Yunhong Zhou",
"Deeparnab Chakrabarty",
"Rajan Lukose"
],
"doi": "10.1007/978-3-540-92185-1_63",
"ref_id": "b26",
"title": "Budget Constrained Bidding in Keyword Auctions and Online Knapsack Problems",
"year": "2008"
},
{
"authors": [
"Y.-H Zhou",
"C Liang",
"N Li",
"C Yang",
"S Zhu",
"Jin",
"R"
],
"doi": "",
"ref_id": "b27",
"title": "Robust online matching with user arrival distribution drift",
"year": "2019"
}
] |
[
"bca6b149e12b7102",
"f0b66cdcfda209a8",
"1af388f693691562",
"9e1dc312f0e43a8e",
"b2652a76c19d7a38",
"83eae594e309d0f0",
"82120ae094737da4"
] |
[
"3025b8d69db0bcae",
"32b4f6cd6249169a",
"bc30337448091467",
"771fa1ebfcaf9fb2",
"d04fc6ff34017798",
"f0b66cdcfda209a8",
"96f62d1b90442bab",
"dd9e8986d9a68967",
"bd78e048198dbb92",
"dbd87ef1f768adf7",
"6dddf1cb73a011ef",
"83eae594e309d0f0",
"36d7d91ac7fde410",
"bca6b149e12b7102",
"3bd88d412318b3ef",
"05eb2c493878c6b2",
"9e1dc312f0e43a8e",
"82120ae094737da4",
"e69b8747b8ed9605",
"b364e4f081353c27",
"a101849a6cff6d85",
"e1c53c2a022014e5",
"b2652a76c19d7a38",
"5c5c4623b89aef5f",
"16bf0ac41c1a6d8f",
"8923b4fa97e254b3",
"1af388f693691562",
"d474667ec309fea8"
] |
ORxBEWMPAJ
|
JAWS-X: Addressing Efficiency Bottlenecks of Conformal Prediction Under Standard and Feedback Covariate Shift
|
data/openreview_paper/ICML_2023_oral/ORxBEWMPAJ//paper.pdf
| 50
| 0
|
[] |
[
{
"authors": [
"A N Angelopoulos",
"S Bates"
],
"doi": "",
"ref_id": "b0",
"title": "A gentle introduction to conformal prediction and distribution-free uncertainty quantification",
"year": "2021"
},
{
"authors": [
"Rina Foygel Barber",
"Emmanuel J Candès",
"Aaditya Ramdas",
"Ryan J Tibshirani"
],
"doi": "10.1214/20-aos1965",
"ref_id": "b1",
"title": "Predictive inference with the jackknife+",
"year": "2021"
},
{
"authors": [
"Rina Foygel Barber",
"Emmanuel J Candès",
"Aaditya Ramdas",
"Ryan J Tibshirani"
],
"doi": "10.1214/23-aos2276",
"ref_id": "b2",
"title": "Conformal prediction beyond exchangeability",
"year": "2022"
},
{
"authors": [
"Ali Bashir",
"Qin Yang",
"Jinpeng Wang",
"Stephan Hoyer",
"Wenchuan Chou",
"Cory Mclean",
"Geoff Davis",
"Qiang Gong",
"Zan Armstrong",
"Junghoon Jang",
"Hui Kang",
"Annalisa Pawlosky",
"Alexander Scott",
"George E Dahl",
"Marc Berndl",
"Michelle Dimon",
"B Scott Ferguson"
],
"doi": "10.1038/s41467-021-22555-9",
"ref_id": "b3",
"title": "Machine learning guided aptamer refinement and discovery",
"year": "2021"
},
{
"authors": [
"S Biswas",
"G Khimulya",
"E C Alley",
"K M Esvelt",
"G M Church"
],
"doi": "",
"ref_id": "b4",
"title": "Low-n protein engineering with dataefficient deep learning",
"year": "2021"
},
{
"authors": [
"E Brochu",
"V M Cora",
"N De Freitas"
],
"doi": "",
"ref_id": "b5",
"title": "A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning",
"year": "2010"
},
{
"authors": [
"D Brookes",
"H Park",
"J Listgarten"
],
"doi": "",
"ref_id": "b6",
"title": "Conditioning by adaptive sampling for robust design",
"year": "2019"
},
{
"authors": [
"David H Brookes",
"Amirali Aghazadeh",
"Jennifer Listgarten"
],
"doi": "10.1073/pnas.2109649118",
"ref_id": "b7",
"title": "On the sparsity of fitness functions and implications for learning",
"year": "2022"
},
{
"authors": [
"Drew H Bryant",
"Ali Bashir",
"Sam Sinai",
"Nina K Jain",
"Pierce J Ogden",
"Patrick F Riley",
"George M Church",
"Lucy J Colwell",
"Eric D Kelsic"
],
"doi": "10.1038/s41587-020-00793-4",
"ref_id": "b8",
"title": "Deep diversification of an AAV capsid protein by machine learning",
"year": "2021"
},
{
"authors": [
"Paulo Cortez",
"António Cerdeira",
"Fernando Almeida",
"Telmo Matos",
"José Reis"
],
"doi": "10.1016/j.dss.2009.05.016",
"ref_id": "b9",
"title": "Modeling wine preferences by data mining from physicochemical properties",
"year": "2009"
},
{
"authors": [
"D Dua",
"C Graff"
],
"doi": "10.7717/peerj-cs.1806/table-3",
"ref_id": "b10",
"title": "Table 3: Health datasets from UCI machine learning repository.",
"year": "2017"
},
{
"authors": [
"C Fannjiang",
"J Listgarten"
],
"doi": "",
"ref_id": "b11",
"title": "Autofocused oracles for model-based design",
"year": "2020"
},
{
"authors": [
"C Fannjiang",
"S Bates",
"A N Angelopoulos",
"J Listgarten",
"M I Jordan"
],
"doi": "",
"ref_id": "b12",
"title": "Conformal prediction under feedback covariate shift for biomolecular design",
"year": "2022"
},
{
"authors": [
"Samuel G Finlayson",
"Adarsh Subbaswamy",
"Karandeep Singh",
"John Bowers",
"Annabel Kupke",
"Jonathan Zittrain",
"Isaac S Kohane",
"Suchi Saria"
],
"doi": "10.1056/nejmc2104626",
"ref_id": "b13",
"title": "The Clinician and Dataset Shift in Artificial Intelligence",
"year": "2021"
},
{
"authors": [
"Foygel Barber",
"R Candes",
"E J Ramdas",
"A Tibshirani",
"R J"
],
"doi": "",
"ref_id": "b14",
"title": "The limits of distribution-free conditional predictive inference",
"year": "2021"
},
{
"authors": [
"Rafael Gómez-Bombarelli",
"Jennifer N Wei",
"David Duvenaud",
"José Miguel Hernández-Lobato",
"Benjamín Sánchez-Lengeling",
"Dennis Sheberla",
"Jorge Aguilera-Iparraguirre",
"Timothy D Hirzel",
"Ryan P Adams",
"Alán Aspuru-Guzik"
],
"doi": "10.1021/acscentsci.7b00572",
"ref_id": "b15",
"title": "Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules",
"year": "2018"
},
{
"authors": [
"Kam Hamidieh"
],
"doi": "10.1016/j.commatsci.2018.07.052",
"ref_id": "b16",
"title": "A data-driven statistical model for predicting the critical temperature of a superconductor",
"year": "2018"
},
{
"authors": [
"A Hawkins-Hooker",
"F Depardieu",
"S Baur",
"G Couairon",
"A Chen",
"D Bikard"
],
"doi": "",
"ref_id": "b17",
"title": "Generating functional protein variants with variational autoencoders",
"year": "2021"
},
{
"authors": [
"Seokho Kang",
"Kyunghyun Cho"
],
"doi": "10.1021/acs.jcim.8b00263",
"ref_id": "b18",
"title": "Conditional Molecular Design with Deep Generative Models",
"year": "2018"
},
{
"authors": [
"N Killoran",
"L J Lee",
"A Delong",
"D Duvenaud",
"B J Frey"
],
"doi": "",
"ref_id": "b19",
"title": "Generating and designing dna with deep generative models",
"year": "2017"
},
{
"authors": [
"H Landau"
],
"doi": "",
"ref_id": "b20",
"title": "On dominance relations and the structure of animal societies: Iii the condition for a score structure",
"year": "1953"
},
{
"authors": [
"Johannes Linder",
"Nicholas Bogard",
"Alexander B Rosenberg",
"Georg Seelig"
],
"doi": "10.1016/j.cels.2020.05.007",
"ref_id": "b21",
"title": "A Generative Neural Network for Maximizing Fitness and Diversity of Synthetic DNA and Protein Sequences",
"year": "2020"
},
{
"authors": [
"Rupert G Miller"
],
"doi": "10.1093/biomet/61.1.1",
"ref_id": "b22",
"title": "The jackknife-a review",
"year": "1974"
},
{
"authors": [
"V.-L Nguyen",
"M H Shaker",
"E Hüllermeier"
],
"doi": "",
"ref_id": "b23",
"title": "How to measure uncertainty in uncertainty sampling for active learning",
"year": "2022"
},
{
"authors": [
"Harris Papadopoulos"
],
"doi": "10.5772/6078",
"ref_id": "b24",
"title": "Inductive Conformal Prediction: Theory and Application to Neural Networks",
"year": "2008"
},
{
"authors": [
"Harris Papadopoulos",
"Kostas Proedrou",
"Volodya Vovk",
"Alex Gammerman"
],
"doi": "10.1007/3-540-36755-1_29",
"ref_id": "b25",
"title": "Inductive Confidence Machines for Regression",
"year": "August 19-23, 2002. 2002"
},
{
"authors": [
"F Pedregosa",
"G Varoquaux",
"A Gramfort",
"V Michel",
"B Thirion",
"O Grisel",
"M Blondel",
"P Prettenhofer",
"R Weiss",
"V Dubourg"
],
"doi": "",
"ref_id": "b26",
"title": "Scikit-learn: Machine learning in python",
"year": "2011"
},
{
"authors": [
"F J Poelwijk",
"M Socolich",
"R Ranganathan"
],
"doi": "",
"ref_id": "b27",
"title": "Learning the pattern of epistasis linking genotype and phenotype in a protein",
"year": "2019"
},
{
"authors": [
"M Popova",
"O Isayev",
"A Tropsha"
],
"doi": "",
"ref_id": "b28",
"title": "Deep reinforcement learning for de novo drug design",
"year": "2018"
},
{
"authors": [
"D Prinster",
"A Liu",
"S Saria",
"Jaws"
],
"doi": "",
"ref_id": "b29",
"title": "Auditing predictive uncertainty under covariate shift",
"year": "2022"
},
{
"authors": [
"Michael Redmond",
"Alok Baveja"
],
"doi": "10.1016/s0377-2217(01)00264-8",
"ref_id": "b30",
"title": "A data-driven software tool for enabling cooperative information sharing among police departments",
"year": "2002"
},
{
"authors": [
"William P Russ",
"Matteo Figliuzzi",
"Christian Stocker",
"Pierre Barrat-Charlaix",
"Michael Socolich",
"Peter Kast",
"Donald Hilvert",
"Remi Monasson",
"Simona Cocco",
"Martin Weigt",
"Rama Ranganathan"
],
"doi": "10.1126/science.aba3304",
"ref_id": "b31",
"title": "An evolution-based model for designing chorismate mutase enzymes",
"year": "2020"
},
{
"authors": [
"B Settles"
],
"doi": "",
"ref_id": "b32",
"title": "Active learning literature survey",
"year": "2009"
},
{
"authors": [
"G Shafer",
"V Vovk"
],
"doi": "",
"ref_id": "b33",
"title": "A tutorial on conformal prediction",
"year": "2008"
},
{
"authors": [
"H Shimodaira"
],
"doi": "",
"ref_id": "b34",
"title": "Improving predictive inference under covariate shift by weighting the log-likelihood function",
"year": "2000"
},
{
"authors": [
"Jung-Eun Shin",
"Adam J Riesselman",
"Aaron W Kollasch",
"Conor Mcmahon",
"Elana Simon",
"Chris Sander",
"Aashish Manglik",
"Andrew C Kruse",
"Debora S Marks"
],
"doi": "10.1038/s41467-021-22732-w",
"ref_id": "b35",
"title": "Protein design and variant prediction using autoregressive generative models",
"year": "2021"
},
{
"authors": [
"S Sinai",
"E D Kelsic"
],
"doi": "",
"ref_id": "b36",
"title": "A primer on model-guided exploration of fitness landscapes for biological sequence design",
"year": "2020"
},
{
"authors": [
"S Sinai",
"R Wang",
"A Whatley",
"S Slocum",
"E Locane",
"E D Kelsic",
"Adalead"
],
"doi": "",
"ref_id": "b37",
"title": "A simple and robust adaptive greedy search algorithm for sequence design",
"year": "2020"
},
{
"authors": [
"L Steinberger",
"H Leeb"
],
"doi": "",
"ref_id": "b38",
"title": "Leave-one-out prediction intervals in linear regression models with many variables",
"year": "2016"
},
{
"authors": [
"Lukas Steinberger",
"Hannes Leeb"
],
"doi": "10.1214/22-aos2250",
"ref_id": "b39",
"title": "Conditional predictive inference for stable algorithms",
"year": "2018"
},
{
"authors": [
"Masashi Sugiyama",
"Benjamin Blankertz",
"Matthias Krauledat",
"Guido Dornhege",
"Klaus-Robert Müller"
],
"doi": "10.1007/11861898_36",
"ref_id": "b40",
"title": "Importance-Weighted Cross-Validation for Covariate Shift",
"year": "2007"
},
{
"authors": [
"R J Tibshirani",
"Foygel",
"R Barber",
"E Candes",
"A Ramdas"
],
"doi": "",
"ref_id": "b41",
"title": "Conformal prediction under covariate shift",
"year": "2019"
},
{
"authors": [
"Vladimir Vovk"
],
"doi": "10.1007/s10472-013-9368-4",
"ref_id": "b42",
"title": "Cross-conformal predictors",
"year": "2015"
},
{
"authors": [
"V Vovk",
"A Gammerman",
"G Shafer"
],
"doi": "",
"ref_id": "b43",
"title": "Algorithmic learning in a random world",
"year": "2005"
},
{
"authors": [
"Vladimir Vovk",
"Ivan Petej",
"Ilia Nouretdinov",
"Valery Manokhin",
"Alexander Gammerman"
],
"doi": "10.1016/j.neucom.2019.10.110",
"ref_id": "b44",
"title": "Computationally efficient versions of conformal predictive distributions",
"year": "2018"
},
{
"authors": [
"Z Wu",
"K K Yang",
"M J Liszka",
"A Lee",
"A Batzilla",
"D Wernick",
"D P Weiner",
"F H Arnold"
],
"doi": "",
"ref_id": "b45",
"title": "Signal peptides generated by attention-based neural networks",
"year": "2020"
},
{
"authors": [
"Z Wu",
"K E Johnston",
"F H Arnold",
"K K Yang"
],
"doi": "",
"ref_id": "b46",
"title": "Protein sequence design with deep generative models",
"year": "2021"
},
{
"authors": [
"Kevin K Yang",
"Zachary Wu",
"Frances H Arnold"
],
"doi": "10.1038/s41592-019-0496-6",
"ref_id": "b47",
"title": "Machine-learning-guided directed evolution for protein engineering",
"year": "2019"
},
{
"authors": [
"Xiaowei Yue",
"Yuchen Wen",
"Jeffrey H Hunt",
"Jianjun Shi"
],
"doi": "10.1109/tase.2020.2990401",
"ref_id": "b48",
"title": "Active Learning for Gaussian Process Considering Uncertainties With Application to Shape Control of Composite Fuselage",
"year": "2020"
},
{
"authors": [
"D Zhu",
"D H Brookes",
"A Busia",
"A Carneiro",
"C Fannjiang",
"G Popova",
"D Shin",
"K C Donohue",
"E F Chang",
"T J Nowakowski"
],
"doi": "",
"ref_id": "b49",
"title": "Optimal trade-off control in machine learning-based library design, with application to adeno-associated virus (aav) for gene therapy",
"year": "2021"
}
] |
[] |
[
"a45d9e87412f5bb2",
"4d9dbd26e21c2224",
"9f162341dba268b3",
"411e994d3d6db26f",
"53ea3b9f26083e7b",
"704056c2a43e9e26",
"a2b2bef1f7ecd4da",
"6d161763d1d133fa",
"47d1323fbb7a5f91",
"cb5c4fbb5a04f594",
"2eaa1a40b2b73c51",
"e795800ae1b5fb5e",
"3099d19fb3caa72b",
"4205a7b80fa4fde7",
"8f856a50f04cc727",
"0e5063fbb6368828",
"24db9da9f4d59694",
"0046fa03b71492e1",
"153cf16cedae5c31",
"86fbf17c5d65a900",
"8acdc3282a8a98e4",
"e5425239f4299568",
"702538d72707d53e",
"c499d0768d0de182",
"d36e854e047a067e",
"fab730fb5a0557ee",
"f0188eb7d07d04ea",
"e54273a0513bd5ec",
"68443c577c5c11f0",
"7d58ccc4edf8f2c7",
"7c7a467cafbac872",
"7f980dba8d77f6dd",
"a6b8f01973dd1182",
"611eb117bfb2761f",
"75e4b3eeaea6b627",
"ded431a342b2e79a",
"2653514407256ede",
"659967146f6c153d",
"11bfdb9e02ccbef3",
"bad9cd87f130a34d",
"28df71367ca7d442",
"e6b97991ecd6e99a",
"41d1bf51dced00c8",
"b75eeeaf6f7f2e9f",
"29c37fa01add649c",
"5dbd754c5b3cd3c9",
"ca47433993ac6664",
"dcccda87987d1672",
"2d1abe94f88300eb",
"25f4a6a146edf377"
] |
qAW0AD6qYA
|
Delving into Noisy Label Detection with Clean Data
|
data/openreview_paper/ICML_2023_oral/qAW0AD6qYA//paper.pdf
| 69
| 26
|
[
{
"authors": [
"P Chen",
"B Liao",
"G Chen",
"S Zhang"
],
"doi": "",
"ref_id": "b3",
"title": "Understanding and utilizing deep neural networks trained with noisy labels",
"year": "2019"
},
{
"authors": [
"T Xiao",
"T Xia",
"Y Yang",
"C Huang",
"X Wang"
],
"doi": "",
"ref_id": "b55",
"title": "Learning from massive noisy labeled data for image classification",
"year": "2015"
},
{
"authors": [
"Z Zhang",
"M Sabuncu"
],
"doi": "",
"ref_id": "b63",
"title": "Generalized cross entropy loss for training deep neural networks with noisy labels",
"year": "2018"
},
{
"authors": [
"Y Shen",
"S Sanghavi"
],
"doi": "",
"ref_id": "b40",
"title": "Learning with bad training data via iterative trimmed loss minimization",
"year": "2019"
},
{
"authors": [
"J Li",
"R Socher",
"S C Hoi",
"Dividemix"
],
"doi": "",
"ref_id": "b22",
"title": "Learning with noisy labels as semi-supervised learning",
"year": "2020"
},
{
"authors": [
"Jiangchao Yao",
"Jiajie Wang",
"Ivor W Tsang",
"Ya Zhang",
"Jun Sun",
"Chengqi Zhang",
"Rui Zhang"
],
"doi": "10.1109/tip.2018.2877939",
"ref_id": "b56",
"title": "Deep Learning From Noisy Image Labels With Quality Embedding",
"year": "2019"
},
{
"authors": [
"H Wei",
"L Tao",
"R Xie",
"An",
"B"
],
"doi": "",
"ref_id": "b52",
"title": "Open-set label noise can improve robustness against inherent label noise",
"year": "2021"
},
{
"authors": [
"Y Lyu",
"I W Tsang"
],
"doi": "",
"ref_id": "b30",
"title": "Curriculum loss: Robust learning and generalization against label corruption",
"year": "2020"
},
{
"authors": [
"X Chen",
"A Gupta"
],
"doi": "",
"ref_id": "b4",
"title": "Webly supervised learning of convolutional networks",
"year": "2015"
},
{
"authors": [
"L Jiang",
"Z Zhou",
"T Leung",
"L.-J Li",
"L Fei-Fei"
],
"doi": "",
"ref_id": "b16",
"title": "Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels",
"year": "2018"
},
{
"authors": [
"D Krueger",
"N Ballas",
"S Jastrzebski",
"D Arpit",
"M S Kanwal",
"T Maharaj",
"E Bengio",
"A Fischer",
"A C Courville"
],
"doi": "",
"ref_id": "b21",
"title": "Deep nets don't learn via memorization",
"year": "2017"
},
{
"authors": [
"Y Wang",
"X Ma",
"Z Chen",
"Y Luo",
"J Yi",
"J Bailey"
],
"doi": "",
"ref_id": "b51",
"title": "Symmetric cross entropy for robust learning with noisy labels",
"year": "2019"
},
{
"authors": [
"Yuncheng Li",
"Jianchao Yang",
"Yale Song",
"Liangliang Cao",
"Jiebo Luo",
"Li-Jia Li"
],
"doi": "10.1109/iccv.2017.211",
"ref_id": "b23",
"title": "Learning from Noisy Labels with Distillation",
"year": "2017"
},
{
"authors": [
"M Ren",
"W Zeng",
"B Yang",
"R Urtasun"
],
"doi": "",
"ref_id": "b39",
"title": "Learning to reweight examples for robust deep learning",
"year": "2018"
},
{
"authors": [
"Yisen Wang",
"Weiyang Liu",
"Xingjun Ma",
"James Bailey",
"Hongyuan Zha",
"Le Song",
"Shu-Tao Xia"
],
"doi": "10.1109/cvpr.2018.00906",
"ref_id": "b50",
"title": "Iterative Learning with Open-set Noisy Labels",
"year": "2018"
},
{
"authors": [
"J Goldberger",
"E Ben-Reuven"
],
"doi": "",
"ref_id": "b8",
"title": "Training deep neuralnetworks using a noise adaptation layer",
"year": "2017"
},
{
"authors": [
"Sheng Liu",
"Kangning Liu",
"Weicheng Zhu",
"Yiqiu Shen",
"Carlos Fernandez-Granda"
],
"doi": "10.1109/cvpr52688.2022.00263",
"ref_id": "b25",
"title": "Adaptive Early-Learning Correction for Segmentation from Noisy Annotations",
"year": "2020"
},
{
"authors": [
"D Arpit",
"S Jastrzebski",
"N Ballas",
"D Krueger",
"E Bengio",
"M S Kanwal",
"T Maharaj",
"A Fischer",
"A C Courville",
"Y Bengio",
"S Lacoste-Julien"
],
"doi": "",
"ref_id": "b0",
"title": "A closer look at memorization in deep networks",
"year": "2017"
},
{
"authors": [
"X Ma",
"H Huang",
"Y Wang",
"S Romano",
"S M Erfani",
"J Bailey"
],
"doi": "",
"ref_id": "b31",
"title": "Normalized loss functions for deep learning with noisy labels",
"year": "2020"
},
{
"authors": [
"Ishan Jindal",
"Matthew Nokleby",
"Xuewen Chen"
],
"doi": "10.1109/icdm.2016.0121",
"ref_id": "b17",
"title": "Learning Deep Networks from Noisy Labels with Dropout Regularization",
"year": "2016"
},
{
"authors": [
"E Malach",
"S Shalev-Shwartz"
],
"doi": "",
"ref_id": "b32",
"title": "Decoupling \"when to update\" from \"how to update",
"year": "2017"
},
{
"authors": [
"Lele Cheng",
"Xiangzeng Zhou",
"Liming Zhao",
"Dangwei Li",
"Hong Shang",
"Yun Zheng",
"Pan Pan",
"Yinghui Xu"
],
"doi": "10.1007/978-3-030-58577-8_19",
"ref_id": "b6",
"title": "Weakly Supervised Learning with Side Information for Noisy Labeled Images",
"year": "2020"
},
{
"authors": [
"Alan Joseph Bekker",
"Jacob Goldberger"
],
"doi": "10.1109/icassp.2016.7472164",
"ref_id": "b1",
"title": "Training deep neural-networks based on unreliable labels",
"year": "2016"
},
{
"authors": [
"Wenting Qi"
],
"doi": "10.54014/fkzt-kjxg",
"ref_id": "b62",
"title": "Learning from hierarchical and noisy labels",
"year": "2021"
},
{
"authors": [
"D Hendrycks",
"M Mazeika",
"D Wilson",
"K Gimpel"
],
"doi": "",
"ref_id": "b12",
"title": "Using trusted data to train deep networks on labels corrupted by severe noise",
"year": "2018"
},
{
"authors": [
"Z Zhu",
"Z Dong",
"Y Liu"
],
"doi": "10.7717/peerj-cs.2005/fig-3",
"ref_id": "b67",
"title": "Figure 3: Performance with different proportions of corrupted labels (TextGCN).",
"year": "2022"
}
] |
[
{
"authors": [
"D Arpit",
"S Jastrzebski",
"N Ballas",
"D Krueger",
"E Bengio",
"M S Kanwal",
"T Maharaj",
"A Fischer",
"A C Courville",
"Y Bengio",
"S Lacoste-Julien"
],
"doi": "",
"ref_id": "b0",
"title": "A closer look at memorization in deep networks",
"year": "2017"
},
{
"authors": [
"Alan Joseph Bekker",
"Jacob Goldberger"
],
"doi": "10.1109/icassp.2016.7472164",
"ref_id": "b1",
"title": "Training deep neural-networks based on unreliable labels",
"year": "2016"
},
{
"authors": [
"E Bradley"
],
"doi": "10.1017/cbo9780511761362.001",
"ref_id": "b2",
"title": "Prologue",
"year": "2012"
},
{
"authors": [
"P Chen",
"B Liao",
"G Chen",
"S Zhang"
],
"doi": "",
"ref_id": "b3",
"title": "Understanding and utilizing deep neural networks trained with noisy labels",
"year": "2019"
},
{
"authors": [
"X Chen",
"A Gupta"
],
"doi": "",
"ref_id": "b4",
"title": "Webly supervised learning of convolutional networks",
"year": "2015"
},
{
"authors": [
"H Cheng",
"Z Zhu",
"X Li",
"Y Gong",
"X Sun",
"Y Liu"
],
"doi": "",
"ref_id": "b5",
"title": "Learning with instance-dependent label noise: A sample sieve approach",
"year": "2021"
},
{
"authors": [
"Lele Cheng",
"Xiangzeng Zhou",
"Liming Zhao",
"Dangwei Li",
"Hong Shang",
"Yun Zheng",
"Pan Pan",
"Yinghui Xu"
],
"doi": "10.1007/978-3-030-58577-8_19",
"ref_id": "b6",
"title": "Weakly Supervised Learning with Side Information for Noisy Labeled Images",
"year": "2020"
},
{
"authors": [
"C George",
"L Roger",
"B"
],
"doi": "",
"ref_id": "b7",
"title": "Statistical inference",
"year": "2021"
},
{
"authors": [
"J Goldberger",
"E Ben-Reuven"
],
"doi": "",
"ref_id": "b8",
"title": "Training deep neuralnetworks using a noise adaptation layer",
"year": "2017"
},
{
"authors": [
"Sheng Guo",
"Weilin Huang",
"Haozhi Zhang",
"Chenfan Zhuang",
"Dengke Dong",
"Matthew R Scott",
"Dinglong Huang"
],
"doi": "10.1007/978-3-030-01249-6_9",
"ref_id": "b9",
"title": "CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images",
"year": "2018"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b10",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"D Hendrycks",
"K Gimpel"
],
"doi": "",
"ref_id": "b11",
"title": "A baseline for detecting misclassified and out-of-distribution examples in neural networks",
"year": "2017"
},
{
"authors": [
"D Hendrycks",
"M Mazeika",
"D Wilson",
"K Gimpel"
],
"doi": "",
"ref_id": "b12",
"title": "Using trusted data to train deep networks on labels corrupted by severe noise",
"year": "2018"
},
{
"authors": [
"Y Hochberg"
],
"doi": "",
"ref_id": "b13",
"title": "A sharper bonferroni procedure for multiple tests of significance",
"year": "1988"
},
{
"authors": [
"Yen-Chang Hsu",
"Yilin Shen",
"Hongxia Jin",
"Zsolt Kira"
],
"doi": "10.1109/cvpr42600.2020.01096",
"ref_id": "b14",
"title": "Generalized ODIN: Detecting Out-of-Distribution Image Without Learning From Out-of-Distribution Data",
"year": "2020"
},
{
"authors": [
"J Jelle",
"G Aldo",
"S"
],
"doi": "",
"ref_id": "b15",
"title": "Multiple hypothesis testing in genomics",
"year": "2014"
},
{
"authors": [
"L Jiang",
"Z Zhou",
"T Leung",
"L.-J Li",
"L Fei-Fei"
],
"doi": "",
"ref_id": "b16",
"title": "Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels",
"year": "2018"
},
{
"authors": [
"Ishan Jindal",
"Matthew Nokleby",
"Xuewen Chen"
],
"doi": "10.1109/icdm.2016.0121",
"ref_id": "b17",
"title": "Learning Deep Networks from Noisy Labels with Dropout Regularization",
"year": "2016"
},
{
"authors": [
"Byeong-Il Kim",
"Byung Chul Ko"
],
"doi": "10.1109/iceic61013.2024.10457229",
"ref_id": "b18",
"title": "Active Contrastive Learning With Noisy Labels in Fine-Grained Classification",
"year": "2021"
},
{
"authors": [
"A Krizhevsky",
"G Hinton"
],
"doi": "",
"ref_id": "b19",
"title": "Learning multiple layers of features from tiny images",
"year": "2009"
},
{
"authors": [
"A Krizhevsky",
"I Sutskever",
"G E Hinton"
],
"doi": "",
"ref_id": "b20",
"title": "Imagenet classification with deep convolutional neural networks",
"year": "2012"
},
{
"authors": [
"D Krueger",
"N Ballas",
"S Jastrzebski",
"D Arpit",
"M S Kanwal",
"T Maharaj",
"E Bengio",
"A Fischer",
"A C Courville"
],
"doi": "",
"ref_id": "b21",
"title": "Deep nets don't learn via memorization",
"year": "2017"
},
{
"authors": [
"J Li",
"R Socher",
"S C Hoi",
"Dividemix"
],
"doi": "",
"ref_id": "b22",
"title": "Learning with noisy labels as semi-supervised learning",
"year": "2020"
},
{
"authors": [
"Yuncheng Li",
"Jianchao Yang",
"Yale Song",
"Liangliang Cao",
"Jiebo Luo",
"Li-Jia Li"
],
"doi": "10.1109/iccv.2017.211",
"ref_id": "b23",
"title": "Learning from Noisy Labels with Distillation",
"year": "2017"
},
{
"authors": [
"E Z Liu",
"B Haghgoo",
"A S Chen",
"A Raghunathan",
"P W Koh",
"S Sagawa",
"P Liang",
"C Finn"
],
"doi": "10.1377/forefront.20210820.398954",
"ref_id": "b24",
"title": "Filling In The Medicaid Gap Without Paying For It Twice",
"year": "2021"
},
{
"authors": [
"Sheng Liu",
"Kangning Liu",
"Weicheng Zhu",
"Yiqiu Shen",
"Carlos Fernandez-Granda"
],
"doi": "10.1109/cvpr52688.2022.00263",
"ref_id": "b25",
"title": "Adaptive Early-Learning Correction for Segmentation from Noisy Annotations",
"year": "2020"
},
{
"authors": [
"Weiwei Liu",
"Ivor Tsang"
],
"doi": "10.1609/aaai.v29i1.9610",
"ref_id": "b26",
"title": "Large Margin Metric Learning for Multi-Label Prediction",
"year": "2015"
},
{
"authors": [
"W Liu",
"I W Tsang"
],
"doi": "10.1002/9781119642183.ch5",
"ref_id": "b27",
"title": "Working with Decision Trees",
"year": "2017"
},
{
"authors": [
"W Liu",
"I W Tsang",
"K Müller"
],
"doi": "",
"ref_id": "b28",
"title": "An easy-to-hard learning paradigm for multiple classes and multiple labels",
"year": "2017"
},
{
"authors": [
"Weiwei Liu",
"Donna Xu",
"Ivor W Tsang",
"Wenjie Zhang"
],
"doi": "10.1109/tpami.2018.2794976",
"ref_id": "b29",
"title": "Metric Learning for Multi-Output Tasks",
"year": "2019"
},
{
"authors": [
"Y Lyu",
"I W Tsang"
],
"doi": "",
"ref_id": "b30",
"title": "Curriculum loss: Robust learning and generalization against label corruption",
"year": "2020"
},
{
"authors": [
"X Ma",
"H Huang",
"Y Wang",
"S Romano",
"S M Erfani",
"J Bailey"
],
"doi": "",
"ref_id": "b31",
"title": "Normalized loss functions for deep learning with noisy labels",
"year": "2020"
},
{
"authors": [
"E Malach",
"S Shalev-Shwartz"
],
"doi": "",
"ref_id": "b32",
"title": "Decoupling \"when to update\" from \"how to update",
"year": "2017"
},
{
"authors": [
"C Mu",
"L Yixuan"
],
"doi": "",
"ref_id": "b33",
"title": "Out-of-distribution detection via frequency-regularized generative models",
"year": "2023"
},
{
"authors": [
"Curtis Northcutt",
"Lu Jiang",
"Isaac Chuang"
],
"doi": "10.1613/jair.1.12125",
"ref_id": "b34",
"title": "Confident Learning: Estimating Uncertainty in Dataset Labels",
"year": "2021"
},
{
"authors": [
"Giorgio Patrini",
"Alessandro Rozza",
"Aditya Krishna Menon",
"Richard Nock",
"Lizhen Qu"
],
"doi": "10.1109/cvpr.2017.240",
"ref_id": "b35",
"title": "Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach",
"year": "2017"
},
{
"authors": [
"R Qian",
"X Lai",
"X Li"
],
"doi": "",
"ref_id": "b36",
"title": "3d object detection for autonomous driving: A survey",
"year": "2022"
},
{
"authors": [
"R Ragesh",
"S Sellamanickam",
"A Iyer",
"R Bairi",
"V Lingam",
"Hetegcn"
],
"doi": "",
"ref_id": "b37",
"title": "Heterogeneous graph convolutional networks for text classification",
"year": "2021"
},
{
"authors": [
"S Reed",
"H Lee",
"D Anguelov",
"C Szegedy",
"D Erhan",
"A Rabinovich"
],
"doi": "",
"ref_id": "b38",
"title": "Training deep neural networks on noisy labels with bootstrapping",
"year": "2014"
},
{
"authors": [
"M Ren",
"W Zeng",
"B Yang",
"R Urtasun"
],
"doi": "",
"ref_id": "b39",
"title": "Learning to reweight examples for robust deep learning",
"year": "2018"
},
{
"authors": [
"Y Shen",
"S Sanghavi"
],
"doi": "",
"ref_id": "b40",
"title": "Learning with bad training data via iterative trimmed loss minimization",
"year": "2019"
},
{
"authors": [
"H Song",
"M Kim",
"J Lee"
],
"doi": "",
"ref_id": "b41",
"title": "SELFIE: refurbishing unclean samples for robust deep learning",
"year": "2019"
},
{
"authors": [
"H Song",
"M Kim",
"D Park",
"J Lee"
],
"doi": "",
"ref_id": "b42",
"title": "Prestopping: How does early stopping help generalization against label noise?",
"year": "2019"
},
{
"authors": [
"Hwanjun Song",
"Minseok Kim",
"Dongmin Park",
"Yooju Shin",
"Jae-Gil Lee"
],
"doi": "10.1145/3447548.3467222",
"ref_id": "b43",
"title": "Robust Learning by Self-Transition for Handling Noisy Labels",
"year": "2021"
},
{
"authors": [
"H Sture"
],
"doi": "",
"ref_id": "b44",
"title": "A simple sequentially rejective multiple test procedure",
"year": "1979"
},
{
"authors": [
"Daiki Tanaka",
"Daiki Ikami",
"Toshihiko Yamasaki",
"Kiyoharu Aizawa"
],
"doi": "10.1109/cvpr.2018.00582",
"ref_id": "b45",
"title": "Joint Optimization Framework for Learning with Noisy Labels",
"year": "2018"
},
{
"authors": [
"Engkarat Techapanurak",
"Masanori Suganuma",
"Takayuki Okatani"
],
"doi": "10.1007/978-3-030-69538-5_4",
"ref_id": "b46",
"title": "Hyperparameter-Free Out-of-Distribution Detection Using Cosine Similarity",
"year": "2019"
},
{
"authors": [
"Andreas Veit",
"Neil Alldrin",
"Gal Chechik",
"Ivan Krasin",
"Abhinav Gupta",
"Serge Belongie"
],
"doi": "10.1109/cvpr.2017.696",
"ref_id": "b47",
"title": "Learning from Noisy Large-Scale Datasets with Minimal Supervision",
"year": "2017"
},
{
"authors": [
"V Vladimir"
],
"doi": "",
"ref_id": "b48",
"title": "Conditional validity of inductive conformal predictors",
"year": "2013"
},
{
"authors": [
"Xinshao Wang",
"Yang Hua",
"Elyor Kodirov",
"David A Clifton",
"Neil M Robertson"
],
"doi": "10.1109/cvpr46437.2021.00081",
"ref_id": "b49",
"title": "ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks",
"year": "2021"
},
{
"authors": [
"Yisen Wang",
"Weiyang Liu",
"Xingjun Ma",
"James Bailey",
"Hongyuan Zha",
"Le Song",
"Shu-Tao Xia"
],
"doi": "10.1109/cvpr.2018.00906",
"ref_id": "b50",
"title": "Iterative Learning with Open-set Noisy Labels",
"year": "2018"
},
{
"authors": [
"Y Wang",
"X Ma",
"Z Chen",
"Y Luo",
"J Yi",
"J Bailey"
],
"doi": "",
"ref_id": "b51",
"title": "Symmetric cross entropy for robust learning with noisy labels",
"year": "2019"
},
{
"authors": [
"H Wei",
"L Tao",
"R Xie",
"An",
"B"
],
"doi": "",
"ref_id": "b52",
"title": "Open-set label noise can improve robustness against inherent label noise",
"year": "2021"
},
{
"authors": [
"H Wei",
"R Xie",
"H Cheng",
"L Feng",
"B An",
"Y Li"
],
"doi": "",
"ref_id": "b53",
"title": "Mitigating neural network overconfidence with logit normalization",
"year": "2022"
},
{
"authors": [
"P Welinder",
"S Branson",
"S J Belongie",
"P Perona"
],
"doi": "",
"ref_id": "b54",
"title": "The multidimensional wisdom of crowds",
"year": "2010"
},
{
"authors": [
"T Xiao",
"T Xia",
"Y Yang",
"C Huang",
"X Wang"
],
"doi": "",
"ref_id": "b55",
"title": "Learning from massive noisy labeled data for image classification",
"year": "2015"
},
{
"authors": [
"Jiangchao Yao",
"Jiajie Wang",
"Ivor W Tsang",
"Ya Zhang",
"Jun Sun",
"Chengqi Zhang",
"Rui Zhang"
],
"doi": "10.1109/tip.2018.2877939",
"ref_id": "b56",
"title": "Deep Learning From Noisy Image Labels With Quality Embedding",
"year": "2019"
},
{
"authors": [
"K Yi",
"J Wu"
],
"doi": "",
"ref_id": "b57",
"title": "Probabilistic end-to-end noise correction for learning with noisy labels",
"year": "2019"
},
{
"authors": [
"B Yoav",
"Y Daniel"
],
"doi": "",
"ref_id": "b58",
"title": "The control of the false discovery rate in multiple testing under dependency",
"year": "2001"
},
{
"authors": [
"B Yoav",
"H Yosef"
],
"doi": "",
"ref_id": "b59",
"title": "Controlling the false discovery rate: a practical and powerful approach to multiple testing",
"year": "1995"
},
{
"authors": [
"Chiyuan Zhang",
"Samy Bengio",
"Moritz Hardt",
"Benjamin Recht",
"Oriol Vinyals"
],
"doi": "10.1145/3446776",
"ref_id": "b60",
"title": "Understanding deep learning (still) requires rethinking generalization",
"year": "2017"
},
{
"authors": [
"C Zhang",
"S Bengio",
"M Hardt",
"M C Mozer",
"Y Singer"
],
"doi": "",
"ref_id": "b61",
"title": "Identity crisis: Memorization and generalization under extreme overparameterization",
"year": "2020"
},
{
"authors": [
"Wenting Qi"
],
"doi": "10.54014/fkzt-kjxg",
"ref_id": "b62",
"title": "Learning from hierarchical and noisy labels",
"year": "2021"
},
{
"authors": [
"Z Zhang",
"M Sabuncu"
],
"doi": "",
"ref_id": "b63",
"title": "Generalized cross entropy loss for training deep neural networks with noisy labels",
"year": "2018"
},
{
"authors": [
"Zizhao Zhang",
"Han Zhang",
"Sercan O Arik",
"Honglak Lee",
"Tomas Pfister"
],
"doi": "10.1109/cvpr42600.2020.00931",
"ref_id": "b64",
"title": "Distilling Effective Supervision From Severe Label Noise",
"year": "2020"
},
{
"authors": [
"S Zheng",
"P Wu",
"A Goswami",
"M Goswami",
"D N Metaxas",
"C Chen"
],
"doi": "",
"ref_id": "b65",
"title": "Error-bounded correction of noisy labels",
"year": "2020"
},
{
"authors": [
"Xiaodi Zhu",
"Yanfeng Li",
"Jia Sun",
"Houjin Chen",
"Jinlei Zhu"
],
"doi": "10.1016/j.neucom.2021.04.120",
"ref_id": "b66",
"title": "Learning with noisy labels method for unsupervised domain adaptive person re-identification",
"year": "2021"
},
{
"authors": [
"Z Zhu",
"Z Dong",
"Y Liu"
],
"doi": "10.7717/peerj-cs.2005/fig-3",
"ref_id": "b67",
"title": "Figure 3: Performance with different proportions of corrupted labels (TextGCN).",
"year": "2022"
},
{
"authors": [
"E"
],
"doi": "10.4324/9780203005217-15",
"ref_id": "b68",
"title": "Gane, Mike 77–80, 84, 98 Le Moyne, Gertrude 119 Gariépy, Renault 59 Lévesque, René 105–6 Garric, Daniel 5, 58, 62 Levin, Charles 2, 66 Gates, Bill 13 Lévi-Strauss, Claude 6, 19, 22–5 de Gaulle, Charles 46, 100 Lewis, Wyndham 55–6 Genosko, Gary 55, 67, 110 Libermann, Ben 84 Gheerbrand, Gilles 62 Lukács, Georg 113–15 Gibson, Steve 11 Lyotard, Jean-François 49–51, 69, 110 Giradin, Jean-Claude 81 Giscard d’Estaing, Valéry 46, 103 Gould, Glenn 10, 17 McLughan, William 53 Grant, George 70 McLuhan, Corinne 9 Grigg, Russell 54 McLuhan, Eric 9 Gritti, Jules 74–5 Mandel, Ernest 111 Grock, Adrian Wettach 36, 50 Marabini, Jean 5, 58–9 Guattari, Félix 7, 17, 48–50, 105, Marchand, Philip 15, 62 110–11 Marcotte, Gilles 58, 119 Mariet, François 61–2 Marx, Karl 24, 69, 111–16 Hall, Stuart 31 Matson, Raymer B. 104 Halley, Peter 3 Mattelart, Armand 45–6 Heath, Stephen 56 Mattelart, Michèle 45 Hjelmslev, Louis 48–50 Metz, Christian 50 Hoggart, Richard 6, 17, 31–4 Michelet, Jules 21 Holland, Eugene 55 Miller, Jonathan 28, 109 Hurtubise, Claude 5 Missika, Jean-Louis 47 Huyssen, Andreas 4, 13 Molinaro, Matie 9 Monnier-Raball, Jacques 72 Iannone, M. 13 Monroe, Marilyn 59 Ionesco, Eugène 30, 57 Morin, Edgar 41–2 Moriwaki, Hiroyuki 10 Jameson, Fredric 65, 112–14 Jarry, Alfred 55 Nadeau, Maurice 18 Namer, Gérard 44 Negri, Antonio 105 Kattan, Naïm 4–5, 18 Nixon, Richard 3 Kellner, Douglas 67, 77, 84–5, 98 de Kerckhove, Derrick 9–10, 14–15, 30–1, 35, 43, 87, 119–21 Ong, Walter J. 56 Klein, Calvin 65 Orlan 11 Knockaert, Yves 58 Kroker, Arthur 2–3, 8–9, 11–12, 22, Paglia, Camille 1 28–9, 64–70, 115 Paik, Nam June 10, 30 Kroker, Marilouise 11 Paré, Jean 5–6, 22, 92, 99–103, 105 Parker, Harley 34, 81, 118 Lacan, Jacques 7, 52–4, 56–7, 63 Pasolini, Pier Paolo 104 Languirand, Jacques 103 Passeron, Jean-Claude 17 Lanoux, Armand 58–9 Paterson, Nancy 10 Lazarsfeld, Paul 50 Pauwels, Louis 120–1",
"year": ""
}
] |
[
"c29cc75ddae993f7",
"ccc348b7659855d4",
"d96998ff7735b9bf",
"076879e27e46cfe0",
"03023aa085649c1b",
"3a967f47be70ab3c",
"eab5c3cb38cbefb9",
"e0e2b3f841c8138d",
"71f1b5efcde3597c",
"1c648562719bb91e",
"1b333f7d9d4adbc6",
"3efe1cc61d2460ed",
"4fa35a10f964653c",
"7f8dd741af88acc8",
"f59e9aa3929865a8",
"f008cff8e9fcf429",
"ea8711eef4ed79e2",
"7dbaeff8f00a8412",
"3f20b468ac53b5e1",
"6b1946bbe9d0b422",
"60cca6b59eca767b",
"bf6d0c22097f74ab",
"306f536c3b94be96",
"8a54b297d5c4dd04",
"3235ade7f81124df",
"1fbcedd46c7f2cc9"
] |
[
"7dbaeff8f00a8412",
"306f536c3b94be96",
"b1046a47b1cf2f22",
"c29cc75ddae993f7",
"71f1b5efcde3597c",
"90d9a5ddc0b1240c",
"bf6d0c22097f74ab",
"4e5b4a0a4397ef7e",
"f008cff8e9fcf429",
"60fe3a09834cda75",
"39ea51c87cdfdcfb",
"a1e9fe9a399abadb",
"3235ade7f81124df",
"800ca5e0d93d8ab7",
"a2bec86fd5c6253f",
"2fec54fdd34b108c",
"1c648562719bb91e",
"6b1946bbe9d0b422",
"5b2715a3cdfe3832",
"f61b84f3cc2ea0be",
"c8e32757532ac0a8",
"1b333f7d9d4adbc6",
"03023aa085649c1b",
"4fa35a10f964653c",
"bfae3fb1059ba7c3",
"ea8711eef4ed79e2",
"45494aa6deba5bd0",
"297119f75df0d4fd",
"b6d86474720075e9",
"9ad062b995891234",
"e0e2b3f841c8138d",
"3f20b468ac53b5e1",
"60cca6b59eca767b",
"4c9276ce8537372e",
"f2e31d2abe558a72",
"a73bd8543b1bf547",
"9e09d38208d9398e",
"ea48f847aa59ad0c",
"8cf5196a72994a66",
"7f8dd741af88acc8",
"076879e27e46cfe0",
"0a50bc37093df7b3",
"2fd3b390d2887475",
"652c12695ea49584",
"5374089811f59c06",
"5e98c78bcf72fc71",
"f8d6610d99913940",
"f00af7d4af62caae",
"1a7d50e4fe7e4dc3",
"8ad0ddaf935251cf",
"f59e9aa3929865a8",
"3efe1cc61d2460ed",
"eab5c3cb38cbefb9",
"08e3bbe6139ee2bb",
"2cad6653d060b6c0",
"ccc348b7659855d4",
"3a967f47be70ab3c",
"35808dbe287bacf4",
"a34813bed3fda53c",
"9fb4c90670a9f36d",
"afd3ae5ad8848d33",
"4552b0498154782a",
"8a54b297d5c4dd04",
"d96998ff7735b9bf",
"2067b119c4544350",
"3aede024df0bf377",
"dc8d4ba66864f0ba",
"1fbcedd46c7f2cc9",
"66f1735cb8535fb6"
] |
H21qm4xyk9
|
Taming graph kernels with random features
|
data/openreview_paper/ICML_2023_oral/H21qm4xyk9//paper.pdf
| 47
| 13
|
[
{
"authors": [
"Xiaowei Chen",
"Yongkun Li",
"Pinghui Wang",
"John C S Lui"
],
"doi": "10.14778/3021924.3021940",
"ref_id": "b5",
"title": "A general framework for estimating graphlet statistics via random walk",
"year": "2016"
},
{
"authors": [
"H Lin",
"H Chen",
"K M Choromanski",
"T Zhang",
"C Laroche"
],
"doi": "10.52591/lxai202012120",
"ref_id": "b31",
"title": "LatinX in AI at Neural Information Processing Systems Conference 2020",
"year": "2020. December 6-12, 2020. 2020"
},
{
"authors": [
"N Shervashidze",
"S V N Vishwanathan",
"T Petri",
"K Mehlhorn",
"K M Borgwardt"
],
"doi": "",
"ref_id": "b38",
"title": "Efficient graphlet kernels for large graph comparison",
"year": "April 16-18, 2009. 2009"
},
{
"authors": [
"Pinar Yanardag",
"S V N Vishwanathan"
],
"doi": "10.1145/2783258.2783417",
"ref_id": "b44",
"title": "Deep Graph Kernels",
"year": "August 10-13, 2015. 2015"
},
{
"authors": [
"V Likhosherstov",
"K Choromanski",
"A Dubey",
"F Liu",
"T Sarlos",
"A Weller"
],
"doi": "",
"ref_id": "b30",
"title": "Chefs' random tables: Nontrigonometric random features",
"year": "2022"
},
{
"authors": [
"P Orbanz"
],
"doi": "",
"ref_id": "b33",
"title": "Subsampling large graphs and invariance in networks",
"year": "2017"
},
{
"authors": [
"M Bressan"
],
"doi": "",
"ref_id": "b1",
"title": "Faster algorithms for sampling connected induced subgraphs",
"year": "2020"
},
{
"authors": [
"Pedro Ribeiro",
"Pedro Paredes",
"Miguel E P Silva",
"David Aparicio",
"Fernando Silva"
],
"doi": "10.1145/3433652",
"ref_id": "b37",
"title": "A Survey on Subgraph Counting",
"year": "2022"
},
{
"authors": [
"J Fang",
"Q Zhang",
"Z Meng",
"S Liang"
],
"doi": "10.52591/202112070",
"ref_id": "b16",
"title": "LatinX in AI at Neural Information Processing Systems Conference 2021",
"year": "2021. December 6-14, 2021. 2021"
},
{
"authors": [
"Tianyi Wang",
"Yang Chen",
"Zengbin Zhang",
"Tianyin Xu",
"Long Jin",
"Pan Hui",
"Beixing Deng",
"Xing Li"
],
"doi": "10.1109/icdcsw.2011.34",
"ref_id": "b42",
"title": "Understanding Graph Sampling Algorithms for Social Network Analysis",
"year": "20-24 June 2011. 2011"
},
{
"authors": [
"J Leskovec",
"C Faloutsos"
],
"doi": "10.1145/1150402.1150479",
"ref_id": "b29",
"title": "Sampling from large graphs",
"year": "August 20-23, 2006. 2006"
},
{
"authors": [
"F X X Yu",
"A T Suresh",
"K M Choromanski",
"D N Holtmann-Rice",
"S Kumar"
],
"doi": "",
"ref_id": "b46",
"title": "Orthogonal random features",
"year": "2016"
},
{
"authors": [
"Lingfei Wu",
"Ian En-Hsu Yen",
"Zhen Zhang",
"Kun Xu",
"Liang Zhao",
"Xi Peng",
"Yinglong Xia",
"Charu Aggarwal"
],
"doi": "10.1145/3292500.3330918",
"ref_id": "b43",
"title": "Scalable Global Alignment Graph Kernel Using Random Features",
"year": "August 4-8, 2019. 2019"
}
] |
[
{
"authors": [
"Bernhard E Boser",
"Isabelle M Guyon",
"Vladimir N Vapnik"
],
"doi": "10.1145/130385.130401",
"ref_id": "b0",
"title": "A training algorithm for optimal margin classifiers",
"year": "July 27-29, 1992. 1992"
},
{
"authors": [
"M Bressan"
],
"doi": "",
"ref_id": "b1",
"title": "Faster algorithms for sampling connected induced subgraphs",
"year": "2020"
},
{
"authors": [
"Colin Campbell"
],
"doi": "10.1016/s0925-2312(01)00643-9",
"ref_id": "b2",
"title": "Kernel methods: a survey of current techniques",
"year": "2002"
},
{
"authors": [
"S Canu",
"A J Smola"
],
"doi": "10.1016/j.neucom.2005.12.009",
"ref_id": "b3",
"title": "Kernel methods and the exponential family",
"year": "2006"
},
{
"authors": [
"Gustavo Chavez",
"Yang Liu",
"Pieter Ghysels",
"Xiaoye Sherry Li",
"Elizaveta Rebrova"
],
"doi": "10.1109/ipdps47924.2020.00102",
"ref_id": "b4",
"title": "Scalable and Memory-Efficient Kernel Ridge Regression",
"year": "May 18-22, 2020. 2020"
},
{
"authors": [
"Xiaowei Chen",
"Yongkun Li",
"Pinghui Wang",
"John C S Lui"
],
"doi": "10.14778/3021924.3021940",
"ref_id": "b5",
"title": "A general framework for estimating graphlet statistics via random walk",
"year": "2016"
},
{
"authors": [
"K Choromanski",
"C Downey",
"B Boots"
],
"doi": "",
"ref_id": "b6",
"title": "Initialization matters: Orthogonal predictive state recurrent neural networks",
"year": "April 30 -May 3, 2018. 2018"
},
{
"authors": [
"K Choromanski",
"M Rowland",
"T Sarlós",
"V Sindhwani",
"R E Turner",
"A Weller"
],
"doi": "",
"ref_id": "b7",
"title": "The geometry of random features",
"year": "9-11 April 2018. 2018"
},
{
"authors": [
"K Choromanski",
"V Likhosherstov",
"D Dohan",
"X Song",
"A Gane",
"T Sarlos",
"P Hawkins",
"J Davis",
"A Mohiuddin",
"L Kaiser"
],
"doi": "",
"ref_id": "b8",
"title": "Rethinking attention with performers",
"year": "2020"
},
{
"authors": [
"K Choromanski",
"H Lin",
"H Chen",
"T Zhang",
"A Sehanobish",
"V Likhosherstov",
"J Parker-Holder",
"T Sarlós",
"A Weller",
"T Weingarten"
],
"doi": "",
"ref_id": "b9",
"title": "From block-toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked transformers",
"year": "17-23 July 2022. 2022"
},
{
"authors": [
"K M Choromanski",
"M Rowland",
"A Weller"
],
"doi": "",
"ref_id": "b10",
"title": "The unreasonable effectiveness of structured random orthogonal embeddings",
"year": "2017"
},
{
"authors": [
"K M Choromanski",
"H Lin",
"H Chen",
"A Sehanobish",
"Y Ma",
"D Jain",
"J Varley",
"A Zeng",
"M S Ryoo",
"V Likhosherstov",
"D Kalashnikov",
"V Sindhwani",
"A Weller"
],
"doi": "",
"ref_id": "b11",
"title": "Hybrid random features",
"year": "April 25-29, 2022. 2022"
},
{
"authors": [
"Fan Chung",
"S-T Yau"
],
"doi": "10.37236/1444",
"ref_id": "b12",
"title": "Coverings, Heat Kernels and Spanning Trees",
"year": "1999"
},
{
"authors": [
"C Cortes",
"V Vapnik"
],
"doi": "10.1007/BF00994018",
"ref_id": "b13",
"title": "Support-vector networks",
"year": "1995"
},
{
"authors": [
"C M Cumby",
"D Roth"
],
"doi": "10.1007/b12006",
"ref_id": "b14",
"title": "Learning Theory and Kernel Machines",
"year": "August 21-24, 2003. 2003"
},
{
"authors": [
"Inderjit S Dhillon",
"Yuqiang Guan",
"Brian Kulis"
],
"doi": "10.1145/1014052.1014118",
"ref_id": "b15",
"title": "Kernel k-means",
"year": "August 22-25, 2004. 2004"
},
{
"authors": [
"J Fang",
"Q Zhang",
"Z Meng",
"S Liang"
],
"doi": "10.52591/202112070",
"ref_id": "b16",
"title": "LatinX in AI at Neural Information Processing Systems Conference 2021",
"year": "2021. December 6-14, 2021. 2021"
},
{
"authors": [
"Daniel Ratton Figueiredo",
"Michele Garetto"
],
"doi": "10.1109/tnse.2016.2618063",
"ref_id": "b17",
"title": "On the Emergence of Shortest Paths by Reinforced Random Walks",
"year": "2017"
},
{
"authors": [
"Benyamin Ghojogh",
"Mark Crowley",
"Fakhri Karray",
"Ali Ghodsi"
],
"doi": "10.1007/978-3-031-10602-6_3",
"ref_id": "b18",
"title": "Background on Kernels",
"year": "2021"
},
{
"authors": [
"Michel X Goemans",
"David P Williamson"
],
"doi": "10.1016/j.jcss.2003.07.012",
"ref_id": "b19",
"title": "Approximation algorithms for Max-3-Cut and other problems via complex semidefinite programming",
"year": "2004"
},
{
"authors": [
"R F Goldin"
],
"doi": "10.4169/000298910X521733",
"ref_id": "b20",
"title": "Review: Statistical models: Theory and practice",
"year": "2009. 2010"
},
{
"authors": [
"V Ivashkin"
],
"doi": "10.1007/springerreference_60248",
"ref_id": "b21",
"title": "Community Structure in Graphs",
"year": "2023"
},
{
"authors": [
"W B Johnson"
],
"doi": "",
"ref_id": "b22",
"title": "Extensions of lipschitz mappings into hilbert space",
"year": "1984"
},
{
"authors": [
"William B Johnson",
"Joram Lindenstrauss"
],
"doi": "10.1090/conm/026/737400",
"ref_id": "b23",
"title": "Extensions of Lipschitz mappings into a Hilbert space",
"year": "1984"
},
{
"authors": [
"B Kégl",
"A Krzyzak",
"H Niemann"
],
"doi": "10.1109/ICPR.1998.711206",
"ref_id": "b24",
"title": "Radial basis function networks in nonparametric classification and function learning",
"year": "16-20 August, 1998. 1998"
},
{
"authors": [
"Eunice Stiboy",
"Standish Rigava",
"Anthea Katelaris",
"Vicky Sheppeard",
"Anna Glynn-Robinson",
"Yasmeen Al-Hindawi",
"Hazel Goldberg",
"Kerrie Shaw",
"Vitali Sintchenko",
"Elena Martinez",
"Taryn Crighton",
"Ellen Donnan",
"Anthony Byrne"
],
"doi": "10.5365/wpsar.2025.16.4.1153",
"ref_id": "b25",
"title": "Genomic sequencing identifies tuberculosis cluster in inner-city Sydney boarding house, Australia, 2022",
"year": "July 8-12, 2002"
},
{
"authors": [
"Morgan Kaufmann"
],
"doi": "10.1016/b978-1-55860-508-4.50025-9",
"ref_id": "b26",
"title": "The Morgan Kaufmann Series in Data Management Systems",
"year": "2002"
},
{
"authors": [
"Leonid (aryeh) Kontorovich",
"Corinna Cortes",
"Mehryar Mohri"
],
"doi": "10.1016/j.tcs.2008.06.037",
"ref_id": "b27",
"title": "Kernel methods for learning languages",
"year": "2008"
},
{
"authors": [
"Gady Kozma"
],
"doi": "10.4171/120-1/25",
"ref_id": "b28",
"title": "Reinforced random walk",
"year": "2012"
},
{
"authors": [
"J Leskovec",
"C Faloutsos"
],
"doi": "10.1145/1150402.1150479",
"ref_id": "b29",
"title": "Sampling from large graphs",
"year": "August 20-23, 2006. 2006"
},
{
"authors": [
"V Likhosherstov",
"K Choromanski",
"A Dubey",
"F Liu",
"T Sarlos",
"A Weller"
],
"doi": "",
"ref_id": "b30",
"title": "Chefs' random tables: Nontrigonometric random features",
"year": "2022"
},
{
"authors": [
"H Lin",
"H Chen",
"K M Choromanski",
"T Zhang",
"C Laroche"
],
"doi": "10.52591/lxai202012120",
"ref_id": "b31",
"title": "LatinX in AI at Neural Information Processing Systems Conference 2020",
"year": "2020. December 6-12, 2020. 2020"
},
{
"authors": [
"Fanghui Liu",
"Xiaolin Huang",
"Yudong Chen",
"Johan A K Suykens"
],
"doi": "10.1109/tpami.2021.3097011",
"ref_id": "b32",
"title": "Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond",
"year": "2022"
},
{
"authors": [
"P Orbanz"
],
"doi": "",
"ref_id": "b33",
"title": "Subsampling large graphs and invariance in networks",
"year": "2017"
},
{
"authors": [
"A Rahimi",
"B Recht"
],
"doi": "",
"ref_id": "b34",
"title": "Random features for large-scale kernel machines",
"year": "2007"
},
{
"authors": [
"A Rahimi",
"B Recht"
],
"doi": "",
"ref_id": "b35",
"title": "Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning",
"year": "December 8-11, 2008"
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "10.47886/9781934874028.ch9",
"ref_id": "b36",
"title": "Advances in Fisheries Bioengineering",
"year": "2008"
},
{
"authors": [
"Pedro Ribeiro",
"Pedro Paredes",
"Miguel E P Silva",
"David Aparicio",
"Fernando Silva"
],
"doi": "10.1145/3433652",
"ref_id": "b37",
"title": "A Survey on Subgraph Counting",
"year": "2022"
},
{
"authors": [
"N Shervashidze",
"S V N Vishwanathan",
"T Petri",
"K Mehlhorn",
"K M Borgwardt"
],
"doi": "",
"ref_id": "b38",
"title": "Efficient graphlet kernels for large graph comparison",
"year": "April 16-18, 2009. 2009"
},
{
"authors": [
"Alexander J Smola",
"Risi Kondor"
],
"doi": "10.1007/978-3-540-45167-9_12",
"ref_id": "b39",
"title": "Kernels and Regularization on Graphs",
"year": "August 24-27, 2003. 2003"
},
{
"authors": [
"Alexander J Smola",
"Bernhard Schölkopf"
],
"doi": "10.1007/3-540-36434-x_3",
"ref_id": "b40",
"title": "Bayesian Kernel Methods",
"year": "February 11-22, 2002. 2002"
},
{
"authors": [
"S V N Vishwanathan",
"N N Schraudolph",
"R Kondor",
"K M Borgwardt"
],
"doi": "10.5555/1756006.1859891",
"ref_id": "b41",
"title": "Graph kernels",
"year": "2010"
},
{
"authors": [
"Tianyi Wang",
"Yang Chen",
"Zengbin Zhang",
"Tianyin Xu",
"Long Jin",
"Pan Hui",
"Beixing Deng",
"Xing Li"
],
"doi": "10.1109/icdcsw.2011.34",
"ref_id": "b42",
"title": "Understanding Graph Sampling Algorithms for Social Network Analysis",
"year": "20-24 June 2011. 2011"
},
{
"authors": [
"Lingfei Wu",
"Ian En-Hsu Yen",
"Zhen Zhang",
"Kun Xu",
"Liang Zhao",
"Xi Peng",
"Yinglong Xia",
"Charu Aggarwal"
],
"doi": "10.1145/3292500.3330918",
"ref_id": "b43",
"title": "Scalable Global Alignment Graph Kernel Using Random Features",
"year": "August 4-8, 2019. 2019"
},
{
"authors": [
"Pinar Yanardag",
"S V N Vishwanathan"
],
"doi": "10.1145/2783258.2783417",
"ref_id": "b44",
"title": "Deep Graph Kernels",
"year": "August 10-13, 2015. 2015"
},
{
"authors": [
"Jiyan Yang",
"Vikas Sindhwani",
"Quanfu Fan",
"Haim Avron",
"Michael Mahoney"
],
"doi": "10.1109/cvpr.2014.129",
"ref_id": "b45",
"title": "Random Laplace Feature Maps for Semigroup Kernels on Histograms",
"year": "21-26 June 2014. 2014"
},
{
"authors": [
"F X X Yu",
"A T Suresh",
"K M Choromanski",
"D N Holtmann-Rice",
"S Kumar"
],
"doi": "",
"ref_id": "b46",
"title": "Orthogonal random features",
"year": "2016"
}
] |
[
"54e8bc3d12549f90",
"907b99775e72ef38",
"2a9f50603393a7c4",
"7a905f93899900fe",
"53317f89e13d353f",
"c38a4b85da2c4ae6",
"10ff2438434be385",
"3246e014386836d4",
"31ad8de88f37c345",
"06714055e4400b4e",
"88ee715d457c02b0",
"25336922e86d4b02",
"797c5d802e83ae49"
] |
[
"d1f85d2074697523",
"10ff2438434be385",
"65d06f4bcc703896",
"85ef25c729eec0f3",
"7ac9fe235ff8bf19",
"54e8bc3d12549f90",
"fce3873216fd2c2e",
"9dd0d4be75993e0e",
"8935d626a7d57b40",
"c938645668b8da94",
"6ef0f977e98ccf34",
"50197ea00b708103",
"333cd00d3f00342c",
"2c64a41ac526b2af",
"9f2786437c8de79f",
"8118434b9dab8f15",
"31ad8de88f37c345",
"d94ad335f0ab4713",
"f1677b081a51d447",
"399851fe044ab32d",
"f2e0b9d1fed2a561",
"643a0a0b0bec23f1",
"e446c48185265805",
"31859d6d3e7727da",
"261781f2da74efe3",
"6461e4360b58256d",
"66a2fb4f99009c22",
"14b5c1cec3886847",
"2adfecfd3a5f1705",
"88ee715d457c02b0",
"53317f89e13d353f",
"907b99775e72ef38",
"9270f26046085f44",
"c38a4b85da2c4ae6",
"28e2d3138ce3b9b5",
"c43a9fb45c43c0fd",
"f989fef828cd3179",
"3246e014386836d4",
"2a9f50603393a7c4",
"a0f751e62ec80a84",
"3ff761a192ba9a14",
"0389ab1dec6cc3f6",
"06714055e4400b4e",
"797c5d802e83ae49",
"7a905f93899900fe",
"74de60585fa5b21e",
"25336922e86d4b02"
] |
LZvsnGH0eG
|
Unifying Nesterov's Accelerated Gradient Methods for Convex and Strongly Convex Objective Functions
|
data/openreview_paper/ICML_2023_oral/LZvsnGH0eG//paper.pdf
| 37
| 21
|
[
{
"authors": [
"González Juan José Castellón",
"D’acunto Pierluigi"
],
"doi": "10.3311/caadence.1628",
"ref_id": "b1",
"title": "Stereotomic Models In Architecture, A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations",
"year": "2009"
},
{
"authors": [
"Y Nesterov"
],
"doi": "",
"ref_id": "b19",
"title": "Accelerating the cubic regularization of newton's method on convex problems",
"year": "2008"
},
{
"authors": [
"Y Nesterov"
],
"doi": "10.7320/optnewslett43.2.1",
"ref_id": "b20",
"title": "OPTIMA Newsletter 43(2)",
"year": "2012"
},
{
"authors": [
"Masaru Ito",
"Mituhiro Fukuda"
],
"doi": "10.1007/s10957-020-01806-7",
"ref_id": "b11",
"title": "Nearly Optimal First-Order Methods for Convex Optimization under Gradient Norm Measure: an Adaptive Regularization Approach",
"year": "2021"
},
{
"authors": [
"H Attouch",
"Z Chbani",
"J Peypouquet",
"P Redont"
],
"doi": "",
"ref_id": "b0",
"title": "Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity",
"year": "2018"
},
{
"authors": [
"D Kim",
"J A Fessler"
],
"doi": "",
"ref_id": "b13",
"title": "Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functions",
"year": "2021"
},
{
"authors": [
"J Lee",
"C Park",
"E Ryu"
],
"doi": "",
"ref_id": "b15",
"title": "A geometric structure of acceleration and its role in making gradients small fast",
"year": "2021"
},
{
"authors": [
"W Su",
"S Boyd",
"E Candes"
],
"doi": "",
"ref_id": "b27",
"title": "A differential equation for modeling nesterov's accelerated gradient method: Theory and insights",
"year": "2014"
},
{
"authors": [
"Bin Shi",
"Simon S Du",
"Michael I Jordan",
"Weijie J Su"
],
"doi": "10.1007/s10107-021-01681-8",
"ref_id": "b25",
"title": "Understanding the acceleration phenomenon via high-resolution differential equations",
"year": "2019"
},
{
"authors": [
"H Luo",
"L Chen"
],
"doi": "",
"ref_id": "b16",
"title": "From differential equation solvers to accelerated first-order methods for convex optimization",
"year": "2021"
},
{
"authors": [
"A Gasnikov",
"P Dvurechensky",
"E Gorbunov",
"E Vorontsova",
"D Selikhanovych",
"C A Uribe"
],
"doi": "",
"ref_id": "b10",
"title": "Optimal tensor methods in smooth convex and uniformly convexoptimization",
"year": "2019"
},
{
"authors": [
"M Muehlebach",
"M I Jordan"
],
"doi": "",
"ref_id": "b18",
"title": "Optimization with momentum: Dynamical, control-theoretic, and symplectic perspectives",
"year": "2021"
},
{
"authors": [
"Andre Wibisono",
"Ashia C Wilson",
"Michael I Jordan"
],
"doi": "10.1073/pnas.1614734113",
"ref_id": "b34",
"title": "A variational perspective on accelerated methods in optimization",
"year": "2016"
},
{
"authors": [
"M Betancourt",
"M I Jordan",
"A C Wilson"
],
"doi": "",
"ref_id": "b3",
"title": "On symplectic optimization",
"year": "2018"
},
{
"authors": [
"P Zhang",
"A Orvieto",
"H Daneshmand",
"T Hofmann",
"R S Smith"
],
"doi": "",
"ref_id": "b36",
"title": "Revisiting the role of euler numerical integration on acceleration and stability in convex optimization",
"year": "2021"
},
{
"authors": [
"J J Suh",
"G Roh",
"E K Ryu"
],
"doi": "",
"ref_id": "b29",
"title": "Continuous-time analysis of accelerated gradient methods via conservation laws in dilated coordinate systems",
"year": "2022"
},
{
"authors": [
"Jelena Diakonikolas",
"Lorenzo Orecchia"
],
"doi": "10.1137/18m1172314",
"ref_id": "b6",
"title": "The Approximate Duality Gap Technique: A Unified Theory of First-Order Methods",
"year": "2019"
},
{
"authors": [
"Bin Shi",
"Simon S Du",
"Michael I Jordan",
"Weijie J Su"
],
"doi": "10.1007/s10107-021-01681-8",
"ref_id": "b26",
"title": "Understanding the acceleration phenomenon via high-resolution differential equations",
"year": "2021"
},
{
"authors": [
"W Krichene",
"A Bayen",
"P L Bartlett"
],
"doi": "",
"ref_id": "b14",
"title": "Accelerated mirror descent in continuous and discrete time",
"year": "2015"
},
{
"authors": [
"A C Wilson",
"B Recht",
"M I Jordan"
],
"doi": "",
"ref_id": "b35",
"title": "A lyapunov analysis of accelerated methods in optimization",
"year": "2021"
},
{
"authors": [
"Jelena Diakonikolas",
"Puqian Wang"
],
"doi": "10.1137/21m1395302",
"ref_id": "b7",
"title": "Potential Function-Based Framework for Minimizing Gradients in Convex and Min-Max Optimization",
"year": "2022"
}
] |
[
{
"authors": [
"H Attouch",
"Z Chbani",
"J Peypouquet",
"P Redont"
],
"doi": "",
"ref_id": "b0",
"title": "Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity",
"year": "2018"
},
{
"authors": [
"González Juan José Castellón",
"D’acunto Pierluigi"
],
"doi": "10.3311/caadence.1628",
"ref_id": "b1",
"title": "Stereotomic Models In Architecture, A Generative Design Method to Integrate Spatial and Structural Parameters Through the Application of Subtractive Operations",
"year": "2009"
},
{
"authors": [],
"doi": "",
"ref_id": "b2",
"title": "We set A = B + B T , where the entries of B were sampled from N (0, 1). The entries of b were sampled from N",
"year": ""
},
{
"authors": [
"M Betancourt",
"M I Jordan",
"A C Wilson"
],
"doi": "",
"ref_id": "b3",
"title": "On symplectic optimization",
"year": "2018"
},
{
"authors": [
"Sébastien Bubeck"
],
"doi": "10.1561/2200000050",
"ref_id": "b4",
"title": "Convex Optimization: Algorithms and Complexity",
"year": "2015"
},
{
"authors": [
"Alexandre D’aspremont",
"Damien Scieur",
"Adrien Taylor"
],
"doi": "10.1561/9781680839296",
"ref_id": "b5",
"title": "Acceleration Methods",
"year": "2021"
},
{
"authors": [
"Jelena Diakonikolas",
"Lorenzo Orecchia"
],
"doi": "10.1137/18m1172314",
"ref_id": "b6",
"title": "The Approximate Duality Gap Technique: A Unified Theory of First-Order Methods",
"year": "2019"
},
{
"authors": [
"Jelena Diakonikolas",
"Puqian Wang"
],
"doi": "10.1137/21m1395302",
"ref_id": "b7",
"title": "Potential Function-Based Framework for Minimizing Gradients in Convex and Min-Max Optimization",
"year": "2022"
},
{
"authors": [
"Yoel Drori",
"Marc Teboulle"
],
"doi": "10.1007/s10107-013-0653-0",
"ref_id": "b8",
"title": "Performance of first-order methods for smooth convex minimization: a novel approach",
"year": "2014"
},
{
"authors": [
"G Franc ¸a",
"M I Jordan",
"R Vidal"
],
"doi": "",
"ref_id": "b9",
"title": "On dissipative symplectic integration with applications to gradient-based optimization",
"year": "2021. 2021"
},
{
"authors": [
"A Gasnikov",
"P Dvurechensky",
"E Gorbunov",
"E Vorontsova",
"D Selikhanovych",
"C A Uribe"
],
"doi": "",
"ref_id": "b10",
"title": "Optimal tensor methods in smooth convex and uniformly convexoptimization",
"year": "2019"
},
{
"authors": [
"Masaru Ito",
"Mituhiro Fukuda"
],
"doi": "10.1007/s10957-020-01806-7",
"ref_id": "b11",
"title": "Nearly Optimal First-Order Methods for Convex Optimization under Gradient Norm Measure: an Adaptive Regularization Approach",
"year": "2021"
},
{
"authors": [
"Donghwan Kim",
"Jeffrey A Fessler"
],
"doi": "10.1007/s10107-015-0949-3",
"ref_id": "b12",
"title": "Optimized first-order methods for smooth convex minimization",
"year": "2016"
},
{
"authors": [
"D Kim",
"J A Fessler"
],
"doi": "",
"ref_id": "b13",
"title": "Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functions",
"year": "2021"
},
{
"authors": [
"W Krichene",
"A Bayen",
"P L Bartlett"
],
"doi": "",
"ref_id": "b14",
"title": "Accelerated mirror descent in continuous and discrete time",
"year": "2015"
},
{
"authors": [
"J Lee",
"C Park",
"E Ryu"
],
"doi": "",
"ref_id": "b15",
"title": "A geometric structure of acceleration and its role in making gradients small fast",
"year": "2021"
},
{
"authors": [
"H Luo",
"L Chen"
],
"doi": "",
"ref_id": "b16",
"title": "From differential equation solvers to accelerated first-order methods for convex optimization",
"year": "2021"
},
{
"authors": [
"A M Lyapunov"
],
"doi": "10.1080/00207179208934253",
"ref_id": "b17",
"title": "The general problem of the stability of motion",
"year": "1992"
},
{
"authors": [
"M Muehlebach",
"M I Jordan"
],
"doi": "",
"ref_id": "b18",
"title": "Optimization with momentum: Dynamical, control-theoretic, and symplectic perspectives",
"year": "2021"
},
{
"authors": [
"Y Nesterov"
],
"doi": "",
"ref_id": "b19",
"title": "Accelerating the cubic regularization of newton's method on convex problems",
"year": "2008"
},
{
"authors": [
"Y Nesterov"
],
"doi": "10.7320/optnewslett43.2.1",
"ref_id": "b20",
"title": "OPTIMA Newsletter 43(2)",
"year": "2012"
},
{
"authors": [
"Y Nesterov"
],
"doi": "",
"ref_id": "b21",
"title": "Lectures on Convex Optimization",
"year": "2018"
},
{
"authors": [
"Y E Nesterov"
],
"doi": "10.1016/0011-7471(63)90317-6",
"ref_id": "b22",
"title": "Dokl. Akad. Nauk, SSSR",
"year": "1983"
},
{
"authors": [
"R Tyrrell Rockafellar",
"Roger J B Wets"
],
"doi": "10.1007/978-3-642-02431-3",
"ref_id": "b23",
"title": "Variational Analysis",
"year": "2009"
},
{
"authors": [
"Ernest K Ryu",
"Wotao Yin"
],
"doi": "10.1017/9781009160865",
"ref_id": "b24",
"title": "Large-Scale Convex Optimization",
"year": "2022"
},
{
"authors": [
"Bin Shi",
"Simon S Du",
"Michael I Jordan",
"Weijie J Su"
],
"doi": "10.1007/s10107-021-01681-8",
"ref_id": "b25",
"title": "Understanding the acceleration phenomenon via high-resolution differential equations",
"year": "2019"
},
{
"authors": [
"Bin Shi",
"Simon S Du",
"Michael I Jordan",
"Weijie J Su"
],
"doi": "10.1007/s10107-021-01681-8",
"ref_id": "b26",
"title": "Understanding the acceleration phenomenon via high-resolution differential equations",
"year": "2021"
},
{
"authors": [
"W Su",
"S Boyd",
"E Candes"
],
"doi": "",
"ref_id": "b27",
"title": "A differential equation for modeling nesterov's accelerated gradient method: Theory and insights",
"year": "2014"
},
{
"authors": [
"W Su",
"S Boyd",
"E J Candes"
],
"doi": "",
"ref_id": "b28",
"title": "A differential equation for modeling nesterov's accelerated gradient method: Theory and insights",
"year": "2016"
},
{
"authors": [
"J J Suh",
"G Roh",
"E K Ryu"
],
"doi": "",
"ref_id": "b29",
"title": "Continuous-time analysis of accelerated gradient methods via conservation laws in dilated coordinate systems",
"year": "2022"
},
{
"authors": [
"Adrien Taylor",
"Yoel Drori"
],
"doi": "10.1007/s10107-022-01839-y",
"ref_id": "b30",
"title": "An optimal gradient method for smooth strongly convex minimization",
"year": "2022"
},
{
"authors": [
"J Ten Thije Boonkkamp",
"J Van Dijk",
"L Liu",
"K S Peerenboom"
],
"doi": "",
"ref_id": "b31",
"title": "Extension of the complete flux scheme to systems of conservation laws",
"year": "2012"
},
{
"authors": [
"G Teschl"
],
"doi": "",
"ref_id": "b32",
"title": "Ordinary Differential Equations and Dynamical Systems",
"year": "2012"
},
{
"authors": [
"P Tseng"
],
"doi": "",
"ref_id": "b33",
"title": "On accelerated proximal gradient methods for convex-concave optimization",
"year": "2008"
},
{
"authors": [
"Andre Wibisono",
"Ashia C Wilson",
"Michael I Jordan"
],
"doi": "10.1073/pnas.1614734113",
"ref_id": "b34",
"title": "A variational perspective on accelerated methods in optimization",
"year": "2016"
},
{
"authors": [
"A C Wilson",
"B Recht",
"M I Jordan"
],
"doi": "",
"ref_id": "b35",
"title": "A lyapunov analysis of accelerated methods in optimization",
"year": "2021"
},
{
"authors": [
"P Zhang",
"A Orvieto",
"H Daneshmand",
"T Hofmann",
"R S Smith"
],
"doi": "",
"ref_id": "b36",
"title": "Revisiting the role of euler numerical integration on acceleration and stability in convex optimization",
"year": "2021"
}
] |
[
"ed3aca103f49c7c6",
"fd26b49bd44b2354",
"786cba2602d2bc5e",
"cf2b974f6a2c058b",
"f3e76b175c9053d5",
"6ab36ab2881604cf",
"13c46923698470df",
"89367ffc895607ca",
"ada88e839cadd32a",
"c52432e5147d129f",
"5aafa70a7b3e2502",
"93477f66575aa820",
"babacb272f2acd1c",
"6da81a031a84381e",
"a7ddda6073e08e0f",
"93af64add9b6d4d4",
"b9614acebf939cad",
"24494e1c507dbb6f",
"f95057e7eddf9fe6",
"44a893d2c91c482f",
"767e192b79054dab"
] |
[
"f3e76b175c9053d5",
"ed3aca103f49c7c6",
"fd98c770d666edb4",
"6da81a031a84381e",
"ca450327d2ce961a",
"bf27521d2917b1ca",
"b9614acebf939cad",
"767e192b79054dab",
"56b91fc784409a5e",
"06cd9df45179b366",
"5aafa70a7b3e2502",
"cf2b974f6a2c058b",
"d1d91e77064f3235",
"6ab36ab2881604cf",
"f95057e7eddf9fe6",
"13c46923698470df",
"c52432e5147d129f",
"f8e8a630acd93b91",
"93477f66575aa820",
"fd26b49bd44b2354",
"786cba2602d2bc5e",
"bfa18059e8d6e4f0",
"dd4ea1db6d71aeb5",
"43fc92f5871c0c1c",
"bd8d57907b0645ff",
"ada88e839cadd32a",
"24494e1c507dbb6f",
"89367ffc895607ca",
"b00b1b10d16473b8",
"93af64add9b6d4d4",
"0bc9a96c3ab536ac",
"21425b5223b6647c",
"14681b4b3899185f",
"2ecff2324535a5db",
"babacb272f2acd1c",
"44a893d2c91c482f",
"a7ddda6073e08e0f"
] |
9UCTB84L6e
|
Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models
|
data/openreview_paper/ICML_2023_oral/9UCTB84L6e//paper.pdf
| 106
| 60
|
[
{
"authors": [
"Z Li",
"Y Luo",
"K Lyu"
],
"doi": "",
"ref_id": "b54",
"title": "Towards resolving the implicit bias of gradient descent for matrix factorization: Greedy low-rank learning",
"year": "2020"
},
{
"authors": [
"S M Xie",
"A Raghunathan",
"P Liang",
"T Ma"
],
"doi": "",
"ref_id": "b93",
"title": "An explanation of in-context learning as implicit bayesian inference",
"year": "2021"
},
{
"authors": [
"K Lyu",
"Z Li",
"S Arora"
],
"doi": "",
"ref_id": "b61",
"title": "Understanding the generalization benefit of normalization layers: Sharpness reduction",
"year": "2022"
},
{
"authors": [
"Matthew D Norton",
"Johannes O Royset"
],
"doi": "10.1007/s10994-021-06036-0",
"ref_id": "b67",
"title": "Diametrical Risk Minimization: theory and computations",
"year": "2021"
},
{
"authors": [
"V S Borkar"
],
"doi": "",
"ref_id": "b11",
"title": "Stochastic approximation: a dynamical systems viewpoint",
"year": "2009"
},
{
"authors": [
"H B Lee",
"H Lee",
"D Na",
"S Kim",
"M Park",
"E Yang",
"S J Hwang"
],
"doi": "",
"ref_id": "b49",
"title": "Learning to balance: Bayesian meta-learning for imbalanced and out-of-distribution tasks",
"year": "2020"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b33",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"Z Yang",
"Z Dai",
"Y Yang",
"J Carbonell",
"R R Salakhutdinov",
"Q V Le"
],
"doi": "",
"ref_id": "b94",
"title": "Xlnet: Generalized autoregressive pretraining for language understanding",
"year": "2019"
},
{
"authors": [
"A Radford",
"J Wu",
"R Child",
"D Luan",
"D Amodei",
"I Sutskever"
],
"doi": "",
"ref_id": "b69",
"title": "Language models are unsupervised multitask learners",
"year": "2019"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell"
],
"doi": "",
"ref_id": "b12",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"T Zhang",
"T Hashimoto"
],
"doi": "",
"ref_id": "b99",
"title": "On the inductive bias of masked language modeling: From statistical to syntactic dependencies",
"year": "2021"
},
{
"authors": [
"C Yun",
"S Krishnan",
"H Mobahi"
],
"doi": "",
"ref_id": "b96",
"title": "A unifying view on implicit bias in training linear neural networks",
"year": "2020"
},
{
"authors": [
"Y Jiang",
"B Neyshabur",
"H Mobahi",
"D Krishnan",
"S Bengio"
],
"doi": "10.36412/jellt.v5i1.2435.s178",
"ref_id": "b42",
"title": "INTROVERSION IN ROWLING’S FANTASTIC BEASTS AND WHERE TO FIND THEM",
"year": "2019"
},
{
"authors": [
"K Choromanski",
"V Likhosherstov",
"D Dohan",
"X Song",
"A Gane",
"T Sarlos",
"P Hawkins",
"J Davis",
"A Mohiuddin",
"L Kaiser"
],
"doi": "",
"ref_id": "b14",
"title": "Rethinking attention with performers",
"year": "2020"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T B Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "",
"ref_id": "b43",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"H Liu",
"Z Dai",
"D So",
"Q V Le"
],
"doi": "",
"ref_id": "b58",
"title": "Pay attention to mlps",
"year": "2021"
},
{
"authors": [
"Dara Bahri",
"Hossein Mobahi",
"Yi Tay"
],
"doi": "10.18653/v1/2022.acl-long.508",
"ref_id": "b8",
"title": "Sharpness-Aware Minimization Improves Language Model Generalization",
"year": "2021"
},
{
"authors": [
"John C Duchi",
"Feng Ruan"
],
"doi": "10.1137/17m1135086",
"ref_id": "b22",
"title": "Stochastic Methods for Composite and Weakly Convex Optimization Problems",
"year": "2018"
},
{
"authors": [
"J Z Haochen",
"C Wei",
"A Gaidon",
"T Ma"
],
"doi": "",
"ref_id": "b32",
"title": "Provable guarantees for self-supervised deep learning with spectral contrastive loss",
"year": "2021"
},
{
"authors": [
"W Su",
"S Boyd",
"E Candes"
],
"doi": "",
"ref_id": "b77",
"title": "A differential equation for modeling nesterov's accelerated gradient method: Theory and insights",
"year": "2014"
},
{
"authors": [
"S Arora",
"Z Li",
"A Panigrahi"
],
"doi": "",
"ref_id": "b5",
"title": "Understanding gradient descent on the edge of stability in deep learning",
"year": "17-23 Jul 2022"
},
{
"authors": [
"S Gunasekar",
"J D Lee",
"D Soudry",
"N Srebro"
],
"doi": "",
"ref_id": "b30",
"title": "Implicit bias of gradient descent on linear convolutional networks",
"year": "2018"
},
{
"authors": [
"B Woodworth",
"S Gunasekar",
"J D Lee",
"E Moroshko",
"P Savarese",
"I Golan",
"D Soudry",
"N Srebro"
],
"doi": "",
"ref_id": "b91",
"title": "Kernel and rich regimes in overparametrized models",
"year": "2020"
},
{
"authors": [
"A Damian",
"T Ma",
"J D Lee"
],
"doi": "",
"ref_id": "b16",
"title": "Label noise sgd provably prefers flat global minimizers",
"year": "2021"
},
{
"authors": [
"S Wang",
"B Z Li",
"M Khabsa",
"H Fang",
"H Ma",
"Linformer"
],
"doi": "",
"ref_id": "b83",
"title": "Self-attention with linear complexity",
"year": "2020"
},
{
"authors": [
"Y Li",
"T Ma",
"H Zhang"
],
"doi": "",
"ref_id": "b53",
"title": "Algorithmic regularization in over-parameterized matrix sensing and neural networks with quadratic activations",
"year": "2017b"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly"
],
"doi": "",
"ref_id": "b19",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2020"
},
{
"authors": [
"J Mamou",
"H Le",
"M Del Rio",
"C Stephenson",
"H Tang",
"Y Kim",
"S Chung"
],
"doi": "",
"ref_id": "b62",
"title": "Emergence of separable manifolds in deep language representations",
"year": "2020"
},
{
"authors": [
"J Wei",
"X Wang",
"D Schuurmans",
"M Bosma",
"E Chi",
"Q Le",
"D Zhou"
],
"doi": "",
"ref_id": "b89",
"title": "Chain of thought prompting elicits reasoning in large language models",
"year": "2022"
},
{
"authors": [
"D Hernandez",
"J Kaplan",
"T Henighan",
"S Mccandlish"
],
"doi": "",
"ref_id": "b34",
"title": "Scaling laws for transfer",
"year": "2021"
},
{
"authors": [
"P Fradkin",
"L Atanackovic",
"M R Zhang"
],
"doi": "",
"ref_id": "b28",
"title": "Robustness to adversarial gradients: A glimpse into the loss landscape of contrastive pre-training",
"year": "2022"
},
{
"authors": [
"N Saunshi",
"J Ash",
"S Goel",
"D Misra",
"C Zhang",
"S Arora",
"S Kakade",
"A Krishnamurthy"
],
"doi": "",
"ref_id": "b74",
"title": "Understanding contrastive learning requires incorporating inductive biases",
"year": "2022"
},
{
"authors": [
"L Dinh",
"R Pascanu",
"S Bengio",
"Y Bengio"
],
"doi": "",
"ref_id": "b18",
"title": "Sharp minima can generalize for deep nets",
"year": "2017"
},
{
"authors": [
"Matthew Peters",
"Mark Neumann",
"Luke Zettlemoyer",
"Wen-Tau Yih"
],
"doi": "10.18653/v1/d18-1179",
"ref_id": "b68",
"title": "Dissecting Contextual Word Embeddings: Architecture and Representation",
"year": "2018"
},
{
"authors": [
"T Vaskevicius",
"V Kanade",
"P Rebeschini"
],
"doi": "",
"ref_id": "b80",
"title": "Implicit regularization for optimal sparse recovery",
"year": "2019"
},
{
"authors": [
"K Lyu",
"J Li"
],
"doi": "",
"ref_id": "b59",
"title": "Gradient descent maximizes the margin of homogeneous neural networks",
"year": "2019"
},
{
"authors": [
"S S Du",
"W Hu",
"J D Lee"
],
"doi": "",
"ref_id": "b20",
"title": "Algorithmic regularization in learning deep homogeneous models: Layers are automatically balanced",
"year": "2018"
},
{
"authors": [
"Q Li",
"C Tai",
"E Weinan"
],
"doi": "10.1017/9781108186735.013",
"ref_id": "b52",
"title": "Stochastic Differential Equations in Machine Learning",
"year": "2019"
},
{
"authors": [
"K Wen",
"T Ma",
"Z Li"
],
"doi": "",
"ref_id": "b90",
"title": "How does sharpness-aware minimization minimize sharpness?",
"year": "2022"
},
{
"authors": [
"J Devlin",
"M.-W Chang",
"K Lee",
"K Toutanova",
"Bert"
],
"doi": "",
"ref_id": "b17",
"title": "Pre-training of deep bidirectional transformers for language understanding",
"year": "2018"
},
{
"authors": [
"J Z Haochen",
"C Wei",
"J D Lee",
"T Ma"
],
"doi": "",
"ref_id": "b31",
"title": "Shape matters: Understanding the implicit bias of the noise covariance",
"year": "2020"
},
{
"authors": [
"J Hewitt",
"C D Manning"
],
"doi": "",
"ref_id": "b35",
"title": "A structural probe for finding syntax in word representations",
"year": "2019"
},
{
"authors": [
"G Blanc",
"N Gupta",
"G Valiant",
"P Valiant"
],
"doi": "",
"ref_id": "b10",
"title": "Implicit regularization for deep neural networks driven by an ornstein-uhlenbeck like process",
"year": "2019"
},
{
"authors": [
"D Soudry",
"E Hoffer",
"M S Nacson",
"S Gunasekar",
"N Srebro"
],
"doi": "",
"ref_id": "b75",
"title": "The implicit bias of gradient descent on separable data",
"year": "2018"
},
{
"authors": [
"Z Li",
"T Wang",
"S Arora"
],
"doi": "",
"ref_id": "b55",
"title": "What happens after sgd reaches zero loss?-a mathematical framework",
"year": "2021"
},
{
"authors": [
"Harold J Kushner",
"G George Yin"
],
"doi": "10.1007/978-1-4899-2696-8",
"ref_id": "b46",
"title": "Stochastic Approximation Algorithms and Applications",
"year": "2003"
},
{
"authors": [
"P M Htut",
"J Phang",
"S Bordia",
"S R Bowman"
],
"doi": "10.1126/science.z66g9k7",
"ref_id": "b38",
"title": "ArXiv preprint server clamps down on AI slop",
"year": "2019"
},
{
"authors": [
"I O Tolstikhin",
"N Houlsby",
"A Kolesnikov",
"L Beyer",
"X Zhai",
"T Unterthiner",
"J Yung",
"A Steiner",
"D Keysers",
"J Uszkoreit"
],
"doi": "",
"ref_id": "b79",
"title": "Mlp-mixer: An all-mlp architecture for vision",
"year": "2021"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P J Liu"
],
"doi": "",
"ref_id": "b70",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "2020"
},
{
"authors": [
"Z Dai",
"G Lai",
"Y Yang",
"Q Le"
],
"doi": "",
"ref_id": "b15",
"title": "Funnel-transformer: Filtering out sequential redundancy for efficient language processing",
"year": "2020"
},
{
"authors": [
"S Azulay",
"E Moroshko",
"M S Nacson",
"B E Woodworth",
"N Srebro",
"A Globerson",
"D Soudry"
],
"doi": "",
"ref_id": "b6",
"title": "On the implicit bias of initialization shape: Beyond infinitesimal mirror descent",
"year": "2021"
},
{
"authors": [
"Z Lan",
"M Chen",
"S Goodman",
"K Gimpel",
"P Sharma",
"R Soricut",
"Albert"
],
"doi": "",
"ref_id": "b47",
"title": "A lite bert for self-supervised learning of language representations",
"year": "2019"
},
{
"authors": [
"P Foret",
"A Kleiner",
"H Mobahi",
"B Neyshabur"
],
"doi": "",
"ref_id": "b25",
"title": "Sharpness-aware minimization for efficiently improving generalization",
"year": "2020"
},
{
"authors": [
"N Saunshi",
"S Malladi",
"S Arora"
],
"doi": "",
"ref_id": "b73",
"title": "A mathematical exploration of why language models help solve downstream tasks",
"year": "2020"
},
{
"authors": [
"S Mandt",
"M D Hoffman",
"D M Blei"
],
"doi": "10.1017/cbo9780511804779.033",
"ref_id": "b63",
"title": "Approximate inference",
"year": "2017"
},
{
"authors": [
"Sewon Min",
"Xinxi Lyu",
"Ari Holtzman",
"Mikel Artetxe",
"Mike Lewis",
"Hannaneh Hajishirzi",
"Luke Zettlemoyer"
],
"doi": "10.18653/v1/2022.emnlp-main.759",
"ref_id": "b64",
"title": "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?",
"year": "2022"
},
{
"authors": [
"Y Tay",
"M Dehghani",
"J Rao",
"W Fedus",
"S Abnar",
"H W Chung",
"S Narang",
"D Yogatama",
"A Vaswani",
"D Metzler"
],
"doi": "",
"ref_id": "b78",
"title": "Scale efficiently: Insights from pre-training and fine-tuning transformers",
"year": "2021"
},
{
"authors": [
"Z Ji",
"M Telgarsky"
],
"doi": "",
"ref_id": "b41",
"title": "Gradient descent aligns the layers of deep linear networks",
"year": "2018"
},
{
"authors": [
"K Lyu",
"Z Li",
"R Wang",
"S Arora"
],
"doi": "",
"ref_id": "b60",
"title": "Gradient descent on two-layer nets: Margin maximization and simplicity bias",
"year": "2021"
},
{
"authors": [
"Z Li",
"T Wang",
"D Yu"
],
"doi": "",
"ref_id": "b56",
"title": "Fast mixing of stochastic gradient descent with normalization and weight decay",
"year": "2022"
}
] |
[
{
"authors": [
"E Amid",
"M K Warmuth"
],
"doi": "",
"ref_id": "b0",
"title": "Reparameterizing mirror descent as gradient descent",
"year": "2020"
},
{
"authors": [
"E Amid",
"M K Warmuth"
],
"doi": "",
"ref_id": "b1",
"title": "Winnowing with gradient descent",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "",
"ref_id": "b2",
"title": "",
"year": "2020b"
},
{
"authors": [
"S Arora",
"N Cohen",
"W Hu",
"Y Luo"
],
"doi": "",
"ref_id": "b3",
"title": "Implicit regularization in deep matrix factorization",
"year": "2019"
},
{
"authors": [
"S Arora",
"H Khandeparkar",
"M Khodak",
"O Plevrakis",
"N Saunshi"
],
"doi": "",
"ref_id": "b4",
"title": "A theoretical analysis of contrastive unsupervised representation learning",
"year": "2019"
},
{
"authors": [
"S Arora",
"Z Li",
"A Panigrahi"
],
"doi": "",
"ref_id": "b5",
"title": "Understanding gradient descent on the edge of stability in deep learning",
"year": "17-23 Jul 2022"
},
{
"authors": [
"S Azulay",
"E Moroshko",
"M S Nacson",
"B E Woodworth",
"N Srebro",
"A Globerson",
"D Soudry"
],
"doi": "",
"ref_id": "b6",
"title": "On the implicit bias of initialization shape: Beyond infinitesimal mirror descent",
"year": "2021"
},
{
"authors": [
"J L Ba",
"J R Kiros",
"G E Hinton"
],
"doi": "",
"ref_id": "b7",
"title": "Layer normalization",
"year": "2016"
},
{
"authors": [
"Dara Bahri",
"Hossein Mobahi",
"Yi Tay"
],
"doi": "10.18653/v1/2022.acl-long.508",
"ref_id": "b8",
"title": "Sharpness-Aware Minimization Improves Language Model Generalization",
"year": "2021"
},
{
"authors": [
"Y Bai",
"J D Lee"
],
"doi": "",
"ref_id": "b9",
"title": "Beyond linearization: On quadratic and higher-order approximation of wide neural networks",
"year": "2020"
},
{
"authors": [
"G Blanc",
"N Gupta",
"G Valiant",
"P Valiant"
],
"doi": "",
"ref_id": "b10",
"title": "Implicit regularization for deep neural networks driven by an ornstein-uhlenbeck like process",
"year": "2019"
},
{
"authors": [
"V S Borkar"
],
"doi": "",
"ref_id": "b11",
"title": "Stochastic approximation: a dynamical systems viewpoint",
"year": "2009"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell"
],
"doi": "",
"ref_id": "b12",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"N Chomsky"
],
"doi": "10.1109/tit.1956.1056813",
"ref_id": "b13",
"title": "Three models for the description of language",
"year": "1956"
},
{
"authors": [
"K Choromanski",
"V Likhosherstov",
"D Dohan",
"X Song",
"A Gane",
"T Sarlos",
"P Hawkins",
"J Davis",
"A Mohiuddin",
"L Kaiser"
],
"doi": "",
"ref_id": "b14",
"title": "Rethinking attention with performers",
"year": "2020"
},
{
"authors": [
"Z Dai",
"G Lai",
"Y Yang",
"Q Le"
],
"doi": "",
"ref_id": "b15",
"title": "Funnel-transformer: Filtering out sequential redundancy for efficient language processing",
"year": "2020"
},
{
"authors": [
"A Damian",
"T Ma",
"J D Lee"
],
"doi": "",
"ref_id": "b16",
"title": "Label noise sgd provably prefers flat global minimizers",
"year": "2021"
},
{
"authors": [
"J Devlin",
"M.-W Chang",
"K Lee",
"K Toutanova",
"Bert"
],
"doi": "",
"ref_id": "b17",
"title": "Pre-training of deep bidirectional transformers for language understanding",
"year": "2018"
},
{
"authors": [
"L Dinh",
"R Pascanu",
"S Bengio",
"Y Bengio"
],
"doi": "",
"ref_id": "b18",
"title": "Sharp minima can generalize for deep nets",
"year": "2017"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly"
],
"doi": "",
"ref_id": "b19",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2020"
},
{
"authors": [
"S S Du",
"W Hu",
"J D Lee"
],
"doi": "",
"ref_id": "b20",
"title": "Algorithmic regularization in learning deep homogeneous models: Layers are automatically balanced",
"year": "2018"
},
{
"authors": [
"S S Du",
"W Hu",
"S M Kakade",
"J D Lee",
"Q Lei"
],
"doi": "",
"ref_id": "b21",
"title": "Few-shot learning via learning the representation, provably",
"year": "2020"
},
{
"authors": [
"John C Duchi",
"Feng Ruan"
],
"doi": "10.1137/17m1135086",
"ref_id": "b22",
"title": "Stochastic Methods for Composite and Weakly Convex Optimization Problems",
"year": "2018"
},
{
"authors": [
"G K Dziugaite",
"D M Roy"
],
"doi": "",
"ref_id": "b23",
"title": "Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data",
"year": "2017"
},
{
"authors": [
"B Fehrman",
"B Gess",
"A Jentzen"
],
"doi": "",
"ref_id": "b24",
"title": "Convergence rates for the stochastic gradient descent method for non-convex objective functions",
"year": "2020"
},
{
"authors": [
"P Foret",
"A Kleiner",
"H Mobahi",
"B Neyshabur"
],
"doi": "",
"ref_id": "b25",
"title": "Sharpness-aware minimization for efficiently improving generalization",
"year": "2020"
},
{
"authors": [
"P Foret",
"A Kleiner",
"H Mobahi",
"B Neyshabur"
],
"doi": "",
"ref_id": "b26",
"title": "Sharpness-aware minimization for efficiently improving generalization",
"year": "2021"
},
{
"authors": [
"G D Forney"
],
"doi": "",
"ref_id": "b27",
"title": "The viterbi algorithm",
"year": "1973"
},
{
"authors": [
"P Fradkin",
"L Atanackovic",
"M R Zhang"
],
"doi": "",
"ref_id": "b28",
"title": "Robustness to adversarial gradients: A glimpse into the loss landscape of contrastive pre-training",
"year": "2022"
},
{
"authors": [
"A Gokaslan",
"V Cohen",
"E Pavlick",
"S Tellex"
],
"doi": "",
"ref_id": "b29",
"title": "Openwebtext corpus",
"year": "2019"
},
{
"authors": [
"S Gunasekar",
"J D Lee",
"D Soudry",
"N Srebro"
],
"doi": "",
"ref_id": "b30",
"title": "Implicit bias of gradient descent on linear convolutional networks",
"year": "2018"
},
{
"authors": [
"J Z Haochen",
"C Wei",
"J D Lee",
"T Ma"
],
"doi": "",
"ref_id": "b31",
"title": "Shape matters: Understanding the implicit bias of the noise covariance",
"year": "2020"
},
{
"authors": [
"J Z Haochen",
"C Wei",
"A Gaidon",
"T Ma"
],
"doi": "",
"ref_id": "b32",
"title": "Provable guarantees for self-supervised deep learning with spectral contrastive loss",
"year": "2021"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b33",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"D Hernandez",
"J Kaplan",
"T Henighan",
"S Mccandlish"
],
"doi": "",
"ref_id": "b34",
"title": "Scaling laws for transfer",
"year": "2021"
},
{
"authors": [
"J Hewitt",
"C D Manning"
],
"doi": "",
"ref_id": "b35",
"title": "A structural probe for finding syntax in word representations",
"year": "2019"
},
{
"authors": [
"Sepp Hochreiter",
"Jürgen Schmidhuber"
],
"doi": "10.1162/neco.1997.9.1.1",
"ref_id": "b36",
"title": "Flat Minima",
"year": "1997"
},
{
"authors": [
"Sepp Hochreiter",
"Jürgen Schmidhuber"
],
"doi": "10.1162/neco.1997.9.8.1735",
"ref_id": "b37",
"title": "Long Short-Term Memory",
"year": "1997"
},
{
"authors": [
"P M Htut",
"J Phang",
"S Bordia",
"S R Bowman"
],
"doi": "10.1126/science.z66g9k7",
"ref_id": "b38",
"title": "ArXiv preprint server clamps down on AI slop",
"year": "2019"
},
{
"authors": [
"Peter Izsak",
"Moshe Berchansky",
"Omer Levy"
],
"doi": "10.18653/v1/2021.emnlp-main.831",
"ref_id": "b39",
"title": "How to Train BERT with an Academic Budget",
"year": "2021"
},
{
"authors": [
"Stanislaw Jastrzębski",
"Zachary Kenton",
"Devansh Arpit",
"Nicolas Ballas",
"Asja Fischer",
"Yoshua Bengio",
"Amos Storkey"
],
"doi": "10.1007/978-3-030-01424-7_39",
"ref_id": "b40",
"title": "Width of Minima Reached by Stochastic Gradient Descent is Influenced by Learning Rate to Batch Size Ratio",
"year": "2017"
},
{
"authors": [
"Z Ji",
"M Telgarsky"
],
"doi": "",
"ref_id": "b41",
"title": "Gradient descent aligns the layers of deep linear networks",
"year": "2018"
},
{
"authors": [
"Y Jiang",
"B Neyshabur",
"H Mobahi",
"D Krishnan",
"S Bengio"
],
"doi": "10.36412/jellt.v5i1.2435.s178",
"ref_id": "b42",
"title": "INTROVERSION IN ROWLING’S FANTASTIC BEASTS AND WHERE TO FIND THEM",
"year": "2019"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T B Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "",
"ref_id": "b43",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"N S Keskar",
"D Mudigere",
"J Nocedal",
"M Smelyanskiy",
"P T P Tang"
],
"doi": "",
"ref_id": "b44",
"title": "On large-batch training for deep learning: Generalization gap and sharp minima",
"year": "2016"
},
{
"authors": [
"Yoon Kim",
"Chris Dyer",
"Alexander Rush"
],
"doi": "10.18653/v1/p19-1228",
"ref_id": "b45",
"title": "Compound Probabilistic Context-Free Grammars for Grammar Induction",
"year": "2019"
},
{
"authors": [
"Harold J Kushner",
"G George Yin"
],
"doi": "10.1007/978-1-4899-2696-8",
"ref_id": "b46",
"title": "Stochastic Approximation Algorithms and Applications",
"year": "2003"
},
{
"authors": [
"Z Lan",
"M Chen",
"S Goodman",
"K Gimpel",
"P Sharma",
"R Soricut",
"Albert"
],
"doi": "",
"ref_id": "b47",
"title": "A lite bert for self-supervised learning of language representations",
"year": "2019"
},
{
"authors": [
"K Lari",
"S J Young"
],
"doi": "10.1016/0885-2308(90)90022-x",
"ref_id": "b48",
"title": "The estimation of stochastic context-free grammars using the Inside-Outside algorithm",
"year": "1990"
},
{
"authors": [
"H B Lee",
"H Lee",
"D Na",
"S Kim",
"M Park",
"E Yang",
"S J Hwang"
],
"doi": "",
"ref_id": "b49",
"title": "Learning to balance: Bayesian meta-learning for imbalanced and out-of-distribution tasks",
"year": "2020"
},
{
"authors": [
"Q Li",
"C Tai",
"E Weinan"
],
"doi": "10.1017/cbo9781107298019.015",
"ref_id": "b50",
"title": "Stochastic Gradient Descent",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "10.1109/tpas.1968.292165",
"ref_id": "b51",
"title": "Blank Page",
"year": "2017"
},
{
"authors": [
"Q Li",
"C Tai",
"E Weinan"
],
"doi": "10.1017/9781108186735.013",
"ref_id": "b52",
"title": "Stochastic Differential Equations in Machine Learning",
"year": "2019"
},
{
"authors": [
"Y Li",
"T Ma",
"H Zhang"
],
"doi": "",
"ref_id": "b53",
"title": "Algorithmic regularization in over-parameterized matrix sensing and neural networks with quadratic activations",
"year": "2017b"
},
{
"authors": [
"Z Li",
"Y Luo",
"K Lyu"
],
"doi": "",
"ref_id": "b54",
"title": "Towards resolving the implicit bias of gradient descent for matrix factorization: Greedy low-rank learning",
"year": "2020"
},
{
"authors": [
"Z Li",
"T Wang",
"S Arora"
],
"doi": "",
"ref_id": "b55",
"title": "What happens after sgd reaches zero loss?-a mathematical framework",
"year": "2021"
},
{
"authors": [
"Z Li",
"T Wang",
"D Yu"
],
"doi": "",
"ref_id": "b56",
"title": "Fast mixing of stochastic gradient descent with normalization and weight decay",
"year": "2022"
},
{
"authors": [
"H Liu",
"J Z Haochen",
"C Wei",
"T Ma"
],
"doi": "",
"ref_id": "b57",
"title": "Meta-learning transferable representations with a single target domain",
"year": "2020"
},
{
"authors": [
"H Liu",
"Z Dai",
"D So",
"Q V Le"
],
"doi": "",
"ref_id": "b58",
"title": "Pay attention to mlps",
"year": "2021"
},
{
"authors": [
"K Lyu",
"J Li"
],
"doi": "",
"ref_id": "b59",
"title": "Gradient descent maximizes the margin of homogeneous neural networks",
"year": "2019"
},
{
"authors": [
"K Lyu",
"Z Li",
"R Wang",
"S Arora"
],
"doi": "",
"ref_id": "b60",
"title": "Gradient descent on two-layer nets: Margin maximization and simplicity bias",
"year": "2021"
},
{
"authors": [
"K Lyu",
"Z Li",
"S Arora"
],
"doi": "",
"ref_id": "b61",
"title": "Understanding the generalization benefit of normalization layers: Sharpness reduction",
"year": "2022"
},
{
"authors": [
"J Mamou",
"H Le",
"M Del Rio",
"C Stephenson",
"H Tang",
"Y Kim",
"S Chung"
],
"doi": "",
"ref_id": "b62",
"title": "Emergence of separable manifolds in deep language representations",
"year": "2020"
},
{
"authors": [
"S Mandt",
"M D Hoffman",
"D M Blei"
],
"doi": "10.1017/cbo9780511804779.033",
"ref_id": "b63",
"title": "Approximate inference",
"year": "2017"
},
{
"authors": [
"Sewon Min",
"Xinxi Lyu",
"Ari Holtzman",
"Mikel Artetxe",
"Mike Lewis",
"Hannaneh Hajishirzi",
"Luke Zettlemoyer"
],
"doi": "10.18653/v1/2022.emnlp-main.759",
"ref_id": "b64",
"title": "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?",
"year": "2022"
},
{
"authors": [
"B Neyshabur",
"S Bhojanapalli",
"D Mcallester",
"N Srebro"
],
"doi": "",
"ref_id": "b65",
"title": "Exploring generalization in deep learning",
"year": "2017"
},
{
"authors": [
"Maurice Nivat"
],
"doi": "10.1145/800161.805168",
"ref_id": "b66",
"title": "On some families of languages related to the Dyck language",
"year": "1970"
},
{
"authors": [
"Matthew D Norton",
"Johannes O Royset"
],
"doi": "10.1007/s10994-021-06036-0",
"ref_id": "b67",
"title": "Diametrical Risk Minimization: theory and computations",
"year": "2021"
},
{
"authors": [
"Matthew Peters",
"Mark Neumann",
"Luke Zettlemoyer",
"Wen-Tau Yih"
],
"doi": "10.18653/v1/d18-1179",
"ref_id": "b68",
"title": "Dissecting Contextual Word Embeddings: Architecture and Representation",
"year": "2018"
},
{
"authors": [
"A Radford",
"J Wu",
"R Child",
"D Luan",
"D Amodei",
"I Sutskever"
],
"doi": "",
"ref_id": "b69",
"title": "Language models are unsupervised multitask learners",
"year": "2019"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P J Liu"
],
"doi": "",
"ref_id": "b70",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "2020"
},
{
"authors": [
"A Raghu",
"J Lorraine",
"S Kornblith",
"M Mcdermott",
"D K Duvenaud"
],
"doi": "",
"ref_id": "b71",
"title": "Meta-learning to improve pre-training",
"year": "2021"
},
{
"authors": [
"Brian Roark",
"Michiel Bacchiani"
],
"doi": "10.3115/1073445.1073472",
"ref_id": "b72",
"title": "Supervised and unsupervised PCFG adaptation to novel domains",
"year": "2003"
},
{
"authors": [
"N Saunshi",
"S Malladi",
"S Arora"
],
"doi": "",
"ref_id": "b73",
"title": "A mathematical exploration of why language models help solve downstream tasks",
"year": "2020"
},
{
"authors": [
"N Saunshi",
"J Ash",
"S Goel",
"D Misra",
"C Zhang",
"S Arora",
"S Kakade",
"A Krishnamurthy"
],
"doi": "",
"ref_id": "b74",
"title": "Understanding contrastive learning requires incorporating inductive biases",
"year": "2022"
},
{
"authors": [
"D Soudry",
"E Hoffer",
"M S Nacson",
"S Gunasekar",
"N Srebro"
],
"doi": "",
"ref_id": "b75",
"title": "The implicit bias of gradient descent on separable data",
"year": "2018"
},
{
"authors": [
"N Srivastava",
"G Hinton",
"A Krizhevsky",
"I Sutskever",
"R Salakhutdinov"
],
"doi": "",
"ref_id": "b76",
"title": "Dropout: a simple way to prevent neural networks from overfitting",
"year": "2014"
},
{
"authors": [
"W Su",
"S Boyd",
"E Candes"
],
"doi": "",
"ref_id": "b77",
"title": "A differential equation for modeling nesterov's accelerated gradient method: Theory and insights",
"year": "2014"
},
{
"authors": [
"Y Tay",
"M Dehghani",
"J Rao",
"W Fedus",
"S Abnar",
"H W Chung",
"S Narang",
"D Yogatama",
"A Vaswani",
"D Metzler"
],
"doi": "",
"ref_id": "b78",
"title": "Scale efficiently: Insights from pre-training and fine-tuning transformers",
"year": "2021"
},
{
"authors": [
"I O Tolstikhin",
"N Houlsby",
"A Kolesnikov",
"L Beyer",
"X Zhai",
"T Unterthiner",
"J Yung",
"A Steiner",
"D Keysers",
"J Uszkoreit"
],
"doi": "",
"ref_id": "b79",
"title": "Mlp-mixer: An all-mlp architecture for vision",
"year": "2021"
},
{
"authors": [
"T Vaskevicius",
"V Kanade",
"P Rebeschini"
],
"doi": "",
"ref_id": "b80",
"title": "Implicit regularization for optimal sparse recovery",
"year": "2019"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b81",
"title": "Attention Is All You Need",
"year": "2017"
},
{
"authors": [
"A Wang",
"A Singh",
"J Michael",
"F Hill",
"O Levy",
"S R Bowman"
],
"doi": "",
"ref_id": "b82",
"title": "Glue: A multi-task benchmark and analysis platform for natural language understanding",
"year": "2018"
},
{
"authors": [
"S Wang",
"B Z Li",
"M Khabsa",
"H Fang",
"H Ma",
"Linformer"
],
"doi": "",
"ref_id": "b83",
"title": "Self-attention with linear complexity",
"year": "2020"
},
{
"authors": [
"C Wei",
"T Ma"
],
"doi": "",
"ref_id": "b84",
"title": "Data-dependent sample complexity of deep neural networks via lipschitz augmentation",
"year": "2019"
},
{
"authors": [
"C Wei",
"T Ma"
],
"doi": "",
"ref_id": "b85",
"title": "Improved sample complexities for deep networks and robust classification via an all-layer margin",
"year": "2019"
},
{
"authors": [
"C Wei",
"S Kakade",
"T Ma"
],
"doi": "",
"ref_id": "b86",
"title": "The implicit and explicit regularization effects of dropout",
"year": "2020"
},
{
"authors": [
"C Wei",
"Y Chen",
"T Ma"
],
"doi": "",
"ref_id": "b87",
"title": "Statistically meaningful approximation: a case study on approximating turing machines with transformers",
"year": "2021"
},
{
"authors": [
"C Wei",
"S M Xie",
"T Ma"
],
"doi": "",
"ref_id": "b88",
"title": "Why do pretrained language models help in downstream tasks? an analysis of head and prompt tuning",
"year": "2021"
},
{
"authors": [
"J Wei",
"X Wang",
"D Schuurmans",
"M Bosma",
"E Chi",
"Q Le",
"D Zhou"
],
"doi": "",
"ref_id": "b89",
"title": "Chain of thought prompting elicits reasoning in large language models",
"year": "2022"
},
{
"authors": [
"K Wen",
"T Ma",
"Z Li"
],
"doi": "",
"ref_id": "b90",
"title": "How does sharpness-aware minimization minimize sharpness?",
"year": "2022"
},
{
"authors": [
"B Woodworth",
"S Gunasekar",
"J D Lee",
"E Moroshko",
"P Savarese",
"I Golan",
"D Soudry",
"N Srebro"
],
"doi": "",
"ref_id": "b91",
"title": "Kernel and rich regimes in overparametrized models",
"year": "2020"
},
{
"authors": [
"D Wu",
"S.-T Xia",
"Y Wang"
],
"doi": "",
"ref_id": "b92",
"title": "Adversarial weight perturbation helps robust generalization",
"year": "2020"
},
{
"authors": [
"S M Xie",
"A Raghunathan",
"P Liang",
"T Ma"
],
"doi": "",
"ref_id": "b93",
"title": "An explanation of in-context learning as implicit bayesian inference",
"year": "2021"
},
{
"authors": [
"Z Yang",
"Z Dai",
"Y Yang",
"J Carbonell",
"R R Salakhutdinov",
"Q V Le"
],
"doi": "",
"ref_id": "b94",
"title": "Xlnet: Generalized autoregressive pretraining for language understanding",
"year": "2019"
},
{
"authors": [
"C Yun",
"S Bhojanapalli",
"A S Rawat",
"S J Reddi",
"S Kumar"
],
"doi": "",
"ref_id": "b95",
"title": "Are transformers universal approximators of sequence-to-sequence functions?",
"year": "2019"
},
{
"authors": [
"C Yun",
"S Krishnan",
"H Mobahi"
],
"doi": "",
"ref_id": "b96",
"title": "A unifying view on implicit bias in training linear neural networks",
"year": "2020"
},
{
"authors": [
"J Zhang",
"S P Karimireddy",
"A Veit",
"S Kim",
"S Reddi",
"S Kumar",
"S Sra"
],
"doi": "",
"ref_id": "b97",
"title": "Why are adaptive methods good for attention models",
"year": "2020"
},
{
"authors": [
"S Zhang",
"S Roller",
"N Goyal",
"M Artetxe",
"M Chen",
"S Chen",
"C Dewan",
"M Diab",
"X Li",
"X V Lin"
],
"doi": "",
"ref_id": "b98",
"title": "Opt: Open pre-trained transformer language models",
"year": "2022"
},
{
"authors": [
"T Zhang",
"T Hashimoto"
],
"doi": "",
"ref_id": "b99",
"title": "On the inductive bias of masked language modeling: From statistical to syntactic dependencies",
"year": "2021"
},
{
"authors": [
"Y Zhang",
"A Backurs",
"S Bubeck",
"R Eldan",
"S Gunasekar",
"T Wagner"
],
"doi": "",
"ref_id": "b100",
"title": "Unveiling transformers with lego: a synthetic reasoning task",
"year": "2022"
},
{
"authors": [
"Z Zhang",
"J Yang",
"X Ji",
"S S Du"
],
"doi": "",
"ref_id": "b101",
"title": "Variance-aware confidence set: Variance-dependent bound for linear bandits and horizon-free bound for linear mixture mdp",
"year": "2021"
},
{
"authors": [
"Yaowei Zheng",
"Richong Zhang",
"Yongyi Mao"
],
"doi": "10.1109/cvpr46437.2021.00806",
"ref_id": "b102",
"title": "Regularizing Neural Networks via Adversarial Model Perturbation",
"year": "2021"
},
{
"authors": [
"Y Zhu",
"R Kiros",
"R Zemel",
"R Salakhutdinov",
"R Urtasun",
"A Torralba",
"S Fidler"
],
"doi": "",
"ref_id": "b103",
"title": "Aligning books and movies: Towards story-like visual explanations by watching movies and reading books",
"year": "2015"
},
{
"authors": [
"G"
],
"doi": "10.1117/3.898495.ch37",
"ref_id": "b104",
"title": "Central Limit Theorem",
"year": "null"
},
{
"authors": [],
"doi": "10.7717/peerj-cs.195/table-a4",
"ref_id": "b105",
"title": "Table A4: Similarity task results: model pre-training/initialization.",
"year": "2020"
}
] |
[
"b9b87e2c5204d465",
"26afa9342a9f9227",
"2173a5f971e56c59",
"417b2655799a573e",
"e7472b7336fc0a9b",
"1849f629c725acd9",
"39ea51c87cdfdcfb",
"a3bc4bb84cd30957",
"c8beab030d8be9cb",
"294464a6d95efbcb",
"3946bcdb70da813f",
"3a65214ccb15d388",
"fabddd05bde2f0a5",
"8935d626a7d57b40",
"e9b17f06b8676f55",
"227182da915c2c79",
"492eb697a5d27094",
"3c95bd60c6c91729",
"0d5c69611c295307",
"89367ffc895607ca",
"04b0cf1726998af8",
"2c95457c5bfbc57e",
"5ce8a191a73934d2",
"859da3120024b8ed",
"103bceb08c98d815",
"13ac3027584a4a64",
"e01b048243ab4004",
"38259f270cbe742a",
"1f815e7b4522315b",
"eace3f9dbaf5d3e6",
"7ed011bb75f09eff",
"465958b2e78233f3",
"f80cd8626f8e9913",
"7c7e9f506eaf77c4",
"8c638d6acfa7e5c0",
"5bb1cc330539518d",
"3f1dc878f35205cd",
"f25ee2f580bbc621",
"fa4634dd325999b3",
"5afcd385620671c0",
"2a4c8f76d053a551",
"c8ade5c41d99578d",
"d1ec02ddd57c215a",
"681ad0a249b4be49",
"7910d9ffa2d931fb",
"811b04b28726678b",
"52d81eb0c7c65ecf",
"4b63e87f9c327c71",
"270adc2f5b048c8a",
"edc33742a88c4edb",
"fb5b0e26b676955c",
"0f997a593ba83a68",
"e7311ef8992b126c",
"4f2079b53294e97b",
"348f58d87b0b5efe",
"7025705b9174a83a",
"7d3ca7b9ce637190",
"fcf7f916bc35f2ca",
"7c95740d03b28da7",
"84d5849f1a5d0563"
] |
[
"c8e8f530a0f1387a",
"dee8aed5b603d1ef",
"eb324d9b845e5c35",
"70fcf1e42d47fe64",
"516086bbbf48b369",
"04b0cf1726998af8",
"fb5b0e26b676955c",
"d854968100edc429",
"492eb697a5d27094",
"60bc934620c5a8f7",
"d1ec02ddd57c215a",
"e7472b7336fc0a9b",
"294464a6d95efbcb",
"7b64c760e4d5f170",
"8935d626a7d57b40",
"edc33742a88c4edb",
"859da3120024b8ed",
"5afcd385620671c0",
"f80cd8626f8e9913",
"e01b048243ab4004",
"3f1dc878f35205cd",
"3e11be51da45e08f",
"3c95bd60c6c91729",
"55ac98d9e063484d",
"29e17a0b471ad959",
"e7311ef8992b126c",
"c0dd8ac41c75266c",
"3d8109a452acb48f",
"7ed011bb75f09eff",
"8f88888b0d182f4c",
"2c95457c5bfbc57e",
"2a4c8f76d053a551",
"0d5c69611c295307",
"39ea51c87cdfdcfb",
"eace3f9dbaf5d3e6",
"c8ade5c41d99578d",
"f788ddd38ed93d7d",
"a8f9f4e442c49011",
"52d81eb0c7c65ecf",
"539b3d1cbf0f7147",
"95afe293b5c75015",
"fcf7f916bc35f2ca",
"fabddd05bde2f0a5",
"e9b17f06b8676f55",
"19163f2a2d8c6e0a",
"962c1a7962efb1f2",
"811b04b28726678b",
"0f997a593ba83a68",
"84df7e1564865bc6",
"1849f629c725acd9",
"a3cccbac4ce5119a",
"a804f6b84f9cbc12",
"f25ee2f580bbc621",
"13ac3027584a4a64",
"b9b87e2c5204d465",
"7910d9ffa2d931fb",
"84d5849f1a5d0563",
"7f11bdcec9c1100f",
"227182da915c2c79",
"5bb1cc330539518d",
"7c95740d03b28da7",
"2173a5f971e56c59",
"38259f270cbe742a",
"348f58d87b0b5efe",
"7025705b9174a83a",
"908ca08e58d49f4c",
"c05bdd217ab910f2",
"417b2655799a573e",
"7c7e9f506eaf77c4",
"c8beab030d8be9cb",
"270adc2f5b048c8a",
"3875fc738f81fa75",
"cbd13d1d12ebe341",
"4f2079b53294e97b",
"465958b2e78233f3",
"681ad0a249b4be49",
"5d2ac058d579b2b0",
"89367ffc895607ca",
"7d3ca7b9ce637190",
"4b63e87f9c327c71",
"8c638d6acfa7e5c0",
"2c0dc3d0f1ec41b0",
"12e319f45d62de91",
"103bceb08c98d815",
"672c55a07e9bc657",
"a2a6ca410db90297",
"ea5bccb003c836ac",
"44d1ae18faf19646",
"ccd74c312700eca5",
"1f815e7b4522315b",
"fa4634dd325999b3",
"5ce8a191a73934d2",
"9749c02c0a03a235",
"26afa9342a9f9227",
"a3bc4bb84cd30957",
"35bb5531b8444422",
"3a65214ccb15d388",
"0bbea73fd4cb3a4e",
"3fa5f5b23e5eaab3",
"3946bcdb70da813f",
"8f216c38505b0bc9",
"3056670b8048080f",
"32677702dcfc1dfd",
"7e356599de61e482",
"7836499019444093",
"16b616865ab9ab52"
] |
e1lKKjkNMj
|
Difference of submodular minimization via DC programming
|
data/openreview_paper/ICML_2023_oral/e1lKKjkNMj//paper.pdf
| 45
| 7
|
[
{
"authors": [
"Y Kawahara",
"T Washio"
],
"doi": "",
"ref_id": "b23",
"title": "Prismatic algorithm for discrete dc programming problem",
"year": "2011"
},
{
"authors": [
"P D Nhat",
"H M Le",
"Le Thi",
"H A"
],
"doi": "",
"ref_id": "b33",
"title": "Accelerated difference of convex functions algorithm and its application to sparse binary logistic regression",
"year": "2018"
},
{
"authors": [
"Takanori Maehara",
"Kazuo Murota"
],
"doi": "10.1007/s10107-014-0792-y",
"ref_id": "b31",
"title": "A framework of discrete DC programming by discrete convex analysis",
"year": "2015"
},
{
"authors": [
"Moran Feldman"
],
"doi": "10.1007/978-3-030-24766-9_28",
"ref_id": "b14",
"title": "Guess Free Maximization of Submodular and Linear Sums",
"year": "August 5-7, 2019. 2019"
},
{
"authors": [
"P Perrault",
"J Healey",
"Z Wen",
"M Valko"
],
"doi": "",
"ref_id": "b34",
"title": "On the approximation relationship between optimizing ratio of submodular (rs) and difference of submodular (ds) functions",
"year": "2021"
},
{
"authors": [
"Maxim Sviridenko",
"Jan Vondrák",
"Justin Ward"
],
"doi": "10.1287/moor.2016.0842",
"ref_id": "b39",
"title": "Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature",
"year": "2017"
},
{
"authors": [
"C Harshaw",
"M Feldman",
"J Ward",
"A Karbasi"
],
"doi": "",
"ref_id": "b17",
"title": "Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications",
"year": "09-15 Jun 2019"
}
] |
[
{
"authors": [
"Hadi Abbaszadehpeivasti",
"Etienne De Klerk",
"Moslem Zamani"
],
"doi": "10.1007/s10957-023-02199-z",
"ref_id": "b0",
"title": "On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)",
"year": "2021"
},
{
"authors": [
"Brian Axelrod",
"Yang P Liu",
"Aaron Sidford"
],
"doi": "10.1137/1.9781611975994.51",
"ref_id": "b1",
"title": "Near-optimal Approximate Discrete and Continuous Submodular Function Minimization",
"year": "2019"
},
{
"authors": [
"F Bach"
],
"doi": "",
"ref_id": "b2",
"title": "Learning with submodular functions: A convex optimization perspective",
"year": "2013. 6, 9, 13, 24, 25, 26"
},
{
"authors": [
"A A Bian",
"J M Buhmann",
"A Krause",
"S Tschiatschek"
],
"doi": "",
"ref_id": "b3",
"title": "Guarantees for greedy maximization of nonsubmodular functions with applications",
"year": "2017"
},
{
"authors": [
"S Bubeck"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b4",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"Niv Buchbinder",
"Moran Feldman",
"Joseph Naor",
"Roy Schwartz"
],
"doi": "10.1109/focs.2012.73",
"ref_id": "b5",
"title": "A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization",
"year": "2012. 2012"
},
{
"authors": [
"Kevin M Byrnes"
],
"doi": "10.1016/j.dam.2015.01.026",
"ref_id": "b6",
"title": "A tight analysis of the Submodular–Supermodular Procedure",
"year": "2015"
},
{
"authors": [
"D Chakrabarty",
"P Jain",
"P Kothari"
],
"doi": "",
"ref_id": "b7",
"title": "Provable submodular minimization via fujishige-wolfes algorithm",
"year": "2014"
},
{
"authors": [
"A Chambolle",
"R A De Vore",
"Nam-Yong Lee",
"B J Lucier"
],
"doi": "10.1109/83.661182",
"ref_id": "b8",
"title": "Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage",
"year": "1998"
},
{
"authors": [
"A P Dempster",
"N M Laird",
"D B Rubin"
],
"doi": "10.1111/j.2517-6161.1977.tb01600.x",
"ref_id": "b9",
"title": "Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm",
"year": "1977"
},
{
"authors": [
"D Dua",
"C Graff"
],
"doi": "10.7717/peerj-cs.1806/table-3",
"ref_id": "b10",
"title": "Table 3: Health datasets from UCI machine learning repository.",
"year": "2017"
},
{
"authors": [
"Roland Durier"
],
"doi": "10.1007/978-3-0348-9297-1_4",
"ref_id": "b11",
"title": "On Locally Polyhedral Convex Functions",
"year": "1988"
},
{
"authors": [
"M El Halabi",
"S Jegelka"
],
"doi": "",
"ref_id": "b12",
"title": "Optimal approximation for unconstrained non-submodular minimization",
"year": "2020"
},
{
"authors": [
"Uriel Feige",
"Vahab S Mirrokni",
"Jan Vondrák"
],
"doi": "10.1137/090779346",
"ref_id": "b13",
"title": "Maximizing Non-monotone Submodular Functions",
"year": "2011"
},
{
"authors": [
"Moran Feldman"
],
"doi": "10.1007/978-3-030-24766-9_28",
"ref_id": "b14",
"title": "Guess Free Maximization of Submodular and Linear Sums",
"year": "August 5-7, 2019. 2019"
},
{
"authors": [
"S Fujishige",
"S Isotani"
],
"doi": "",
"ref_id": "b15",
"title": "A submodular function minimization algorithm based on the minimum-norm base",
"year": "2011"
},
{
"authors": [
"Saeed Ghadimi"
],
"doi": "10.1007/s10107-017-1225-5",
"ref_id": "b16",
"title": "Conditional gradient type methods for composite nonlinear and stochastic optimization",
"year": "2019"
},
{
"authors": [
"C Harshaw",
"M Feldman",
"J Ward",
"A Karbasi"
],
"doi": "",
"ref_id": "b17",
"title": "Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications",
"year": "09-15 Jun 2019"
},
{
"authors": [
"J.-B Hiriart-Urruty"
],
"doi": "",
"ref_id": "b18",
"title": "From convex optimization to nonconvex optimization. necessary and sufficient conditions for global optimality",
"year": "1989"
},
{
"authors": [
"R Iyer",
"J Bilmes"
],
"doi": "",
"ref_id": "b19",
"title": "Algorithms for approximate minimization of the difference between submodular functions, with applications",
"year": "2012. 5, 7, 8, 13"
},
{
"authors": [
"R K Iyer",
"S Jegelka",
"J A Bilmes"
],
"doi": "",
"ref_id": "b20",
"title": "Curvature and optimal algorithms for learning and minimizing submodular functions",
"year": "2013"
},
{
"authors": [
"Stefanie Jegelka",
"Jeff Bilmes"
],
"doi": "10.1109/cvpr.2011.5995589",
"ref_id": "b21",
"title": "Submodularity beyond submodular energies: Coupling edges in graph cuts",
"year": "2011"
},
{
"authors": [
"Stefanie Jegelka",
"Jeff Bilmes"
],
"doi": "10.1109/cvpr.2011.5995589",
"ref_id": "b22",
"title": "Submodularity beyond submodular energies: Coupling edges in graph cuts",
"year": "2011"
},
{
"authors": [
"Y Kawahara",
"T Washio"
],
"doi": "",
"ref_id": "b23",
"title": "Prismatic algorithm for discrete dc programming problem",
"year": "2011"
},
{
"authors": [
"S Lacoste-Julien"
],
"doi": "",
"ref_id": "b24",
"title": "Convergence rate of frank-wolfe for non-convex objectives",
"year": "2016"
},
{
"authors": [
"Le Thi",
"H A Pham Dinh",
"T"
],
"doi": "",
"ref_id": "b25",
"title": "Solving a class of linearly constrained indefinite quadratic problems by dc algorithms",
"year": "1997"
},
{
"authors": [
"Le Thi",
"H A Pham Dinh",
"T"
],
"doi": "",
"ref_id": "b26",
"title": "The dc (difference of convex functions) programming and dca revisited with dc models of real world nonconvex optimization problems",
"year": "2005"
},
{
"authors": [
"Le Thi",
"H A Pham Dinh",
"T"
],
"doi": "",
"ref_id": "b27",
"title": "Dc programming and dca: thirty years of developments",
"year": "2018"
},
{
"authors": [
"Benny Lehmann",
"Daniel Lehmann",
"Noam Nisan"
],
"doi": "10.1016/j.geb.2005.02.006",
"ref_id": "b28",
"title": "Combinatorial auctions with decreasing marginal utilities",
"year": "2006"
},
{
"authors": [
"Hui Lin",
"Jeff Bilmes"
],
"doi": "10.21437/interspeech.2011-312",
"ref_id": "b29",
"title": "Optimal selection of limited vocabulary speech corpora",
"year": "2011"
},
{
"authors": [
"L Lovász"
],
"doi": "10.1007/978-3-642-68874-4_10",
"ref_id": "b30",
"title": "Submodular functions and convexity",
"year": "1983"
},
{
"authors": [
"Takanori Maehara",
"Kazuo Murota"
],
"doi": "10.1007/s10107-014-0792-y",
"ref_id": "b31",
"title": "A framework of discrete DC programming by discrete convex analysis",
"year": "2015"
},
{
"authors": [
"M Narasimhan",
"J A Bilmes"
],
"doi": "",
"ref_id": "b32",
"title": "A submodularsupermodular procedure with applications to discriminative structure learning",
"year": "July 26-29, 2005"
},
{
"authors": [
"P D Nhat",
"H M Le",
"Le Thi",
"H A"
],
"doi": "",
"ref_id": "b33",
"title": "Accelerated difference of convex functions algorithm and its application to sparse binary logistic regression",
"year": "2018"
},
{
"authors": [
"P Perrault",
"J Healey",
"Z Wen",
"M Valko"
],
"doi": "",
"ref_id": "b34",
"title": "On the approximation relationship between optimizing ratio of submodular (rs) and difference of submodular (ds) functions",
"year": "2021"
},
{
"authors": [
"T Pham Dinh",
"H A Le Thi"
],
"doi": "",
"ref_id": "b35",
"title": "Convex analysis approach to dc programming: theory, algorithms and applications",
"year": "1997"
},
{
"authors": [
"T Pham Dinh",
"E B Souad"
],
"doi": "",
"ref_id": "b36",
"title": "Duality in dc (difference of convex functions) optimization. subgradient methods",
"year": "1988. , 7, 24"
},
{
"authors": [
"Tao Pham Dinh",
"Van Ngai Huynh",
"Hoai An Le Thi",
"Vinh Thanh Ho"
],
"doi": "10.1007/s10898-021-01043-w",
"ref_id": "b37",
"title": "Alternating DC algorithm for partial DC programming problems",
"year": "2022"
},
{
"authors": [
"R T Rockafellar"
],
"doi": "",
"ref_id": "b38",
"title": "Convex analysis",
"year": "1970"
},
{
"authors": [
"Maxim Sviridenko",
"Jan Vondrák",
"Justin Ward"
],
"doi": "10.1287/moor.2016.0842",
"ref_id": "b39",
"title": "Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature",
"year": "2017"
},
{
"authors": [
"J.-B H Urruty",
"C Lemaréchal"
],
"doi": "",
"ref_id": "b40",
"title": "Convex analysis and minimization algorithms",
"year": "1993"
},
{
"authors": [
"Hee-Soo Choi",
"Bruno Guillaume",
"Karën Fort",
"Guy Perrier"
],
"doi": "10.26615/978-954-452-072-4_033",
"ref_id": "b41",
"title": "Investigating DominantWord Order on Universal Dependencies with Graph Rewriting",
"year": "2015"
},
{
"authors": [
"F Yang",
"K He",
"L Yang",
"H Du",
"J Yang",
"B Yang",
"L Sun"
],
"doi": "",
"ref_id": "b42",
"title": "Learning interpretable decision rule sets: A submodular optimization approach",
"year": "2021"
},
{
"authors": [
"A L Yuille",
"A Rangarajan"
],
"doi": "10.7551/mitpress/1120.001.0001",
"ref_id": "b43",
"title": "Advances in Neural Information Processing Systems 14",
"year": "2001"
},
{
"authors": [
"A Yurtsever",
"S Sra"
],
"doi": "",
"ref_id": "b44",
"title": "Cccp is frank-wolfe in disguise",
"year": "2022"
}
] |
[
"24ccb0393e37221f",
"a66475eec23f03b4",
"dc85d381bf669ae9",
"b056361922ce8562",
"1de1d221a9facb83",
"1acc09ef647e9754",
"4f6cad697ed59507"
] |
[
"e9d3cc4c8fa137d0",
"54a843b28573ea77",
"bd149162f143be62",
"4b0d47a844e5cf5c",
"6b9140baed4fcc08",
"9f42a9cfe9d81ae6",
"826280dcc5658e83",
"c9a47070ac12ee18",
"0057f1158284c52b",
"a8deab87f8badf2d",
"2eaa1a40b2b73c51",
"fb9549f0c4c2c50a",
"7a3a4d93dc27bcf0",
"f40ebdd32e149f65",
"b056361922ce8562",
"cc819322f0645832",
"8a787b6ab132bf00",
"4f6cad697ed59507",
"9427a667f5eeee0b",
"796b99f7a78f9d06",
"3e67955ccda60664",
"9c91dccf8fdca093",
"9c91dccf8fdca093",
"24ccb0393e37221f",
"8132245c584f600a",
"d89840e864e94ec4",
"02f03e9108041942",
"0129d87d85253077",
"f0dad211db358dc9",
"38e6bc7c27551ab3",
"d79a07203c1cd533",
"dc85d381bf669ae9",
"e1f19a62658a0371",
"a66475eec23f03b4",
"1de1d221a9facb83",
"53d4cc9594527177",
"34fde5c10492068d",
"512abd95724d5559",
"eb7771d5c80c4b0e",
"1acc09ef647e9754",
"9b2c6c719a60d02b",
"bd73b387c2727b42",
"1db743ed788863f9",
"3e29b976428ed12c",
"cebd76c0c018aae4"
] |
eYlLlvzngu
|
Using Large Language Models to Simulate Multiple Humans and Replicate Human Subject Studies
|
data/openreview_paper/ICML_2023_oral/eYlLlvzngu//paper.pdf
| 52
| 27
|
[
{
"authors": [
"Joon Sung Park",
"Lindsay Popowski",
"Carrie Cai",
"Meredith Ringel Morris",
"Percy Liang",
"Michael S Bernstein"
],
"doi": "10.1145/3526113.3545616",
"ref_id": "b39",
"title": "Social Simulacra: Creating Populated Prototypes for Social Computing Systems",
"year": "2022"
},
{
"authors": [
"A M Turing"
],
"doi": "10.1093/mind/lix.236.433",
"ref_id": "b46",
"title": "I.—COMPUTING MACHINERY AND INTELLIGENCE",
"year": "1950"
},
{
"authors": [
"Yao Lu",
"Max Bartolo",
"Alastair Moore",
"Sebastian Riedel",
"Pontus Stenetorp"
],
"doi": "10.18653/v1/2022.acl-long.556",
"ref_id": "b31",
"title": "Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity",
"year": "2021"
},
{
"authors": [
"P Liang",
"R Bommasani",
"T Lee",
"D Tsipras",
"D Soylu",
"M Yasunaga",
"Y Zhang",
"D Narayanan",
"Y Wu",
"A Kumar",
"B Newman",
"B Yuan",
"B Yan",
"C Zhang",
"C Cosgrove",
"C D Manning",
"C Ré",
"D Acosta-Navas",
"D A Hudson",
"E Zelikman",
"E Durmus",
"F Ladhak",
"F Rong",
"H Ren",
"H Yao",
"J Wang",
"K Santhanam",
"L Orr",
"L Zheng",
"M Yuksekgonul",
"M Suzgun",
"N Kim",
"N Guha",
"N Chatterji",
"O Khattab",
"P Henderson",
"Q Huang",
"R Chi",
"S M Xie",
"S Santurkar",
"S Ganguli",
"T Hashimoto",
"T Icard",
"T Zhang",
"V Chaudhary",
"W Wang",
"X Li",
"Y Mai",
"Y Zhang",
"Y Koreeda"
],
"doi": "",
"ref_id": "b29",
"title": "Holistic evaluation of language models",
"year": "2022"
},
{
"authors": [
"C M Macal",
"M J North"
],
"doi": "10.1057/jos.2010.3",
"ref_id": "b32",
"title": "Tutorial on agent-based modelling and simulation",
"year": "2010"
},
{
"authors": [
"E Jones",
"J Steinhardt"
],
"doi": "",
"ref_id": "b22",
"title": "Capturing failures of large language models via human cognitive biases",
"year": "2022"
},
{
"authors": [
"I Dasgupta",
"A K Lampinen",
"S C Chan",
"A Creswell",
"D Kumaran",
"J L Mcclelland",
"F Hill"
],
"doi": "",
"ref_id": "b13",
"title": "Language models show human-like content effects on reasoning",
"year": "2022"
},
{
"authors": [
"Johnnatan Messias",
"Pantelis Vikatos",
"Fabrício Benevenuto"
],
"doi": "10.1145/3106426.3106472",
"ref_id": "b34",
"title": "White, man, and highly followed",
"year": "2017"
},
{
"authors": [
"L P Argyle",
"E C Busby",
"N Fulda",
"J R Gubler",
"C Rytting",
"D Wingate"
],
"doi": "10.1017/pan.2023",
"ref_id": "b0",
"title": "Out of one, many: Using language models to simulate human samples",
"year": "2023"
},
{
"authors": [
"Long Phan",
"Alice Gatti",
"Nathaniel Li",
"Adam Khoja",
"Ryan Kim",
"Richard Ren",
"Jason Hausenloy",
"Oliver Zhang",
"Mantas Mazeika",
"Dan Hendrycks",
"Ziwen Han",
"Josephina Hu",
"Hugh Zhang",
"Chen Bo Calvin Zhang",
"Mohamed Shaaban",
"John Ling",
"Sean Shi",
"Michael Choi",
"Anish Agrawal",
"Arnav Chopra",
"Aakaash Nattanmai",
"Gordon Mckellips",
"Anish Cheraku",
"Asim Suhail",
"Ethan Luo",
"Marvin Deng",
"Jason Luo",
"Ashley Zhang",
"Kavin Jindel",
"Jay Paek",
"Kasper Halevy",
"Allen Baranov",
"Michael Liu",
"Advaith Avadhanam",
"David Zhang",
"Vincent Cheng",
"Brad Ma",
"Evan Fu",
"Liam Do",
"Joshua Lass",
"Hubert Yang",
"Surya Sunkari",
"Vishruth Bharath",
"Violet Ai",
"James Leung",
"Rishit Agrawal",
"Alan Zhou",
"Kevin Chen",
"Tejas Kalpathi",
"Ziqi Xu",
"Gavin Wang",
"Tyler Xiao",
"Erik Maung",
"Sam Lee",
"Ryan Yang",
"Roy Yue",
"Ben Zhao",
"Julia Yoon",
"Xiangwan Sun",
"Aryan Singh",
"Clark Peng",
"Tyler Osbey",
"Taozhi Wang",
"Daryl Echeazu",
"Timothy Wu",
"Spandan Patel",
"Vidhi Kulkarni",
"Vijaykaarti Sundarapandiyan",
"Andrew Le",
"Zafir Nasim",
"Srikar Yalam",
"Ritesh Kasamsetty",
"Soham Samal",
"David Sun",
"Nihar Shah",
"Abhijeet Saha",
"Alex Zhang",
"Leon Nguyen",
"Laasya Nagumalli",
"Kaixin Wang",
"Aidan Wu",
"Anwith Telluri",
"Summer Yue",
"Alexandr Wang",
"Dmitry Dodonov",
"Tung Nguyen",
"Jaeho Lee",
"Daron Anderson",
"Mikhail Doroshenko",
"Alun Cennyth Stokes",
"Mobeen Mahmood",
"Oleksandr Pokutnyi",
"Oleg Iskra",
"Jessica P Wang",
"John-Clark Levin",
"Mstyslav Kazakov",
"Fiona Feng",
"Steven Y Feng",
"Haoran Zhao",
"Michael Yu",
"Varun Gangal",
"Chelsea Zou",
"Zihan Wang",
"Serguei Popov",
"Robert Gerbicz",
"Geoff Galgon",
"Johannes Schmitt",
"Will Yeadon",
"Yongki Lee",
"Scott Sauers",
"Alvaro Sanchez",
"Fabian Giska",
"Marc Roth",
"Søren Riis",
"Saiteja Utpala",
"Noah Burns",
"Gashaw M Goshu",
"Mohinder Maheshbhai Naiya",
"Chidozie Agu",
"Zachary Giboney",
"Antrell Cheatom",
"Francesco Fournier-Facio",
"Sarah-Jane Crowson",
"Lennart Finke",
"Zerui Cheng",
"Jennifer Zampese",
"Ryan G Hoerr",
"Mark Nandor",
"Hyunwoo Park",
"Tim Gehrunger",
"Jiaqi Cai",
"Ben Mccarty",
"Alexis C Garretson",
"Edwin Taylor",
"Damien Sileo",
"Qiuyu Ren",
"Usman Qazi",
"Lianghui Li",
"Jungbae Nam",
"John B Wydallis",
"Pavel Arkhipov",
"Jack Wei Lun Shi",
"Aras Bacho",
"Chris G Willcocks",
"Hangrui Cao",
"Sumeet Motwani",
"Emily De Oliveira Santos",
"Johannes Veith",
"Edward Vendrow",
"Doru Cojoc",
"Kengo Zenitani",
"Joshua Robinson",
"Longke Tang",
"Yuqi Li",
"Joshua Vendrow",
"Natanael Wildner Fraga",
"Vladyslav Kuchkin",
"Andrey Pupasov Maksimov",
"Pierre Marion",
"Denis Efremov",
"Jayson Lynch",
"Kaiqu Liang",
"Aleksandar Mikov",
"Andrew Gritsevskiy",
"Julien Guillod",
"Gözdenur Demir",
"Dakotah Martinez",
"Ben Pageler",
"Kevin Zhou",
"Saeed Soori",
"Ori Press",
"Henry Tang",
"Paolo Rissone",
"Sean R Green",
"Lina Brüssel",
"Moon Twayana",
"Aymeric Dieuleveut",
"Joseph Marvin Imperial",
"Ameya Prabhu",
"Jinzhou Yang",
"Nick Crispino",
"Arun Rao",
"Dimitri Zvonkine",
"Gabriel Loiseau",
"Mikhail Kalinin",
"Marco Lukas",
"Ciprian Manolescu",
"Nate Stambaugh",
"Subrata Mishra",
"Tad Hogg",
"Carlo Bosio",
"Brian P Coppola",
"Julian Salazar",
"Jaehyeok Jin",
"Rafael Sayous",
"Stefan Ivanov",
"Philippe Schwaller",
"Shaipranesh Senthilkumar",
"Andres M Bran",
"Andres Algaba",
"Kelsey Van Den Houte",
"Lynn Van Der Sypt",
"Brecht Verbeken",
"David Noever",
"Alexei Kopylov",
"Benjamin Myklebust",
"Bikun Li",
"Lisa Schut",
"Evgenii Zheltonozhskii",
"Qiaochu Yuan",
"Derek Lim",
"Richard Stanley",
"Tong Yang",
"John Maar",
"Julian Wykowski",
"Mart Oller",
"Anmol Sahu",
"Cesare Giulio Ardito",
"Yuzheng Hu",
"Ariel Ghislain Kemogne Kamdoum",
"Alvin Jin",
"Tobias Garcia Vilchis",
"Yuexuan Zu",
"Martin Lackner",
"James Koppel",
"Gongbo Sun",
"Daniil S Antonenko",
"Steffi Chern",
"Bingchen Zhao",
"Pierrot Arsene",
"Joseph M Cavanagh",
"Daofeng Li",
"Jiawei Shen",
"Donato Crisostomi",
"Wenjin Zhang",
"Ali Dehghan",
"Sergey Ivanov",
"David Perrella",
"Nurdin Kaparov",
"Allen Zang",
"Ilia Sucholutsky",
"Arina Kharlamova",
"Daniil Orel",
"Vladislav Poritski",
"Shalev Ben-David",
"Zachary Berger",
"Parker Whitfill",
"Michael Foster",
"Daniel Munro",
"Linh Ho",
"Shankar Sivarajan",
"Dan Bar Hava",
"Aleksey Kuchkin",
"David Holmes",
"Alexandra Rodriguez-Romero",
"Frank Sommerhage",
"Anji Zhang",
"Richard Moat",
"Keith Schneider",
"Zakayo Kazibwe",
"Don Clarke",
"Dae Hyun Kim",
"Felipe Meneguitti Dias",
"Sara Fish",
"Veit Elser",
"Tobias Kreiman",
"Victor Efren Guadarrama Vilchis",
"Immo Klose",
"Ujjwala Anantheswaran",
"Adam Zweiger",
"Kaivalya Rawal",
"Jeffery Li",
"Jeremy Nguyen",
"Nicolas Daans",
"Haline Heidinger",
"Maksim Radionov",
"Václav Rozhoň",
"Vincent Ginis",
"Christian Stump",
"Niv Cohen",
"Rafał Poświata",
"Josef Tkadlec",
"Alan Goldfarb",
"Chenguang Wang",
"Piotr Padlewski",
"Stanislaw Barzowski",
"Kyle Montgomery",
"Ryan Stendall",
"Jamie Tucker-Foltz",
"Jack Stade",
"T Ryan Rogers",
"Tom Goertzen",
"Declan Grabb",
"Abhishek Shukla",
"Alan Givré",
"John Arnold Ambay",
"Archan Sen",
"Muhammad Fayez Aziz",
"Mark H Inlow",
"Hao He",
"Ling Zhang",
"Younesse Kaddar",
"Ivar Ängquist",
"Yanxu Chen",
"Harrison K Wang",
"Kalyan Ramakrishnan",
"Elliott Thornley",
"Antonio Terpin",
"Hailey Schoelkopf",
"Eric Zheng",
"Avishy Carmi",
"Ethan D L Brown",
"Kelin Zhu",
"Max Bartolo",
"Richard Wheeler",
"Martin Stehberger",
"Peter Bradshaw",
"J P Heimonen",
"Kaustubh Sridhar",
"Ido Akov",
"Jennifer Sandlin",
"Yury Makarychev",
"Joanna Tam",
"Hieu Hoang",
"David M Cunningham",
"Vladimir Goryachev",
"Demosthenes Patramanis",
"Michael Krause",
"Andrew Redenti",
"David Aldous",
"Jesyin Lai",
"Shannon Coleman",
"Jiangnan Xu",
"Sangwon Lee",
"Ilias Magoulas",
"Sandy Zhao",
"Ning Tang",
"Michael K Cohen",
"Orr Paradise",
"Jan Hendrik Kirchner",
"Maksym Ovchynnikov",
"Jason O Matos",
"Adithya Shenoy",
"Michael Wang",
"Yuzhou Nie",
"Anna Sztyber-Betley",
"Paolo Faraboschi",
"Robin Riblet",
"Jonathan Crozier",
"Shiv Halasyamani",
"Shreyas Verma",
"Prashant Joshi",
"Eli Meril",
"Ziqiao Ma",
"Jérémy Andréoletti",
"Raghav Singhal",
"Jacob Platnick",
"Volodymyr Nevirkovets",
"Luke Basler",
"Alexander Ivanov",
"Seri Khoury",
"Nils Gustafsson",
"Marco Piccardo",
"Hamid Mostaghimi",
"Qijia Chen",
"Virendra Singh",
"Tran Quoc Khánh",
"Paul Rosu",
"Hannah Szlyk",
"Zachary Brown",
"Himanshu Narayan",
"Aline Menezes",
"Jonathan Roberts",
"William Alley",
"Kunyang Sun",
"Arkil Patel",
"Max Lamparth",
"Anka Reuel",
"Linwei Xin",
"Hanmeng Xu",
"Jacob Loader",
"Freddie Martin",
"Zixuan Wang",
"Andrea Achilleos",
"Thomas Preu",
"Tomek Korbak",
"Ida Bosio",
"Fereshteh Kazemi",
"Ziye Chen",
"Biró Bálint",
"Eve J Y Lo",
"Jiaqi Wang",
"Maria Inês S Nunes",
"Jeremiah Milbauer",
"M Saiful Bari",
"Zihao Wang",
"Behzad Ansarinejad",
"Yewen Sun",
"Stephane Durand",
"Hossam Elgnainy",
"Guillaume Douville",
"Daniel Tordera",
"George Balabanian",
"Hew Wolff",
"Lynna Kvistad",
"Hsiaoyun Milliron",
"Ahmad Sakor",
"Murat Eron",
"D O Andrew Favre",
"Shailesh Shah",
"Xiaoxiang Zhou",
"Firuz Kamalov",
"Sherwin Abdoli",
"Tim Santens",
"Shaul Barkan",
"Allison Tee",
"Robin Zhang",
"Alessandro Tomasiello",
"G Bruno De Luca",
"Shi-Zhuo Looi",
"Vinh-Kha Le",
"Noam Kolt",
"Jiayi Pan",
"Emma Rodman",
"Jacob Drori",
"Carl J Fossum",
"Niklas Muennighoff",
"Milind Jagota",
"Ronak Pradeep",
"Honglu Fan",
"Jonathan Eicher",
"Michael Chen",
"Kushal Thaman",
"William Merrill",
"Moritz Firsching",
"Carter Harris",
"Stefan Ciobâcă",
"Jason Gross",
"Rohan Pandey",
"Ilya Gusev",
"Adam Jones",
"Shashank Agnihotri",
"Pavel Zhelnov",
"Mohammadreza Mofayezi",
"Alexander Piperski",
"David K Zhang",
"Kostiantyn Dobarskyi",
"Roman Leventov",
"Ignat Soroko",
"Joshua Duersch",
"Vage Taamazyan",
"Andrew Ho",
"Wenjie Ma",
"William Held",
"Ruicheng Xian",
"Armel Randy Zebaze",
"Mohanad Mohamed",
"Julian Noah Leser",
"Michelle X Yuan",
"Laila Yacar",
"Johannes Lengler",
"Katarzyna Olszewska",
"Claudio Di Fratta",
"Edson Oliveira",
"Joseph W Jackson",
"Andy Zou",
"Muthu Chidambaram",
"Timothy Manik",
"Hector Haffenden",
"Dashiell Stander",
"Ali Dasouqi",
"Alexander Shen",
"Bita Golshani",
"David Stap",
"Egor Kretov",
"Mikalai Uzhou",
"Alina Borisovna Zhidkovskaya",
"Nick Winter",
"Miguel Orbegozo Rodriguez",
"Robert Lauff",
"Dustin Wehr",
"Colin Tang",
"Zaki Hossain",
"Shaun Phillips",
"Fortuna Samuele",
"Fredrik Ekström",
"Angela Hammon",
"Oam Patel",
"Faraz Farhidi",
"George Medley",
"Forough Mohammadzadeh",
"Madellene Peñaflor",
"Haile Kassahun",
"Alena Friedrich",
"Rayner Hernandez Perez",
"Daniel Pyda",
"Taom Sakal",
"Omkar Dhamane",
"Ali Khajegili Mirabadi",
"Eric Hallman",
"Kenchi Okutsu",
"Mike Battaglia",
"Mohammad Maghsoudimehrabani",
"Alon Amit",
"Dave Hulbert",
"Roberto Pereira",
"Simon Weber",
"Handoko",
"Anton Peristyy",
"Stephen Malina",
"Mustafa Mehkary",
"Rami Aly",
"Frank Reidegeld",
"Anna-Katharina Dick",
"Cary Friday",
"Mukhwinder Singh",
"Hassan Shapourian",
"Wanyoung Kim",
"Mariana Costa",
"Hubeyb Gurdogan",
"Harsh Kumar",
"Chiara Ceconello",
"Chao Zhuang",
"Haon Park",
"Micah Carroll",
"Andrew R Tawfeek",
"Stefan Steinerberger",
"Daattavya Aggarwal",
"Michael Kirchhof",
"Linjie Dai",
"Evan Kim",
"Johan Ferret",
"Jainam Shah",
"Yuzhou Wang",
"Minghao Yan",
"Krzysztof Burdzy",
"Lixin Zhang",
"Antonio Franca",
"Diana T Pham",
"Kang Yong Loh",
"Joshua Robinson",
"Abram Jackson",
"Paolo Giordano",
"Philipp Petersen",
"Adrian Cosma",
"Jesus Colino",
"Colin White",
"Jacob Votava",
"Vladimir Vinnikov",
"Ethan Delaney",
"Petr Spelda",
"Vit Stritecky",
"Syed M Shahid",
"Jean-Christophe Mourrat",
"Lavr Vetoshkin",
"Koen Sponselee",
"Renas Bacho",
"Zheng-Xin Yong",
"Florencia De La Rosa",
"Nathan Cho",
"Xiuyu Li",
"Guillaume Malod",
"Orion Weller",
"Guglielmo Albani",
"Leon Lang",
"Julien Laurendeau",
"Dmitry Kazakov",
"Fatimah Adesanya",
"Julien Portier",
"Lawrence Hollom",
"Victor Souza",
"Yuchen Anna Zhou",
"Julien Degorre",
"Yiğit Yaln",
"Gbenga Daniel Obikoya",
"Rai Michael Pokorny",
"Filippo Bigi",
"M C Boscá",
"Oleg Shumar",
"Kaniuar Bacho",
"Gabriel Recchia",
"Mara Popescu",
"Nikita Shulga",
"Ngefor Mildred Tanwie",
"Thomas C H Lux",
"Ben Rank",
"Colin Ni",
"Matthew Brooks",
"Alesia Yakimchyk",
"Huanxu Quinn Liu",
"Stefano Cavalleri",
"Olle Häggström",
"Emil Verkama",
"Joshua Newbould",
"Hans Gundlach",
"Leonor Brito-Santana",
"Brian Amaro",
"Vivek Vajipey",
"Rynaa Grover",
"Ting Wang",
"Yosi Kratish",
"Wen-Ding Li",
"Sivakanth Gopi",
"Andrea Caciolai",
"Christian Schroeder De Witt",
"Pablo Hernández-Cámara",
"Emanuele Rodolà",
"Jules Robins",
"Dominic Williamson",
"Brad Raynor",
"Hao Qi",
"Ben Segev",
"Jingxuan Fan",
"Sarah Martinson",
"Erik Y Wang",
"Kaylie Hausknecht",
"Michael P Brenner",
"Mao Mao",
"Christoph Demian",
"Peyman Kassani",
"Xinyu Zhang",
"David Avagian",
"Eshawn Jessica Scipio",
"Alon Ragoler",
"Justin Tan",
"Blake Sims",
"Rebeka Plecnik",
"Aaron Kirtland",
"Omer Faruk Bodur",
"D P Shinde",
"Yan Carlos Leyva Labrador",
"Zahra Adoul",
"Mohamed Zekry",
"Ali Karakoc",
"Tania C B Santos",
"Samir Shamseldeen",
"Loukmane Karim",
"Anna Liakhovitskaia",
"Nate Resman",
"Nicholas Farina",
"Juan Carlos Gonzalez",
"Gabe Maayan",
"Earth Anderson",
"Rodrigo De Oliveira Pena",
"Elizabeth Kelley",
"Hodjat Mariji",
"Rasoul Pouriamanesh",
"Wentao Wu",
"Ross Finocchio",
"Ismail Alarab",
"Joshua Cole",
"Danyelle Ferreira",
"Bryan Johnson",
"Mohammad Safdari",
"Liangti Dai",
"Siriphan Arthornthurasuk",
"Isaac C Mcalister",
"Alejandro José Moyano",
"Alexey Pronin",
"Jing Fan",
"Angel Ramirez-Trinidad",
"Yana Malysheva",
"Daphiny Pottmaier",
"Omid Taheri",
"Stanley Stepanic",
"Samuel Perry",
"Luke Askew",
"Raúl Adrián Huerta Rodrguez",
"Ali M R Minissi",
"Ricardo Lorena",
"Krishnamurthy Iyer",
"Arshad Anil Fasiludeen",
"Ronald Clark",
"Josh Ducey",
"Matheus Piza",
"Maja Somrak",
"Eric Vergo",
"Juehang Qin",
"Benjámin Borbás",
"Eric Chu",
"Jack Lindsey",
"Antoine Jallon",
"I M J Mcinnis",
"Evan Chen",
"Avi Semler",
"Luk Gloor",
"Tej Shah",
"Marc Carauleanu",
"Pascal Lauer",
"Tran Duc Huy",
"Hossein Shahrtash",
"Emilien Duc",
"Lukas Lewark",
"Assaf Brown",
"Samuel Albanie",
"Brian Weber",
"Warren S Vaz",
"Pierre Clavier",
"Yiyang Fan",
"Gabriel Poesia Reis E Silva",
"Long Tony Lian",
"Marcus Abramovitch",
"Xi Jiang",
"Sandra Mendoza",
"Murat Islam",
"Juan Gonzalez",
"Vasilios Mavroudis",
"Justin Xu",
"Pawan Kumar",
"Laxman Prasad Goswami",
"Daniel Bugas",
"Nasser Heydari",
"Ferenc Jeanplong",
"Thorben Jansen",
"Antonella Pinto",
"Archimedes Apronti",
"Abdallah Galal",
"Ng Ze-An",
"Ankit Singh",
"Tong Jiang",
"Joan Of Arc Xavier",
"Kanu Priya Agarwal",
"Mohammed Berkani",
"Gang Zhang",
"Zhehang Du",
"Benedito Alves De Oliveira Junior",
"Dmitry Malishev",
"Nicolas Remy",
"Taylor D Hartman",
"Tim Tarver",
"Stephen Mensah",
"Gautier Abou Loume",
"Wiktor Morak",
"Farzad Habibi",
"Sarah Hoback",
"Will Cai",
"Javier Gimenez",
"Roselynn Grace Montecillo",
"Jakub Łucki",
"Russell Campbell",
"Asankhaya Sharma",
"Khalida Meer",
"Shreen Gul",
"Daniel Espinosa Gonzalez",
"Xavier Alapont",
"Alex Hoover",
"Gunjan Chhablani",
"Freddie Vargus",
"Arunim Agarwal",
"Yibo Jiang",
"Deepakkumar Patil",
"David Outevsky",
"Kevin Joseph Scaria",
"Rajat Maheshwari",
"Abdelkader Dendane",
"Priti Shukla",
"Ashley Cartwright",
"Sergei Bogdanov",
"Niels Mündler",
"Sören Möller",
"Luca Arnaboldi",
"Kunvar Thaman",
"Muhammad Rehan Siddiqi",
"Prajvi Saxena",
"Himanshu Gupta",
"Tony Fruhauff",
"Glen Sherman",
"Mátyás Vincze",
"Siranut Usawasutsakorn",
"Dylan Ler",
"Anil Radhakrishnan",
"Innocent Enyekwe",
"Sk Md Salauddin",
"Jiang Muzhen",
"Aleksandr Maksapetyan",
"Vivien Rossbach",
"Chris Harjadi",
"Mohsen Bahaloohoreh",
"Claire Sparrow",
"Jasdeep Sidhu",
"Sam Ali",
"Song Bian",
"John Lai",
"Eric Singer",
"Justine Leon Uro",
"Greg Bateman",
"Mohamed Sayed",
"Ahmed Menshawy",
"Darling Duclosel",
"Dario Bezzi",
"Yashaswini Jain",
"Ashley Aaron",
"Murat Tiryakioglu",
"Sheeshram Siddh",
"Keith Krenek",
"Imad Ali Shah",
"Jun Jin",
"Scott Creighton",
"Denis Peskoff",
"Zienab El-Wasif",
"Michael Richmond",
"Joseph Mcgowan",
"Tejal Patwardhan",
"Hao-Yu Sun",
"Ting Sun",
"Nikola Zubić",
"Samuele Sala",
"Stephen Ebert",
"Jean Kaddour",
"Manuel Schottdorf",
"Dianzhuo Wang",
"Gerol Petruzella",
"Alex Meiburg",
"Tilen Medved",
"Ali Elsheikh",
"S Ashwin Hebbar",
"Lorenzo Vaquero",
"Xianjun Yang",
"Jason Poulos",
"Vilém Zouhar",
"Sergey Bogdanik",
"Mingfang Zhang",
"Jorge Sanz-Ros",
"David Anugraha",
"Yinwei Dai",
"Anh N Nhu",
"Xue Wang",
"Ali Anil Demircali",
"Zhibai Jia",
"Yuyin Zhou",
"Juncheng Wu",
"Mike He",
"Nitin Chandok",
"Aarush Sinha",
"Gaoxiang Luo",
"Long Le",
"Mickaël Noyé",
"Michał Perełkiewicz",
"Ioannis Pantidis",
"Tianbo Qi",
"Soham Sachin Purohit",
"Letitia Parcalabescu",
"Thai-Hoa Nguyen",
"Genta Indra Winata",
"Edoardo M Ponti",
"Hanchen Li",
"Kaustubh Dhole",
"Jongee Park",
"Dario Abbondanza",
"Yuanli Wang",
"Anupam Nayak",
"Diogo M Caetano",
"Antonio A W L Wong",
"Maria Del Rio-Chanona",
"Dániel Kondor",
"Pieter Francois",
"Ed Chalstrey",
"Jakob Zsambok",
"Dan Hoyer",
"Jenny Reddish",
"Jakob Hauser",
"Francisco-Javier Rodrigo-Ginés",
"Suchandra Datta",
"Maxwell Shepherd",
"Thom Kamphuis",
"Qizheng Zhang",
"Hyunjun Kim",
"Ruiji Sun",
"Jianzhu Yao",
"Franck Dernoncourt",
"Satyapriya Krishna",
"Sina Rismanchian",
"Bonan Pu",
"Francesco Pinto",
"Yingheng Wang",
"Kumar Shridhar",
"Kalon J Overholt",
"Glib Briia",
"Hieu Nguyen",
"David Quod Soler Bartomeu",
"Tony Cy Pang",
"Adam Wecker",
"Yifan Xiong",
"Fanfei Li",
"Lukas S Huber",
"Joshua Jaeger",
"Romano De Maddalena",
"Xing Han Lù",
"Yuhui Zhang",
"Claas Beger",
"Patrick Tser Jern Kon",
"Sean Li",
"Vivek Sanker",
"Ming Yin",
"Yihao Liang",
"Xinlu Zhang",
"Ankit Agrawal",
"Li S Yifei",
"Zechen Zhang",
"Mu Cai",
"Yasin Sonmez",
"Costin Cozianu",
"Changhao Li",
"Alex Slen",
"Shoubin Yu",
"Hyun Kyu Park",
"Gabriele Sarti",
"Marcin Briański",
"Alessandro Stolfo",
"Truong An Nguyen",
"Mike Zhang",
"Yotam Perlitz",
"Jose Hernandez-Orallo",
"Runjia Li",
"Amin Shabani",
"Felix Juefei-Xu",
"Shikhar Dhingra",
"Orr Zohar",
"My Chiffon Nguyen",
"Alexander Pondaven",
"Abdurrahim Yilmaz",
"Xuandong Zhao",
"Chuanyang Jin",
"Muyan Jiang",
"Stefan Todoran",
"Xinyao Han",
"Jules Kreuer",
"Brian Rabern",
"Anna Plassart",
"Martino Maggetti",
"Luther Yap",
"Robert Geirhos",
"Jonathon Kean",
"Dingsu Wang",
"Sina Mollaei",
"Chenkai Sun",
"Yifan Yin",
"Shiqi Wang",
"Rui Li",
"Yaowen Chang",
"Anjiang Wei",
"Alice Bizeul",
"Xiaohan Wang",
"Alexandre Oliveira Arrais",
"Kushin Mukherjee",
"Jorge Chamorro-Padial",
"Jiachen Liu",
"Xingyu Qu",
"Junyi Guan",
"Adam Bouyamourn",
"Shuyu Wu",
"Martyna Plomecka",
"Junda Chen",
"Mengze Tang",
"Jiaqi Deng",
"Shreyas Subramanian",
"Haocheng Xi",
"Haoxuan Chen",
"Weizhi Zhang",
"Yinuo Ren",
"Haoqin Tu",
"Sejong Kim",
"Yushun Chen",
"Sara Vera Marjanović",
"Junwoo Ha",
"Grzegorz Luczyna",
"Jeff J Ma",
"Zewen Shen",
"Dawn Song",
"Cedegao E Zhang",
"Zhun Wang",
"Gaël Gendron",
"Yunze Xiao",
"Leo Smucker",
"Erica Weng",
"Kwok Hao Lee",
"Zhe Ye",
"Stefano Ermon",
"Ignacio D Lopez-Miguel",
"Theo Knights",
"Anthony Gitter",
"Namkyu Park",
"Boyi Wei",
"Hongzheng Chen",
"Kunal Pai",
"Ahmed Elkhanany",
"Han Lin",
"Philipp D Siedler",
"Jichao Fang",
"Ritwik Mishra",
"Károly Zsolnai-Fehér",
"Xilin Jiang",
"Shadab Khan",
"Jun Yuan",
"Rishab Kumar Jain",
"Xi Lin",
"Mike Peterson",
"Zhe Wang",
"Aditya Malusare",
"Maosen Tang",
"Isha Gupta",
"Ivan Fosin",
"Timothy Kang",
"Barbara Dworakowska",
"Kazuki Matsumoto",
"Guangyao Zheng",
"Gerben Sewuster",
"Jorge Pretel Villanueva",
"Ivan Rannev",
"Igor Chernyavsky",
"Jiale Chen",
"Deepayan Banik",
"Ben Racz",
"Wenchao Dong",
"Jianxin Wang",
"Laila Bashmal",
"Duarte V Gonçalves",
"Wei Hu",
"Kaushik Bar",
"Ondrej Bohdal",
"Atharv Singh Patlan",
"Shehzaad Dhuliawala",
"Caroline Geirhos",
"Julien Wist",
"Yuval Kansal",
"Bingsen Chen",
"Kutay Tire",
"Atak Talay Yücel",
"Brandon Christof",
"Veerupaksh Singla",
"Zijian Song",
"Sanxing Chen",
"Jiaxin Ge",
"Kaustubh Ponkshe",
"Isaac Park",
"Tianneng Shi",
"Martin Q Ma",
"Joshua Mak",
"Sherwin Lai",
"Antoine Moulin",
"Zhuo Cheng",
"Zhanda Zhu",
"Ziyi Zhang",
"Vaidehi Patil",
"Ketan Jha",
"Qiutong Men",
"Jiaxuan Wu",
"Tianchi Zhang",
"Bruno Hebling Vieira",
"Alham Fikri Aji",
"Jae-Won Chung",
"Mohammed Mahfoud",
"Ha Thi Hoang",
"Marc Sperzel",
"Wei Hao",
"Kristof Meding",
"Sihan Xu",
"Vassilis Kostakos",
"Davide Manini",
"Yueying Liu",
"Christopher Toukmaji",
"Eunmi Yu",
"Arif Engin Demircali",
"Zhiyi Sun",
"Ivan Dewerpe",
"Hongsen Qin",
"Roman Pflugfelder",
"James Bailey",
"Johnathan Morris",
"Ville Heilala",
"Sybille Rosset",
"Zishun Yu",
"Peter E Chen",
"Woongyeong Yeo",
"Eeshaan Jain",
"Sreekar Chigurupati",
"Julia Chernyavsky",
"Sai Prajwal Reddy",
"Subhashini Venugopalan",
"Hunar Batra",
"Core Francisco Park",
"Hieu Tran",
"Guilherme Maximiano",
"Genghan Zhang",
"Yizhuo Liang",
"Hu Shiyu",
"Rongwu Xu",
"Rui Pan",
"Siddharth Suresh",
"Ziqi Liu",
"Samaksh Gulati",
"Songyang Zhang",
"Peter Turchin",
"Christopher W Bartlett",
"Christopher R Scotese",
"Phuong M Cao",
"Ben Wu",
"Jacek Karwowski",
"Davide Scaramuzza"
],
"doi": "10.1038/s41586-025-09962-4",
"ref_id": "b9",
"title": "A benchmark of expert-level academic questions to assess AI capabilities",
"year": "2022"
},
{
"authors": [
"A Srivastava",
"A Rastogi",
"A Rao",
"A A M Shoeb",
"A Abid",
"A Fisch",
"A R Brown",
"A Santoro",
"A Gupta",
"A Garriga-Alonso",
"A Kluska",
"A Lewkowycz",
"A Agarwal",
"A Power",
"A Ray",
"A Warstadt",
"A W Kocurek"
],
"doi": "",
"ref_id": "b44",
"title": "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models",
"year": "2022"
},
{
"authors": [
"G Jiang",
"M Xu",
"S.-C Zhu",
"W Han",
"C Zhang",
"Y Zhu"
],
"doi": "",
"ref_id": "b20",
"title": "Mpi: Evaluating and inducing personality in pre-trained language models",
"year": "2022"
},
{
"authors": [
"J Vig",
"S Gehrmann",
"Y Belinkov",
"S Qian",
"D Nevo",
"Y Singer",
"S Shieber"
],
"doi": "",
"ref_id": "b48",
"title": "Investigating gender bias in language models using causal mediation analysis",
"year": "2020"
},
{
"authors": [
"L Ouyang",
"J Wu",
"X Jiang",
"D Almeida",
"C Wainwright",
"P Mishkin",
"C Zhang",
"S Agarwal",
"K Slama",
"A Ray"
],
"doi": "",
"ref_id": "b37",
"title": "Training language models to follow instructions with human feedback",
"year": "2022"
},
{
"authors": [
"T Ullman"
],
"doi": "",
"ref_id": "b47",
"title": "Large language models fail on trivial alterations to theory-of-mind tasks",
"year": "2023"
},
{
"authors": [
"J Wei",
"M Bosma",
"V Y Zhao",
"K Guu",
"A W Yu",
"B Lester",
"N Du",
"A M Dai",
"Q V Le"
],
"doi": "",
"ref_id": "b50",
"title": "Finetuned language models are zero-shot learners",
"year": "2021"
},
{
"authors": [
"Thilo Hagendorff",
"Sarah Fabi",
"Michal Kosinski"
],
"doi": "10.1038/s43588-023-00527-x",
"ref_id": "b17",
"title": "Human-like intuitive behavior and reasoning biases emerged in large language models but disappeared in ChatGPT",
"year": "2022"
},
{
"authors": [
"Taylor Shin",
"Yasaman Razeghi",
"Robert L Logan Iv",
"Eric Wallace",
"Sameer Singh"
],
"doi": "10.18653/v1/2020.emnlp-main.346",
"ref_id": "b43",
"title": "AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts",
"year": "November 2020"
},
{
"authors": [
"Anton Korinek"
],
"doi": "10.3386/w30957",
"ref_id": "b25",
"title": "Language Models and Cognitive Automation for Economic Research",
"year": "2023"
},
{
"authors": [
"S L Blodgett",
"S Barocas",
"Iii Daumé",
"H Wallach",
"H"
],
"doi": "",
"ref_id": "b4",
"title": "Language (technology) is power: A critical survey of \"bias\" in nlp",
"year": "2020"
},
{
"authors": [
"Marcel Binz",
"Eric Schulz"
],
"doi": "10.1073/pnas.2218523120",
"ref_id": "b3",
"title": "Using cognitive psychology to understand GPT-3",
"year": "2023"
},
{
"authors": [
"Graham Caron",
"Shashank Srivastava"
],
"doi": "10.18653/v1/2023.findings-emnlp.156",
"ref_id": "b8",
"title": "Manipulating the Perceived Personality Traits of Language Models",
"year": "2022"
},
{
"authors": [
"Takeshi Kojima",
"Yutaka Matsuo",
"Yusuke Iwasawa"
],
"doi": "10.1162/tacl.a.21",
"ref_id": "b24",
"title": "Continual Pre-training on Character-level Noisy Texts Makes Decoder-based Language Models Robust Few-shot Learners",
"year": "2022"
},
{
"authors": [
"J Wei",
"X Wang",
"D Schuurmans",
"M Bosma",
"B Ichter",
"F Xia",
"E Chi",
"Q Le",
"D Zhou"
],
"doi": "10.1017/9781108780704.011",
"ref_id": "b51",
"title": "Index",
"year": "2022. 2022. 30-August-2022"
},
{
"authors": [
"Emily Sheng",
"Kai-Wei Chang",
"Prem Natarajan",
"Nanyun Peng"
],
"doi": "10.18653/v1/2021.acl-long.330",
"ref_id": "b42",
"title": "Societal Biases in Language Generation: Progress and Challenges",
"year": "August 2021"
},
{
"authors": [
"Dan Hendrycks",
"Kevin Zhao",
"Steven Basart",
"Jacob Steinhardt",
"Dawn Song"
],
"doi": "10.1109/cvpr46437.2021.01501",
"ref_id": "b18",
"title": "Natural Adversarial Examples",
"year": "2021"
},
{
"authors": [
"Mitch P Marcus",
"B Santorini",
"M A Marcinkiewicz"
],
"doi": "10.21236/ada273556",
"ref_id": "b33",
"title": "Building a Large Annotated Corpus of English: The Penn Treebank",
"year": "June 1993"
}
] |
[
{
"authors": [
"L P Argyle",
"E C Busby",
"N Fulda",
"J R Gubler",
"C Rytting",
"D Wingate"
],
"doi": "10.1017/pan.2023",
"ref_id": "b0",
"title": "Out of one, many: Using language models to simulate human samples",
"year": "2023"
},
{
"authors": [
"M Bakker",
"M Chadwick",
"H Sheahan",
"M Tessler",
"L Campbell-Gillingham",
"J Balaguer",
"N Mcaleese",
"A Glaese",
"J Aslanides",
"M Botvinick"
],
"doi": "",
"ref_id": "b1",
"title": "Fine-tuning language models to find agreement among humans with diverse preferences",
"year": "2022"
},
{
"authors": [
"Emily M Bender",
"Alexander Koller"
],
"doi": "10.18653/v1/2020.acl-main.463",
"ref_id": "b2",
"title": "Climbing towards NLU: On Meaning, Form, and Understanding in the Age of Data",
"year": "2020"
},
{
"authors": [
"Marcel Binz",
"Eric Schulz"
],
"doi": "10.1073/pnas.2218523120",
"ref_id": "b3",
"title": "Using cognitive psychology to understand GPT-3",
"year": "2023"
},
{
"authors": [
"S L Blodgett",
"S Barocas",
"Iii Daumé",
"H Wallach",
"H"
],
"doi": "",
"ref_id": "b4",
"title": "Language (technology) is power: A critical survey of \"bias\" in nlp",
"year": "2020"
},
{
"authors": [
"J M Bolton",
"D Gunnell",
"G Turecki"
],
"doi": "10.1136/bmj.h4978",
"ref_id": "b5",
"title": "Suicide risk assessment and intervention in people with mental illness",
"year": "2015"
},
{
"authors": [
"T Bolukbasi",
"K.-W Chang",
"J Y Zou",
"V Saligrama",
"A T Kalai"
],
"doi": "",
"ref_id": "b6",
"title": "Man is to computer programmer as woman is to homemaker? debiasing word embeddings",
"year": "2016"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell",
"S Agarwal",
"A Herbert-Voss",
"G Krueger",
"T Henighan",
"R Child",
"A Ramesh",
"D Ziegler",
"J Wu",
"C Winter",
"C Hesse",
"M Chen",
"E Sigler",
"M Litwin",
"S Gray",
"B Chess",
"J Clark",
"C Berner",
"S Mccandlish",
"A Radford",
"I Sutskever",
"D Amodei"
],
"doi": "",
"ref_id": "b7",
"title": "Language models are few-shot learners",
"year": ""
},
{
"authors": [
"Graham Caron",
"Shashank Srivastava"
],
"doi": "10.18653/v1/2023.findings-emnlp.156",
"ref_id": "b8",
"title": "Manipulating the Perceived Personality Traits of Language Models",
"year": "2022"
},
{
"authors": [
"Long Phan",
"Alice Gatti",
"Nathaniel Li",
"Adam Khoja",
"Ryan Kim",
"Richard Ren",
"Jason Hausenloy",
"Oliver Zhang",
"Mantas Mazeika",
"Dan Hendrycks",
"Ziwen Han",
"Josephina Hu",
"Hugh Zhang",
"Chen Bo Calvin Zhang",
"Mohamed Shaaban",
"John Ling",
"Sean Shi",
"Michael Choi",
"Anish Agrawal",
"Arnav Chopra",
"Aakaash Nattanmai",
"Gordon Mckellips",
"Anish Cheraku",
"Asim Suhail",
"Ethan Luo",
"Marvin Deng",
"Jason Luo",
"Ashley Zhang",
"Kavin Jindel",
"Jay Paek",
"Kasper Halevy",
"Allen Baranov",
"Michael Liu",
"Advaith Avadhanam",
"David Zhang",
"Vincent Cheng",
"Brad Ma",
"Evan Fu",
"Liam Do",
"Joshua Lass",
"Hubert Yang",
"Surya Sunkari",
"Vishruth Bharath",
"Violet Ai",
"James Leung",
"Rishit Agrawal",
"Alan Zhou",
"Kevin Chen",
"Tejas Kalpathi",
"Ziqi Xu",
"Gavin Wang",
"Tyler Xiao",
"Erik Maung",
"Sam Lee",
"Ryan Yang",
"Roy Yue",
"Ben Zhao",
"Julia Yoon",
"Xiangwan Sun",
"Aryan Singh",
"Clark Peng",
"Tyler Osbey",
"Taozhi Wang",
"Daryl Echeazu",
"Timothy Wu",
"Spandan Patel",
"Vidhi Kulkarni",
"Vijaykaarti Sundarapandiyan",
"Andrew Le",
"Zafir Nasim",
"Srikar Yalam",
"Ritesh Kasamsetty",
"Soham Samal",
"David Sun",
"Nihar Shah",
"Abhijeet Saha",
"Alex Zhang",
"Leon Nguyen",
"Laasya Nagumalli",
"Kaixin Wang",
"Aidan Wu",
"Anwith Telluri",
"Summer Yue",
"Alexandr Wang",
"Dmitry Dodonov",
"Tung Nguyen",
"Jaeho Lee",
"Daron Anderson",
"Mikhail Doroshenko",
"Alun Cennyth Stokes",
"Mobeen Mahmood",
"Oleksandr Pokutnyi",
"Oleg Iskra",
"Jessica P Wang",
"John-Clark Levin",
"Mstyslav Kazakov",
"Fiona Feng",
"Steven Y Feng",
"Haoran Zhao",
"Michael Yu",
"Varun Gangal",
"Chelsea Zou",
"Zihan Wang",
"Serguei Popov",
"Robert Gerbicz",
"Geoff Galgon",
"Johannes Schmitt",
"Will Yeadon",
"Yongki Lee",
"Scott Sauers",
"Alvaro Sanchez",
"Fabian Giska",
"Marc Roth",
"Søren Riis",
"Saiteja Utpala",
"Noah Burns",
"Gashaw M Goshu",
"Mohinder Maheshbhai Naiya",
"Chidozie Agu",
"Zachary Giboney",
"Antrell Cheatom",
"Francesco Fournier-Facio",
"Sarah-Jane Crowson",
"Lennart Finke",
"Zerui Cheng",
"Jennifer Zampese",
"Ryan G Hoerr",
"Mark Nandor",
"Hyunwoo Park",
"Tim Gehrunger",
"Jiaqi Cai",
"Ben Mccarty",
"Alexis C Garretson",
"Edwin Taylor",
"Damien Sileo",
"Qiuyu Ren",
"Usman Qazi",
"Lianghui Li",
"Jungbae Nam",
"John B Wydallis",
"Pavel Arkhipov",
"Jack Wei Lun Shi",
"Aras Bacho",
"Chris G Willcocks",
"Hangrui Cao",
"Sumeet Motwani",
"Emily De Oliveira Santos",
"Johannes Veith",
"Edward Vendrow",
"Doru Cojoc",
"Kengo Zenitani",
"Joshua Robinson",
"Longke Tang",
"Yuqi Li",
"Joshua Vendrow",
"Natanael Wildner Fraga",
"Vladyslav Kuchkin",
"Andrey Pupasov Maksimov",
"Pierre Marion",
"Denis Efremov",
"Jayson Lynch",
"Kaiqu Liang",
"Aleksandar Mikov",
"Andrew Gritsevskiy",
"Julien Guillod",
"Gözdenur Demir",
"Dakotah Martinez",
"Ben Pageler",
"Kevin Zhou",
"Saeed Soori",
"Ori Press",
"Henry Tang",
"Paolo Rissone",
"Sean R Green",
"Lina Brüssel",
"Moon Twayana",
"Aymeric Dieuleveut",
"Joseph Marvin Imperial",
"Ameya Prabhu",
"Jinzhou Yang",
"Nick Crispino",
"Arun Rao",
"Dimitri Zvonkine",
"Gabriel Loiseau",
"Mikhail Kalinin",
"Marco Lukas",
"Ciprian Manolescu",
"Nate Stambaugh",
"Subrata Mishra",
"Tad Hogg",
"Carlo Bosio",
"Brian P Coppola",
"Julian Salazar",
"Jaehyeok Jin",
"Rafael Sayous",
"Stefan Ivanov",
"Philippe Schwaller",
"Shaipranesh Senthilkumar",
"Andres M Bran",
"Andres Algaba",
"Kelsey Van Den Houte",
"Lynn Van Der Sypt",
"Brecht Verbeken",
"David Noever",
"Alexei Kopylov",
"Benjamin Myklebust",
"Bikun Li",
"Lisa Schut",
"Evgenii Zheltonozhskii",
"Qiaochu Yuan",
"Derek Lim",
"Richard Stanley",
"Tong Yang",
"John Maar",
"Julian Wykowski",
"Mart Oller",
"Anmol Sahu",
"Cesare Giulio Ardito",
"Yuzheng Hu",
"Ariel Ghislain Kemogne Kamdoum",
"Alvin Jin",
"Tobias Garcia Vilchis",
"Yuexuan Zu",
"Martin Lackner",
"James Koppel",
"Gongbo Sun",
"Daniil S Antonenko",
"Steffi Chern",
"Bingchen Zhao",
"Pierrot Arsene",
"Joseph M Cavanagh",
"Daofeng Li",
"Jiawei Shen",
"Donato Crisostomi",
"Wenjin Zhang",
"Ali Dehghan",
"Sergey Ivanov",
"David Perrella",
"Nurdin Kaparov",
"Allen Zang",
"Ilia Sucholutsky",
"Arina Kharlamova",
"Daniil Orel",
"Vladislav Poritski",
"Shalev Ben-David",
"Zachary Berger",
"Parker Whitfill",
"Michael Foster",
"Daniel Munro",
"Linh Ho",
"Shankar Sivarajan",
"Dan Bar Hava",
"Aleksey Kuchkin",
"David Holmes",
"Alexandra Rodriguez-Romero",
"Frank Sommerhage",
"Anji Zhang",
"Richard Moat",
"Keith Schneider",
"Zakayo Kazibwe",
"Don Clarke",
"Dae Hyun Kim",
"Felipe Meneguitti Dias",
"Sara Fish",
"Veit Elser",
"Tobias Kreiman",
"Victor Efren Guadarrama Vilchis",
"Immo Klose",
"Ujjwala Anantheswaran",
"Adam Zweiger",
"Kaivalya Rawal",
"Jeffery Li",
"Jeremy Nguyen",
"Nicolas Daans",
"Haline Heidinger",
"Maksim Radionov",
"Václav Rozhoň",
"Vincent Ginis",
"Christian Stump",
"Niv Cohen",
"Rafał Poświata",
"Josef Tkadlec",
"Alan Goldfarb",
"Chenguang Wang",
"Piotr Padlewski",
"Stanislaw Barzowski",
"Kyle Montgomery",
"Ryan Stendall",
"Jamie Tucker-Foltz",
"Jack Stade",
"T Ryan Rogers",
"Tom Goertzen",
"Declan Grabb",
"Abhishek Shukla",
"Alan Givré",
"John Arnold Ambay",
"Archan Sen",
"Muhammad Fayez Aziz",
"Mark H Inlow",
"Hao He",
"Ling Zhang",
"Younesse Kaddar",
"Ivar Ängquist",
"Yanxu Chen",
"Harrison K Wang",
"Kalyan Ramakrishnan",
"Elliott Thornley",
"Antonio Terpin",
"Hailey Schoelkopf",
"Eric Zheng",
"Avishy Carmi",
"Ethan D L Brown",
"Kelin Zhu",
"Max Bartolo",
"Richard Wheeler",
"Martin Stehberger",
"Peter Bradshaw",
"J P Heimonen",
"Kaustubh Sridhar",
"Ido Akov",
"Jennifer Sandlin",
"Yury Makarychev",
"Joanna Tam",
"Hieu Hoang",
"David M Cunningham",
"Vladimir Goryachev",
"Demosthenes Patramanis",
"Michael Krause",
"Andrew Redenti",
"David Aldous",
"Jesyin Lai",
"Shannon Coleman",
"Jiangnan Xu",
"Sangwon Lee",
"Ilias Magoulas",
"Sandy Zhao",
"Ning Tang",
"Michael K Cohen",
"Orr Paradise",
"Jan Hendrik Kirchner",
"Maksym Ovchynnikov",
"Jason O Matos",
"Adithya Shenoy",
"Michael Wang",
"Yuzhou Nie",
"Anna Sztyber-Betley",
"Paolo Faraboschi",
"Robin Riblet",
"Jonathan Crozier",
"Shiv Halasyamani",
"Shreyas Verma",
"Prashant Joshi",
"Eli Meril",
"Ziqiao Ma",
"Jérémy Andréoletti",
"Raghav Singhal",
"Jacob Platnick",
"Volodymyr Nevirkovets",
"Luke Basler",
"Alexander Ivanov",
"Seri Khoury",
"Nils Gustafsson",
"Marco Piccardo",
"Hamid Mostaghimi",
"Qijia Chen",
"Virendra Singh",
"Tran Quoc Khánh",
"Paul Rosu",
"Hannah Szlyk",
"Zachary Brown",
"Himanshu Narayan",
"Aline Menezes",
"Jonathan Roberts",
"William Alley",
"Kunyang Sun",
"Arkil Patel",
"Max Lamparth",
"Anka Reuel",
"Linwei Xin",
"Hanmeng Xu",
"Jacob Loader",
"Freddie Martin",
"Zixuan Wang",
"Andrea Achilleos",
"Thomas Preu",
"Tomek Korbak",
"Ida Bosio",
"Fereshteh Kazemi",
"Ziye Chen",
"Biró Bálint",
"Eve J Y Lo",
"Jiaqi Wang",
"Maria Inês S Nunes",
"Jeremiah Milbauer",
"M Saiful Bari",
"Zihao Wang",
"Behzad Ansarinejad",
"Yewen Sun",
"Stephane Durand",
"Hossam Elgnainy",
"Guillaume Douville",
"Daniel Tordera",
"George Balabanian",
"Hew Wolff",
"Lynna Kvistad",
"Hsiaoyun Milliron",
"Ahmad Sakor",
"Murat Eron",
"D O Andrew Favre",
"Shailesh Shah",
"Xiaoxiang Zhou",
"Firuz Kamalov",
"Sherwin Abdoli",
"Tim Santens",
"Shaul Barkan",
"Allison Tee",
"Robin Zhang",
"Alessandro Tomasiello",
"G Bruno De Luca",
"Shi-Zhuo Looi",
"Vinh-Kha Le",
"Noam Kolt",
"Jiayi Pan",
"Emma Rodman",
"Jacob Drori",
"Carl J Fossum",
"Niklas Muennighoff",
"Milind Jagota",
"Ronak Pradeep",
"Honglu Fan",
"Jonathan Eicher",
"Michael Chen",
"Kushal Thaman",
"William Merrill",
"Moritz Firsching",
"Carter Harris",
"Stefan Ciobâcă",
"Jason Gross",
"Rohan Pandey",
"Ilya Gusev",
"Adam Jones",
"Shashank Agnihotri",
"Pavel Zhelnov",
"Mohammadreza Mofayezi",
"Alexander Piperski",
"David K Zhang",
"Kostiantyn Dobarskyi",
"Roman Leventov",
"Ignat Soroko",
"Joshua Duersch",
"Vage Taamazyan",
"Andrew Ho",
"Wenjie Ma",
"William Held",
"Ruicheng Xian",
"Armel Randy Zebaze",
"Mohanad Mohamed",
"Julian Noah Leser",
"Michelle X Yuan",
"Laila Yacar",
"Johannes Lengler",
"Katarzyna Olszewska",
"Claudio Di Fratta",
"Edson Oliveira",
"Joseph W Jackson",
"Andy Zou",
"Muthu Chidambaram",
"Timothy Manik",
"Hector Haffenden",
"Dashiell Stander",
"Ali Dasouqi",
"Alexander Shen",
"Bita Golshani",
"David Stap",
"Egor Kretov",
"Mikalai Uzhou",
"Alina Borisovna Zhidkovskaya",
"Nick Winter",
"Miguel Orbegozo Rodriguez",
"Robert Lauff",
"Dustin Wehr",
"Colin Tang",
"Zaki Hossain",
"Shaun Phillips",
"Fortuna Samuele",
"Fredrik Ekström",
"Angela Hammon",
"Oam Patel",
"Faraz Farhidi",
"George Medley",
"Forough Mohammadzadeh",
"Madellene Peñaflor",
"Haile Kassahun",
"Alena Friedrich",
"Rayner Hernandez Perez",
"Daniel Pyda",
"Taom Sakal",
"Omkar Dhamane",
"Ali Khajegili Mirabadi",
"Eric Hallman",
"Kenchi Okutsu",
"Mike Battaglia",
"Mohammad Maghsoudimehrabani",
"Alon Amit",
"Dave Hulbert",
"Roberto Pereira",
"Simon Weber",
"Handoko",
"Anton Peristyy",
"Stephen Malina",
"Mustafa Mehkary",
"Rami Aly",
"Frank Reidegeld",
"Anna-Katharina Dick",
"Cary Friday",
"Mukhwinder Singh",
"Hassan Shapourian",
"Wanyoung Kim",
"Mariana Costa",
"Hubeyb Gurdogan",
"Harsh Kumar",
"Chiara Ceconello",
"Chao Zhuang",
"Haon Park",
"Micah Carroll",
"Andrew R Tawfeek",
"Stefan Steinerberger",
"Daattavya Aggarwal",
"Michael Kirchhof",
"Linjie Dai",
"Evan Kim",
"Johan Ferret",
"Jainam Shah",
"Yuzhou Wang",
"Minghao Yan",
"Krzysztof Burdzy",
"Lixin Zhang",
"Antonio Franca",
"Diana T Pham",
"Kang Yong Loh",
"Joshua Robinson",
"Abram Jackson",
"Paolo Giordano",
"Philipp Petersen",
"Adrian Cosma",
"Jesus Colino",
"Colin White",
"Jacob Votava",
"Vladimir Vinnikov",
"Ethan Delaney",
"Petr Spelda",
"Vit Stritecky",
"Syed M Shahid",
"Jean-Christophe Mourrat",
"Lavr Vetoshkin",
"Koen Sponselee",
"Renas Bacho",
"Zheng-Xin Yong",
"Florencia De La Rosa",
"Nathan Cho",
"Xiuyu Li",
"Guillaume Malod",
"Orion Weller",
"Guglielmo Albani",
"Leon Lang",
"Julien Laurendeau",
"Dmitry Kazakov",
"Fatimah Adesanya",
"Julien Portier",
"Lawrence Hollom",
"Victor Souza",
"Yuchen Anna Zhou",
"Julien Degorre",
"Yiğit Yaln",
"Gbenga Daniel Obikoya",
"Rai Michael Pokorny",
"Filippo Bigi",
"M C Boscá",
"Oleg Shumar",
"Kaniuar Bacho",
"Gabriel Recchia",
"Mara Popescu",
"Nikita Shulga",
"Ngefor Mildred Tanwie",
"Thomas C H Lux",
"Ben Rank",
"Colin Ni",
"Matthew Brooks",
"Alesia Yakimchyk",
"Huanxu Quinn Liu",
"Stefano Cavalleri",
"Olle Häggström",
"Emil Verkama",
"Joshua Newbould",
"Hans Gundlach",
"Leonor Brito-Santana",
"Brian Amaro",
"Vivek Vajipey",
"Rynaa Grover",
"Ting Wang",
"Yosi Kratish",
"Wen-Ding Li",
"Sivakanth Gopi",
"Andrea Caciolai",
"Christian Schroeder De Witt",
"Pablo Hernández-Cámara",
"Emanuele Rodolà",
"Jules Robins",
"Dominic Williamson",
"Brad Raynor",
"Hao Qi",
"Ben Segev",
"Jingxuan Fan",
"Sarah Martinson",
"Erik Y Wang",
"Kaylie Hausknecht",
"Michael P Brenner",
"Mao Mao",
"Christoph Demian",
"Peyman Kassani",
"Xinyu Zhang",
"David Avagian",
"Eshawn Jessica Scipio",
"Alon Ragoler",
"Justin Tan",
"Blake Sims",
"Rebeka Plecnik",
"Aaron Kirtland",
"Omer Faruk Bodur",
"D P Shinde",
"Yan Carlos Leyva Labrador",
"Zahra Adoul",
"Mohamed Zekry",
"Ali Karakoc",
"Tania C B Santos",
"Samir Shamseldeen",
"Loukmane Karim",
"Anna Liakhovitskaia",
"Nate Resman",
"Nicholas Farina",
"Juan Carlos Gonzalez",
"Gabe Maayan",
"Earth Anderson",
"Rodrigo De Oliveira Pena",
"Elizabeth Kelley",
"Hodjat Mariji",
"Rasoul Pouriamanesh",
"Wentao Wu",
"Ross Finocchio",
"Ismail Alarab",
"Joshua Cole",
"Danyelle Ferreira",
"Bryan Johnson",
"Mohammad Safdari",
"Liangti Dai",
"Siriphan Arthornthurasuk",
"Isaac C Mcalister",
"Alejandro José Moyano",
"Alexey Pronin",
"Jing Fan",
"Angel Ramirez-Trinidad",
"Yana Malysheva",
"Daphiny Pottmaier",
"Omid Taheri",
"Stanley Stepanic",
"Samuel Perry",
"Luke Askew",
"Raúl Adrián Huerta Rodrguez",
"Ali M R Minissi",
"Ricardo Lorena",
"Krishnamurthy Iyer",
"Arshad Anil Fasiludeen",
"Ronald Clark",
"Josh Ducey",
"Matheus Piza",
"Maja Somrak",
"Eric Vergo",
"Juehang Qin",
"Benjámin Borbás",
"Eric Chu",
"Jack Lindsey",
"Antoine Jallon",
"I M J Mcinnis",
"Evan Chen",
"Avi Semler",
"Luk Gloor",
"Tej Shah",
"Marc Carauleanu",
"Pascal Lauer",
"Tran Duc Huy",
"Hossein Shahrtash",
"Emilien Duc",
"Lukas Lewark",
"Assaf Brown",
"Samuel Albanie",
"Brian Weber",
"Warren S Vaz",
"Pierre Clavier",
"Yiyang Fan",
"Gabriel Poesia Reis E Silva",
"Long Tony Lian",
"Marcus Abramovitch",
"Xi Jiang",
"Sandra Mendoza",
"Murat Islam",
"Juan Gonzalez",
"Vasilios Mavroudis",
"Justin Xu",
"Pawan Kumar",
"Laxman Prasad Goswami",
"Daniel Bugas",
"Nasser Heydari",
"Ferenc Jeanplong",
"Thorben Jansen",
"Antonella Pinto",
"Archimedes Apronti",
"Abdallah Galal",
"Ng Ze-An",
"Ankit Singh",
"Tong Jiang",
"Joan Of Arc Xavier",
"Kanu Priya Agarwal",
"Mohammed Berkani",
"Gang Zhang",
"Zhehang Du",
"Benedito Alves De Oliveira Junior",
"Dmitry Malishev",
"Nicolas Remy",
"Taylor D Hartman",
"Tim Tarver",
"Stephen Mensah",
"Gautier Abou Loume",
"Wiktor Morak",
"Farzad Habibi",
"Sarah Hoback",
"Will Cai",
"Javier Gimenez",
"Roselynn Grace Montecillo",
"Jakub Łucki",
"Russell Campbell",
"Asankhaya Sharma",
"Khalida Meer",
"Shreen Gul",
"Daniel Espinosa Gonzalez",
"Xavier Alapont",
"Alex Hoover",
"Gunjan Chhablani",
"Freddie Vargus",
"Arunim Agarwal",
"Yibo Jiang",
"Deepakkumar Patil",
"David Outevsky",
"Kevin Joseph Scaria",
"Rajat Maheshwari",
"Abdelkader Dendane",
"Priti Shukla",
"Ashley Cartwright",
"Sergei Bogdanov",
"Niels Mündler",
"Sören Möller",
"Luca Arnaboldi",
"Kunvar Thaman",
"Muhammad Rehan Siddiqi",
"Prajvi Saxena",
"Himanshu Gupta",
"Tony Fruhauff",
"Glen Sherman",
"Mátyás Vincze",
"Siranut Usawasutsakorn",
"Dylan Ler",
"Anil Radhakrishnan",
"Innocent Enyekwe",
"Sk Md Salauddin",
"Jiang Muzhen",
"Aleksandr Maksapetyan",
"Vivien Rossbach",
"Chris Harjadi",
"Mohsen Bahaloohoreh",
"Claire Sparrow",
"Jasdeep Sidhu",
"Sam Ali",
"Song Bian",
"John Lai",
"Eric Singer",
"Justine Leon Uro",
"Greg Bateman",
"Mohamed Sayed",
"Ahmed Menshawy",
"Darling Duclosel",
"Dario Bezzi",
"Yashaswini Jain",
"Ashley Aaron",
"Murat Tiryakioglu",
"Sheeshram Siddh",
"Keith Krenek",
"Imad Ali Shah",
"Jun Jin",
"Scott Creighton",
"Denis Peskoff",
"Zienab El-Wasif",
"Michael Richmond",
"Joseph Mcgowan",
"Tejal Patwardhan",
"Hao-Yu Sun",
"Ting Sun",
"Nikola Zubić",
"Samuele Sala",
"Stephen Ebert",
"Jean Kaddour",
"Manuel Schottdorf",
"Dianzhuo Wang",
"Gerol Petruzella",
"Alex Meiburg",
"Tilen Medved",
"Ali Elsheikh",
"S Ashwin Hebbar",
"Lorenzo Vaquero",
"Xianjun Yang",
"Jason Poulos",
"Vilém Zouhar",
"Sergey Bogdanik",
"Mingfang Zhang",
"Jorge Sanz-Ros",
"David Anugraha",
"Yinwei Dai",
"Anh N Nhu",
"Xue Wang",
"Ali Anil Demircali",
"Zhibai Jia",
"Yuyin Zhou",
"Juncheng Wu",
"Mike He",
"Nitin Chandok",
"Aarush Sinha",
"Gaoxiang Luo",
"Long Le",
"Mickaël Noyé",
"Michał Perełkiewicz",
"Ioannis Pantidis",
"Tianbo Qi",
"Soham Sachin Purohit",
"Letitia Parcalabescu",
"Thai-Hoa Nguyen",
"Genta Indra Winata",
"Edoardo M Ponti",
"Hanchen Li",
"Kaustubh Dhole",
"Jongee Park",
"Dario Abbondanza",
"Yuanli Wang",
"Anupam Nayak",
"Diogo M Caetano",
"Antonio A W L Wong",
"Maria Del Rio-Chanona",
"Dániel Kondor",
"Pieter Francois",
"Ed Chalstrey",
"Jakob Zsambok",
"Dan Hoyer",
"Jenny Reddish",
"Jakob Hauser",
"Francisco-Javier Rodrigo-Ginés",
"Suchandra Datta",
"Maxwell Shepherd",
"Thom Kamphuis",
"Qizheng Zhang",
"Hyunjun Kim",
"Ruiji Sun",
"Jianzhu Yao",
"Franck Dernoncourt",
"Satyapriya Krishna",
"Sina Rismanchian",
"Bonan Pu",
"Francesco Pinto",
"Yingheng Wang",
"Kumar Shridhar",
"Kalon J Overholt",
"Glib Briia",
"Hieu Nguyen",
"David Quod Soler Bartomeu",
"Tony Cy Pang",
"Adam Wecker",
"Yifan Xiong",
"Fanfei Li",
"Lukas S Huber",
"Joshua Jaeger",
"Romano De Maddalena",
"Xing Han Lù",
"Yuhui Zhang",
"Claas Beger",
"Patrick Tser Jern Kon",
"Sean Li",
"Vivek Sanker",
"Ming Yin",
"Yihao Liang",
"Xinlu Zhang",
"Ankit Agrawal",
"Li S Yifei",
"Zechen Zhang",
"Mu Cai",
"Yasin Sonmez",
"Costin Cozianu",
"Changhao Li",
"Alex Slen",
"Shoubin Yu",
"Hyun Kyu Park",
"Gabriele Sarti",
"Marcin Briański",
"Alessandro Stolfo",
"Truong An Nguyen",
"Mike Zhang",
"Yotam Perlitz",
"Jose Hernandez-Orallo",
"Runjia Li",
"Amin Shabani",
"Felix Juefei-Xu",
"Shikhar Dhingra",
"Orr Zohar",
"My Chiffon Nguyen",
"Alexander Pondaven",
"Abdurrahim Yilmaz",
"Xuandong Zhao",
"Chuanyang Jin",
"Muyan Jiang",
"Stefan Todoran",
"Xinyao Han",
"Jules Kreuer",
"Brian Rabern",
"Anna Plassart",
"Martino Maggetti",
"Luther Yap",
"Robert Geirhos",
"Jonathon Kean",
"Dingsu Wang",
"Sina Mollaei",
"Chenkai Sun",
"Yifan Yin",
"Shiqi Wang",
"Rui Li",
"Yaowen Chang",
"Anjiang Wei",
"Alice Bizeul",
"Xiaohan Wang",
"Alexandre Oliveira Arrais",
"Kushin Mukherjee",
"Jorge Chamorro-Padial",
"Jiachen Liu",
"Xingyu Qu",
"Junyi Guan",
"Adam Bouyamourn",
"Shuyu Wu",
"Martyna Plomecka",
"Junda Chen",
"Mengze Tang",
"Jiaqi Deng",
"Shreyas Subramanian",
"Haocheng Xi",
"Haoxuan Chen",
"Weizhi Zhang",
"Yinuo Ren",
"Haoqin Tu",
"Sejong Kim",
"Yushun Chen",
"Sara Vera Marjanović",
"Junwoo Ha",
"Grzegorz Luczyna",
"Jeff J Ma",
"Zewen Shen",
"Dawn Song",
"Cedegao E Zhang",
"Zhun Wang",
"Gaël Gendron",
"Yunze Xiao",
"Leo Smucker",
"Erica Weng",
"Kwok Hao Lee",
"Zhe Ye",
"Stefano Ermon",
"Ignacio D Lopez-Miguel",
"Theo Knights",
"Anthony Gitter",
"Namkyu Park",
"Boyi Wei",
"Hongzheng Chen",
"Kunal Pai",
"Ahmed Elkhanany",
"Han Lin",
"Philipp D Siedler",
"Jichao Fang",
"Ritwik Mishra",
"Károly Zsolnai-Fehér",
"Xilin Jiang",
"Shadab Khan",
"Jun Yuan",
"Rishab Kumar Jain",
"Xi Lin",
"Mike Peterson",
"Zhe Wang",
"Aditya Malusare",
"Maosen Tang",
"Isha Gupta",
"Ivan Fosin",
"Timothy Kang",
"Barbara Dworakowska",
"Kazuki Matsumoto",
"Guangyao Zheng",
"Gerben Sewuster",
"Jorge Pretel Villanueva",
"Ivan Rannev",
"Igor Chernyavsky",
"Jiale Chen",
"Deepayan Banik",
"Ben Racz",
"Wenchao Dong",
"Jianxin Wang",
"Laila Bashmal",
"Duarte V Gonçalves",
"Wei Hu",
"Kaushik Bar",
"Ondrej Bohdal",
"Atharv Singh Patlan",
"Shehzaad Dhuliawala",
"Caroline Geirhos",
"Julien Wist",
"Yuval Kansal",
"Bingsen Chen",
"Kutay Tire",
"Atak Talay Yücel",
"Brandon Christof",
"Veerupaksh Singla",
"Zijian Song",
"Sanxing Chen",
"Jiaxin Ge",
"Kaustubh Ponkshe",
"Isaac Park",
"Tianneng Shi",
"Martin Q Ma",
"Joshua Mak",
"Sherwin Lai",
"Antoine Moulin",
"Zhuo Cheng",
"Zhanda Zhu",
"Ziyi Zhang",
"Vaidehi Patil",
"Ketan Jha",
"Qiutong Men",
"Jiaxuan Wu",
"Tianchi Zhang",
"Bruno Hebling Vieira",
"Alham Fikri Aji",
"Jae-Won Chung",
"Mohammed Mahfoud",
"Ha Thi Hoang",
"Marc Sperzel",
"Wei Hao",
"Kristof Meding",
"Sihan Xu",
"Vassilis Kostakos",
"Davide Manini",
"Yueying Liu",
"Christopher Toukmaji",
"Eunmi Yu",
"Arif Engin Demircali",
"Zhiyi Sun",
"Ivan Dewerpe",
"Hongsen Qin",
"Roman Pflugfelder",
"James Bailey",
"Johnathan Morris",
"Ville Heilala",
"Sybille Rosset",
"Zishun Yu",
"Peter E Chen",
"Woongyeong Yeo",
"Eeshaan Jain",
"Sreekar Chigurupati",
"Julia Chernyavsky",
"Sai Prajwal Reddy",
"Subhashini Venugopalan",
"Hunar Batra",
"Core Francisco Park",
"Hieu Tran",
"Guilherme Maximiano",
"Genghan Zhang",
"Yizhuo Liang",
"Hu Shiyu",
"Rongwu Xu",
"Rui Pan",
"Siddharth Suresh",
"Ziqi Liu",
"Samaksh Gulati",
"Songyang Zhang",
"Peter Turchin",
"Christopher W Bartlett",
"Christopher R Scotese",
"Phuong M Cao",
"Ben Wu",
"Jacek Karwowski",
"Davide Scaramuzza"
],
"doi": "10.1038/s41586-025-09962-4",
"ref_id": "b9",
"title": "A benchmark of expert-level academic questions to assess AI capabilities",
"year": "2022"
},
{
"authors": [
"K Christianson",
"A Hollingworth",
"J F Halliwell",
"F Ferreira"
],
"doi": "",
"ref_id": "b10",
"title": "Thematic roles assigned along the garden path linger",
"year": "2001"
},
{
"authors": [
"S Crain",
"M Steedman"
],
"doi": "",
"ref_id": "b11",
"title": "On not being led up the garden path: the use of context by the psychological syntax processor",
"year": "1985"
},
{
"authors": [
"Kate Darling"
],
"doi": "10.4337/9781783476732.00017",
"ref_id": "b12",
"title": "Extending legal protection to social robots: The effects of anthropomorphism, empathy, and violent behavior towards robotic objects",
"year": "2016"
},
{
"authors": [
"I Dasgupta",
"A K Lampinen",
"S C Chan",
"A Creswell",
"D Kumaran",
"J L Mcclelland",
"F Hill"
],
"doi": "",
"ref_id": "b13",
"title": "Language models show human-like content effects on reasoning",
"year": "2022"
},
{
"authors": [
"C C Eckel",
"P J Grossman"
],
"doi": "10.1111/j.1465-7295.2001.tb00059.x",
"ref_id": "b14",
"title": "Chivalry and solidarity in ultimatum games",
"year": "April 2001"
},
{
"authors": [
"Francis Galton"
],
"doi": "10.1038/075450a0",
"ref_id": "b15",
"title": "Vox Populi",
"year": "1907"
},
{
"authors": [
"Werner Güth",
"Rolf Schmittberger",
"Bernd Schwarze"
],
"doi": "10.1016/0167-2681(82)90011-7",
"ref_id": "b16",
"title": "An experimental analysis of ultimatum bargaining",
"year": "1982"
},
{
"authors": [
"Thilo Hagendorff",
"Sarah Fabi",
"Michal Kosinski"
],
"doi": "10.1038/s43588-023-00527-x",
"ref_id": "b17",
"title": "Human-like intuitive behavior and reasoning biases emerged in large language models but disappeared in ChatGPT",
"year": "2022"
},
{
"authors": [
"Dan Hendrycks",
"Kevin Zhao",
"Steven Basart",
"Jacob Steinhardt",
"Dawn Song"
],
"doi": "10.1109/cvpr46437.2021.01501",
"ref_id": "b18",
"title": "Natural Adversarial Examples",
"year": "2021"
},
{
"authors": [
"Daniel Houser",
"Kevin Mccabe"
],
"doi": "10.1016/b978-0-12-416008-8.00002-4",
"ref_id": "b19",
"title": "Experimental Economics and Experimental Game Theory",
"year": "2014"
},
{
"authors": [
"G Jiang",
"M Xu",
"S.-C Zhu",
"W Han",
"C Zhang",
"Y Zhu"
],
"doi": "",
"ref_id": "b20",
"title": "Mpi: Evaluating and inducing personality in pre-trained language models",
"year": "2022"
},
{
"authors": [
"Liwei Jiang",
"Jena D Hwang",
"Chandra Bhagavatula",
"Ronan Le Bras",
"Jenny T Liang",
"Sydney Levine",
"Jesse Dodge",
"Keisuke Sakaguchi",
"Maxwell Forbes",
"Jack Hessel",
"Jon Borchardt",
"Taylor Sorensen",
"Saadia Gabriel",
"Yulia Tsvetkov",
"Oren Etzioni",
"Maarten Sap",
"Regina Rini",
"Yejin Choi"
],
"doi": "10.1038/s42256-024-00969-6",
"ref_id": "b21",
"title": "Investigating machine moral judgement through the Delphi experiment",
"year": "2021"
},
{
"authors": [
"E Jones",
"J Steinhardt"
],
"doi": "",
"ref_id": "b22",
"title": "Capturing failures of large language models via human cognitive biases",
"year": "2022"
},
{
"authors": [
"Saketh Reddy Karra",
"Son The Nguyen",
"Theja Tulabandhula"
],
"doi": "10.2139/ssrn.4598766",
"ref_id": "b23",
"title": "Estimating the Personality of White-Box Language Models",
"year": "2022"
},
{
"authors": [
"Takeshi Kojima",
"Yutaka Matsuo",
"Yusuke Iwasawa"
],
"doi": "10.1162/tacl.a.21",
"ref_id": "b24",
"title": "Continual Pre-training on Character-level Noisy Texts Makes Decoder-based Language Models Robust Few-shot Learners",
"year": "2022"
},
{
"authors": [
"Anton Korinek"
],
"doi": "10.3386/w30957",
"ref_id": "b25",
"title": "Language Models and Cognitive Automation for Economic Research",
"year": "2023"
},
{
"authors": [
"M Kosinski"
],
"doi": "",
"ref_id": "b26",
"title": "Theory of mind may have spontaneously emerged in large language models",
"year": "2023"
},
{
"authors": [
"D C Krawczyk"
],
"doi": "",
"ref_id": "b27",
"title": "Chapter 12 -social cognition: Reasoning with others",
"year": ""
},
{
"authors": [],
"doi": "10.1016/B978-0-12-809285-9.00012-0",
"ref_id": "b28",
"title": "Reasoning",
"year": "2018"
},
{
"authors": [
"P Liang",
"R Bommasani",
"T Lee",
"D Tsipras",
"D Soylu",
"M Yasunaga",
"Y Zhang",
"D Narayanan",
"Y Wu",
"A Kumar",
"B Newman",
"B Yuan",
"B Yan",
"C Zhang",
"C Cosgrove",
"C D Manning",
"C Ré",
"D Acosta-Navas",
"D A Hudson",
"E Zelikman",
"E Durmus",
"F Ladhak",
"F Rong",
"H Ren",
"H Yao",
"J Wang",
"K Santhanam",
"L Orr",
"L Zheng",
"M Yuksekgonul",
"M Suzgun",
"N Kim",
"N Guha",
"N Chatterji",
"O Khattab",
"P Henderson",
"Q Huang",
"R Chi",
"S M Xie",
"S Santurkar",
"S Ganguli",
"T Hashimoto",
"T Icard",
"T Zhang",
"V Chaudhary",
"W Wang",
"X Li",
"Y Mai",
"Y Zhang",
"Y Koreeda"
],
"doi": "",
"ref_id": "b29",
"title": "Holistic evaluation of language models",
"year": "2022"
},
{
"authors": [
"Pengfei Liu",
"Weizhe Yuan",
"Jinlan Fu",
"Zhengbao Jiang",
"Hiroaki Hayashi",
"Graham Neubig"
],
"doi": "10.1145/3560815",
"ref_id": "b30",
"title": "Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing",
"year": "2021"
},
{
"authors": [
"Yao Lu",
"Max Bartolo",
"Alastair Moore",
"Sebastian Riedel",
"Pontus Stenetorp"
],
"doi": "10.18653/v1/2022.acl-long.556",
"ref_id": "b31",
"title": "Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity",
"year": "2021"
},
{
"authors": [
"C M Macal",
"M J North"
],
"doi": "10.1057/jos.2010.3",
"ref_id": "b32",
"title": "Tutorial on agent-based modelling and simulation",
"year": "2010"
},
{
"authors": [
"Mitch P Marcus",
"B Santorini",
"M A Marcinkiewicz"
],
"doi": "10.21236/ada273556",
"ref_id": "b33",
"title": "Building a Large Annotated Corpus of English: The Penn Treebank",
"year": "June 1993"
},
{
"authors": [
"Johnnatan Messias",
"Pantelis Vikatos",
"Fabrício Benevenuto"
],
"doi": "10.1145/3106426.3106472",
"ref_id": "b34",
"title": "White, man, and highly followed",
"year": "2017"
},
{
"authors": [
"Stanley Milgram"
],
"doi": "10.1037/h0040525",
"ref_id": "b35",
"title": "Behavioral Study of obedience.",
"year": "1963"
},
{
"authors": [
"Mehdi Moussaïd",
"Juliane E Kämmer",
"Pantelis P Analytis",
"Hansjörg Neth"
],
"doi": "10.1371/journal.pone.0078433",
"ref_id": "b36",
"title": "Social Influence and the Collective Dynamics of Opinion Formation",
"year": "11 2013. March 2023"
},
{
"authors": [
"L Ouyang",
"J Wu",
"X Jiang",
"D Almeida",
"C Wainwright",
"P Mishkin",
"C Zhang",
"S Agarwal",
"K Slama",
"A Ray"
],
"doi": "",
"ref_id": "b37",
"title": "Training language models to follow instructions with human feedback",
"year": "2022"
},
{
"authors": [
"Scott Page"
],
"doi": "10.1515/9780691271750",
"ref_id": "b38",
"title": "The Difference",
"year": "2007"
},
{
"authors": [
"Joon Sung Park",
"Lindsay Popowski",
"Carrie Cai",
"Meredith Ringel Morris",
"Percy Liang",
"Michael S Bernstein"
],
"doi": "10.1145/3526113.3545616",
"ref_id": "b39",
"title": "Social Simulacra: Creating Populated Prototypes for Social Computing Systems",
"year": "2022"
},
{
"authors": [
"Nikole D Patson",
"Emily S Darowski",
"Nicole Moon",
"Fernanda Ferreira"
],
"doi": "10.1037/a0014276",
"ref_id": "b40",
"title": "Lingering misinterpretations in garden-path sentences: Evidence from a paraphrasing task.",
"year": "2009"
},
{
"authors": [
"Chengwei Qin"
],
"doi": "10.32657/10356/183806",
"ref_id": "b41",
"title": "Making language models better human-like learners",
"year": "2019"
},
{
"authors": [
"Emily Sheng",
"Kai-Wei Chang",
"Prem Natarajan",
"Nanyun Peng"
],
"doi": "10.18653/v1/2021.acl-long.330",
"ref_id": "b42",
"title": "Societal Biases in Language Generation: Progress and Challenges",
"year": "August 2021"
},
{
"authors": [
"Taylor Shin",
"Yasaman Razeghi",
"Robert L Logan Iv",
"Eric Wallace",
"Sameer Singh"
],
"doi": "10.18653/v1/2020.emnlp-main.346",
"ref_id": "b43",
"title": "AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts",
"year": "November 2020"
},
{
"authors": [
"A Srivastava",
"A Rastogi",
"A Rao",
"A A M Shoeb",
"A Abid",
"A Fisch",
"A R Brown",
"A Santoro",
"A Gupta",
"A Garriga-Alonso",
"A Kluska",
"A Lewkowycz",
"A Agarwal",
"A Power",
"A Ray",
"A Warstadt",
"A W Kocurek"
],
"doi": "",
"ref_id": "b44",
"title": "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models",
"year": "2022"
},
{
"authors": [
"J Surowiecki"
],
"doi": "",
"ref_id": "b45",
"title": "The Wisdom of Crowds",
"year": "2004"
},
{
"authors": [
"A M Turing"
],
"doi": "10.1093/mind/lix.236.433",
"ref_id": "b46",
"title": "I.—COMPUTING MACHINERY AND INTELLIGENCE",
"year": "1950"
},
{
"authors": [
"T Ullman"
],
"doi": "",
"ref_id": "b47",
"title": "Large language models fail on trivial alterations to theory-of-mind tasks",
"year": "2023"
},
{
"authors": [
"J Vig",
"S Gehrmann",
"Y Belinkov",
"S Qian",
"D Nevo",
"Y Singer",
"S Shieber"
],
"doi": "",
"ref_id": "b48",
"title": "Investigating gender bias in language models using causal mediation analysis",
"year": "2020"
},
{
"authors": [
"Kevin Warwick",
"Huma Shah"
],
"doi": "10.1080/0952813x.2015.1055826",
"ref_id": "b49",
"title": "Can machines think? A report on Turing test experiments at the Royal Society",
"year": "2016"
},
{
"authors": [
"J Wei",
"M Bosma",
"V Y Zhao",
"K Guu",
"A W Yu",
"B Lester",
"N Du",
"A M Dai",
"Q V Le"
],
"doi": "",
"ref_id": "b50",
"title": "Finetuned language models are zero-shot learners",
"year": "2021"
},
{
"authors": [
"J Wei",
"X Wang",
"D Schuurmans",
"M Bosma",
"B Ichter",
"F Xia",
"E Chi",
"Q Le",
"D Zhou"
],
"doi": "10.1017/9781108780704.011",
"ref_id": "b51",
"title": "Index",
"year": "2022. 2022. 30-August-2022"
}
] |
[
"a25e3514bcb57886",
"7b512243c29ff59b",
"3a8bbda14117ce7c",
"e83a3de069227a1e",
"879a490eb91b591d",
"5dcd996268c30260",
"936ecede11df3641",
"46368d3527390904",
"fc6a5d73d3e3dc3e",
"be8b85457ce593b0",
"8bfa965cf887c839",
"a0a292a016da2217",
"49be4172c4a74458",
"6d307ab54241e414",
"d7278813ce287ca5",
"4976dcb4a7f21dc1",
"8fdaf4a61b04a8a4",
"ab31e4efa3a64020",
"e664bd5efc742f36",
"8a26aeef0b504019",
"89c61cae931f9073",
"9c84668f37768ce3",
"5965db404cd8b1af",
"027f4ab423fc0b8e",
"a4bedf7b4a4b57fe",
"ac7017d6f8dfa6d4",
"fc0d09105aa3dba7"
] |
[
"fc6a5d73d3e3dc3e",
"71bb82f87985501d",
"1891b6eb02e868c6",
"89c61cae931f9073",
"8a26aeef0b504019",
"d7d727f5cde9247b",
"9c2f67dc20c3beb5",
"51ad6b41d45a1eb0",
"9c84668f37768ce3",
"be8b85457ce593b0",
"b58721aca6755f61",
"7d2415ae3fcddfac",
"f8425b49792276c3",
"936ecede11df3641",
"487dda2980a8fb12",
"75692f35d455d4e9",
"4ce470a29055e31a",
"8fdaf4a61b04a8a4",
"ac7017d6f8dfa6d4",
"2013413616ec6467",
"a0a292a016da2217",
"6cb006595e0f8348",
"5dcd996268c30260",
"00efe379b70e747e",
"5965db404cd8b1af",
"e664bd5efc742f36",
"50ccb5266ce1748b",
"f64582ead3ac06f1",
"371846553de4cb4c",
"e83a3de069227a1e",
"f1557823843ea261",
"3a8bbda14117ce7c",
"879a490eb91b591d",
"fc0d09105aa3dba7",
"46368d3527390904",
"d944e31b0902790f",
"aad357597a5ec245",
"6d307ab54241e414",
"338f75c02d5410a3",
"a25e3514bcb57886",
"f8fc4c4a81c2ecdc",
"d3c827397df99a44",
"a4bedf7b4a4b57fe",
"ab31e4efa3a64020",
"8bfa965cf887c839",
"7f1881ee73e7a357",
"7b512243c29ff59b",
"d7278813ce287ca5",
"49be4172c4a74458",
"33ede0259dad44c0",
"4976dcb4a7f21dc1",
"027f4ab423fc0b8e"
] |
8JXMDw2xGa
|
Data Feedback Loops: Model-driven Amplification of Dataset Biases
|
data/openreview_paper/ICML_2023_oral/8JXMDw2xGa//paper.pdf
| 73
| 21
|
[
{
"authors": [
"M Hall",
"L Van Der Maaten",
"L Gustafson",
"A Adcock"
],
"doi": "",
"ref_id": "b24",
"title": "A systematic study of bias amplification",
"year": "2022"
},
{
"authors": [
"Yves Grandvalet",
"Yoshua Bengio"
],
"doi": "10.7551/mitpress/6173.003.0013",
"ref_id": "b22",
"title": "Entropy Regularization",
"year": "2004"
},
{
"authors": [
"Harald Steck"
],
"doi": "10.1145/3240323.3240372",
"ref_id": "b61",
"title": "Calibrated recommendations",
"year": "2018"
},
{
"authors": [
"S Schmit",
"C Riquelme"
],
"doi": "10.21437/ai-mhri.2018",
"ref_id": "b57",
"title": "FAIM/ISCA Workshop on Artificial Intelligence for Multimodal Human Robot Interaction",
"year": "2018"
},
{
"authors": [
"T B Hashimoto",
"M Srivastava",
"H Namkoong",
"P Liang"
],
"doi": "",
"ref_id": "b27",
"title": "Fairness without demographics in repeated loss minimization",
"year": "2018"
},
{
"authors": [
"Jieyu Zhao",
"Tianlu Wang",
"Mark Yatskar",
"Vicente Ordonez",
"Kai-Wei Chang"
],
"doi": "10.18653/v1/d17-1323",
"ref_id": "b71",
"title": "Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints",
"year": "2017"
},
{
"authors": [
"Allison J B Chaney",
"Brandon M Stewart",
"Barbara E Engelhardt"
],
"doi": "10.1145/3240323.3240370",
"ref_id": "b7",
"title": "How algorithmic confounding in recommendation systems increases homogeneity and decreases utility",
"year": "2018"
},
{
"authors": [
"G Brown",
"S Hod",
"I Kalemaj"
],
"doi": "",
"ref_id": "b3",
"title": "Performative prediction in a stateful world",
"year": "2022"
},
{
"authors": [
"Tianlu Wang",
"Jieyu Zhao",
"Mark Yatskar",
"Kai-Wei Chang",
"Vicente Ordonez"
],
"doi": "10.1109/iccv.2019.00541",
"ref_id": "b68",
"title": "Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations",
"year": "2019"
},
{
"authors": [
"A Sinha",
"D F Gleich",
"K Ramani"
],
"doi": "",
"ref_id": "b60",
"title": "Deconvolving feedback loops in recommender systems",
"year": "2016"
},
{
"authors": [
"George Adam",
"Ladislav Rampášek",
"Zhaleh Safikhani",
"Petr Smirnov",
"Benjamin Haibe-Kains",
"Anna Goldenberg"
],
"doi": "10.1038/s41698-020-0122-1",
"ref_id": "b0",
"title": "Machine learning approaches to drug response prediction: challenges and recent progress",
"year": "2022"
},
{
"authors": [
"R Jiang",
"S Chiappa",
"T Lattimore",
"A György",
"P Kohli"
],
"doi": "",
"ref_id": "b32",
"title": "Degenerate feedback loops in recommender systems",
"year": "2019"
},
{
"authors": [
"Z Izzo",
"L Ying",
"J Zou"
],
"doi": "",
"ref_id": "b31",
"title": "How to learn when data reacts to your model: performative gradient descent",
"year": "2021"
},
{
"authors": [
"Z Zhu",
"T Luo",
"Y Liu"
],
"doi": "",
"ref_id": "b72",
"title": "The rich get richer: Disparate impact of semi-supervised learning",
"year": "2021"
},
{
"authors": [
"Moritz Hardt",
"Nimrod Megiddo",
"Christos Papadimitriou",
"Mary Wootters"
],
"doi": "10.1145/2840728.2840730",
"ref_id": "b26",
"title": "Strategic Classification",
"year": "2016"
},
{
"authors": [
"J P Miller",
"J C Perdomo",
"T Zrnic"
],
"doi": "",
"ref_id": "b44",
"title": "Outside the echo chamber: Optimizing the performative risk",
"year": "2021"
},
{
"authors": [
"J"
],
"doi": "",
"ref_id": "b65",
"title": "Jigsaw multilingual toxic comment classification",
"year": "2020"
},
{
"authors": [
"Emily Dinan",
"Angela Fan",
"Adina Williams",
"Jack Urbanek",
"Douwe Kiela",
"Jason Weston"
],
"doi": "10.18653/v1/2020.emnlp-main.656",
"ref_id": "b13",
"title": "Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation",
"year": "2019"
},
{
"authors": [
"Yassine Ouali",
"Celine Hudelot",
"Myriam Tami"
],
"doi": "10.1109/cvpr42600.2020.01269",
"ref_id": "b49",
"title": "Semi-Supervised Semantic Segmentation With Cross-Consistency Training",
"year": "2020"
},
{
"authors": [
"J Perdomo",
"T Zrnic",
"C Mendler-Dünner",
"M Hardt"
],
"doi": "",
"ref_id": "b50",
"title": "Performative prediction",
"year": "2020"
},
{
"authors": [
"Klas Leino",
"Shayak Sen",
"Anupam Datta",
"Matt Fredrikson",
"Linyi Li"
],
"doi": "10.1109/test.2018.8624792",
"ref_id": "b39",
"title": "Influence-Directed Explanations for Deep Convolutional Networks",
"year": "2019"
}
] |
[
{
"authors": [
"George Adam",
"Ladislav Rampášek",
"Zhaleh Safikhani",
"Petr Smirnov",
"Benjamin Haibe-Kains",
"Anna Goldenberg"
],
"doi": "10.1038/s41698-020-0122-1",
"ref_id": "b0",
"title": "Machine learning approaches to drug response prediction: challenges and recent progress",
"year": "2022"
},
{
"authors": [
"L Beyer",
"X Zhai",
"A Royer",
"L Markeeva",
"R Anil",
"A Kolesnikov"
],
"doi": "",
"ref_id": "b1",
"title": "Knowledge distillation: A good teacher is patient and consistent",
"year": "2022"
},
{
"authors": [
"R Bommasani",
"K A Creel",
"A Kumar",
"D Jurafsky",
"P Liang"
],
"doi": "10.1145/3757887",
"ref_id": "b2",
"title": "Proceedings of the 5th ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization",
"year": "2022"
},
{
"authors": [
"G Brown",
"S Hod",
"I Kalemaj"
],
"doi": "",
"ref_id": "b3",
"title": "Performative prediction in a stateful world",
"year": "2022"
},
{
"authors": [
"T B Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell",
"S Agarwal",
"A Herbert-Voss",
"G Krueger",
"T Henighan",
"R Child",
"A Ramesh",
"D M Ziegler",
"J Wu",
"C Winter",
"C Hesse",
"M Chen",
"E Sigler",
"M Litwin",
"S Gray",
"B Chess",
"J Clark",
"C Berner",
"S Mccandlish",
"A Radford",
"I Sutskever",
"D Amodei"
],
"doi": "",
"ref_id": "b4",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"N Carlini",
"F Tramèr",
"E Wallace",
"M Jagielski",
"A Herbert-Voss",
"K Lee",
"A Roberts",
"T B Brown",
"D X Song",
"Ú Erlingsson",
"A Oprea",
"C Raffel"
],
"doi": "",
"ref_id": "b5",
"title": "Extracting training data from large language models",
"year": "2021"
},
{
"authors": [
"N Carlini",
"J Hayes",
"M Nasr",
"M Jagielski",
"V Sehwag",
"F Tramèr",
"B Balle",
"D Ippolito",
"E Wallace"
],
"doi": "",
"ref_id": "b6",
"title": "Extracting training data from diffusion models",
"year": "2023"
},
{
"authors": [
"Allison J B Chaney",
"Brandon M Stewart",
"Barbara E Engelhardt"
],
"doi": "10.1145/3240323.3240370",
"ref_id": "b7",
"title": "How algorithmic confounding in recommendation systems increases homogeneity and decreases utility",
"year": "2018"
},
{
"authors": [
"S Coate",
"G C Loury"
],
"doi": "",
"ref_id": "b8",
"title": "Will affirmative-action policies eliminate negative stereotypes?",
"year": "1993"
},
{
"authors": [
"Pranav Dandekar",
"Ashish Goel",
"David T Lee"
],
"doi": "10.1073/pnas.1217220110",
"ref_id": "b9",
"title": "Biased assimilation, homophily, and the dynamics of polarization",
"year": "2013"
},
{
"authors": [
"L N Darlow",
"E J Crowley",
"A Antoniou",
"A J Storkey"
],
"doi": "",
"ref_id": "b10",
"title": "Cinic-10 is not imagenet or cifar-10",
"year": "2018"
},
{
"authors": [
"Jia Deng",
"Wei Dong",
"Richard Socher",
"Li-Jia Li",
"Kai Li",
"Li Fei-Fei"
],
"doi": "10.1109/cvpr.2009.5206848",
"ref_id": "b11",
"title": "ImageNet: A large-scale hierarchical image database",
"year": "2009"
},
{
"authors": [
"Jwala Dhamala",
"Tony Sun",
"Varun Kumar",
"Satyapriya Krishna",
"Yada Pruksachatkun",
"Kai-Wei Chang",
"Rahul Gupta"
],
"doi": "10.1145/3442188.3445924",
"ref_id": "b12",
"title": "BOLD",
"year": "2021"
},
{
"authors": [
"Emily Dinan",
"Angela Fan",
"Adina Williams",
"Jack Urbanek",
"Douwe Kiela",
"Jason Weston"
],
"doi": "10.18653/v1/2020.emnlp-main.656",
"ref_id": "b13",
"title": "Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation",
"year": "2019"
},
{
"authors": [
"E Dinan",
"G Abercrombie",
"A S Bergman",
"S Spruit",
"D Hovy",
"Y Boureau",
"V Rieser"
],
"doi": "",
"ref_id": "b14",
"title": "Anticipating safety issues in e2e conversational ai: Framework and tooling",
"year": "2021"
},
{
"authors": [
"C Donahue",
"M Lee",
"P Liang"
],
"doi": "",
"ref_id": "b15",
"title": "Enabling language models to fill in the blanks",
"year": "2020"
},
{
"authors": [
"D Ensign",
"S A Friedler",
"S Neville",
"C Scheidegger",
"S Venkatasubramanian"
],
"doi": "",
"ref_id": "b16",
"title": "Runaway feedback loops in predictive policing",
"year": "2017"
},
{
"authors": [
"A Fan",
"M Lewis",
"Y Dauphin"
],
"doi": "",
"ref_id": "b17",
"title": "Hierarchical neural story generation",
"year": "2018"
},
{
"authors": [
"A Farahani",
"S Voghoei",
"K Rasheed",
"H R Arabnia"
],
"doi": "",
"ref_id": "b18",
"title": "A brief review of domain adaptation",
"year": "2021"
},
{
"authors": [
"L Gao",
"S Biderman",
"S Black",
"L Golding",
"T Hoppe",
"C Foster",
"J Phang",
"H He",
"A Thite",
"N Nabeshima",
"S Presser",
"C Leahy"
],
"doi": "",
"ref_id": "b19",
"title": "The Pile: An 800gb dataset of diverse text for language modeling",
"year": "2020"
},
{
"authors": [
"Samuel Gehman",
"Suchin Gururangan",
"Maarten Sap",
"Yejin Choi",
"Noah A Smith"
],
"doi": "10.18653/v1/2020.findings-emnlp.301",
"ref_id": "b20",
"title": "RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models",
"year": "2020"
},
{
"authors": [
"A Gokaslan",
"V Cohen"
],
"doi": "",
"ref_id": "b21",
"title": "Openwebtext corpus",
"year": "2019"
},
{
"authors": [
"Yves Grandvalet",
"Yoshua Bengio"
],
"doi": "10.7551/mitpress/6173.003.0013",
"ref_id": "b22",
"title": "Entropy Regularization",
"year": "2004"
},
{
"authors": [
"A Graves"
],
"doi": "",
"ref_id": "b23",
"title": "Sequence transduction with recurrent neural networks",
"year": "2012"
},
{
"authors": [
"M Hall",
"L Van Der Maaten",
"L Gustafson",
"A Adcock"
],
"doi": "",
"ref_id": "b24",
"title": "A systematic study of bias amplification",
"year": "2022"
},
{
"authors": [
"Neroshini Maistry"
],
"doi": "10.51415/10321/2142",
"ref_id": "b25",
"title": "Microbial abilities to detoxify chromate by reduction",
"year": "2020"
},
{
"authors": [
"Moritz Hardt",
"Nimrod Megiddo",
"Christos Papadimitriou",
"Mary Wootters"
],
"doi": "10.1145/2840728.2840730",
"ref_id": "b26",
"title": "Strategic Classification",
"year": "2016"
},
{
"authors": [
"T B Hashimoto",
"M Srivastava",
"H Namkoong",
"P Liang"
],
"doi": "",
"ref_id": "b27",
"title": "Fairness without demographics in repeated loss minimization",
"year": "2018"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b28",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b29",
"title": "Denoising diffusion probabilistic models",
"year": "2020"
},
{
"authors": [
"A Holtzman",
"J Buys",
"L Du",
"M Forbes",
"Y Choi"
],
"doi": "",
"ref_id": "b30",
"title": "The curious case of neural text degeneration",
"year": "2020"
},
{
"authors": [
"Z Izzo",
"L Ying",
"J Zou"
],
"doi": "",
"ref_id": "b31",
"title": "How to learn when data reacts to your model: performative gradient descent",
"year": "2021"
},
{
"authors": [
"R Jiang",
"S Chiappa",
"T Lattimore",
"A György",
"P Kohli"
],
"doi": "",
"ref_id": "b32",
"title": "Degenerate feedback loops in recommender systems",
"year": "2019"
},
{
"authors": [
"D Kingma",
"J Ba",
"Adam"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b33",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"J Kirchenbauer",
"J Geiping",
"Y Wen",
"J Katz",
"I Miers",
"T Goldstein"
],
"doi": "",
"ref_id": "b34",
"title": "A watermark for large language models",
"year": "2023"
},
{
"authors": [
"A Krizhevsky"
],
"doi": "",
"ref_id": "b35",
"title": "Learning multiple layers of features from tiny images",
"year": "2009"
},
{
"authors": [
"B Kulynych",
"Y Yang",
"Y Yu",
"J Błasiok",
"P Nakkiran"
],
"doi": "",
"ref_id": "b36",
"title": "What you see is what you get: Distributional generalization for algorithm design in deep learning",
"year": "2022"
},
{
"authors": [
"A Kumar",
"T Ma",
"P Liang"
],
"doi": "10.36684/28-2020-1",
"ref_id": "b37",
"title": "Understanding self-training for gradual domain adaptation",
"year": "2020"
},
{
"authors": [
"D Kumar",
"P G Kelley",
"S Consolvo",
"J Mason",
"E Bursztein",
"Z Durumeric",
"K Thomas",
"M Bailey"
],
"doi": "",
"ref_id": "b38",
"title": "Designing toxic content classification for a diversity of perspectives",
"year": "2021"
},
{
"authors": [
"Klas Leino",
"Shayak Sen",
"Anupam Datta",
"Matt Fredrikson",
"Linyi Li"
],
"doi": "10.1109/test.2018.8624792",
"ref_id": "b39",
"title": "Influence-Directed Explanations for Deep Convolutional Networks",
"year": "2019"
},
{
"authors": [
"B Li",
"Z Cheng",
"Y Bao"
],
"doi": "",
"ref_id": "b40",
"title": "Cifar10 training baidunet9",
"year": "2019"
},
{
"authors": [
"Z Lipton",
"Y.-X Wang",
"A Smola"
],
"doi": "",
"ref_id": "b41",
"title": "Detecting and correcting for label shift with black box predictors",
"year": "2018"
},
{
"authors": [
"Lydia T Liu",
"Ashia Wilson",
"Nika Haghtalab",
"Adam Tauman Kalai",
"Christian Borgs",
"Jennifer Chayes"
],
"doi": "10.1145/3351095.3372861",
"ref_id": "b42",
"title": "The disparate equilibria of algorithmic decision making when individuals invest rationally",
"year": "2020"
},
{
"authors": [
"I Loshchilov",
"F Hutter"
],
"doi": "",
"ref_id": "b43",
"title": "Decoupled weight decay regularization",
"year": "2019"
},
{
"authors": [
"J P Miller",
"J C Perdomo",
"T Zrnic"
],
"doi": "",
"ref_id": "b44",
"title": "Outside the echo chamber: Optimizing the performative risk",
"year": "2021"
},
{
"authors": [
"E Mitchell",
"Y Lee",
"A Khazatsky",
"C D Manning",
"C Finn"
],
"doi": "",
"ref_id": "b45",
"title": "Detectgpt: Zero-shot machine-generated text detection using probability curvature",
"year": "2023"
},
{
"authors": [
"P Nakkiran",
"Y Bansal"
],
"doi": "",
"ref_id": "b46",
"title": "Distributional generalization: A new kind of generalization",
"year": "2020"
},
{
"authors": [
"P Nakkiran",
"P Venkat",
"S Kakade",
"T Ma"
],
"doi": "",
"ref_id": "b47",
"title": "Optimal regularization can mitigate double descent",
"year": "2020"
},
{
"authors": [
"P Nakkiran",
"B Neyshabur",
"H Sedghi"
],
"doi": "",
"ref_id": "b48",
"title": "The deep bootstrap framework: Good online learners are good offline generalizers",
"year": "2021"
},
{
"authors": [
"Yassine Ouali",
"Celine Hudelot",
"Myriam Tami"
],
"doi": "10.1109/cvpr42600.2020.01269",
"ref_id": "b49",
"title": "Semi-Supervised Semantic Segmentation With Cross-Consistency Training",
"year": "2020"
},
{
"authors": [
"J Perdomo",
"T Zrnic",
"C Mendler-Dünner",
"M Hardt"
],
"doi": "",
"ref_id": "b50",
"title": "Performative prediction",
"year": "2020"
},
{
"authors": [
"K Pillutla",
"S Swayamdipta",
"R Zellers",
"J Thickstun",
"S Welleck",
"Y Choi",
"Z Harchaoui",
"Mauve"
],
"doi": "",
"ref_id": "b51",
"title": "Measuring the gap between neural text and human text using divergence frontiers",
"year": "2021"
},
{
"authors": [
"A Radford",
"J Wu",
"R Child",
"D Luan",
"D Amodei",
"I Sutskever"
],
"doi": "",
"ref_id": "b52",
"title": "Language models are unsupervised multitask learners",
"year": "2019"
},
{
"authors": [
"A Radford",
"J W Kim",
"C Hallacy",
"A Ramesh",
"G Goh",
"S Agarwal",
"G Sastry",
"A Askell",
"P Mishkin",
"J Clark",
"G Krueger",
"I Sutskever"
],
"doi": "",
"ref_id": "b53",
"title": "Learning transferable visual models from natural language supervision",
"year": "2021"
},
{
"authors": [
"A Radford",
"J W Kim",
"T Xu",
"G Brockman",
"C Mcleavey",
"I Sutskever"
],
"doi": "",
"ref_id": "b54",
"title": "Robust speech recognition via largescale weak supervision",
"year": "2022"
},
{
"authors": [
"J S Rosenfeld"
],
"doi": "",
"ref_id": "b55",
"title": "Scaling laws for deep learning",
"year": "2021"
},
{
"authors": [
"Maarten Sap",
"Swabha Swayamdipta",
"Laura Vianna",
"Xuhui Zhou",
"Yejin Choi",
"Noah Smith"
],
"doi": "10.18653/v1/2022.naacl-main.431",
"ref_id": "b56",
"title": "Annotators with Attitudes: How Annotator Beliefs And Identities Bias Toxic Language Detection",
"year": "2022"
},
{
"authors": [
"S Schmit",
"C Riquelme"
],
"doi": "10.21437/ai-mhri.2018",
"ref_id": "b57",
"title": "FAIM/ISCA Workshop on Artificial Intelligence for Multimodal Human Robot Interaction",
"year": "2018"
},
{
"authors": [
"Emily Sheng",
"Kai-Wei Chang",
"Premkumar Natarajan",
"Nanyun Peng"
],
"doi": "10.18653/v1/d19-1339",
"ref_id": "b58",
"title": "The Woman Worked as a Babysitter: On Biases in Language Generation",
"year": "2019"
},
{
"authors": [
"R Shu",
"H H Bui",
"H Narui",
"S Ermon"
],
"doi": "",
"ref_id": "b59",
"title": "A dirt-t approach to unsupervised domain adaptation",
"year": "2018"
},
{
"authors": [
"A Sinha",
"D F Gleich",
"K Ramani"
],
"doi": "",
"ref_id": "b60",
"title": "Deconvolving feedback loops in recommender systems",
"year": "2016"
},
{
"authors": [
"Harald Steck"
],
"doi": "10.1145/3240323.3240372",
"ref_id": "b61",
"title": "Calibrated recommendations",
"year": "2018"
},
{
"authors": [
"Y Su",
"T Lan",
"Y Wang",
"D Yogatama",
"L Kong",
"N Collier"
],
"doi": "",
"ref_id": "b62",
"title": "A contrastive framework for neural text generation",
"year": "2022"
},
{
"authors": [
"J"
],
"doi": "",
"ref_id": "b63",
"title": "Toxic comment classification challenge",
"year": "2018"
},
{
"authors": [
"J"
],
"doi": "",
"ref_id": "b64",
"title": "Jigsaw unintended bias in toxicity classification",
"year": "2019"
},
{
"authors": [
"J"
],
"doi": "",
"ref_id": "b65",
"title": "Jigsaw multilingual toxic comment classification",
"year": "2020"
},
{
"authors": [
"Bart Thomee",
"David A Shamma",
"Gerald Friedland",
"Benjamin Elizalde",
"Karl Ni",
"Douglas Poland",
"Damian Borth",
"Li-Jia Li"
],
"doi": "10.1145/2812802",
"ref_id": "b66",
"title": "YFCC100M",
"year": "2016"
},
{
"authors": [
"A Venugopal",
"J Uszkoreit",
"D Talbot",
"F J Och",
"J Ganitkevitch"
],
"doi": "",
"ref_id": "b67",
"title": "Watermarking the outputs of structured prediction with an application in statistical machine translation",
"year": "2011"
},
{
"authors": [
"Tianlu Wang",
"Jieyu Zhao",
"Mark Yatskar",
"Kai-Wei Chang",
"Vicente Ordonez"
],
"doi": "10.1109/iccv.2019.00541",
"ref_id": "b68",
"title": "Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations",
"year": "2019"
},
{
"authors": [
"Thomas Wolf",
"Lysandre Debut",
"Victor Sanh",
"Julien Chaumond",
"Clement Delangue",
"Anthony Moi",
"Pierric Cistac",
"Tim Rault",
"Remi Louf",
"Morgan Funtowicz",
"Joe Davison",
"Sam Shleifer",
"Patrick Von Platen",
"Clara Ma",
"Yacine Jernite",
"Julien Plu",
"Canwen Xu",
"Teven Le Scao",
"Sylvain Gugger",
"Mariama Drame",
"Quentin Lhoest",
"Alexander Rush"
],
"doi": "10.18653/v1/2020.emnlp-demos.6",
"ref_id": "b69",
"title": "Transformers: State-of-the-Art Natural Language Processing",
"year": "2019"
},
{
"authors": [
"M Yatskar",
"L Zettlemoyer",
"A Farhadi"
],
"doi": "",
"ref_id": "b70",
"title": "Situation recognition: Visual semantic role labeling for image understanding",
"year": "2016"
},
{
"authors": [
"Jieyu Zhao",
"Tianlu Wang",
"Mark Yatskar",
"Vicente Ordonez",
"Kai-Wei Chang"
],
"doi": "10.18653/v1/d17-1323",
"ref_id": "b71",
"title": "Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints",
"year": "2017"
},
{
"authors": [
"Z Zhu",
"T Luo",
"Y Liu"
],
"doi": "",
"ref_id": "b72",
"title": "The rich get richer: Disparate impact of semi-supervised learning",
"year": "2021"
}
] |
[
"5f7cb8ce9fd299d0",
"eff4cf692532c430",
"d6c5c241ae497e16",
"80b3d20d9a351bbd",
"4176f8aaa3733c18",
"e37679670a0388bb",
"d5953a91f77afe63",
"f2d07ea23a12f062",
"3d4f2209a163b4d6",
"fb20bd8cb9a29da1",
"f5f9665b90651844",
"ca6ffbdf8a8495a8",
"114889fc2cd0407f",
"51f6d26eb5de4331",
"82a46086d35bc4a0",
"f1f32c2a3be1611b",
"44e42a5c9d6ed7e3",
"f8f21051bcf0e4df",
"b22d95dc4a02742f",
"c2d69c9e6de90e1f",
"e2b7331a161fe6a7"
] |
[
"f5f9665b90651844",
"e8c8290c83e9c957",
"ad7201ac82e7bb35",
"f2d07ea23a12f062",
"17af6d64fa1567f9",
"7cee0fa362a4ca93",
"b6844a55d82a7133",
"d5953a91f77afe63",
"3b76a530fdb6bd31",
"c96403bc3779ba26",
"e4b921d7fad0c6b3",
"bf47ebe4281f5463",
"289fe69a3d85d5c5",
"f8f21051bcf0e4df",
"0683930e6535c5d9",
"991946949643d60b",
"7aaf8c158149f512",
"112497217c7e8ab8",
"49e082eefcab3db7",
"f752f72a467398aa",
"75412fab474254cd",
"48e2a04560f11ab3",
"eff4cf692532c430",
"73c6f92711b968eb",
"5f7cb8ce9fd299d0",
"63757a53fbb9d5be",
"82a46086d35bc4a0",
"4176f8aaa3733c18",
"39ea51c87cdfdcfb",
"7cb4584473814329",
"6fbea807dc9dddc6",
"114889fc2cd0407f",
"ca6ffbdf8a8495a8",
"378c5de00e9088d3",
"9c761f4f2e150f92",
"0c75b99cd5e726b0",
"415464b0e3b4bed8",
"940f3d1eec1af574",
"440b588d87afb361",
"e2b7331a161fe6a7",
"c5431c7b51cc8297",
"57f88692b3bd6da7",
"0f950ce2b73ad5c5",
"04fd250792d5996b",
"f1f32c2a3be1611b",
"d41b7520ad39bc1f",
"7f351e8febcdb60d",
"bcac9c6c2dff5906",
"18c2407966006d9e",
"b22d95dc4a02742f",
"c2d69c9e6de90e1f",
"3bba281fcc746172",
"c8beab030d8be9cb",
"1aff0c58a293af2f",
"b7474ff726fb5edf",
"e53dc382d80a1d98",
"123d704f6820faee",
"80b3d20d9a351bbd",
"ff5a3859dc86e8dd",
"339f6722bbf46f35",
"fb20bd8cb9a29da1",
"d6c5c241ae497e16",
"f16095cd16c6fe98",
"7a2f2de9b1db7a30",
"3f4ce45f18af313a",
"44e42a5c9d6ed7e3",
"48b07550d351f76f",
"8bc55f519802f54d",
"3d4f2209a163b4d6",
"d6459461596f77a7",
"785a59ec5d21eaf6",
"e37679670a0388bb",
"51f6d26eb5de4331"
] |
oke1MUPK2l
|
Learning Control-Oriented Dynamical Structure from Data
|
data/openreview_paper/ICML_2023_oral/oke1MUPK2l//paper.pdf
| 42
| 0
|
[] |
[
{
"authors": [
"Alessandro Abate",
"Daniele Ahmed",
"Mirco Giacobbe",
"Andrea Peruffo"
],
"doi": "10.1109/lcsys.2020.3005328",
"ref_id": "b0",
"title": "Formal Synthesis of Lyapunov Neural Networks",
"year": "2021"
},
{
"authors": [
"Tankut Acarman"
],
"doi": "10.1080/00423110801932670",
"ref_id": "b1",
"title": "Nonlinear optimal integrated vehicle control using individual braking torque and steering angle with on-line control allocation by using state-dependent Riccati equation technique",
"year": "2009"
},
{
"authors": [
"A Ailon"
],
"doi": "10.1109/tac.2010.2040493",
"ref_id": "b2",
"title": "Simple Tracking Controllers for Autonomous VTOL Aircraft With Bounded Inputs",
"year": "2010"
},
{
"authors": [
"Joel A E Andersson",
"Joris Gillis",
"Greg Horn",
"James B Rawlings",
"Moritz Diehl"
],
"doi": "10.1007/s12532-018-0139-4",
"ref_id": "b3",
"title": "CasADi: a software framework for nonlinear optimization and optimal control",
"year": "2019"
},
{
"authors": [
"H T Banks",
"S C Beeler",
"G M Kepler",
"H T Tran"
],
"doi": "",
"ref_id": "b4",
"title": "Reduced order modeling and control of thin film growth in an HPCVD reactor",
"year": "2002"
},
{
"authors": [
"N M Boffi",
"S Tu",
"N Matni",
"J.-J E Slotine",
"V Sindhwani"
],
"doi": "",
"ref_id": "b5",
"title": "Learning stability certificates from data",
"year": "2020"
},
{
"authors": [
"J Bradbury",
"R Frostig",
"P Hawkins",
"M J Johnson",
"C Leary",
"D Maclaurin",
"G Necula",
"A Paszke",
"J Van-Derplas",
"S Wanderman-Milne",
"Q Zhang"
],
"doi": "",
"ref_id": "b6",
"title": "JAX: Composable transformations of Python+NumPy programs",
"year": "2018"
},
{
"authors": [
"T C ¸imen"
],
"doi": "10.1016/j.arcontrol.2010.03.001",
"ref_id": "b7",
"title": "Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method",
"year": "2010"
},
{
"authors": [
"T C ¸imen"
],
"doi": "10.2514/1.55821",
"ref_id": "b8",
"title": "Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis",
"year": "2012"
},
{
"authors": [
"Ya-Chien Chang",
"Sicun Gao"
],
"doi": "10.1109/icra48506.2021.9560886",
"ref_id": "b9",
"title": "Stabilizing Neural Control Using Self-Learned Almost Lyapunov Critics",
"year": "2021"
},
{
"authors": [
"Ya-Chien Chang",
"Sicun Gao"
],
"doi": "10.1109/icra48506.2021.9560886",
"ref_id": "b10",
"title": "Stabilizing Neural Control Using Self-Learned Almost Lyapunov Critics",
"year": "2019"
},
{
"authors": [
"J R Cloutier"
],
"doi": "",
"ref_id": "b11",
"title": "State-dependent Riccati equation techniques: An overview",
"year": "1997"
},
{
"authors": [
"J R Cloutier",
"P H Zipfel"
],
"doi": "10.1109/cca.1999.806179",
"ref_id": "b12",
"title": "Hypersonic guidance via the state-dependent Riccati equation control method",
"year": "1999"
},
{
"authors": [
"Charles Dawson",
"Sicun Gao",
"Chuchu Fan"
],
"doi": "10.1109/tro.2022.3232542",
"ref_id": "b13",
"title": "Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control",
"year": "2021"
},
{
"authors": [
"Charles Dawson",
"Sicun Gao",
"Chuchu Fan"
],
"doi": "10.1109/tro.2022.3232542",
"ref_id": "b14",
"title": "Safe Control With Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction Methods for Robotics and Control",
"year": "2022"
},
{
"authors": [
"Franck Djeumou",
"Cyrus Neary",
"Eric Goubault",
"Sylvie Putot",
"Ufuk Topcu"
],
"doi": "10.24963/ijcai.2022/405",
"ref_id": "b15",
"title": "Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast Training and Evaluation of Neural ODEs",
"year": "2022"
},
{
"authors": [
"J K Gupta",
"K Menda",
"Z Manchester",
"M J Kochenderfer"
],
"doi": "",
"ref_id": "b16",
"title": "Structured mechanical models for robot learning and control",
"year": "2020"
},
{
"authors": [
"John Hauser",
"Shankar Sastry",
"George Meyer"
],
"doi": "10.1016/0005-1098(92)90029-f",
"ref_id": "b17",
"title": "Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft",
"year": "1992"
},
{
"authors": [
"D P Kingma",
"J L Ba",
"Adam"
],
"doi": "",
"ref_id": "b18",
"title": "A method for stochastic optimization",
"year": "2015"
},
{
"authors": [
"Thomas Lew",
"Apoorva Sharma",
"James Harrison",
"Andrew Bylard",
"Marco Pavone"
],
"doi": "10.1109/tro.2022.3154715",
"ref_id": "b19",
"title": "Safe Active Dynamics Learning and Control: A Sequential Exploration–Exploitation Framework",
"year": "2022"
},
{
"authors": [
"Zhichao Li",
"Thai Duong",
"Nikolay Atanasov"
],
"doi": "10.1109/ojcsys.2022.3201554",
"ref_id": "b20",
"title": "Robust and Safe Autonomous Navigation for Systems With Learned SE(3) Hamiltonian Dynamics",
"year": "2022"
},
{
"authors": [
"Winfried Lohmiller",
"Jean-Jacques E. Slotine"
],
"doi": "10.1016/s0005-1098(98)00019-3",
"ref_id": "b21",
"title": "On Contraction Analysis for Non-linear Systems",
"year": "1998"
},
{
"authors": [
"Ian R Manchester",
"Jean-Jacques E. Slotine"
],
"doi": "10.1109/tac.2017.2668380",
"ref_id": "b22",
"title": "Control Contraction Metrics: Convex and Intrinsic Criteria for Nonlinear Feedback Design",
"year": "2017"
},
{
"authors": [
"G Manek",
"J Z Kolter"
],
"doi": "",
"ref_id": "b23",
"title": "Learning stable deep dynamics models",
"year": "2019"
},
{
"authors": [
"R M Murray",
"Z Li",
"S S Sastry"
],
"doi": "",
"ref_id": "b24",
"title": "A Mathematical Introduction to Robotic Manipulation",
"year": "1994"
},
{
"authors": [
"Max Revay",
"Ruigang Wang",
"Ian R Manchester"
],
"doi": "10.1109/cdc45484.2021.9683054",
"ref_id": "b25",
"title": "Recurrent Equilibrium Networks: Unconstrained Learning of Stable and Robust Dynamical Models",
"year": "2021"
},
{
"authors": [
"S M Richards",
"F Berkenkamp",
"A Krause"
],
"doi": "",
"ref_id": "b26",
"title": "The Lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems",
"year": "2018"
},
{
"authors": [
"Spencer Richards",
"Navid Azizan",
"Jean-Jacques Slotine",
"Marco Pavone"
],
"doi": "10.15607/rss.2021.xvii.056",
"ref_id": "b27",
"title": "Adaptive-Control-Oriented Meta-Learning for Nonlinear Systems",
"year": "2021"
},
{
"authors": [
"Spencer Richards",
"Navid Azizan",
"Jean-Jacques Slotine",
"Marco Pavone"
],
"doi": "10.15607/rss.2021.xvii.056",
"ref_id": "b28",
"title": "Adaptive-Control-Oriented Meta-Learning for Nonlinear Systems",
"year": "2023"
},
{
"authors": [
"V Sindhwani",
"S Tu",
"M Khansari"
],
"doi": "",
"ref_id": "b29",
"title": "Learning contracting vector fields for stable imitation learning",
"year": "2018"
},
{
"authors": [
"Sumeet Singh",
"Benoit Landry",
"Anirudha Majumdar",
"Jean-Jacques Slotine",
"Marco Pavone"
],
"doi": "10.1177/02783649231186165",
"ref_id": "b30",
"title": "Robust feedback motion planning via contraction theory",
"year": "2019"
},
{
"authors": [
"Sumeet Singh",
"Spencer M Richards",
"Vikas Sindhwani",
"Jean-Jacques E Slotine",
"Marco Pavone"
],
"doi": "10.1177/0278364920949931",
"ref_id": "b31",
"title": "Learning stabilizable nonlinear dynamics with contraction-based regularization",
"year": "2021"
},
{
"authors": [
"Jean-Jacques E. Slotine",
"Weiping Li"
],
"doi": "10.1177/027836498700600303",
"ref_id": "b32",
"title": "On the Adaptive Control of Robot Manipulators",
"year": "1987"
},
{
"authors": [
"J.-J E Slotine",
"W Li"
],
"doi": "",
"ref_id": "b33",
"title": "Applied Nonlinear Control",
"year": "1991"
},
{
"authors": [
"D Sun",
"S Jha",
"Fan",
"C"
],
"doi": "",
"ref_id": "b34",
"title": "Learning certified control using contraction metric",
"year": "2020"
},
{
"authors": [
"H Tsukamoto",
"S.-J Chung",
"J.-J E Slotine"
],
"doi": "",
"ref_id": "b35",
"title": "Neural stochastic contraction metrics for learning-based control and estimation",
"year": "2021"
},
{
"authors": [
"Hiroyasu Tsukamoto",
"Soon-Jo Chung",
"Jean-Jaques E. Slotine"
],
"doi": "10.1016/j.arcontrol.2021.10.001",
"ref_id": "b36",
"title": "Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview",
"year": "2021"
},
{
"authors": [
"Andreas Wächter",
"Lorenz T Biegler"
],
"doi": "10.1007/s10107-004-0559-y",
"ref_id": "b37",
"title": "On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming",
"year": "2006"
},
{
"authors": [
"K Watanabe",
"M Iwase",
"S Hatakeyama",
"T Maruyama"
],
"doi": "10.1109/iros.2008.4650792",
"ref_id": "b38",
"title": "Control strategy for a snake-like robot based on constraint force and verification by experiment",
"year": "2008"
},
{
"authors": [
"Liping Zhang",
"Soon-Yi Wu",
"Marco A López"
],
"doi": "10.1137/090767133",
"ref_id": "b39",
"title": "A New Exchange Method for Convex Semi-Infinite Programming",
"year": "2010"
},
{
"authors": [
"Y D Zhong",
"B Dey",
"A Chakraborty"
],
"doi": "",
"ref_id": "b40",
"title": "Symplectic ODE-Net: Learning Hamiltonian dynamics with control",
"year": "2020"
},
{
"authors": [
"R Zhou",
"T Quartz",
"H De Sterck",
"J Liu"
],
"doi": "",
"ref_id": "b41",
"title": "Neural Lyapunov control of unknown nonlinear systems with stability guarantees",
"year": "2022"
}
] |
[] |
[
"a2a3f43e9df992b6",
"ea75906fb21887d0",
"e91e30f7ad8684d9",
"d05e014f0bce5805",
"3bd6fa3de9c0f733",
"d231a0e44c0cc660",
"398bf6acd7be66b0",
"1ebab4b0ec62d624",
"383a2bc54ade3b0e",
"35a42948091f7f73",
"d80815a534e6c8e1",
"ae8a220df21eaa7c",
"f0e037a851acaab3",
"673d141d9f7b00dd",
"364cd413c51eed64",
"156cc029fe9f9c43",
"588a1b711ed8bf2c",
"c1d2a76b3988a5d5",
"a1e8c7f556ebf9f4",
"8ef9a2a13068e693",
"29ea080728b4143d",
"03545916d2302d25",
"0f20dd8df99c5cca",
"ac7d2345e792e3b3",
"5b07df09974fc1b1",
"4988dfada4e4edbc",
"e47ae73128f13ad3",
"713f539b4e904b80",
"410c7bfe850cbe71",
"71cc4a0585b1366f",
"eff063859cd13056",
"ee617aa2cdb6252c",
"9ae24418609af782",
"429871123e8f780f",
"190527d87dcc0de5",
"489af39ff1efa17e",
"fe8b76c84ebf19ab",
"6d7e5961e7fc64d1",
"c6c9e9ab05ccd2f7",
"0fa55bf79e7824c9",
"e3917ed4f642befd",
"d40b8b6ae2216d59"
] |
gKxXNAVZeF
|
Nonparametric Extensions of Randomized Response for Private Confidence Sets
|
data/openreview_paper/ICML_2023_oral/gKxXNAVZeF//paper.pdf
| 72
| 22
|
[
{
"authors": [
"J Awan",
"A Slavković"
],
"doi": "",
"ref_id": "b7",
"title": "Differentially private uniformly most powerful tests for binomial data",
"year": "2018"
},
{
"authors": [
"Gautam Kamath",
"Or Sheffet",
"Vikrant Singhal",
"Jonathan Ullman"
],
"doi": "10.1109/ita50056.2020.9244945",
"ref_id": "b44",
"title": "Differentially Private Algorithms for Learning Mixtures of Separated Gaussians",
"year": "2020"
},
{
"authors": [
"Herbert Robbins"
],
"doi": "10.1214/aoms/1177696786",
"ref_id": "b53",
"title": "Statistical Methods Related to the Law of the Iterated Logarithm",
"year": "1970"
},
{
"authors": [
"M Gaboardi",
"H Lim",
"R Rogers",
"S Vadhan"
],
"doi": "",
"ref_id": "b31",
"title": "Differentially private chi-squared hypothesis testing: Goodness of fit and independence testing",
"year": "2016"
},
{
"authors": [
"Cristina Butucea",
"Amandine Dubois",
"Martin Kroll",
"Adrien Saumard"
],
"doi": "10.3150/19-bej1165",
"ref_id": "b15",
"title": "Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids",
"year": "2020"
},
{
"authors": [
"C Ferrando",
"S Wang",
"D Sheldon"
],
"doi": "",
"ref_id": "b29",
"title": "Parametric bootstrap for differentially private confidence intervals",
"year": "2022"
},
{
"authors": [
"V Karwa",
"S Vadhan"
],
"doi": "10.1002/9781118874905.ch9",
"ref_id": "b45",
"title": "Confidence Intervals",
"year": "2018"
},
{
"authors": [
"Clément L Canonne",
"Gautam Kamath",
"Audra Mcmillan",
"Adam Smith",
"Jonathan Ullman"
],
"doi": "10.1145/3313276.3316336",
"ref_id": "b16",
"title": "The structure of optimal private tests for simple hypotheses",
"year": "2019"
},
{
"authors": [
"N Wang",
"X Xiao",
"Y Yang",
"J Zhao",
"S C Hui",
"H Shin",
"J Shin",
"G Yu"
],
"doi": "",
"ref_id": "b62",
"title": "Collecting and analyzing multidimensional data with local differential privacy",
"year": "2019. 2019"
},
{
"authors": [
"D A Darling",
"Herbert Robbins"
],
"doi": "10.1073/pnas.58.1.66",
"ref_id": "b19",
"title": "CONFIDENCE SEQUENCES FOR MEAN, VARIANCE, AND MEDIAN",
"year": "1967"
},
{
"authors": [
"Y Wang",
"J Lee",
"D Kifer"
],
"doi": "",
"ref_id": "b64",
"title": "Differentially private hypothesis testing",
"year": "2015"
},
{
"authors": [
"Christian Covington",
"Xi He",
"James Honaker",
"Gautam Kamath"
],
"doi": "10.5705/ss.202022.0276",
"ref_id": "b18",
"title": "Unbiased Statistical Estimation and Valid Confidence Intervals Under Differential Privacy",
"year": "2021"
},
{
"authors": [
"J Drechsler",
"I Globus-Harris",
"A Mcmillan",
"J Sarathy",
"A Smith"
],
"doi": "",
"ref_id": "b21",
"title": "Non-parametric differentially private confidence intervals for the median",
"year": "2021"
},
{
"authors": [
"M Joseph",
"J Kulkarni",
"J Mao",
"S Z Wu"
],
"doi": "",
"ref_id": "b40",
"title": "Locally private Gaussian estimation",
"year": "2019"
},
{
"authors": [
"Cynthia Dwork",
"Frank Mcsherry",
"Kobbi Nissim",
"Adam Smith"
],
"doi": "10.1007/11681878_14",
"ref_id": "b27",
"title": "Calibrating Noise to Sensitivity in Private Data Analysis",
"year": "2006"
},
{
"authors": [
"Duy Vu",
"Aleksandra Slavkovic"
],
"doi": "10.1109/icdmw.2009.52",
"ref_id": "b60",
"title": "Differential Privacy for Clinical Trial Data: Preliminary Evaluations",
"year": "2009"
},
{
"authors": [
"Cynthia Dwork",
"Aaron Roth"
],
"doi": "10.1561/0400000042",
"ref_id": "b26",
"title": "The Algorithmic Foundations of Differential Privacy",
"year": "2014"
},
{
"authors": [
"Larry Wasserman",
"Shuheng Zhou"
],
"doi": "10.1198/jasa.2009.tm08651",
"ref_id": "b67",
"title": "A Statistical Framework for Differential Privacy",
"year": "2010"
},
{
"authors": [
"Shiva Prasad Kasiviswanathan",
"Homin K Lee",
"Kobbi Nissim",
"Sofya Raskhodnikova",
"Adam Smith"
],
"doi": "10.1137/090756090",
"ref_id": "b46",
"title": "What Can We Learn Privately?",
"year": "2011"
},
{
"authors": [
"K.-S Jun",
"F Orabona"
],
"doi": "",
"ref_id": "b41",
"title": "Parameter-free online convex optimization with sub-exponential noise",
"year": "2019"
},
{
"authors": [
"S Couch",
"Z Kazan",
"K Shi",
"A Bray",
"A Groce"
],
"doi": "",
"ref_id": "b17",
"title": "Differentially private nonparametric hypothesis testing",
"year": "2019"
},
{
"authors": [
"B Ding",
"J Kulkarni",
"S Yekhanin"
],
"doi": "",
"ref_id": "b20",
"title": "Collecting telemetry data privately",
"year": "2017"
}
] |
[
{
"authors": [
"J Acharya",
"C L Canonne",
"Y Han",
"Z Sun",
"H Tyagi"
],
"doi": "",
"ref_id": "b0",
"title": "Domain compression and its application to randomnessoptimal distributed goodness-of-fit",
"year": "09-12 Jul 2020"
},
{
"authors": [
"Jayadev Acharya",
"Clement L Canonne",
"Himanshu Tyagi"
],
"doi": "10.1109/tit.2020.3028440",
"ref_id": "b1",
"title": "Inference Under Information Constraints I: Lower Bounds From Chi-Square Contraction",
"year": "2020"
},
{
"authors": [
"Jayadev Acharya",
"Clement L Canonne",
"Cody Freitag",
"Ziteng Sun",
"Himanshu Tyagi"
],
"doi": "10.1109/jsait.2021.3053569",
"ref_id": "b2",
"title": "Inference Under Information Constraints III: Local Privacy Constraints",
"year": "2021"
},
{
"authors": [
"J Acharya",
"Z Sun",
"H Zhang"
],
"doi": "",
"ref_id": "b3",
"title": "Differentially private Assouad, Fano, and Le Cam",
"year": "2021"
},
{
"authors": [
"J Acharya",
"C L Canonne",
"Y Liu",
"Z Sun",
"H Tyagi"
],
"doi": "",
"ref_id": "b4",
"title": "Interactive inference under information constraints",
"year": "2022"
},
{
"authors": [
"K Amin",
"M Joseph",
"J Mao"
],
"doi": "",
"ref_id": "b5",
"title": "Pan-private uniformity testing",
"year": "09-12 Jul 2020. 2022. 2022-02-01"
},
{
"authors": [
"J.-Y Audibert",
"R Munos",
"C Szepesvári"
],
"doi": "",
"ref_id": "b6",
"title": "Tuning bandit algorithms in stochastic environments",
"year": "2007"
},
{
"authors": [
"J Awan",
"A Slavković"
],
"doi": "",
"ref_id": "b7",
"title": "Differentially private uniformly most powerful tests for binomial data",
"year": "2018"
},
{
"authors": [
"L P Barnes",
"W.-N Chen",
"A Özgür"
],
"doi": "",
"ref_id": "b8",
"title": "Fisher information under local differential privacy",
"year": "2020"
},
{
"authors": [
"R Barnes",
"E Cooke-Yarborough",
"D Thomas"
],
"doi": "",
"ref_id": "b9",
"title": "An electronic digital computor using cold cathode counting tubes for storage",
"year": "1951"
},
{
"authors": [
"Vidmantas Bentkus"
],
"doi": "10.1214/009117904000000360",
"ref_id": "b10",
"title": "On Hoeffding’s inequalities",
"year": "2004"
},
{
"authors": [
"T Berrett",
"C Butucea"
],
"doi": "",
"ref_id": "b11",
"title": "Locally private nonasymptotic testing of discrete distributions is faster using interactive mechanisms",
"year": ""
},
{
"authors": [
"T Berrett",
"Y Yu"
],
"doi": "",
"ref_id": "b12",
"title": "Locally private online change point detection",
"year": "2021"
},
{
"authors": [
"C Butucea",
"Y Issartel"
],
"doi": "",
"ref_id": "b13",
"title": "Locally differentially private estimation of functionals of discrete distributions",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b14",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2021"
},
{
"authors": [
"Cristina Butucea",
"Amandine Dubois",
"Martin Kroll",
"Adrien Saumard"
],
"doi": "10.3150/19-bej1165",
"ref_id": "b15",
"title": "Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids",
"year": "2020"
},
{
"authors": [
"Clément L Canonne",
"Gautam Kamath",
"Audra Mcmillan",
"Adam Smith",
"Jonathan Ullman"
],
"doi": "10.1145/3313276.3316336",
"ref_id": "b16",
"title": "The structure of optimal private tests for simple hypotheses",
"year": "2019"
},
{
"authors": [
"S Couch",
"Z Kazan",
"K Shi",
"A Bray",
"A Groce"
],
"doi": "",
"ref_id": "b17",
"title": "Differentially private nonparametric hypothesis testing",
"year": "2019"
},
{
"authors": [
"Christian Covington",
"Xi He",
"James Honaker",
"Gautam Kamath"
],
"doi": "10.5705/ss.202022.0276",
"ref_id": "b18",
"title": "Unbiased Statistical Estimation and Valid Confidence Intervals Under Differential Privacy",
"year": "2021"
},
{
"authors": [
"D A Darling",
"Herbert Robbins"
],
"doi": "10.1073/pnas.58.1.66",
"ref_id": "b19",
"title": "CONFIDENCE SEQUENCES FOR MEAN, VARIANCE, AND MEDIAN",
"year": "1967"
},
{
"authors": [
"B Ding",
"J Kulkarni",
"S Yekhanin"
],
"doi": "",
"ref_id": "b20",
"title": "Collecting telemetry data privately",
"year": "2017"
},
{
"authors": [
"J Drechsler",
"I Globus-Harris",
"A Mcmillan",
"J Sarathy",
"A Smith"
],
"doi": "",
"ref_id": "b21",
"title": "Non-parametric differentially private confidence intervals for the median",
"year": "2021"
},
{
"authors": [
"John C Duchi",
"Feng Ruan"
],
"doi": "10.1214/22-aos2227",
"ref_id": "b22",
"title": "The right complexity measure in locally private estimation: It is not the Fisher information",
"year": "2018"
},
{
"authors": [
"John C Duchi",
"Michael I Jordan",
"Martin J Wainwright"
],
"doi": "10.1109/focs.2013.53",
"ref_id": "b23",
"title": "Local Privacy and Statistical Minimax Rates",
"year": "2013. 2013"
},
{
"authors": [
"John C Duchi",
"Michael I Jordan",
"Martin J Wainwright"
],
"doi": "10.1109/allerton.2013.6736718",
"ref_id": "b24",
"title": "Local privacy and statistical minimax rates",
"year": "2013"
},
{
"authors": [
"John C Duchi",
"Michael I Jordan",
"Martin J Wainwright"
],
"doi": "10.1080/01621459.2017.1389735",
"ref_id": "b25",
"title": "Minimax Optimal Procedures for Locally Private Estimation",
"year": "2018"
},
{
"authors": [
"Cynthia Dwork",
"Aaron Roth"
],
"doi": "10.1561/0400000042",
"ref_id": "b26",
"title": "The Algorithmic Foundations of Differential Privacy",
"year": "2014"
},
{
"authors": [
"Cynthia Dwork",
"Frank Mcsherry",
"Kobbi Nissim",
"Adam Smith"
],
"doi": "10.1007/11681878_14",
"ref_id": "b27",
"title": "Calibrating Noise to Sensitivity in Private Data Analysis",
"year": "2006"
},
{
"authors": [
"Xiequan Fan",
"Ion Grama",
"Quansheng Liu"
],
"doi": "10.1214/ejp.v20-3496",
"ref_id": "b28",
"title": "Exponential inequalities for martingales with applications",
"year": "2015"
},
{
"authors": [
"C Ferrando",
"S Wang",
"D Sheldon"
],
"doi": "",
"ref_id": "b29",
"title": "Parametric bootstrap for differentially private confidence intervals",
"year": "2022"
},
{
"authors": [
"George E Forsythe"
],
"doi": "10.1137/1001011",
"ref_id": "b30",
"title": "Reprint of a Note on Rounding-Off Errors",
"year": "1959"
},
{
"authors": [
"M Gaboardi",
"H Lim",
"R Rogers",
"S Vadhan"
],
"doi": "",
"ref_id": "b31",
"title": "Differentially private chi-squared hypothesis testing: Goodness of fit and independence testing",
"year": "2016"
},
{
"authors": [
"M Gaboardi",
"R Rogers",
"O Sheffet"
],
"doi": "",
"ref_id": "b32",
"title": "Locally private mean estimation: z-test and tight confidence intervals",
"year": "2019"
},
{
"authors": [
"Peter Grünwald",
"Rianne De Heide",
"Wouter Koolen"
],
"doi": "10.1093/jrsssb/qkae011",
"ref_id": "b33",
"title": "Safe testing",
"year": "2019"
},
{
"authors": [
"Wassily Hoeffding"
],
"doi": "10.1080/01621459.1963.10500830",
"ref_id": "b34",
"title": "Probability Inequalities for Sums of Bounded Random Variables",
"year": "1963"
},
{
"authors": [
"D G Horvitz",
"D J Thompson"
],
"doi": "10.1080/01621459.1952.10483446",
"ref_id": "b35",
"title": "A Generalization of Sampling Without Replacement from a Finite Universe",
"year": "1952"
},
{
"authors": [
"Steven R Howard",
"Aaditya Ramdas",
"Jon Mcauliffe",
"Jasjeet Sekhon"
],
"doi": "10.1214/18-ps321",
"ref_id": "b36",
"title": "Time-uniform Chernoff bounds via nonnegative supermartingales",
"year": "2020"
},
{
"authors": [
"Steven R Howard",
"Aaditya Ramdas",
"Jon Mcauliffe",
"Jasjeet Sekhon"
],
"doi": "10.1214/20-aos1991",
"ref_id": "b37",
"title": "Time-uniform, nonparametric, nonasymptotic confidence sequences",
"year": "2021"
},
{
"authors": [
"T E Hull",
"J R Swenson"
],
"doi": "10.1145/365170.365212",
"ref_id": "b38",
"title": "Tests of probabilistic models for propagation of roundoff errors",
"year": "1966"
},
{
"authors": [
"Ramesh Johari",
"Pete Koomen",
"Leonid Pekelis",
"David Walsh"
],
"doi": "10.1145/3097983.3097992",
"ref_id": "b39",
"title": "Peeking at A/B Tests",
"year": "2017"
},
{
"authors": [
"M Joseph",
"J Kulkarni",
"J Mao",
"S Z Wu"
],
"doi": "",
"ref_id": "b40",
"title": "Locally private Gaussian estimation",
"year": "2019"
},
{
"authors": [
"K.-S Jun",
"F Orabona"
],
"doi": "",
"ref_id": "b41",
"title": "Parameter-free online convex optimization with sub-exponential noise",
"year": "2019"
},
{
"authors": [
"Peter Kairouz",
"Sewoong Oh",
"Pramod Viswanath"
],
"doi": "10.1109/tit.2017.2685505",
"ref_id": "b42",
"title": "The Composition Theorem for Differential Privacy",
"year": "2014"
},
{
"authors": [
"P Kairouz",
"K Bonawitz",
"D Ramage"
],
"doi": "",
"ref_id": "b43",
"title": "Discrete distribution estimation under local privacy",
"year": "2016"
},
{
"authors": [
"Gautam Kamath",
"Or Sheffet",
"Vikrant Singhal",
"Jonathan Ullman"
],
"doi": "10.1109/ita50056.2020.9244945",
"ref_id": "b44",
"title": "Differentially Private Algorithms for Learning Mixtures of Separated Gaussians",
"year": "2020"
},
{
"authors": [
"V Karwa",
"S Vadhan"
],
"doi": "10.1002/9781118874905.ch9",
"ref_id": "b45",
"title": "Confidence Intervals",
"year": "2018"
},
{
"authors": [
"Shiva Prasad Kasiviswanathan",
"Homin K Lee",
"Kobbi Nissim",
"Sofya Raskhodnikova",
"Adam Smith"
],
"doi": "10.1137/090756090",
"ref_id": "b46",
"title": "What Can We Learn Privately?",
"year": "2011"
},
{
"authors": [
"A K Kuchibhotla",
"Q Zheng"
],
"doi": "",
"ref_id": "b47",
"title": "Near-optimal confidence sequences for bounded random variables",
"year": "2021"
},
{
"authors": [
"Zitao Li",
"Tianhao Wang",
"Milan Lopuhaä-Zwakenberg",
"Ninghui Li",
"Boris Škoric"
],
"doi": "10.1145/3318464.3389700",
"ref_id": "b48",
"title": "Estimating Numerical Distributions under Local Differential Privacy",
"year": "2020"
},
{
"authors": [
"Andreas Maurer",
"Massimiliano Pontil"
],
"doi": "10.1007/978-3-540-87987-9_11",
"ref_id": "b49",
"title": "Generalization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces",
"year": "2009"
},
{
"authors": [
"Ilya Mironov"
],
"doi": "10.1145/2382196.2382264",
"ref_id": "b50",
"title": "On significance of the least significant bits for differential privacy",
"year": "2012"
},
{
"authors": [
"Francesco Orabona",
"Kwang-Sung Jun"
],
"doi": "10.1109/tit.2023.3330187",
"ref_id": "b51",
"title": "Tight Concentrations and Confidence Sequences From the Regret of Universal Portfolio",
"year": "2021"
},
{
"authors": [
"A Ramdas",
"J Ruf",
"M Larsson",
"W M Koolen"
],
"doi": "",
"ref_id": "b52",
"title": "Testing exchangeability: Fork-convexity, supermartingales and e-processes",
"year": "2021"
},
{
"authors": [
"Herbert Robbins"
],
"doi": "10.1214/aoms/1177696786",
"ref_id": "b53",
"title": "Statistical Methods Related to the Law of the Iterated Logarithm",
"year": "1970"
},
{
"authors": [
"James M Robins",
"Andrea Rotnitzky",
"Lue Ping Zhao"
],
"doi": "10.1080/01621459.1994.10476818",
"ref_id": "b54",
"title": "Estimation of Regression Coefficients When Some Regressors are not Always Observed",
"year": "1994"
},
{
"authors": [
"Glenn Shafer"
],
"doi": "10.1111/rssa.12647",
"ref_id": "b55",
"title": "Testing by Betting: A Strategy for Statistical and Scientific Communication",
"year": "2021"
},
{
"authors": [
"Glenn Shafer",
"Alexander Shen",
"Nikolai Vereshchagin",
"Vladimir Vovk"
],
"doi": "10.1214/10-sts347",
"ref_id": "b56",
"title": "Test Martingales, Bayes Factors and p-Values",
"year": "2011"
},
{
"authors": [
"J Ter Schure",
"P Grünwald"
],
"doi": "",
"ref_id": "b57",
"title": "ALL-IN meta-analysis: breathing life into living systematic reviews",
"year": "2021"
},
{
"authors": [
"J Ville"
],
"doi": "",
"ref_id": "b58",
"title": "Etude critique de la notion de collectif",
"year": "1939"
},
{
"authors": [
"V Vovk",
"R Wang"
],
"doi": "",
"ref_id": "b59",
"title": "E-values: Calibration, combination and applications",
"year": "2021"
},
{
"authors": [
"Duy Vu",
"Aleksandra Slavkovic"
],
"doi": "10.1109/icdmw.2009.52",
"ref_id": "b60",
"title": "Differential Privacy for Clinical Trial Data: Preliminary Evaluations",
"year": "2009"
},
{
"authors": [
"A Wald"
],
"doi": "10.1214/aoms/1177731118",
"ref_id": "b61",
"title": "Sequential Tests of Statistical Hypotheses",
"year": "1945"
},
{
"authors": [
"N Wang",
"X Xiao",
"Y Yang",
"J Zhao",
"S C Hui",
"H Shin",
"J Shin",
"G Yu"
],
"doi": "",
"ref_id": "b62",
"title": "Collecting and analyzing multidimensional data with local differential privacy",
"year": "2019. 2019"
},
{
"authors": [
"Ruodu Wang",
"Aaditya Ramdas"
],
"doi": "10.1111/rssb.12489",
"ref_id": "b63",
"title": "False Discovery Rate Control with E-values",
"year": "2022"
},
{
"authors": [
"Y Wang",
"J Lee",
"D Kifer"
],
"doi": "",
"ref_id": "b64",
"title": "Differentially private hypothesis testing",
"year": "2015"
},
{
"authors": [
"Yu Wang",
"Hussein Sibai",
"Mark Yen",
"Sayan Mitra",
"Geir E Dullerud"
],
"doi": "10.1109/ojcsys.2022.3207108",
"ref_id": "b65",
"title": "Differentially Private Algorithms for Statistical Verification of Cyber-Physical Systems",
"year": "2022"
},
{
"authors": [
"Stanley L Warner"
],
"doi": "10.1080/01621459.1965.10480775",
"ref_id": "b66",
"title": "Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias",
"year": "1965"
},
{
"authors": [
"Larry Wasserman",
"Shuheng Zhou"
],
"doi": "10.1198/jasa.2009.tm08651",
"ref_id": "b67",
"title": "A Statistical Framework for Differential Privacy",
"year": "2010"
},
{
"authors": [
"I Waudby-Smith",
"A Ramdas"
],
"doi": "",
"ref_id": "b68",
"title": "Confidence sequences for sampling without replacement",
"year": "2020"
},
{
"authors": [
"Ian Waudby-Smith",
"Aaditya Ramdas"
],
"doi": "10.1093/jrsssb/qkad009",
"ref_id": "b69",
"title": "Estimating means of bounded random variables by betting",
"year": "2023"
},
{
"authors": [
"Ian Waudby-Smith",
"David Arbour",
"Ritwik Sinha",
"Edward H Kennedy",
"Aaditya Ramdas"
],
"doi": "10.1214/24-aos2408",
"ref_id": "b70",
"title": "Time-uniform central limit theory and asymptotic confidence sequences",
"year": "2021"
},
{
"authors": [
"Ian Waudby-Smith",
"Lili Wu",
"Aaditya Ramdas",
"Nikos Karampatziakis",
"Paul Mineiro"
],
"doi": "10.1145/3643693",
"ref_id": "b71",
"title": "Anytime-valid off-policy Inference for Contextual Bandits",
"year": "2022"
}
] |
[
"49f760b874dabdcb",
"2bfcbe1c3e9eecf4",
"49b429379c7b89ec",
"095ddb75e5a18abc",
"2dcb097113977dae",
"a57495d4a38e7952",
"6a863924c50494af",
"10db08c42b5d7458",
"fb014cf5336e45c7",
"db4b1836a91ee964",
"763fe0c8cfde42a5",
"15379aa8003d5c0f",
"f738b654f958b9e9",
"2dc8eba53e411d5e",
"8ca672d841e344b7",
"27c765fb716b3e6a",
"13dee622b725cef9",
"864d2bfea4bbc638",
"bc8d7d83b2701382",
"6c55fad05466a0b1",
"a21f2b50b94e2012",
"47cd247a3f74e128"
] |
[
"26aa780612fbcb56",
"2c82f496fbd04e4d",
"f31e0efa4a7bb209",
"59fca45f5d77ae36",
"f20c8261d3fb6405",
"32f706b66a48e4ff",
"ba8d81cd535d8d81",
"49f760b874dabdcb",
"2e8747f0fb4b83d4",
"f53c8a8bb027c9df",
"4fc8960893187cd8",
"14c70e54bfc7c7a6",
"e4a72126c3b915d3",
"66ffbbc2d893f738",
"94fb8b430948c350",
"2dcb097113977dae",
"10db08c42b5d7458",
"a21f2b50b94e2012",
"15379aa8003d5c0f",
"db4b1836a91ee964",
"47cd247a3f74e128",
"f738b654f958b9e9",
"1de02267e0f03b3d",
"0e852caf610cc045",
"1ca0e8834d2fb171",
"a94f7d58bf7d4bc8",
"13dee622b725cef9",
"8ca672d841e344b7",
"45f1df54c9068f96",
"a57495d4a38e7952",
"abe69c875bbab45c",
"095ddb75e5a18abc",
"1c4c24fceebcb77e",
"51f8f733ffb8ae97",
"876e29840330d7f4",
"d2fe66fff281a16a",
"201744e5759cd182",
"67e6a15ec88420fd",
"06c03bc8c0b4f9bf",
"599328c6c0aa79b7",
"2dc8eba53e411d5e",
"6c55fad05466a0b1",
"b9b10f4552f6eb79",
"25f4a3847f5563bf",
"2bfcbe1c3e9eecf4",
"6a863924c50494af",
"bc8d7d83b2701382",
"14ca71b469000417",
"11ac264d42770516",
"2c15f7ed97efe5f5",
"efcc06790b51bdb8",
"865c160d16ec8554",
"0acdc8cefd5ed346",
"49b429379c7b89ec",
"ebd1699d741f360e",
"b21c227fb9e91f4b",
"aa85a534ad6632f3",
"ec8926aabc6baf96",
"c18c6f3e2868a6fc",
"d6b4a2d981824aaa",
"27c765fb716b3e6a",
"8572ab22db82dcc8",
"fb014cf5336e45c7",
"fcf037ee29759445",
"763fe0c8cfde42a5",
"6cf003e3fe1065c1",
"4b20ac356b08bdee",
"864d2bfea4bbc638",
"6c5e1edbef29c233",
"050f11d27408c0b8",
"df7bea0ca5adc629",
"428763820c78b44a"
] |
s7me1XxUqd
|
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
|
data/openreview_paper/ICML_2023_oral/s7me1XxUqd//paper.pdf
| 42
| 19
|
[
{
"authors": [
"K.-C Li"
],
"doi": "",
"ref_id": "b39",
"title": "From Stein's unbiased risk estimates to the method of generalized cross validation",
"year": "1985"
},
{
"authors": [
"L Györfi",
"M Kohler",
"A Krzyzak",
"H Walk"
],
"doi": "",
"ref_id": "b27",
"title": "A Distribution-free Theory of Nonparametric Regression",
"year": "2006"
},
{
"authors": [
"G H Golub",
"M Heath",
"G Wahba"
],
"doi": "",
"ref_id": "b23",
"title": "Generalized crossvalidation as a method for choosing a good ridge parameter",
"year": "1979"
},
{
"authors": [
"Seymour Geisser"
],
"doi": "10.1080/01621459.1975.10479865",
"ref_id": "b22",
"title": "The Predictive Sample Reuse Method with Applications",
"year": "1975"
},
{
"authors": [
"K.-C Li"
],
"doi": "10.1214/aos/1176350052",
"ref_id": "b40",
"title": "Asymptotic Optimality of $C_L$ and Generalized Cross-Validation in Ridge Regression with Application to Spline Smoothing",
"year": "1986"
},
{
"authors": [
"Peter Hall",
"Richard J Samworth"
],
"doi": "10.1111/j.1467-9868.2005.00506.x",
"ref_id": "b28",
"title": "Properties of Bagged Nearest Neighbour Classifiers",
"year": "2005"
},
{
"authors": [
"Andreas Buja",
"Werner Stuetzle"
],
"doi": "10.1214/aos/1176349522",
"ref_id": "b11",
"title": "Discussion: Projection Pursuit",
"year": "2006"
},
{
"authors": [
"Sylvain Arlot",
"Alain Celisse"
],
"doi": "10.1214/09-ss054",
"ref_id": "b3",
"title": "A survey of cross-validation procedures for model selection",
"year": "2010"
},
{
"authors": [
"Trevor Hastie"
],
"doi": "10.1080/00401706.2020.1791959",
"ref_id": "b30",
"title": "Ridge Regularization: An Essential Concept in Data Science",
"year": "2020"
},
{
"authors": [
"K.-C Li"
],
"doi": "10.1214/aos/1176350486",
"ref_id": "b41",
"title": "Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set",
"year": "1987"
},
{
"authors": [
"L Breiman"
],
"doi": "",
"ref_id": "b9",
"title": "Bagging predictors",
"year": "1996"
},
{
"authors": [
"S Ascoli",
"M Refinetti",
"G Biroli",
"F Krzakala"
],
"doi": "",
"ref_id": "b16",
"title": "Double trouble in double descent: Bias and variance (s) in the lazy regime",
"year": "2020"
},
{
"authors": [
"Jerome H Friedman",
"Peter Hall"
],
"doi": "10.1016/j.jspi.2006.06.002",
"ref_id": "b21",
"title": "On bagging and nonlinear estimation",
"year": "2007"
},
{
"authors": [
"Trevor Hastie",
"Robert Tibshirani",
"Jerome Friedman"
],
"doi": "10.1007/978-0-387-84858-7",
"ref_id": "b31",
"title": "The Elements of Statistical Learning",
"year": "2009"
},
{
"authors": [
"D Lejeune",
"H Javadi",
"R Baraniuk"
],
"doi": "",
"ref_id": "b38",
"title": "The implicit regularization of ordinary least squares ensembles",
"year": "2020"
},
{
"authors": [
"Anders Krogh",
"Peter Sollich"
],
"doi": "10.1103/physreve.55.811",
"ref_id": "b36",
"title": "Statistical mechanics of ensemble learning",
"year": "1997"
},
{
"authors": [
"Peter Craven",
"Grace Wahba"
],
"doi": "10.1007/bf01404567",
"ref_id": "b12",
"title": "Smoothing noisy data with spline functions",
"year": "1979"
},
{
"authors": [
"David M Allen"
],
"doi": "10.1080/00401706.1974.10489157",
"ref_id": "b2",
"title": "The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction",
"year": "1974"
},
{
"authors": [
"Peter Bühlmann",
"Bin Yu"
],
"doi": "10.1214/aos/1031689014",
"ref_id": "b10",
"title": "Analyzing bagging",
"year": "2002"
}
] |
[
{
"authors": [
"B Adlam",
"J Pennington"
],
"doi": "",
"ref_id": "b0",
"title": "Understanding double descent requires a fine-grained bias-variance decomposition",
"year": "2020"
},
{
"authors": [
"B Adlam",
"J Pennington"
],
"doi": "",
"ref_id": "b1",
"title": "The neural tangent kernel in high dimensions: Triple descent and a multi-scale theory of generalization",
"year": "2020"
},
{
"authors": [
"David M Allen"
],
"doi": "10.1080/00401706.1974.10489157",
"ref_id": "b2",
"title": "The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction",
"year": "1974"
},
{
"authors": [
"Sylvain Arlot",
"Alain Celisse"
],
"doi": "10.1214/09-ss054",
"ref_id": "b3",
"title": "A survey of cross-validation procedures for model selection",
"year": "2010"
},
{
"authors": [
"Zhidong Bai",
"Jack W Silverstein"
],
"doi": "10.1007/978-1-4419-0661-8",
"ref_id": "b4",
"title": "Spectral Analysis of Large Dimensional Random Matrices",
"year": "2010"
},
{
"authors": [
"P L Bartlett",
"P M Long",
"G Lugosi",
"A Tsigler"
],
"doi": "",
"ref_id": "b5",
"title": "Benign overfitting in linear regression",
"year": "2020"
},
{
"authors": [
"Peter L Bartlett",
"Andrea Montanari",
"Alexander Rakhlin"
],
"doi": "10.1017/s0962492921000027",
"ref_id": "b6",
"title": "Deep learning: a statistical viewpoint",
"year": "2021"
},
{
"authors": [
"Mikhail Belkin",
"Daniel Hsu",
"Ji Xu"
],
"doi": "10.1137/20m1336072",
"ref_id": "b7",
"title": "Two Models of Double Descent for Weak Features",
"year": "2020"
},
{
"authors": [
"A Bloemendal",
"A Knowles",
"H.-T Yau",
"J Yin"
],
"doi": "",
"ref_id": "b8",
"title": "On the principal components of sample covariance matrices",
"year": "2016"
},
{
"authors": [
"L Breiman"
],
"doi": "",
"ref_id": "b9",
"title": "Bagging predictors",
"year": "1996"
},
{
"authors": [
"Peter Bühlmann",
"Bin Yu"
],
"doi": "10.1214/aos/1031689014",
"ref_id": "b10",
"title": "Analyzing bagging",
"year": "2002"
},
{
"authors": [
"Andreas Buja",
"Werner Stuetzle"
],
"doi": "10.1214/aos/1176349522",
"ref_id": "b11",
"title": "Discussion: Projection Pursuit",
"year": "2006"
},
{
"authors": [
"Peter Craven",
"Grace Wahba"
],
"doi": "10.1007/bf01404567",
"ref_id": "b12",
"title": "Smoothing noisy data with spline functions",
"year": "1979"
},
{
"authors": [
"E Dobriban",
"Y Sheng"
],
"doi": "",
"ref_id": "b13",
"title": "Distributed linear regression by averaging",
"year": "2021"
},
{
"authors": [
"Edgar Dobriban",
"Stefan Wager"
],
"doi": "10.1214/17-aos1549",
"ref_id": "b14",
"title": "High-dimensional asymptotics of prediction: Ridge regression and classification",
"year": "2018"
},
{
"authors": [
"Jin-Hong Du",
"Zhanrui Cai",
"Kathryn Roeder"
],
"doi": "10.1101/2022.07.25.501456",
"ref_id": "b15",
"title": "Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT",
"year": "2022"
},
{
"authors": [
"S Ascoli",
"M Refinetti",
"G Biroli",
"F Krzakala"
],
"doi": "",
"ref_id": "b16",
"title": "Double trouble in double descent: Bias and variance (s) in the lazy regime",
"year": "2020"
},
{
"authors": [
"Noureddine El Karoui"
],
"doi": "10.1007/s00440-016-0754-9",
"ref_id": "b17",
"title": "On the impact of predictor geometry on the performance on high-dimensional ridge-regularized generalized robust regression estimators",
"year": "2013"
},
{
"authors": [
"Noureddine El Karoui"
],
"doi": "10.1007/s00440-016-0754-9",
"ref_id": "b18",
"title": "On the impact of predictor geometry on the performance on high-dimensional ridge-regularized generalized robust regression estimators",
"year": "2018"
},
{
"authors": [
"László Erdős",
"Horng-Tzer Yau"
],
"doi": "10.1090/cln/028",
"ref_id": "b19",
"title": "A Dynamical Approach to Random Matrix Theory",
"year": "2017"
},
{
"authors": [
"J Friedman",
"T Hastie",
"R Tibshirani"
],
"doi": "",
"ref_id": "b20",
"title": "Regularization paths for generalized linear models via coordinate descent",
"year": "2010"
},
{
"authors": [
"Jerome H Friedman",
"Peter Hall"
],
"doi": "10.1016/j.jspi.2006.06.002",
"ref_id": "b21",
"title": "On bagging and nonlinear estimation",
"year": "2007"
},
{
"authors": [
"Seymour Geisser"
],
"doi": "10.1080/01621459.1975.10479865",
"ref_id": "b22",
"title": "The Predictive Sample Reuse Method with Applications",
"year": "1975"
},
{
"authors": [
"G H Golub",
"M Heath",
"G Wahba"
],
"doi": "",
"ref_id": "b23",
"title": "Generalized crossvalidation as a method for choosing a good ridge parameter",
"year": "1979"
},
{
"authors": [
"Evan Greene",
"Jon A Wellner"
],
"doi": "10.3150/15-bej800",
"ref_id": "b24",
"title": "Exponential bounds for the hypergeometric distribution",
"year": "2017"
},
{
"authors": [
"U Grenander",
"G Szegö"
],
"doi": "",
"ref_id": "b25",
"title": "Toeplitz Forms and Their Applications",
"year": "1958"
},
{
"authors": [
"Allan Gut"
],
"doi": "10.1007/978-1-4614-4708-5",
"ref_id": "b26",
"title": "Probability: A Graduate Course",
"year": "2005"
},
{
"authors": [
"L Györfi",
"M Kohler",
"A Krzyzak",
"H Walk"
],
"doi": "",
"ref_id": "b27",
"title": "A Distribution-free Theory of Nonparametric Regression",
"year": "2006"
},
{
"authors": [
"Peter Hall",
"Richard J Samworth"
],
"doi": "10.1111/j.1467-9868.2005.00506.x",
"ref_id": "b28",
"title": "Properties of Bagged Nearest Neighbour Classifiers",
"year": "2005"
},
{
"authors": [
"Yuhan Hao",
"Stephanie Hao",
"Erica Andersen-Nissen",
"William M Mauck",
"Shiwei Zheng",
"Andrew Butler",
"Maddie J Lee",
"Aaron J Wilk",
"Charlotte Darby",
"Michael Zager",
"Paul Hoffman",
"Marlon Stoeckius",
"Efthymia Papalexi",
"Eleni P Mimitou",
"Jaison Jain",
"Avi Srivastava",
"Tim Stuart",
"Lamar M Fleming",
"Bertrand Yeung",
"Angela J Rogers",
"Juliana M Mcelrath",
"Catherine A Blish",
"Raphael Gottardo",
"Peter Smibert",
"Rahul Satija"
],
"doi": "10.1016/j.cell.2021.04.048",
"ref_id": "b29",
"title": "Integrated analysis of multimodal single-cell data",
"year": "2021"
},
{
"authors": [
"Trevor Hastie"
],
"doi": "10.1080/00401706.2020.1791959",
"ref_id": "b30",
"title": "Ridge Regularization: An Essential Concept in Data Science",
"year": "2020"
},
{
"authors": [
"Trevor Hastie",
"Robert Tibshirani",
"Jerome Friedman"
],
"doi": "10.1007/978-0-387-84858-7",
"ref_id": "b31",
"title": "The Elements of Statistical Learning",
"year": "2009"
},
{
"authors": [
"Trevor Hastie",
"Andrea Montanari",
"Saharon Rosset",
"Ryan J Tibshirani"
],
"doi": "10.1214/21-aos2133",
"ref_id": "b32",
"title": "Surprises in high-dimensional ridgeless least squares interpolation",
"year": "2022"
},
{
"authors": [
"A E Hoerl",
"R W Kennard"
],
"doi": "",
"ref_id": "b33",
"title": "Ridge regression: Biased estimation for nonorthogonal problems",
"year": "1970"
},
{
"authors": [
"Arthur E Hoerl",
"Robert W Kennard"
],
"doi": "10.1080/00401706.1970.10488635",
"ref_id": "b34",
"title": "Ridge Regression: Applications to Nonorthogonal Problems",
"year": "1970b"
},
{
"authors": [
"S Kale",
"R Kumar",
"S Vassilvitskii"
],
"doi": "10.1351/goldbook.10109",
"ref_id": "b35",
"title": "root mean square error of cross validation",
"year": "2011"
},
{
"authors": [
"Anders Krogh",
"Peter Sollich"
],
"doi": "10.1103/physreve.55.811",
"ref_id": "b36",
"title": "Statistical mechanics of ensemble learning",
"year": "1997"
},
{
"authors": [
"Ravi Kumar",
"Silvio Lattanzi",
"Sergei Vassilvitskii",
"Andrea Vattani"
],
"doi": "10.1145/1993574.1993582",
"ref_id": "b37",
"title": "Hiring a secretary from a poset",
"year": "2013"
},
{
"authors": [
"D Lejeune",
"H Javadi",
"R Baraniuk"
],
"doi": "",
"ref_id": "b38",
"title": "The implicit regularization of ordinary least squares ensembles",
"year": "2020"
},
{
"authors": [
"K.-C Li"
],
"doi": "",
"ref_id": "b39",
"title": "From Stein's unbiased risk estimates to the method of generalized cross validation",
"year": "1985"
},
{
"authors": [
"K.-C Li"
],
"doi": "10.1214/aos/1176350052",
"ref_id": "b40",
"title": "Asymptotic Optimality of $C_L$ and Generalized Cross-Validation in Ridge Regression with Application to Spline Smoothing",
"year": "1986"
},
{
"authors": [
"K.-C Li"
],
"doi": "10.1214/aos/1176350486",
"ref_id": "b41",
"title": "Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set",
"year": "1987"
}
] |
[
"17cf402efe2c12df",
"7c7444b323ed9793",
"bbd9b49735246eeb",
"a38d0ec323915e5b",
"b7cfd44dbc5513de",
"d15e6d23594ee921",
"b30de3569607038c",
"e57ee1a13fd1619f",
"4b5cd9dee5b9dbfd",
"b62f02e12ab1ccd2",
"80b1f00cc006b6e7",
"44d2194d737b0020",
"acc4983974cf2bde",
"b848d281c25ca9dc",
"b04fa84e398ba661",
"5fc63d2c880ece03",
"2778c81903a2ea00",
"294c39ae575ec408",
"d30e1e4003c69315"
] |
[
"5168fe4b27422ab4",
"ba7530f24c11db0c",
"294c39ae575ec408",
"e57ee1a13fd1619f",
"e85a65d40d7bf04c",
"37cf31af1dcea7e0",
"7c15efa8e1630205",
"752e84dd309b65b9",
"851db50a54c5d8c5",
"80b1f00cc006b6e7",
"d30e1e4003c69315",
"b30de3569607038c",
"2778c81903a2ea00",
"a35bb8d54f22a3da",
"5233fa2c817f7bc2",
"8de56522c6144ad3",
"44d2194d737b0020",
"e915a3bdb427922f",
"e1f9a55703b5aec0",
"88e2c768b63f9c90",
"8fbdac8c422ec573",
"acc4983974cf2bde",
"a38d0ec323915e5b",
"bbd9b49735246eeb",
"a4b4f811d68440b3",
"130a2f45fb441075",
"d2ca170c7900b96b",
"7c7444b323ed9793",
"d15e6d23594ee921",
"bbbe29415d45de71",
"4b5cd9dee5b9dbfd",
"b848d281c25ca9dc",
"872cee3d5eda6272",
"efa3c7496c5b35e7",
"7daa0e82b32cf402",
"11934b705c75e766",
"5fc63d2c880ece03",
"678b61aeb151a074",
"b04fa84e398ba661",
"17cf402efe2c12df",
"b7cfd44dbc5513de",
"b62f02e12ab1ccd2"
] |
gZXFNUcnHd
|
Towards Reliable Neural Specifications
|
data/openreview_paper/ICML_2023_oral/gZXFNUcnHd//paper.pdf
| 26
| 0
|
[] |
[
{
"authors": [
"Alex Bäuerle",
"Patrick Albus",
"Raphael Störk",
"Tina Seufert",
"Timo Ropinski"
],
"doi": "10.1007/s00371-022-02593-0",
"ref_id": "b0",
"title": "exploRNN: teaching recurrent neural networks through visual exploration",
"year": "2022"
},
{
"authors": [
"Patrick Cousot",
"Radhia Cousot"
],
"doi": "10.1145/512950.512973",
"ref_id": "b1",
"title": "Abstract interpretation",
"year": "1977"
},
{
"authors": [
"Thomas G Dietterich",
"Eric J Horvitz"
],
"doi": "10.1145/2770869",
"ref_id": "b2",
"title": "Rise of concerns about AI",
"year": "2015"
},
{
"authors": [
"D Erhan",
"Y Bengio",
"A C Courville",
"P Vincent"
],
"doi": "",
"ref_id": "b3",
"title": "Visualizing higher-layer features of a deep network",
"year": "2009"
},
{
"authors": [
"Divya Gopinath",
"Hayes Converse",
"Corina Pasareanu",
"Ankur Taly"
],
"doi": "10.1109/ase.2019.00079",
"ref_id": "b4",
"title": "Property Inference for Deep Neural Networks",
"year": "November 11-15, 2019. 2019"
},
{
"authors": [
"B Hanin",
"D Rolnick"
],
"doi": "",
"ref_id": "b5",
"title": "Complexity of linear regions in deep networks",
"year": "2019"
},
{
"authors": [
"B Hanin",
"D Rolnick"
],
"doi": "",
"ref_id": "b6",
"title": "Deep relu networks have surprisingly few activation patterns",
"year": "2019"
},
{
"authors": [
"Xiaowei Huang",
"Marta Kwiatkowska",
"Sen Wang",
"Min Wu"
],
"doi": "10.1007/978-3-319-63387-9_1",
"ref_id": "b7",
"title": "Safety Verification of Deep Neural Networks",
"year": "2017"
},
{
"authors": [
"Xiaowei Huang",
"Daniel Kroening",
"Wenjie Ruan",
"James Sharp",
"Youcheng Sun",
"Emese Thamo",
"Min Wu",
"Xinping Yi"
],
"doi": "10.1016/j.cosrev.2020.100270",
"ref_id": "b8",
"title": "A survey of safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability",
"year": "2020"
},
{
"authors": [
"G Katz",
"C Barrett",
"D L Dill",
"K Julian",
"M J Kochenderfer",
"Reluplex"
],
"doi": "",
"ref_id": "b9",
"title": "An efficient smt solver for verifying deep neural networks",
"year": "2017"
},
{
"authors": [
"G Katz",
"D A Huang",
"D Ibeling",
"K Julian",
"C Lazarus",
"R Lim",
"P Shah",
"S Thakoor",
"H Wu",
"A Zeljic",
"D L Dill",
"M J Kochenderfer",
"C W Barrett"
],
"doi": "",
"ref_id": "b10",
"title": "The marabou framework for verification and analysis of deep neural networks",
"year": "2019"
},
{
"authors": [
"K Li",
"A K Hopkins",
"D Bau",
"F Viégas",
"H Pfister",
"M Wattenberg"
],
"doi": "",
"ref_id": "b11",
"title": "Emergent world representations: Exploring a sequence model trained on a synthetic task",
"year": "2023"
},
{
"authors": [
"J A Nelder",
"R Mead"
],
"doi": "10.1093/comjnl/7.4.308",
"ref_id": "b12",
"title": "A Simplex Method for Function Minimization",
"year": "1965"
},
{
"authors": [
"Marco Tulio Ribeiro",
"Sameer Singh",
"Carlos Guestrin"
],
"doi": "10.1145/2939672.2939778",
"ref_id": "b13",
"title": "\"Why Should I Trust You?\"",
"year": "August 13-17, 2016. 2016"
},
{
"authors": [
"H G Rice"
],
"doi": "10.1090/s0002-9947-1953-0053041-6",
"ref_id": "b14",
"title": "Classes of recursively enumerable sets and their decision problems",
"year": "1953"
},
{
"authors": [
"R R Selvaraju",
"A Das",
"R Vedantam",
"M Cogswell",
"D Parikh",
"D Batra"
],
"doi": "",
"ref_id": "b15",
"title": "Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization",
"year": "2016"
},
{
"authors": [
"K Simonyan",
"A Vedaldi",
"A Zisserman"
],
"doi": "",
"ref_id": "b16",
"title": "Deep inside convolutional networks: Visualising image classification models and saliency maps",
"year": "April 14-16, 2014. 2014"
},
{
"authors": [
"G Singh",
"T Gehr",
"M Püschel",
"M Vechev"
],
"doi": "10.1145/3290354",
"ref_id": "b17",
"title": "An abstract domain for certifying neural networks",
"year": "jan 2019"
},
{
"authors": [
"Hoang-Dung Tran",
"Neelanjana Pal",
"Patrick Musau",
"Diego Manzanas Lopez",
"Nathaniel Hamilton",
"Xiaodong Yang",
"Stanley Bak",
"Taylor T Johnson"
],
"doi": "10.1007/978-3-030-81685-8_12",
"ref_id": "b18",
"title": "Robustness Verification of Semantic Segmentation Neural Networks Using Relaxed Reachability",
"year": "July 20-23, 2021. 2021"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b19",
"title": "Attention Is All You Need",
"year": "2017"
},
{
"authors": [
"Vnncomp",
"Vnncomp"
],
"doi": "10.17816/eid677915-4363932",
"ref_id": "b20",
"title": "Fig. 5. Married couple Riki and Hachiro Ohara. Borrowed from URL: https://habane8.com/y/193/f.htm.",
"year": "2021"
},
{
"authors": [
"S Wang",
"H Zhang",
"K Xu",
"X Lin",
"S Jana",
"C.-J Hsieh",
"J Z Kolter"
],
"doi": "",
"ref_id": "b21",
"title": "Beta-CROWN: Efficient bound propagation with per-neuron split constraints for complete and incomplete neural network verification",
"year": "2021"
},
{
"authors": [
"J M Wing"
],
"doi": "10.1109/2.58215",
"ref_id": "b22",
"title": "A specifier's introduction to formal methods",
"year": "1990"
},
{
"authors": [
"J M Wing"
],
"doi": "",
"ref_id": "b23",
"title": "Trustworthy AI",
"year": "2021"
},
{
"authors": [
"Han Xu",
"Yao Ma",
"Hao-Chen Liu",
"Debayan Deb",
"Hui Liu",
"Ji-Liang Tang",
"Anil K Jain"
],
"doi": "10.1007/s11633-019-1211-x",
"ref_id": "b24",
"title": "Adversarial Attacks and Defenses in Images, Graphs and Text: A Review",
"year": "2020"
},
{
"authors": [
"J Yosinski",
"J Clune",
"A Nguyen",
"T Fuchs",
"H Lipson"
],
"doi": "",
"ref_id": "b25",
"title": "Understanding neural networks through deep visualization",
"year": "2015"
}
] |
[] |
[
"1c810585719901ec",
"b870834b16fa8534",
"f577f762a1f278b5",
"cf949e187d4e174e",
"c44ffdc39618c50e",
"1cc07aab23f31a91",
"61e536f3eeb356b0",
"1bd0e8ba8b4ae873",
"7ec8ab6c9930ac94",
"7bd9b647f4cab9a7",
"adfa7c80b077ecb3",
"433f5a98094c12e9",
"3e2bf10459047fca",
"ec28736a6adf3fc3",
"dd2d82dddc485d95",
"5ccb7cb2f98bfe01",
"fe77d60cc37955b7",
"d4f8a95d14a39a22",
"f31dcf0f829e04f8",
"2c0dc3d0f1ec41b0",
"6b8de713241b3b81",
"20eae4e8bc4b23bb",
"c2ea14db974c1bc2",
"8f0989e1c66e3d80",
"fa2457d2a37921d4",
"ebd0ffa7825ab51b"
] |
HxN8K1esES
|
Mimetic Initialization of Self-Attention Layers
|
data/openreview_paper/ICML_2023_oral/HxN8K1esES//paper.pdf
| 23
| 13
|
[
{
"authors": [
"H Gani",
"M Naseer",
"M Yaqub"
],
"doi": "",
"ref_id": "b7",
"title": "How to train vision transformer on small-scale datasets?",
"year": "2022"
},
{
"authors": [
"J.-B Cordonnier",
"A Loukas",
"M Jaggi"
],
"doi": "",
"ref_id": "b2",
"title": "On the relationship between self-attention and convolutional layers",
"year": "2019"
},
{
"authors": [
"X S Huang",
"F Perez",
"J Ba",
"M Volkovs"
],
"doi": "",
"ref_id": "b10",
"title": "Improving transformer optimization through better initialization",
"year": "2020"
},
{
"authors": [
"Z Dai",
"H Liu",
"Q V Le",
"M Tan"
],
"doi": "",
"ref_id": "b4",
"title": "Coatnet: Marrying convolution and attention for all data sizes",
"year": "2021"
},
{
"authors": [
"Y.-H Cao",
"H Yu",
"J Wu"
],
"doi": "",
"ref_id": "b1",
"title": "Training vision transformers with only 2040 images",
"year": "2022"
},
{
"authors": [
"A Hassani",
"S Walton",
"N Shah",
"A Abuduweili",
"J Li",
"H Shi"
],
"doi": "",
"ref_id": "b8",
"title": "Escaping the big data paradigm with compact transformers",
"year": "2021"
},
{
"authors": [
"S H Lee",
"S Lee",
"B C Song"
],
"doi": "",
"ref_id": "b11",
"title": "Vision transformer for small-size datasets",
"year": "2021"
},
{
"authors": [
"B He",
"J Martens",
"G Zhang",
"A Botev",
"A Brock",
"S L Smith",
"Y W Teh"
],
"doi": "",
"ref_id": "b9",
"title": "Deep transformers without shortcuts: Modifying self-attention for faithful signal propagation",
"year": "2023"
},
{
"authors": [
"Haiping Wu",
"Bin Xiao",
"Noel Codella",
"Mengchen Liu",
"Xiyang Dai",
"Lu Yuan",
"Lei Zhang"
],
"doi": "10.1109/iccv48922.2021.00009",
"ref_id": "b19",
"title": "CvT: Introducing Convolutions to Vision Transformers",
"year": "2021"
},
{
"authors": [
"Y Liu",
"E Sangineto",
"W Bi",
"N Sebe",
"B Lepri",
"M Nadai"
],
"doi": "",
"ref_id": "b12",
"title": "Efficient training of visual transformers with small datasets",
"year": "2021"
},
{
"authors": [
"Y Zhang",
"A Backurs",
"S Bubeck",
"R Eldan",
"S Gunasekar",
"T Wagner"
],
"doi": "",
"ref_id": "b21",
"title": "Unveiling transformers with lego: a synthetic reasoning task",
"year": "2022"
},
{
"authors": [
"J Zhao",
"F Schäfer",
"A Anandkumar"
],
"doi": "",
"ref_id": "b22",
"title": "Zero initialization: Initializing residual networks with only zeros and ones",
"year": "2021"
},
{
"authors": [
"Kun Yuan",
"Shaopeng Guo",
"Ziwei Liu",
"Aojun Zhou",
"Fengwei Yu",
"Wei Wu"
],
"doi": "10.1109/iccv48922.2021.00062",
"ref_id": "b20",
"title": "Incorporating Convolution Designs into Visual Transformers",
"year": "2021"
}
] |
[
{
"authors": [
"S Bai",
"J Z Kolter",
"V Koltun"
],
"doi": "",
"ref_id": "b0",
"title": "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling",
"year": "2018"
},
{
"authors": [
"Y.-H Cao",
"H Yu",
"J Wu"
],
"doi": "",
"ref_id": "b1",
"title": "Training vision transformers with only 2040 images",
"year": "2022"
},
{
"authors": [
"J.-B Cordonnier",
"A Loukas",
"M Jaggi"
],
"doi": "",
"ref_id": "b2",
"title": "On the relationship between self-attention and convolutional layers",
"year": "2019"
},
{
"authors": [
"Z Dai",
"Z Yang",
"Y Yang",
"J Carbonell",
"Q V Le",
"R Salakhutdinov"
],
"doi": "",
"ref_id": "b3",
"title": "Transformer-xl: Attentive language models beyond a fixed-length context",
"year": "2019"
},
{
"authors": [
"Z Dai",
"H Liu",
"Q V Le",
"M Tan"
],
"doi": "",
"ref_id": "b4",
"title": "Coatnet: Marrying convolution and attention for all data sizes",
"year": "2021"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly"
],
"doi": "",
"ref_id": "b5",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2020"
},
{
"authors": [
"S Ascoli",
"H Touvron",
"M L Leavitt",
"A S Morcos",
"G Biroli",
"L Sagun",
"Convit"
],
"doi": "",
"ref_id": "b6",
"title": "Improving vision transformers with soft convolutional inductive biases",
"year": "2021"
},
{
"authors": [
"H Gani",
"M Naseer",
"M Yaqub"
],
"doi": "",
"ref_id": "b7",
"title": "How to train vision transformer on small-scale datasets?",
"year": "2022"
},
{
"authors": [
"A Hassani",
"S Walton",
"N Shah",
"A Abuduweili",
"J Li",
"H Shi"
],
"doi": "",
"ref_id": "b8",
"title": "Escaping the big data paradigm with compact transformers",
"year": "2021"
},
{
"authors": [
"B He",
"J Martens",
"G Zhang",
"A Botev",
"A Brock",
"S L Smith",
"Y W Teh"
],
"doi": "",
"ref_id": "b9",
"title": "Deep transformers without shortcuts: Modifying self-attention for faithful signal propagation",
"year": "2023"
},
{
"authors": [
"X S Huang",
"F Perez",
"J Ba",
"M Volkovs"
],
"doi": "",
"ref_id": "b10",
"title": "Improving transformer optimization through better initialization",
"year": "2020"
},
{
"authors": [
"S H Lee",
"S Lee",
"B C Song"
],
"doi": "",
"ref_id": "b11",
"title": "Vision transformer for small-size datasets",
"year": "2021"
},
{
"authors": [
"Y Liu",
"E Sangineto",
"W Bi",
"N Sebe",
"B Lepri",
"M Nadai"
],
"doi": "",
"ref_id": "b12",
"title": "Efficient training of visual transformers with small datasets",
"year": "2021"
},
{
"authors": [
"H Touvron",
"M Cord",
"M Douze",
"F Massa",
"A Sablayrolles",
"H Jégou"
],
"doi": "",
"ref_id": "b13",
"title": "Training data-efficient image transformers & distillation through attention",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "10.1163/1873-5363_fgrh.2021a.bnjo-1-comm2-eng",
"ref_id": "b14",
"title": "Pinax to Hypotyposis (2021A)",
"year": "2021"
},
{
"authors": [
"Hugo Touvron",
"Matthieu Cord",
"Alexandre Sablayrolles",
"Gabriel Synnaeve",
"Herve Jegou"
],
"doi": "10.1109/iccv48922.2021.00010",
"ref_id": "b15",
"title": "Going deeper with Image Transformers",
"year": "2021"
},
{
"authors": [
"A Trockman",
"J Z Kolter"
],
"doi": "",
"ref_id": "b16",
"title": "Patches are all you need?",
"year": "2022"
},
{
"authors": [
"A Trockman",
"D Willmott",
"J Z Kolter"
],
"doi": "",
"ref_id": "b17",
"title": "Understanding the covariance structure of convolutional filters",
"year": "2022"
},
{
"authors": [
"R Wightman",
"H Touvron",
"H Jégou"
],
"doi": "",
"ref_id": "b18",
"title": "Resnet strikes back: An improved training procedure in timm",
"year": "2021"
},
{
"authors": [
"Haiping Wu",
"Bin Xiao",
"Noel Codella",
"Mengchen Liu",
"Xiyang Dai",
"Lu Yuan",
"Lei Zhang"
],
"doi": "10.1109/iccv48922.2021.00009",
"ref_id": "b19",
"title": "CvT: Introducing Convolutions to Vision Transformers",
"year": "2021"
},
{
"authors": [
"Kun Yuan",
"Shaopeng Guo",
"Ziwei Liu",
"Aojun Zhou",
"Fengwei Yu",
"Wei Wu"
],
"doi": "10.1109/iccv48922.2021.00062",
"ref_id": "b20",
"title": "Incorporating Convolution Designs into Visual Transformers",
"year": "2021"
},
{
"authors": [
"Y Zhang",
"A Backurs",
"S Bubeck",
"R Eldan",
"S Gunasekar",
"T Wagner"
],
"doi": "",
"ref_id": "b21",
"title": "Unveiling transformers with lego: a synthetic reasoning task",
"year": "2022"
},
{
"authors": [
"J Zhao",
"F Schäfer",
"A Anandkumar"
],
"doi": "",
"ref_id": "b22",
"title": "Zero initialization: Initializing residual networks with only zeros and ones",
"year": "2021"
}
] |
[
"8bd213b5fc6ec659",
"7f9b8fd881dcf83e",
"e5e9681e8565b099",
"6904d1570a194b7b",
"b81d705b5ee6ba04",
"abca0bc56f208348",
"f274fb8fb3f00655",
"ffc6b364b2dbbcc4",
"e531bca8aac29be9",
"9309e0284e44415d",
"8f216c38505b0bc9",
"700cc591a10b7bd5",
"ba972217af6b8eb3"
] |
[
"a71f19d6ae598255",
"b81d705b5ee6ba04",
"7f9b8fd881dcf83e",
"296fddc3c2677b34",
"6904d1570a194b7b",
"e01b048243ab4004",
"1d9f5aa08055f604",
"8bd213b5fc6ec659",
"abca0bc56f208348",
"ffc6b364b2dbbcc4",
"e5e9681e8565b099",
"f274fb8fb3f00655",
"9309e0284e44415d",
"3a92f824d38fcd84",
"58d4a3f2642ac48a",
"4d99034247f5e36e",
"8a8c6851532e852e",
"d8a8a7208b47b090",
"b6c035ef8f50c7ff",
"e531bca8aac29be9",
"ba972217af6b8eb3",
"8f216c38505b0bc9",
"700cc591a10b7bd5"
] |
4yoLVter71
|
Quantile Credit Assignment
|
data/openreview_paper/ICML_2023_oral/4yoLVter71//paper.pdf
| 27
| 3
|
[
{
"authors": [
"M G Bellemare",
"W Dabney",
"R Munos"
],
"doi": "",
"ref_id": "b2",
"title": "A distributional perspective on reinforcement learning",
"year": "2017"
},
{
"authors": [
"T Mesnard",
"T Weber",
"F Viola",
"S Thakoor",
"A Saade",
"A Harutyunyan",
"W Dabney",
"T Stepleton",
"N Heess",
"A Guez",
"É Moulines",
"M Hutter",
"L Buesing",
"R Munos"
],
"doi": "",
"ref_id": "b16",
"title": "Counterfactual credit assignment in modelfree reinforcement learning",
"year": "2020"
},
{
"authors": [
"Volodymyr Mnih",
"Koray Kavukcuoglu",
"David Silver",
"Andrei A Rusu",
"Joel Veness",
"Marc G Bellemare",
"Alex Graves",
"Martin Riedmiller",
"Andreas K Fidjeland",
"Georg Ostrovski",
"Stig Petersen",
"Charles Beattie",
"Amir Sadik",
"Ioannis Antonoglou",
"Helen King",
"Dharshan Kumaran",
"Daan Wierstra",
"Shane Legg",
"Demis Hassabis"
],
"doi": "10.1038/nature14236",
"ref_id": "b18",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
}
] |
[
{
"authors": [
"M Andrychowicz",
"F Wolski",
"A Ray",
"J Schneider",
"R Fong",
"P Welinder",
"B Mcgrew",
"J Tobin",
"O Pieter Abbeel",
"W Zaremba"
],
"doi": "",
"ref_id": "b0",
"title": "Hindsight experience replay",
"year": "2017"
},
{
"authors": [
"G Barth-Maron",
"M W Hoffman",
"D Budden",
"W Dabney",
"D Horgan",
"D Tb",
"A Muldal",
"N Heess",
"T Lillicrap"
],
"doi": "",
"ref_id": "b1",
"title": "Distributed distributional deterministic policy gradients",
"year": "2018"
},
{
"authors": [
"M G Bellemare",
"W Dabney",
"R Munos"
],
"doi": "",
"ref_id": "b2",
"title": "A distributional perspective on reinforcement learning",
"year": "2017"
},
{
"authors": [
"Marc G Bellemare",
"Will Dabney",
"Mark Rowland"
],
"doi": "10.7551/mitpress/14207.001.0001",
"ref_id": "b3",
"title": "Distributional Reinforcement Learning",
"year": "2023"
},
{
"authors": [
"Will Dabney",
"Mark Rowland",
"Marc Bellemare",
"Rémi Munos"
],
"doi": "10.1609/aaai.v32i1.11791",
"ref_id": "b4",
"title": "Distributional Reinforcement Learning With Quantile Regression",
"year": "2018"
},
{
"authors": [
"J Duan",
"Y Guan",
"S E Li",
"Y Ren",
"Q Sun",
"B Cheng"
],
"doi": "",
"ref_id": "b5",
"title": "Distributional soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors",
"year": "2021"
},
{
"authors": [
"W Grathwohl",
"D Choi",
"Y Wu",
"G Roeder",
"D Duvenaud"
],
"doi": "",
"ref_id": "b6",
"title": "Backpropagation through the void: Optimizing control variates for black-box gradient estimation",
"year": "2017"
},
{
"authors": [
"Nicholas Clavette"
],
"doi": "10.23860/thesis-clavette-nicholas-2023",
"ref_id": "b7",
"title": "A SAMPLE EFFICIENT OFF-POLICY ACTOR-CRITIC APPROACH FOR DISCRETE ACTION ENVIRONMENTS",
"year": "2016"
},
{
"authors": [
"A Harutyunyan",
"W Dabney",
"T Mesnard",
"M Gheshlaghi Azar",
"B Piot",
"N Heess",
"H P Van Hasselt",
"G Wayne",
"S Singh",
"D Precup",
"R Munos"
],
"doi": "",
"ref_id": "b8",
"title": "Hindsight credit assignment",
"year": "2019"
},
{
"authors": [
"Matteo Hessel",
"Joseph Modayil",
"Hado Van Hasselt",
"Tom Schaul",
"Georg Ostrovski",
"Will Dabney",
"Dan Horgan",
"Bilal Piot",
"Mohammad Azar",
"David Silver"
],
"doi": "10.1609/aaai.v32i1.11796",
"ref_id": "b9",
"title": "Rainbow: Combining Improvements in Deep Reinforcement Learning",
"year": "2018"
},
{
"authors": [
"G Hinton",
"N Srivastava",
"K Swersky"
],
"doi": "",
"ref_id": "b10",
"title": "Neural networks for machine learning lecture 6a overview of mini-batch gradient descent",
"year": "2012"
},
{
"authors": [
"M Hoffman",
"B Shahriari",
"J Aslanides",
"G Barth-Maron",
"F Behbahani",
"T Norman",
"A Abdolmaleki",
"A Cassirer",
"F Yang",
"K Baumli",
"S Henderson",
"A Friesen",
"R Haroun",
"A Novikov",
"S Gómez Colmenarejo",
"S Cabi",
"C Gulcehre",
"T Le Paine",
"S Srinivasan",
"A Cowie",
"Z Wang",
"B Piot",
"N Freitas",
"Acme"
],
"doi": "",
"ref_id": "b11",
"title": "A research framework for distributed reinforcement learning",
"year": "2020"
},
{
"authors": [
"Chia-Chun Hung",
"Timothy Lillicrap",
"Josh Abramson",
"Yan Wu",
"Mehdi Mirza",
"Federico Carnevale",
"Arun Ahuja",
"Greg Wayne"
],
"doi": "10.1038/s41467-019-13073-w",
"ref_id": "b12",
"title": "Optimizing agent behavior over long time scales by transporting value",
"year": "2019"
},
{
"authors": [
"Roger Koenker",
"Gilbert Bassett"
],
"doi": "10.2307/1913643",
"ref_id": "b13",
"title": "Regression Quantiles",
"year": "1978"
},
{
"authors": [
"H Liu",
"Y Feng",
"Y Mao",
"D Zhou",
"J Peng",
"Q Liu"
],
"doi": "",
"ref_id": "b14",
"title": "Action-depedent control variates for policy optimization via stein's identity",
"year": "2017"
},
{
"authors": [
"Yudong Luo",
"Oliver Schulte",
"Pascal Poupart"
],
"doi": "10.24963/ijcai.2020/464",
"ref_id": "b15",
"title": "Inverse Reinforcement Learning for Team Sports: Valuing Actions and Players",
"year": "2021"
},
{
"authors": [
"T Mesnard",
"T Weber",
"F Viola",
"S Thakoor",
"A Saade",
"A Harutyunyan",
"W Dabney",
"T Stepleton",
"N Heess",
"A Guez",
"É Moulines",
"M Hutter",
"L Buesing",
"R Munos"
],
"doi": "",
"ref_id": "b16",
"title": "Counterfactual credit assignment in modelfree reinforcement learning",
"year": "2020"
},
{
"authors": [
"Marvin Minsky"
],
"doi": "10.1109/jrproc.1961.287775",
"ref_id": "b17",
"title": "Steps toward Artificial Intelligence",
"year": "1961"
},
{
"authors": [
"Volodymyr Mnih",
"Koray Kavukcuoglu",
"David Silver",
"Andrei A Rusu",
"Joel Veness",
"Marc G Bellemare",
"Alex Graves",
"Martin Riedmiller",
"Andreas K Fidjeland",
"Georg Ostrovski",
"Stig Petersen",
"Charles Beattie",
"Amir Sadik",
"Ioannis Antonoglou",
"Helen King",
"Dharshan Kumaran",
"Daan Wierstra",
"Shane Legg",
"Demis Hassabis"
],
"doi": "10.1038/nature14236",
"ref_id": "b18",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"D W Nam",
"Y Kim",
"C Y Park",
"Gmac"
],
"doi": "",
"ref_id": "b19",
"title": "A distributional perspective on actor-critic framework",
"year": "2021"
},
{
"authors": [
"B Shahriari",
"A Abdolmaleki",
"A Byravan",
"A Friesen",
"S Liu",
"J T Springenberg",
"N Heess",
"M Hoffman",
"M Riedmiller"
],
"doi": "",
"ref_id": "b20",
"title": "Revisiting Gaussian mixture critic in offpolicy reinforcement learning: A sample-based approach",
"year": "2022"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b21",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"R S Sutton",
"D Mcallester",
"S Singh",
"Y Mansour"
],
"doi": "",
"ref_id": "b22",
"title": "Policy gradient methods for reinforcement learning with function approximation",
"year": "1999"
},
{
"authors": [
"Z Wang",
"T Schaul",
"M Hessel",
"H Hasselt",
"M Lanctot",
"N Freitas"
],
"doi": "",
"ref_id": "b23",
"title": "Dueling network architectures for deep reinforcement learning",
"year": "2016"
},
{
"authors": [
"Ronald J Williams"
],
"doi": "10.1023/a:1022672621406",
"ref_id": "b24",
"title": "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning",
"year": "1992"
},
{
"authors": [
"C Wu",
"A Rajeswaran",
"Y Duan",
"V Kumar",
"A M Bayen",
"S Kakade",
"I Mordatch",
"P Abbeel"
],
"doi": "",
"ref_id": "b25",
"title": "Variance reduction for policy gradient with action-dependent factorized baselines",
"year": "2018"
},
{
"authors": [
"F Zhou",
"J Wang",
"X Feng"
],
"doi": "",
"ref_id": "b26",
"title": "Non-crossing quantile regression for distributional reinforcement learning",
"year": "2020"
}
] |
[
"ce0e01d63de84fd6",
"10845608803c92a1",
"e700ad61395d2f72"
] |
[
"760035c1c0f65d08",
"cc607508d2e294e2",
"ce0e01d63de84fd6",
"115e63a32720c46c",
"a5b4ac90798c1381",
"0f777dbe407de1e2",
"6269911a3a15adf2",
"719e5078844431ac",
"35ef46ab928f44f3",
"4a68593189ae925f",
"4b752b939d5c0a17",
"ee8a0aae321a6429",
"bf97743222d01cce",
"5f2230a687e57719",
"bcf0f9c1ba87f104",
"8e27bc59272fb39e",
"10845608803c92a1",
"a2a35358516a8fd0",
"e700ad61395d2f72",
"d00571e0ba8cdd79",
"17acd7c6d628ab6f",
"34dc3e64fa458b25",
"c2bba5555d7aa6a5",
"46100c3490685521",
"a8fc20e3850e5978",
"84d953f667f60e53",
"fafa680308e24e06"
] |
Hk2fFm7W8c
|
Second-Order Optimization with Lazy Hessians
|
data/openreview_paper/ICML_2023_oral/Hk2fFm7W8c//paper.pdf
| 41
| 0
|
[] |
[
{
"authors": [
"Ilan Adler",
"Zhiyue T Hu",
"Tianyi Lin"
],
"doi": "10.1109/cdc42340.2020.9304423",
"ref_id": "b0",
"title": "New Proximal Newton-Type Methods for Convex Optimization",
"year": "2020"
},
{
"authors": [
"F Bach"
],
"doi": "",
"ref_id": "b1",
"title": "Self-concordant analysis for logistic regression",
"year": "2010"
},
{
"authors": [
"B Bullins"
],
"doi": "",
"ref_id": "b2",
"title": "Highly smooth minimization of non-smooth problems",
"year": "2020"
},
{
"authors": [
"Coralia Cartis",
"Nicholas I M Gould",
"Philippe L Toint"
],
"doi": "10.1007/s10107-009-0286-5",
"ref_id": "b3",
"title": "Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results",
"year": "2011"
},
{
"authors": [
"Coralia Cartis",
"Nicholas I M Gould",
"Philippe L Toint"
],
"doi": "10.1007/s10107-009-0337-y",
"ref_id": "b4",
"title": "Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity",
"year": "2011"
},
{
"authors": [
"Coralia Cartis",
"Nicholas I M Gould",
"Philippe L Toint"
],
"doi": "10.1137/100812276",
"ref_id": "b5",
"title": "On the Oracle Complexity of First-Order and Derivative-Free Algorithms for Smooth Nonconvex Minimization",
"year": "2012"
},
{
"authors": [
"A R Conn",
"N I Gould",
"P L Toint"
],
"doi": "",
"ref_id": "b6",
"title": "Trust region methods",
"year": "2000"
},
{
"authors": [],
"doi": "10.26420/austinjpublichealthepidemiol.2021.1095",
"ref_id": "b7",
"title": "« What a Catch! »: A Case Report on Denial and Myocardial Infarction",
"year": "2021"
},
{
"authors": [
"N Doikov",
"Y Nesterov"
],
"doi": "",
"ref_id": "b8",
"title": "Convex optimization based on global lower second-order models",
"year": "2020"
},
{
"authors": [
"N Doikov",
"Y Nesterov"
],
"doi": "",
"ref_id": "b9",
"title": "Gradient regularization of Newton method with Bregman distances",
"year": "2021"
},
{
"authors": [
"Nikita Doikov",
"Yurii Nesterov"
],
"doi": "10.1007/s10957-021-01838-7",
"ref_id": "b10",
"title": "Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method",
"year": "2021"
},
{
"authors": [
"N Doikov",
"Y Nesterov"
],
"doi": "",
"ref_id": "b11",
"title": "Affine-invariant contractingpoint methods for convex optimization",
"year": "2022"
},
{
"authors": [
"Nikita Doikov",
"Konstantin Mishchenko",
"Yurii Nesterov"
],
"doi": "10.1137/22m1519444",
"ref_id": "b12",
"title": "Super-Universal Regularized Newton Method",
"year": "2022"
},
{
"authors": [
"Pavel Dvurechensky",
"Yurii Nesterov"
],
"doi": "10.1007/s10208-025-09726-6",
"ref_id": "b13",
"title": "Improved global performance guarantees of second-order methods in convex minimization",
"year": "2018"
},
{
"authors": [
"Jinyan Fan"
],
"doi": "10.1007/s10589-013-9549-4",
"ref_id": "b14",
"title": "A Shamanskii-like Levenberg-Marquardt method for nonlinear equations",
"year": "2013"
},
{
"authors": [
"S Ghadimi",
"G Lan"
],
"doi": "",
"ref_id": "b15",
"title": "Stochastic first-and zeroth-order methods for nonconvex stochastic programming",
"year": "2013"
},
{
"authors": [
"G N Grapiglia",
"Y U Nesterov"
],
"doi": "10.1137/16m1087801",
"ref_id": "b16",
"title": "Regularized Newton Methods for Minimizing Functions with Hölder Continuous Hessians",
"year": "2017"
},
{
"authors": [
"Geovani N Grapiglia",
"Yurii Nesterov"
],
"doi": "10.1137/17m1142077",
"ref_id": "b17",
"title": "Accelerated Regularized Newton Methods for Minimizing Composite Convex Functions",
"year": "2019"
},
{
"authors": [
"G N Grapiglia",
"M L Gonc ¸alves",
"G Silva"
],
"doi": "",
"ref_id": "b18",
"title": "A cubic regularization of Newton's method with finite difference hessian approximations",
"year": "2022"
},
{
"authors": [
"S Hanzely",
"D Kamzolov",
"D Pasechnyuk",
"A Gasnikov",
"P Richtárik",
"M Takáč"
],
"doi": "",
"ref_id": "b19",
"title": "A damped Newton method achieves global O(1/k 2 ) and local quadratic convergence rate",
"year": "2022"
},
{
"authors": [
"R Islamov",
"X Qian",
"S Hanzely",
"M Safaryan",
"P Richtárik"
],
"doi": "",
"ref_id": "b20",
"title": "Distributed Newton-type methods with communication compression and Bernoulli aggregation",
"year": "2022"
},
{
"authors": [
"L V Kantorovich"
],
"doi": "",
"ref_id": "b21",
"title": "Functional analysis and applied mathematics",
"year": "1948"
},
{
"authors": [
"S P Karimireddy",
"S U Stich",
"M Jaggi"
],
"doi": "",
"ref_id": "b22",
"title": "Global linear convergence of Newton's method without strongconvexity or Lipschitz gradients",
"year": "2018"
},
{
"authors": [
"J M Kohler",
"A Lucchi"
],
"doi": "",
"ref_id": "b23",
"title": "Sub-sampled cubic regularization for non-convex optimization",
"year": "2017"
},
{
"authors": [
"F Lampariello",
"M Sciandrone"
],
"doi": "10.1023/a:1011934418390",
"ref_id": "b24",
"title": "Global Convergence Technique for the Newton Method with Periodic Hessian Evaluation",
"year": "2001"
},
{
"authors": [
"Kenneth Levenberg"
],
"doi": "10.1090/qam/10666",
"ref_id": "b25",
"title": "A method for the solution of certain non-linear problems in least squares",
"year": "1944"
},
{
"authors": [
"Donald W Marquardt"
],
"doi": "10.1137/0111030",
"ref_id": "b26",
"title": "An Algorithm for Least-Squares Estimation of Nonlinear Parameters",
"year": "1963"
},
{
"authors": [
"K Mishchenko"
],
"doi": "",
"ref_id": "b27",
"title": "Regularized Newton method with global O(1/k 2 ) convergence",
"year": "2021"
},
{
"authors": [
"Y U Nesterov"
],
"doi": "10.1007/s10107-004-0552-5",
"ref_id": "b28",
"title": "Smooth minimization of non-smooth functions",
"year": "2005"
},
{
"authors": [
"Y U Nesterov"
],
"doi": "10.1007/s10107-006-0089-x",
"ref_id": "b29",
"title": "Accelerating the cubic regularization of Newton’s method on convex problems",
"year": "2008"
},
{
"authors": [
"Y Nesterov"
],
"doi": "",
"ref_id": "b30",
"title": "Lectures on convex optimization",
"year": "2018"
},
{
"authors": [
"Yurii Nesterov"
],
"doi": "10.1007/s10107-019-01449-1",
"ref_id": "b31",
"title": "Implementable tensor methods in unconstrained convex optimization",
"year": "2021"
},
{
"authors": [
"Yurii Nesterov",
"Arkadii Nemirovskii"
],
"doi": "10.1137/1.9781611970791",
"ref_id": "b32",
"title": "Interior-Point Polynomial Algorithms in Convex Programming",
"year": "1994"
},
{
"authors": [
"Yurii Nesterov",
"B T Polyak"
],
"doi": "10.1007/s10107-006-0706-8",
"ref_id": "b33",
"title": "Cubic regularization of Newton method and its global performance",
"year": "2006"
},
{
"authors": [
"J Nocedal",
"S Wright"
],
"doi": "",
"ref_id": "b34",
"title": "Numerical optimization",
"year": "2006"
},
{
"authors": [
"J M Ortega",
"W C Rheinboldt"
],
"doi": "10.1137/1.9780898719468",
"ref_id": "b35",
"title": "Iterative Solution of Nonlinear Equations in Several Variables",
"year": "2000"
},
{
"authors": [
"Anne-Frédérique Naviaux",
"Emilie Banse",
"Antoine Guedes",
"Pascal Janne",
"Maximilien Gourdin"
],
"doi": "10.52768/2766-7820/1066",
"ref_id": "b36",
"title": "What a catch! A case report on denial and myocardial infarction",
"year": "2022"
},
{
"authors": [
"A Rodomanov",
"Y Nesterov"
],
"doi": "",
"ref_id": "b37",
"title": "New results on superlinear convergence of classical quasi-Newton methods",
"year": "2021"
},
{
"authors": [
"V E Shamanskii"
],
"doi": "10.1007/bf01085183",
"ref_id": "b38",
"title": "A modification of Newton's method",
"year": "1967"
},
{
"authors": [
"Tianxiao Sun",
"Quoc Tran-Dinh"
],
"doi": "10.1007/s10107-018-1282-4",
"ref_id": "b39",
"title": "Generalized self-concordant functions: a recipe for Newton-type methods",
"year": "2019"
},
{
"authors": [
"C Wang",
"-Y",
"Y.-Y Chen",
"S.-Q Du"
],
"doi": "",
"ref_id": "b40",
"title": "Further insight into the Shamanskii modification of Newton method",
"year": "2006"
}
] |
[] |
[
"3a68ba7de84f2160",
"1eb4c47035911c6f",
"0aed80f3b14556c3",
"4da6cbd2844648d5",
"2a376a368f10081a",
"64e335606fef7dee",
"c72d53bf1d49a075",
"1fa98d8252b5a473",
"446833c40c0ba2a0",
"1f6d280a6fd17dcb",
"b31974faef65b3cc",
"d25afe9ef26bebbd",
"6dd825e4f1225953",
"2c0aa00e76eecb04",
"a879471e7033bdd6",
"302425df63cf44d9",
"81fb24ed5448ac93",
"abd41decfc1388b4",
"90ed8b32493342b1",
"cff55eb2e2f3f783",
"cebb28cab653ae3b",
"33bf25a8f6942ab5",
"64512a21548f51c6",
"41a3eef6af5f425e",
"9b2bd71a1c8557ae",
"a38acd543d829bca",
"b2100dc0583f1a3f",
"877479aed5d450dc",
"2fe9b75d47d53bee",
"8859980dcc64f98a",
"bfa18059e8d6e4f0",
"ebde0676594886b7",
"1886ca265661bd82",
"f4aeb77e7340ff6b",
"4d0f2ba498451883",
"1bcea2757fa57479",
"cc21d5e269772825",
"dcbb371816a40ffa",
"eb55ca42ce7ff212",
"7448d9a0c9527267",
"fd46d10ce6b1d5e7"
] |
7IRybndMLU
|
Whose Opinions Do Language Models Reflect?
|
data/openreview_paper/ICML_2023_oral/7IRybndMLU//paper.pdf
| 41
| 10
|
[
{
"authors": [
"H Jiang",
"D Beeferman",
"B Roy",
"D Roy"
],
"doi": "",
"ref_id": "b22",
"title": "Communitylm: Probing partisan worldviews from language models",
"year": "2022"
},
{
"authors": [
"G Aher",
"R Arriaga",
"A Kalai"
],
"doi": "",
"ref_id": "b0",
"title": "Using large language models to simulate multiple humans",
"year": "2022. 2022"
},
{
"authors": [
"Saketh Reddy Karra",
"Son The Nguyen",
"Theja Tulabandhula"
],
"doi": "10.2139/ssrn.4598766",
"ref_id": "b24",
"title": "Estimating the Personality of White-Box Language Models",
"year": "2022"
},
{
"authors": [
"A Srivastava",
"A Rastogi",
"A Rao",
"A Shoeb",
"A Abid",
"A Fisch",
"A Brown",
"A Santoro",
"A Gupta",
"A Garriga-Alonso"
],
"doi": "",
"ref_id": "b37",
"title": "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models",
"year": "2022"
},
{
"authors": [
"Gabriel Simmons"
],
"doi": "10.18653/v1/2023.acl-srw.40",
"ref_id": "b36",
"title": "Moral Mimicry: Large Language Models Produce Moral Rationalizations Tailored to Political Identity",
"year": "2022"
},
{
"authors": [
"Joon Sung Park",
"Lindsay Popowski",
"Carrie Cai",
"Meredith Ringel Morris",
"Percy Liang",
"Michael S Bernstein"
],
"doi": "10.1145/3526113.3545616",
"ref_id": "b30",
"title": "Social Simulacra: Creating Populated Prototypes for Social Computing Systems",
"year": "2022"
},
{
"authors": [
"L P Argyle",
"E C Busby",
"N Fulda",
"J Gubler",
"C Rytting",
"D Wingate"
],
"doi": "",
"ref_id": "b2",
"title": "Out of one, many: Using language models to simulate human samples",
"year": "2022"
},
{
"authors": [
"Adaku Uchendu",
"Zeyu Ma",
"Thai Le",
"Rui Zhang",
"Dongwon Lee"
],
"doi": "10.18653/v1/2021.findings-emnlp.172",
"ref_id": "b38",
"title": "TURINGBENCH: A Benchmark Environment for Turing Test in the Age of Neural Text Generation",
"year": "2021"
},
{
"authors": [
"Marcel Binz",
"Eric Schulz"
],
"doi": "10.31234/osf.io/6dfgk",
"ref_id": "b6",
"title": "Using cognitive psychology to understand GPT-3",
"year": "2022"
},
{
"authors": [
"Jochen Hartmann",
"Jasper Schwenzow",
"Maximilian Witte"
],
"doi": "10.2139/ssrn.4316084",
"ref_id": "b18",
"title": "The political ideology of conversational AI: Converging evidence on ChatGPT’s pro-environmental, left-libertarian orientation",
"year": "2023"
}
] |
[
{
"authors": [
"G Aher",
"R Arriaga",
"A Kalai"
],
"doi": "",
"ref_id": "b0",
"title": "Using large language models to simulate multiple humans",
"year": "2022. 2022"
},
{
"authors": [
"C Alm"
],
"doi": "",
"ref_id": "b1",
"title": "Subjective natural language problems: Motivations, applications, characterizations, and implications",
"year": "2011"
},
{
"authors": [
"L P Argyle",
"E C Busby",
"N Fulda",
"J Gubler",
"C Rytting",
"D Wingate"
],
"doi": "",
"ref_id": "b2",
"title": "Out of one, many: Using language models to simulate human samples",
"year": "2022"
},
{
"authors": [
"A Askell",
"Y Bai",
"A Chen",
"D Drain",
"D Ganguli",
"T Henighan",
"A Jones",
"N Joseph",
"B M Dassarma",
"N"
],
"doi": "",
"ref_id": "b3",
"title": "A general language assistant as a laboratory for alignment",
"year": "2021"
},
{
"authors": [
"Y Bai",
"S Kadavath",
"S Kundu",
"A Askell",
"J Kernion",
"A Jones",
"A Chen",
"A Goldie",
"A Mirhoseini",
"C Mckinnon"
],
"doi": "",
"ref_id": "b4",
"title": "Constitutional ai: Harmlessness from ai feedback",
"year": "2022"
},
{
"authors": [
"Adam J Berinsky"
],
"doi": "10.1146/annurev-polisci-101513-113724",
"ref_id": "b5",
"title": "Measuring Public Opinion with Surveys",
"year": "2017"
},
{
"authors": [
"Marcel Binz",
"Eric Schulz"
],
"doi": "10.31234/osf.io/6dfgk",
"ref_id": "b6",
"title": "Using cognitive psychology to understand GPT-3",
"year": "2022"
},
{
"authors": [
"T B Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell",
"S Agarwal",
"A Herbert-Voss",
"G Krueger",
"T Henighan",
"R Child",
"A Ramesh",
"D M Ziegler",
"J Wu",
"C Winter",
"C Hesse",
"M Chen",
"E Sigler",
"M Litwin",
"S Gray",
"B Chess",
"J Clark",
"C Berner",
"S Mccandlish",
"A Radford",
"I Sutskever",
"D Amodei"
],
"doi": "",
"ref_id": "b7",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"Aida Mostafazadeh Davani",
"Mark Díaz",
"Vinodkumar Prabhakaran"
],
"doi": "10.1162/tacl_a_00449",
"ref_id": "b8",
"title": "Dealing with Disagreements: Looking Beyond the Majority Vote in Subjective Annotations",
"year": "2022"
},
{
"authors": [
"Maria De-Arteaga",
"Alexey Romanov",
"Hanna Wallach",
"Jennifer Chayes",
"Christian Borgs",
"Alexandra Chouldechova",
"Sahin Geyik",
"Krishnaram Kenthapadi",
"Adam Tauman Kalai"
],
"doi": "10.1145/3287560.3287572",
"ref_id": "b9",
"title": "Bias in Bios",
"year": "2019"
},
{
"authors": [
"J Dhamala",
"T Sun",
"V Kumar",
"S Krishna",
"Y Pruksachatkun",
"K Chang",
"R Gupta",
"Bold"
],
"doi": "",
"ref_id": "b10",
"title": "Dataset and metrics for measuring biases in open-ended language generation",
"year": "2021"
},
{
"authors": [
"D Ganguli",
"L Lovitt",
"J Kernion",
"A Askell",
"Y Bai",
"S Kadavath",
"B Mann",
"E Perez",
"N Schiefer",
"K Ndousse"
],
"doi": "",
"ref_id": "b11",
"title": "Red teaming language models to reduce harms: Methods, scaling behaviors, and lessons learned",
"year": "2022"
},
{
"authors": [
"L Gao",
"J Tow",
"S Biderman",
"S Black",
"A Dipofi",
"C Foster",
"L Golding",
"J Hsu",
"K Mcdonell",
"N Muennighoff",
"J Phang",
"L Reynolds",
"E Tang",
"A Thite",
"B Wang",
"K Wang",
"A Zou"
],
"doi": "10.5281/zenodo.5371628",
"ref_id": "b12",
"title": "A framework for few-shot language model evaluation",
"year": "September 2021"
},
{
"authors": [
"A Glaese",
"N Mcaleese",
"M Trebacz",
"J Aslanides",
"V Firoiu",
"T Ewalds",
"M Rauh",
"L Weidinger",
"M Chadwick",
"P Thacker"
],
"doi": "",
"ref_id": "b13",
"title": "Improving alignment of dialogue agents via targeted human judgements",
"year": "2022"
},
{
"authors": [
"Mitchell L Gordon",
"Kaitlyn Zhou",
"Kayur Patel",
"Tatsunori Hashimoto",
"Michael S Bernstein"
],
"doi": "10.1145/3411764.3445423",
"ref_id": "b14",
"title": "The Disagreement Deconvolution: Bringing Machine Learning Performance Metrics In Line With Reality",
"year": "2021"
},
{
"authors": [
"Mitchell L Gordon",
"Michelle S Lam",
"Joon Sung Park",
"Kayur Patel",
"Jeff Hancock",
"Tatsunori Hashimoto",
"Michael S Bernstein"
],
"doi": "10.1145/3491102.3502004",
"ref_id": "b15",
"title": "Jury Learning: Integrating Dissenting Voices into Machine Learning Models",
"year": "2022"
},
{
"authors": [
"N Goyal",
"I Kivlichan",
"R Rosen",
"L Vasserman"
],
"doi": "",
"ref_id": "b16",
"title": "Is your toxicity my toxicity? exploring the impact of rater identity on toxicity annotation",
"year": "2022"
},
{
"authors": [
"C Guo",
"G Pleiss",
"Y Sun",
"K Q Weinberger"
],
"doi": "",
"ref_id": "b17",
"title": "On calibration of modern neural networks",
"year": "2017"
},
{
"authors": [
"Jochen Hartmann",
"Jasper Schwenzow",
"Maximilian Witte"
],
"doi": "10.2139/ssrn.4316084",
"ref_id": "b18",
"title": "The political ideology of conversational AI: Converging evidence on ChatGPT’s pro-environmental, left-libertarian orientation",
"year": "2023"
},
{
"authors": [
"D Hendrycks",
"C Burns",
"S Basart",
"A Zou",
"M Mazeika",
"D Song",
"J Steinhardt"
],
"doi": "",
"ref_id": "b19",
"title": "Measuring massive multitask language understanding",
"year": "2020"
},
{
"authors": [
"J Henrich",
"S Heine",
"A Norenzayan"
],
"doi": "",
"ref_id": "b20",
"title": "The weirdest people in the world? Behavioral and brain sciences",
"year": "2010"
},
{
"authors": [
"F Jiang",
"F Xu",
"J Araki",
"G Neubig"
],
"doi": "",
"ref_id": "b21",
"title": "How can we know what language models know? Transactions of the Association for Computational Linguistics",
"year": "2020"
},
{
"authors": [
"H Jiang",
"D Beeferman",
"B Roy",
"D Roy"
],
"doi": "",
"ref_id": "b22",
"title": "Communitylm: Probing partisan worldviews from language models",
"year": "2022"
},
{
"authors": [
"Gauri Kambhatla",
"Ian Stewart",
"Rada Mihalcea"
],
"doi": "10.1145/3531146.3533217",
"ref_id": "b23",
"title": "Surfacing Racial Stereotypes through Identity Portrayal",
"year": "2022. 2022"
},
{
"authors": [
"Saketh Reddy Karra",
"Son The Nguyen",
"Theja Tulabandhula"
],
"doi": "10.2139/ssrn.4598766",
"ref_id": "b24",
"title": "Estimating the Personality of White-Box Language Models",
"year": "2022"
},
{
"authors": [
"P Liang",
"R Bommasani",
"T Lee",
"D Tsipras",
"D Soylu",
"M Yasunaga",
"Y Zhang",
"D Narayanan",
"Y Wu",
"A Kumar"
],
"doi": "",
"ref_id": "b25",
"title": "Holistic evaluation of language models",
"year": "2022"
},
{
"authors": [
"O Lieber",
"O Sharir",
"B Lenz",
"Y Shoham"
],
"doi": "",
"ref_id": "b26",
"title": "Jurassic-1: Technical details and evaluation",
"year": "2021"
},
{
"authors": [
"Nicholas Lourie",
"Ronan Le Bras",
"Yejin Choi"
],
"doi": "10.1609/aaai.v35i15.17589",
"ref_id": "b27",
"title": "SCRUPLES: A Corpus of Community Ethical Judgments on 32,000 Real-Life Anecdotes",
"year": "2021"
},
{
"authors": [
"M Nadeem",
"A Bethke",
"S Reddy",
"Stereoset"
],
"doi": "",
"ref_id": "b28",
"title": "Measuring stereotypical bias in pretrained language models",
"year": "2020"
},
{
"authors": [
"L Ouyang",
"J Wu",
"X Jiang",
"D Almeida",
"C Wainwright",
"P Mishkin",
"C Zhang",
"S Agarwal",
"K Slama",
"A Ray"
],
"doi": "",
"ref_id": "b29",
"title": "Training language models to follow instructions with human feedback",
"year": "2022"
},
{
"authors": [
"Joon Sung Park",
"Lindsay Popowski",
"Carrie Cai",
"Meredith Ringel Morris",
"Percy Liang",
"Michael S Bernstein"
],
"doi": "10.1145/3526113.3545616",
"ref_id": "b30",
"title": "Social Simulacra: Creating Populated Prototypes for Social Computing Systems",
"year": "2022"
},
{
"authors": [
"Ellie Pavlick",
"Tom Kwiatkowski"
],
"doi": "10.1162/tacl_a_00293",
"ref_id": "b31",
"title": "Inherent Disagreements in Human Textual Inferences",
"year": "2019"
},
{
"authors": [
"Ethan Perez",
"Saffron Huang",
"Francis Song",
"Trevor Cai",
"Roman Ring",
"John Aslanides",
"Amelia Glaese",
"Nat Mcaleese",
"Geoffrey Irving"
],
"doi": "10.18653/v1/2022.emnlp-main.225",
"ref_id": "b32",
"title": "Red Teaming Language Models with Language Models",
"year": "2022"
},
{
"authors": [
"E Perez",
"S Ringer",
"K Lukošiūtė",
"K Nguyen",
"E Chen",
"S Heiner",
"C Pettit",
"C Olsson",
"S Kundu",
"S Kadavath"
],
"doi": "",
"ref_id": "b33",
"title": "Discovering language model behaviors with modelwritten evaluations",
"year": "2022"
},
{
"authors": [
"Maarten Sap",
"Swabha Swayamdipta",
"Laura Vianna",
"Xuhui Zhou",
"Yejin Choi",
"Noah Smith"
],
"doi": "10.18653/v1/2022.naacl-main.431",
"ref_id": "b34",
"title": "Annotators with Attitudes: How Annotator Beliefs And Identities Bias Toxic Language Detection",
"year": "2022"
},
{
"authors": [
"W Saris",
"P Sniderman"
],
"doi": "10.1515/9780691188386",
"ref_id": "b35",
"title": "Studies in Public Opinion",
"year": "2004"
},
{
"authors": [
"Gabriel Simmons"
],
"doi": "10.18653/v1/2023.acl-srw.40",
"ref_id": "b36",
"title": "Moral Mimicry: Large Language Models Produce Moral Rationalizations Tailored to Political Identity",
"year": "2022"
},
{
"authors": [
"A Srivastava",
"A Rastogi",
"A Rao",
"A Shoeb",
"A Abid",
"A Fisch",
"A Brown",
"A Santoro",
"A Gupta",
"A Garriga-Alonso"
],
"doi": "",
"ref_id": "b37",
"title": "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models",
"year": "2022"
},
{
"authors": [
"Adaku Uchendu",
"Zeyu Ma",
"Thai Le",
"Rui Zhang",
"Dongwon Lee"
],
"doi": "10.18653/v1/2021.findings-emnlp.172",
"ref_id": "b38",
"title": "TURINGBENCH: A Benchmark Environment for Turing Test in the Age of Neural Text Generation",
"year": "2021"
},
{
"authors": [
"Jing Xu",
"Da Ju",
"Margaret Li",
"Y Boureau",
"Jason Weston",
"Emily Dinan"
],
"doi": "10.18653/v1/2021.naacl-main.235",
"ref_id": "b39",
"title": "Bot-Adversarial Dialogue for Safe Conversational Agents",
"year": "2021"
},
{
"authors": [
"Ting Yan"
],
"doi": "10.1146/annurev-statistics-040720-033353",
"ref_id": "b40",
"title": "Consequences of Asking Sensitive Questions in Surveys",
"year": "2021"
}
] |
[
"fe7e37270374f334",
"d18ed79ea03f18da",
"00efe379b70e747e",
"6d0e56dffd3acef7",
"8fa4e3e2c8e86476",
"a25e3514bcb57886",
"1c7d88008b4a1a70",
"f0551fbf93254931",
"19b7449e139d188b",
"30e358d9dd0b0f56"
] |
[
"d18ed79ea03f18da",
"41792021e7a37961",
"1c7d88008b4a1a70",
"9b1ef7cb6be2561e",
"5f2c499053ea3a1f",
"21d6f1efd9174292",
"19b7449e139d188b",
"17af6d64fa1567f9",
"579acd8889c6fd97",
"7bc51745f63566bd",
"b50fcc41c9e51a2c",
"14487be064e50cb0",
"2837dfc738efbe18",
"8f5c50eb322827ec",
"00f78df558756f8f",
"b99169714a9104a2",
"fd6c3663324f7099",
"906c5f102c2c9ed8",
"30e358d9dd0b0f56",
"a827a46c35765b74",
"057e5ad237933b76",
"55f1f29aef434a81",
"fe7e37270374f334",
"2d5fe4d63d3b73af",
"00efe379b70e747e",
"41c16cba527387ed",
"699131a7ed8e790e",
"77cc08cc8b3e6412",
"394cce29cf9b6fc9",
"6d307ab54241e414",
"a25e3514bcb57886",
"a60211f92503f0ad",
"a2c62b51b67da37c",
"0c91d2a697457528",
"123d704f6820faee",
"12708ce90bfa046f",
"8fa4e3e2c8e86476",
"6d0e56dffd3acef7",
"f0551fbf93254931",
"c8782dc681f66429",
"38ae92c4f13e7060"
] |
ET6qkbzeOx
|
Tractable Control for Autoregressive Language Generation
|
data/openreview_paper/ICML_2023_oral/ET6qkbzeOx//paper.pdf
| 53
| 0
|
[] |
[
{
"authors": [
"K Ahmed",
"S Teso",
"K.-W Chang",
"G Van Den Broeck",
"A Vergari"
],
"doi": "",
"ref_id": "b0",
"title": "Semantic probabilistic layers for neurosymbolic learning",
"year": "2022"
},
{
"authors": [
"Peter Anderson",
"Basura Fernando",
"Mark Johnson",
"Stephen Gould"
],
"doi": "10.1007/978-3-319-46454-1_24",
"ref_id": "b1",
"title": "SPICE: Semantic Propositional Image Caption Evaluation",
"year": "2016"
},
{
"authors": [
"D Bahdanau",
"K H Cho",
"Y Bengio"
],
"doi": "",
"ref_id": "b2",
"title": "Neural machine translation by jointly learning to align and translate",
"year": "2015"
},
{
"authors": [
"J Bekker",
"J Davis",
"A Choi",
"A Darwiche",
"G Van Den Broeck"
],
"doi": "",
"ref_id": "b3",
"title": "Tractable learning for complex probability queries",
"year": "2015"
},
{
"authors": [
"A J Boyd",
"S Showalter",
"S Mandt",
"P Smyth"
],
"doi": "",
"ref_id": "b4",
"title": "Predictive querying for autoregressive neural sequence models",
"year": "2022"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell"
],
"doi": "",
"ref_id": "b5",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"Justin Chiu",
"Alexander Rush"
],
"doi": "10.18653/v1/2020.emnlp-main.103",
"ref_id": "b6",
"title": "Scaling Hidden Markov Language Models",
"year": "2020"
},
{
"authors": [
"Woon Sang Cho",
"Pengchuan Zhang",
"Yizhe Zhang",
"Xiujun Li",
"Michel Galley",
"Chris Brockett",
"Mengdi Wang",
"Jianfeng Gao"
],
"doi": "10.18653/v1/w19-2401",
"ref_id": "b7",
"title": "Towards Coherent and Cohesive Long-form Text Generation",
"year": "June 2019"
},
{
"authors": [
"A Choi",
"G Van Den Broeck",
"A Darwiche"
],
"doi": "",
"ref_id": "b8",
"title": "Probability distributions over structured spaces",
"year": "2015"
},
{
"authors": [
"Y Choi",
"G Farnadi",
"B Babaki",
"G Van Den Broeck"
],
"doi": "",
"ref_id": "b9",
"title": "Learning fair naive bayes classifiers by discovering and eliminating discrimination patterns",
"year": "2020"
},
{
"authors": [
"Y Choi",
"A Vergari",
"G Van Den Broeck"
],
"doi": "",
"ref_id": "b10",
"title": "Probabilistic circuits: A unifying framework for tractable probabilistic models",
"year": "2020"
},
{
"authors": [
"Yoojung Choi",
"Meihua Dang",
"Guy Van Den Broeck"
],
"doi": "10.1609/aaai.v35i13.17431",
"ref_id": "b11",
"title": "Group Fairness by Probabilistic Modeling with Latent Fair Decisions",
"year": "2021"
},
{
"authors": [
"A Correia",
"R Peharz",
"C P De Campos"
],
"doi": "",
"ref_id": "b12",
"title": "Joints in random forests",
"year": "2020"
},
{
"authors": [
"Meihua Dang",
"Pasha Khosravi",
"Yitao Liang",
"Antonio Vergari",
"Guy Van Den Broeck"
],
"doi": "10.1609/aaai.v35i18.17999",
"ref_id": "b13",
"title": "Juice: A Julia Package for Logic and Probabilistic Circuits",
"year": "2021"
},
{
"authors": [
"M Dang",
"A Liu",
"G Van Den Broeck"
],
"doi": "",
"ref_id": "b14",
"title": "Sparse probabilistic circuits via pruning and growing",
"year": "2022"
},
{
"authors": [
"M Dang",
"A Liu",
"X Wei",
"S Sankararaman",
"G Van Den Broeck"
],
"doi": "10.1007/978-3-031-04749-7",
"ref_id": "b15",
"title": "Tractable and expressive generative models of genetic variation data",
"year": "2022"
},
{
"authors": [
"Meihua Dang",
"Antonio Vergari",
"Guy Van Den Broeck"
],
"doi": "10.1016/j.ijar.2021.09.012",
"ref_id": "b16",
"title": "Strudel: A fast and accurate learner of structured-decomposable probabilistic circuits",
"year": "2022"
},
{
"authors": [
"Aditya Grover",
"Stefano Ermon"
],
"doi": "10.1609/aaai.v32i1.11827",
"ref_id": "b17",
"title": "Boosted Generative Models",
"year": "2018"
},
{
"authors": [
"Geoffrey E Hinton"
],
"doi": "10.1162/089976602760128018",
"ref_id": "b18",
"title": "Training Products of Experts by Minimizing Contrastive Divergence",
"year": "2002"
},
{
"authors": [
"P Khosravi",
"Y Choi",
"Y Liang",
"A Vergari",
"G Van Den Broeck"
],
"doi": "",
"ref_id": "b19",
"title": "On tractable computation of expected predictions",
"year": "2019"
},
{
"authors": [
"D Kisa",
"G Van Den Broeck",
"A Choi",
"A Darwiche"
],
"doi": "",
"ref_id": "b20",
"title": "Probabilistic sentential decision diagrams",
"year": "2014"
},
{
"authors": [
"Alex Kulesza",
"Ben Taskar"
],
"doi": "10.1561/2200000044",
"ref_id": "b21",
"title": "Determinantal Point Processes for Machine Learning",
"year": "2012"
},
{
"authors": [
"M Lewis",
"Y Liu",
"N Goyal",
"M Ghazvininejad",
"A Mohamed",
"O Levy",
"V Stoyanov",
"L Zettlemoyer",
"Bart"
],
"doi": "",
"ref_id": "b22",
"title": "Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension",
"year": "2020"
},
{
"authors": [
"W Li",
"Z Zeng",
"A Vergari",
"G Van Den Broeck"
],
"doi": "",
"ref_id": "b23",
"title": "Tractable computation of expected kernels",
"year": "2021"
},
{
"authors": [
"Bill Yuchen Lin",
"Wangchunshu Zhou",
"Ming Shen",
"Pei Zhou",
"Chandra Bhagavatula",
"Yejin Choi",
"Xiang Ren"
],
"doi": "10.18653/v1/2020.findings-emnlp.165",
"ref_id": "b24",
"title": "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning",
"year": "2020"
},
{
"authors": [
"Chin-Yew Lin",
"Eduard Hovy"
],
"doi": "10.3115/1073445.1073465",
"ref_id": "b25",
"title": "Automatic evaluation of summaries using N-gram co-occurrence statistics",
"year": "2003"
},
{
"authors": [
"A Liu",
"H Zhang",
"G Van Den Broeck"
],
"doi": "",
"ref_id": "b26",
"title": "Scaling up probabilistic circuits by latent variable distillation",
"year": "2023"
},
{
"authors": [
"F Liu",
"J Flanigan",
"S Thomson",
"N Sadeh",
"N A Smith"
],
"doi": "",
"ref_id": "b27",
"title": "Toward abstractive summarization using semantic representations",
"year": "2015"
},
{
"authors": [
"S Meng",
"T Peng",
"N"
],
"doi": "",
"ref_id": "b28",
"title": "Insnet: An efficient, flexible, and performant insertion-based text generation model",
"year": "2022"
},
{
"authors": [
"Ximing Lu",
"Peter West",
"Rowan Zellers",
"Ronan Le Bras",
"Chandra Bhagavatula",
"Yejin Choi"
],
"doi": "10.18653/v1/2021.naacl-main.339",
"ref_id": "b29",
"title": "NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints",
"year": "2021"
},
{
"authors": [
"Ximing Lu",
"Sean Welleck",
"Peter West",
"Liwei Jiang",
"Jungo Kasai",
"Daniel Khashabi",
"Ronan Le Bras",
"Lianhui Qin",
"Youngjae Yu",
"Rowan Zellers",
"Noah Smith",
"Yejin Choi"
],
"doi": "10.18653/v1/2022.naacl-main.57",
"ref_id": "b30",
"title": "NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead Heuristics",
"year": "2022"
},
{
"authors": [
"Thang Luong",
"Hieu Pham",
"Christopher D Manning"
],
"doi": "10.18653/v1/d15-1166",
"ref_id": "b31",
"title": "Effective Approaches to Attention-based Neural Machine Translation",
"year": "2015"
},
{
"authors": [
"M Meila",
"M I Jordan"
],
"doi": "",
"ref_id": "b32",
"title": "Learning with mixtures of trees",
"year": "Oct), 2000"
},
{
"authors": [
"T Meng",
"S Lu",
"N Peng",
"K.-W Chang"
],
"doi": "",
"ref_id": "b33",
"title": "Controllable text generation with neurally-decomposed oracle",
"year": "2022"
},
{
"authors": [
"A Molina",
"A Vergari",
"K Stelzner",
"R Peharz",
"P Subramani",
"N Di Mauro",
"P Poupart",
"K Kersting"
],
"doi": "",
"ref_id": "b34",
"title": "Spflow: An easy and extensible library for deep probabilistic learning using sum-product networks",
"year": "2019"
},
{
"authors": [
"K Papineni",
"S Roukos",
"T Ward",
"W.-J Zhu",
"Bleu"
],
"doi": "",
"ref_id": "b35",
"title": "a method for automatic evaluation of machine translation",
"year": "2002"
},
{
"authors": [
"J Pearl"
],
"doi": "",
"ref_id": "b36",
"title": "Bayesian netwcrks: A model cf self-activated memory for evidential reasoning",
"year": "1985"
},
{
"authors": [
"R Peharz",
"S Lang",
"A Vergari",
"K Stelzner",
"A Molina",
"M Trapp",
"G Van Den Broeck",
"K Kersting",
"Z Ghahramani"
],
"doi": "",
"ref_id": "b37",
"title": "Einsum networks: Fast and scalable learning of tractable probabilistic circuits",
"year": "2020"
},
{
"authors": [
"Hoifung Poon",
"Pedro Domingos"
],
"doi": "10.1109/iccvw.2011.6130310",
"ref_id": "b38",
"title": "Sum-product networks: A new deep architecture",
"year": "2011. 2011"
},
{
"authors": [
"Matt Post",
"David Vilar"
],
"doi": "10.18653/v1/n18-1119",
"ref_id": "b39",
"title": "Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation",
"year": "2018"
},
{
"authors": [
"L Rabiner",
"B Juang"
],
"doi": "",
"ref_id": "b40",
"title": "An introduction to hidden markov models",
"year": "1986"
},
{
"authors": [
"A Radford",
"J Wu",
"R Child",
"D Luan",
"D Amodei",
"I Sutskever"
],
"doi": "",
"ref_id": "b41",
"title": "Language models are unsupervised multitask learners",
"year": "2019"
},
{
"authors": [
"D Roth"
],
"doi": "",
"ref_id": "b42",
"title": "On the hardness of approximate reasoning",
"year": "1996"
},
{
"authors": [
"Ville A Satopää",
"Jonathan Baron",
"Dean P Foster",
"Barbara A Mellers",
"Philip E Tetlock",
"Lyle H Ungar"
],
"doi": "10.1016/j.ijforecast.2013.09.009",
"ref_id": "b43",
"title": "Combining multiple probability predictions using a simple logit model",
"year": "2014"
},
{
"authors": [
"Raymond Hendy Susanto",
"Shamil Chollampatt",
"Liling Tan"
],
"doi": "10.18653/v1/2020.acl-main.325",
"ref_id": "b44",
"title": "Lexically Constrained Neural Machine Translation with Levenshtein Transformer",
"year": "2020"
},
{
"authors": [
"Y Tian",
"N Peng"
],
"doi": "",
"ref_id": "b45",
"title": "Zero-shot sonnet generation with discourse-level planning and aesthetics features",
"year": "2022"
},
{
"authors": [
"Ramakrishna Vedantam",
"C Lawrence Zitnick",
"Devi Parikh"
],
"doi": "10.1109/cvpr.2015.7299087",
"ref_id": "b46",
"title": "CIDEr: Consensus-based image description evaluation",
"year": "2015"
},
{
"authors": [
"Jiacheng Xu",
"Greg Durrett"
],
"doi": "10.18653/v1/d19-1324",
"ref_id": "b47",
"title": "Neural Extractive Text Summarization with Syntactic Compression",
"year": "2019"
},
{
"authors": [
"Kevin Yang",
"Dan Klein"
],
"doi": "10.18653/v1/2021.naacl-main.276",
"ref_id": "b48",
"title": "FUDGE: Controlled Text Generation With Future Discriminators",
"year": "2021"
},
{
"authors": [
"Lili Yao",
"Nanyun Peng",
"Ralph Weischedel",
"Kevin Knight",
"Dongyan Zhao",
"Rui Yan"
],
"doi": "10.1609/aaai.v33i01.33017378",
"ref_id": "b49",
"title": "Plan-and-Write: Towards Better Automatic Storytelling",
"year": "2019"
},
{
"authors": [
"H Zhang",
"B Juba",
"G Van Den Broeck"
],
"doi": "",
"ref_id": "b50",
"title": "Probabilistic generating circuits",
"year": "2021"
},
{
"authors": [
"Honghua Zhang",
"Liunian Harold Li",
"Tao Meng",
"Kai-Wei Chang",
"Guy Van Den Broeck"
],
"doi": "10.24963/ijcai.2023/375",
"ref_id": "b51",
"title": "On the Paradox of Learning to Reason from Data",
"year": "2022"
},
{
"authors": [
"Yizhe Zhang",
"Guoyin Wang",
"Chunyuan Li",
"Zhe Gan",
"Chris Brockett",
"Bill Dolan"
],
"doi": "10.18653/v1/2020.emnlp-main.698",
"ref_id": "b52",
"title": "POINTER: Constrained Progressive Text Generation via Insertion-based Generative Pre-training",
"year": "November 2020"
}
] |
[] |
[
"9d97e8b5ff034b22",
"2e1a9aeca5f2b70b",
"1ba1e24638d40459",
"90563a9f1e383994",
"3bf2bd2cda7f5c65",
"294464a6d95efbcb",
"48e0823e7204d6af",
"a7850ea892dcfefe",
"4453ea289ba2439d",
"e1d112ea1001c5d2",
"7ba08e29deeb561d",
"076db54bbca0942f",
"001a46ab5758849d",
"1dde23619e90eabe",
"966d64522dbeb971",
"438ad45ee2c2b2e0",
"8020e4b6640ff854",
"5e40f1b2d74c4e03",
"333db4aa251fe2b2",
"6d881b5ee670e5c7",
"b435902051f01457",
"459d961ebc13a15b",
"3ba1860f2440bb6a",
"c0c0bf750f59eb3d",
"81ac70dbd66a7eb9",
"3fa20501491dc6f6",
"3eb5c51b9fc651e5",
"2feb003691c7d8d3",
"05ead3e2b057641c",
"3488e5d2c8ba668b",
"70d6ae4d965c9cbc",
"e6b502f12e23d246",
"ee2969693b70ee1e",
"59283cd663912a06",
"874b250f7dac918c",
"1560110cc0f5d1f0",
"3411dbd5ec0715d4",
"aaa63f16f7ffcc24",
"8ae8b935f4e03a8e",
"fdb0e94fc0e74159",
"feb03ecf08ecddee",
"c8beab030d8be9cb",
"f8d8631439242263",
"a426ba65c69dba92",
"d8d9f5669c81e0a8",
"f685297679b4f071",
"e4227e30c0ef86ac",
"4ab5fd1743c69625",
"4a10918b27aba89f",
"d00a67290b29bce6",
"4605dfc8c3f7a6c7",
"70405bfdbe5bc09a",
"a81b3a6883047fc0"
] |
qw8zAw6mzJ
|
Simplex Random Features
|
data/openreview_paper/ICML_2023_oral/qw8zAw6mzJ//paper.pdf
| 53
| 18
|
[
{
"authors": [
"Q V Le",
"T Sarlós",
"A J Smola"
],
"doi": "",
"ref_id": "b25",
"title": "Fastfood -computing hilbert space expansions in loglinear time",
"year": "16-21 June 2013. 2013"
},
{
"authors": [
"Aurko Roy",
"Mohammad Saffar",
"Ashish Vaswani",
"David Grangier"
],
"doi": "10.1162/tacl_a_00353",
"ref_id": "b41",
"title": "Efficient Content-Based Sparse Attention with Routing Transformers",
"year": "2021"
},
{
"authors": [
"K Choromanski",
"V Likhosherstov",
"D Dohan",
"X Song",
"A Gane",
"T Sarlos",
"P Hawkins",
"J Davis",
"A Mohiuddin",
"L Kaiser"
],
"doi": "",
"ref_id": "b5",
"title": "Rethinking attention with performers",
"year": "2020"
},
{
"authors": [
"Edo Liberty",
"Nir Ailon",
"Amit Singer"
],
"doi": "10.1007/s00454-010-9309-5",
"ref_id": "b27",
"title": "Dense Fast Random Projections and Lean Walsh Transforms",
"year": "2011"
},
{
"authors": [
"N Ailon",
"E Liberty"
],
"doi": "10.1145/2483699.2483701",
"ref_id": "b1",
"title": "An almost optimal unrestricted fast johnson-lindenstrauss transform",
"year": "2013"
},
{
"authors": [
"K Choromanski",
"M Rowland",
"T Sarlós",
"V Sindhwani",
"R E Turner",
"A Weller"
],
"doi": "",
"ref_id": "b4",
"title": "The geometry of random features",
"year": "9-11 April 2018. 2018"
},
{
"authors": [
"H Lin",
"H Chen",
"K M Choromanski",
"T Zhang",
"C Laroche"
],
"doi": "10.48550/arXiv.2005.13590",
"ref_id": "b31",
"title": "Demystifying orthogonal monte carlo and beyond",
"year": "2020. December 6-12, 2020. 2020"
},
{
"authors": [
"S P Chowdhury",
"A Solomou",
"A Dubey",
"M Sachan"
],
"doi": "10.1007/s00350-021-6046-0",
"ref_id": "b7",
"title": "Personenbezogene Ausgestaltung der Belegarztanerkennung",
"year": "2021"
},
{
"authors": [
"V Likhosherstov",
"K M Choromanski",
"J Q Davis",
"X Song",
"A Weller"
],
"doi": "10.48550/arXiv.2012.11346",
"ref_id": "b28",
"title": "Sub-linear memory: How to make performers slim",
"year": "2021. December 6-14, 2021. 2021"
},
{
"authors": [
"N Ailon",
"B Chazelle"
],
"doi": "10.1137/060673096",
"ref_id": "b0",
"title": "The fast johnson-lindenstrauss transform and approximate nearest neighbors",
"year": "2009"
},
{
"authors": [
"K M Choromanski",
"M Rowland",
"A Weller"
],
"doi": "",
"ref_id": "b6",
"title": "The unreasonable effectiveness of structured random orthogonal embeddings",
"year": "2017"
},
{
"authors": [
"X Xiao",
"T Zhang",
"K Choromanski",
"T E Lee",
"A G Francis",
"J Varley",
"S Tu",
"S Singh",
"P Xu",
"F Xia",
"S M Persson",
"D Kalashnikov",
"L Takayama",
"R Frostig",
"J Tan",
"C Parada",
"V Sindhwani"
],
"doi": "10.48550/arXiv.2209.10780",
"ref_id": "b47",
"title": "Learning model predictive controllers with real-time attention for real-world navigation",
"year": "2022"
},
{
"authors": [
"Ramesh Redrouthu",
"Venkatesa Prabhu Sundramurthy",
"Bekele Zergu"
],
"doi": "10.35940/ijeat.d8420.049420",
"ref_id": "b23",
"title": "Extraction of Essential Oils from Pumpkin Seeds RSM Based Process Modeling, Optimization and Oil Characterization",
"year": "April 26-30, 2020. 2020"
},
{
"authors": [
"F X Yu",
"A Bhaskara",
"S Kumar",
"Y Gong",
"S Chang"
],
"doi": "",
"ref_id": "b49",
"title": "On binary embedding using circulant matrices",
"year": "2017"
},
{
"authors": [
"S Luo",
"S Li",
"T Cai",
"D He",
"D Peng",
"S Zheng",
"G Ke",
"L Wang",
"T Liu"
],
"doi": "10.48550/arXiv.2106.12566",
"ref_id": "b34",
"title": "Stable, fast and accurate: Kernelized attention with relative positional encoding",
"year": "2021. December 6-14, 2021. 2021"
},
{
"authors": [
"Alex Kulesza",
"Ben Taskar"
],
"doi": "10.1561/2200000044",
"ref_id": "b24",
"title": "Determinantal Point Processes for Machine Learning",
"year": "2012"
},
{
"authors": [
"I Schlag",
"K Irie",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b42",
"title": "Linear transformers are secretly fast weight programmers",
"year": "2021. July 2021. 2021"
},
{
"authors": [
"F X X Yu",
"A T Suresh",
"K M Choromanski",
"D N Holtmann-Rice",
"S Kumar"
],
"doi": "10.48550/arXiv.1610.09072",
"ref_id": "b50",
"title": "Orthogonal random features",
"year": "2016"
}
] |
[
{
"authors": [
"N Ailon",
"B Chazelle"
],
"doi": "10.1137/060673096",
"ref_id": "b0",
"title": "The fast johnson-lindenstrauss transform and approximate nearest neighbors",
"year": "2009"
},
{
"authors": [
"N Ailon",
"E Liberty"
],
"doi": "10.1145/2483699.2483701",
"ref_id": "b1",
"title": "An almost optimal unrestricted fast johnson-lindenstrauss transform",
"year": "2013"
},
{
"authors": [
"Marko Bohanec",
"V Rajkovic"
],
"doi": "10.1007/978-981-16-7414-3_3",
"ref_id": "b2",
"title": "DEX (Decision EXpert): A Qualitative Hierarchical Multi-criteria Method",
"year": "1988"
},
{
"authors": [
"M Bojarski",
"A Choromanska",
"K Choromanski",
"F Fagan",
"C Gouy-Pailler",
"A Morvan",
"N Sakr",
"T Sarlos",
"J Atif"
],
"doi": "10.47205/jdss.2021(2-iv)74",
"ref_id": "b3",
"title": "(2021) Volume 2, Issue 4 Cultural Implications of China Pakistan Economic Corridor (CPEC Authors: Dr. Unsa Jamshed Amar Jahangir Anbrin Khawaja Abstract: This study is an attempt to highlight the cultural implication of CPEC on Pak-China relations, how it will align two nations culturally, and what steps were taken by the governments of two states to bring the people closer. After the establishment of diplomatic relations between Pakistan and China, the cultural aspect of relations between the two states also moved forward. The flow of cultural delegations intensified after the 2010, because this year was celebrated as the ‘Pak-China Friendship Year’. This dimension of relations further cemented between the two states with the signing of CPEC in April 2015. CPEC will not only bring economic prosperity in Pakistan but it will also bring two states culturally closer. The roads and other communication link under this project will become source of cultural flow between the two states. Keyswords: China, CPEC, Culture, Exhibitions Pages: 01-11 Article: 1 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)01 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)01 Download Pdf: download pdf view article Creative Commons License Political Persona on Twittersphere: Comparing the Stardom of Prime Minister(s) of Pakistan, UK and India Authors: Maryam Waqas Mudassar Hussain Shah Saima Kausar Abstract: Political setup demands to use Twittersphere for preserving its reputation because of significant twitter audience, which follows celebrities and political figures. In this perspective, political figures frequently use twitter to highlight their political as well as personal lives worldwide. However, political figures take the stardom status among the twitter audience that follow, retweet and comment by their fans. The purpose of this study is, to analyze what kind of language, level of interest is made by political figures while communicating via twitter, text, phrases and languages used by political figures, and do their tweets contribute in their reputation. The qualitative content analysis is used for evaluation of the interests shared by PM Imran Khan, PM Boris John Son and PM Narendra Modi with the key words of tweets. A well-established coding sheet is developed for the analysis of text, phrases and words in the frames of negative, positive and neutral from March 2020 to May 2020. The results are demonstrating on the basis of content shared by Prime Ministers of three countries i.e., From Pakistan, Imran Khan, United Kingdom, Johnson Boris and India, Narendra Modi on twitter. The findings also reveal that varied issues discussed in tweets, significantly positive and neutral words are selected by these political figures. PM Imran tweeted more negative tweets than PM Boris Johnson and PM Narendra Modi. However, PM Boris Johnson and PM Narendra Modi make significant positive and neutral tweets. It is observed that political figures are conscious about their personal reputation while tweeting. It also revealed that the issues and tweets shared by these leaders contribute to their personal reputation. Keyswords: Imran Khan, Johnson Boris, Narendra Modi, Political Persona, Stardom, Twittersphere Pages: 12-23 Article: 2 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)02 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)02 Download Pdf: download pdf view article Creative Commons License An Empirical Relationship between Government Size and Economic Growth of Pakistan in the Presence of Different Budget Uncertainty Measures Authors: Sunila Jabeen Dr. Wasim Shahid Malik Abstract: Relationship between government size and economic growth has always been a debated issue all over the world since the formative work of Barro (1990). However, this relationship becomes more questionable when policy uncertainty is added in it. Hence, this paper presents evidence on the effect of government size on economic growth in the presence of budget uncertainty measured through three different approaches. Rather than relying on the traditional and complicated measures of uncertainty, a new method of measuring uncertainty based on government budget revisions of total spending is introduced and compared with the other competing approaches. Using time series annual data from 1973-2018, the short run and long run coefficients from Autoregressive Distributed Lag (ARDL) framework validate the negative effect of budget uncertainty and government size on economic growth of Pakistan regardless of the uncertainty measure used. Therefore, to attain the long run economic growth, along with the control on the share of government spending in total GDP, government should keep the revisions in the budget as close to the initial announcements as it can so that uncertainty can be reduced. Further, the uncertainty in fiscal spending calculated through the deviation method raises a big question on the credibility of fiscal policy in Pakistan. Higher will be the deviation higher will be the uncertainty and lower the fiscal policy credibility hence making fiscal policy less effective in the long run. Keyswords: Budget Uncertainty, Economic Growth, Government Size, Policy Credibility Pages: 24-38 Article: 3 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)03 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)03 Download Pdf: download pdf view article Creative Commons License Despair in The Alchemist by Ben Jonson Authors: Dr. Fatima Syeda Dr. Faiza Zaheer Numrah Mehmood Abstract: This research aims to challenge the assumption that The Alchemist by Ben Jonson is one of the greatest examples of the “explicit mirth and laughter” (Veneables 86). The paper argues that The Alchemist is a cynical and despairing play created in an atmosphere not suitable for a comedy. This is a qualitative study of the text and aims at an analysis of the theme, situations, characters, language, and the mood of the play to determine that Jonson is unable to retain the comic spirit in The Alchemist and in an attempt to “better men” (Prologue. 12) he becomes more satirical and less humorous or comic. This research is important for it contends that the play, termed as a comedy, may be read as a bitter satire on the cynical, stinky, and despairing world of the Elizabethan times. Keyswords: Comedy, Despair, Reformation Pages: 39-47 Article: 4 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)04 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)04 Download Pdf: download pdf view article Creative Commons License Analysis of Principles of Coordinated Border Management (CBM) in articulation of War-Control Strategies: An Account of Implementation Range on Pakistan and Afghanistan Authors: Dr. Sehrish Qayyum Dr. Umbreen Javaid Abstract: Currently, Border Management is crucial issue not only for Pakistan but for the entire world due to increased technological developments and security circumstances. Pakistan and Afghanistan being immediate states have inter-connected future with socio-economic and security prospects. Principles of Coordinated Border Management (CBM) approach have been extracted on the basis of in-depth interviews with security agencies and policymakers to understand the real time needs. The current research employs mixed method approach. Process Tracing is employed in this research to comprehend the causal mechanism behind the contemporary issue of border management system. A detailed statistical analysis of prospect outcomes has been given to validate the implication of CBM. Implication range of CBM has been discussed with positive and probably negative impacts due to its wide range of significance. This research gives an analysis of feasibility support to exercise CBM in best interest of the state and secure future of the region. Keyswords: Afghanistan, Coordinated Border Management, Fencing, Pakistan, Security Pages: 48-62 Article: 5 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)05 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)05 Download Pdf: download pdf view article Creative Commons License The Belt and Road Initiative (BRI) vs. Quadrilateral Security Dialogue (the Quad): A Perspective of a Game Theory Authors: Muhammad Atif Prof. Dr. Muqarrab Akbar Abstract: Containment is the central part of the U.S.'s foreign policy during the cold war. With the application of containment Policy, the U.S. achieved much success in international politics. Over time China has become more powerful and sees great power in international politics. China wants to expand and launched the Belt and Road Initiative (BRI). The primary purpose of The Belt and Road Initiative (BRI) is to achieve support from regional countries and save their interests from the U.S. In 2017, the American administration launched its Containment policy through Quadrilateral Security Dialogue (the Quad) to keep their interest from China. The Quadrilateral Security Dialogue (Quad) is comprising of Australia, the United States, Japan, and India. This Study is based on Qualitative research with theoretical application of Game theory. This research investigates both plans of China (BRI) and the U.S. (the Quad) through a Game Theory. In this study, China and the U.S. both like to act as gamers in international politics. This study recommends that Game theory can predict all developments in the long term. Keyswords: Containment, Expansionism, Quadrilateral Security Dialogue, The Belt and Road Initiative (BRI) Pages: 63-75 Article: 6 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)06 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)06 Download Pdf: download pdf view article Creative Commons License Narendra Modi a Machiavellian Prince: An Appraisal Authors: Dr. Imran Khan Dr. Karim Haider Syed Muhammad Yousaf Abstract: The comparison of Narendra Modi and Machiavellian Prince is very important as policies of Modi are creating problems within India and beyond the borders. The Prince is the book of Niccolo Machiavelli a great philosopher of his time. If Indian Prime Minister Narendra Modi qualifies as a Prince of Machiavelli is a very important question. This is answered in the light of his policies and strategies to become the undisputed political leader of India. Much of the Machiavellian Prince deals with the problem of how a layman can raise himself from abject and obscure origins to such a position that Narendra Modi has been holding in India since 2014. The basic theme of this article is revolving around the question that is following: Can Modi’s success be attributed to techniques of The Prince in important respects? This article analyzed Narendra Modi's policies and strategies to develop an analogy between Machiavellian Prince and Modi in terms of characteristics and political strategies. This research work examines, how Narendra Modi became the strongest person in India. Keyswords: Comparison, India, Machiavelli, Modus Operandi, Narendra Modi Pages: 76-84 Article: 7 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)07 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)07 Download Pdf: download pdf view article Creative Commons License Analyzing Beckett's Waiting for Godot as a Political Comedy Authors: Muhammad Umer Azim Dr. Muhammad Saleem Nargis Saleem Abstract: This study was devised to analyze Samuel Beckett’s play Waiting for Godot in the light of Jean-Francois Lyotard’s theory of postmodernism given in his book The Postmodern Condition (1984). This Lyotardian paradigm extends a subversive challenge to all the grand narratives that have been enjoying the status of an enviable complete code of life in the world for a long time. Even a cursory scan over the play under analysis creates a strong feel that Beckett very smartly, comprehensively and successfully questioned the relevance of the totalizing metanarratives to the present times. Being an imaginative writer, he was well aware of the fact that ridicule is a much more useful weapon than satire in the context of political literature. There are so many foundationalist ideologies that he ridicules in his dramatic writing. Christianity as a religion is well exposed; the gravity of philosophy is devalued; the traditional luxury that the humans get from the art of poetry is ruptured and the great ideals of struggle are punctured. He achieves his artistic and ideologically evolved authorial intentions with a ringing success. It is interesting to note that he maintains a healthy balance between art and message. Keyswords: Beckett, Lyotard, The Postmodern Condition, Waiting for Godot Pages: 85-94 Article: 8 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)08 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)08 Download Pdf: download pdf view article Creative Commons License Effect of Parenting Styles on Students’ Academic Achievement at Elementary Level Authors: Hafsa Noreen Mushtaq Ahmad Uzma Shahzadi Abstract: The study intended to find out the effect of parenting styles on students’ academic achievement. Current study was quantitative in nature. All elementary level enrolled students at government schools in the province of the Punjab made the population of the study. Multistage sampling was used to select the sample from four districts of one division (Sargodha) of the Punjab province i.e., Sargodha. A sample size i.e., n=960; students and their parents were participated in this study. Research scales i.e. Parenting Styles Dimension Questionnaire (PSDQ) was adapted to analyze and measure parents’ parenting styles and an achievement test was developed to measure the academic achievement of the elementary students. After pilot testing, reliability coefficient Cronbach Alpha values for PSDQ and achievement test were 0.67 and 0.71 Data was collected and analyzed using frequencies count, percentages, mean scores and one way ANOVA. Major findings of the study were; Majority of the parents had authoritative parental style, a handsome number of parents keep connection of warmth and support with their children, show intimacy, focus on discipline, do not grant autonomy to their children, do not indulge with their children and as well as a handsome number of students were confident during their studies and study, further, found that parental style had positive relationship with academic achievement. Recommendations were made on the basis of findings and conclusion such as arrangement of Parents Teachers Meetings (PTM‘s), parents’ training, provision of incentives and facilities to motivate families might be an inclusive component of elementary education program. Keyswords: Academic Achievement, Elementary Education, Parenting Styles Pages: 95-110 Article: 9 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)09 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)09 Download Pdf: download pdf view article Creative Commons License Kashmir Conflict and the Question of Self-Determination Authors: Izzat Raazia Saqib Ur Rehman Abstract: The objective of this paper is to explore relations between Pakistan and India since their inception in the perspective of Kashmir conundrum and its impact on the regional security. Kashmir is the unfinished agenda of partition and a stumbling block in the bilateral relations between Pakistan and India. After the partition of sub-continent in 1947, Pakistan and India got their sovereign status. Kashmir conflict, a disputed status state, is the byproduct of partition. Pakistan and India are traditional arch-foes. Any clash between Pakistan and India can bring the two nuclear states toe-to-toe and accelerate into nuclear warfare. Due to the revulsion, hostility and lack of trust between the two, the peaceful resolution of the Kashmir issue has been long overdue. Ever-increasing border spats, arms race and threat of terrorism between the two have augmented anxiety in the subcontinent along with the halt of talks between India and Pakistan at several times. Additionally, it hampers the economic and trade ties between the two. India, time and again, backtracked on Kashmir issue despite UN efforts to resolve the issue. Recently, Indian government has responded heavy-handedly to the Kashmiri agitators’ demand for sovereignty and revocation of ‘Special Status’ of Kashmir impacting the stability of the region in future. Keyswords: India, Kashmir Conundrum, Pakistan, Regional Security, Sovereignty Pages: 111-119 Article: 10 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)10 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)10 Download Pdf: download pdf view article Creative Commons License Exploring Image of China in the Diplomatic Discourse: A Critical Discourse Analysis Authors: Muhammad Afzaal Muhammad Ilyas Chishti Abstract: The present study hinges on the major objective of analyzing Pakistani and Indian diplomatic discourses employed in portrayal of image of China. Data comprises the official discourse which is used in diplomatic affairs of both the states. The extensive investigation seeks insights from the fundamentals of Critical Discourse Analysis propounded by van Dijk, Fairclough and Wodak with a special focus on Bhatia’s (2006) work. The study reveals that the image of China has always been accorded priority within Indian and Pakistani diplomatic discourse even though nature of bilateral relations among China, India and Pakistan is based on entirely different dynamics; Indian and Pakistani diplomatic discourses are reflective of sensitivities involved within the bilateral relations. Through employment of linguistic techniques of ‘positivity’, ‘evasion’ and ‘influence and power’, Indian diplomats have managed not to compromise over the fundamentals in bilateral relations with China despite Pakistan’s already strengthened and deep-rooted relations with China. While Pakistani diplomatic fronts have been equally successful in further deepening their already strengthened relations in the midst of surging controversies on CPEC, BRI and OBOR. Hence, diplomatic fronts of both the counties, through employment of ideologically loaded linguistic choices, leave no stone unturned in consolidation of the diplomatic relations with China. Keyswords: CDA, China Image, Corpus, Language of Diplomacy, Political Discourse Analysis Pages: 120-133 Article: 11 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)11 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)11 Download Pdf: download pdf view article Creative Commons License Students’ Perception about Academic Advising Satisfaction at Higher Education Level Authors: Rukhsana Sardar Zarina Akhtar Shamsa Aziz Abstract: The purpose of the study was to examine the students’ perception about academic advising satisfaction at higher education level. All the students from two years master (M.A) degree programme and four years (BS) degree programme of eight departments from International Islamic University Islamabad (IIUI), Faculty of Social Sciences were taken as a population of the study. 475 students were randomly selected as a sample of the study. The Academic Advising Inventory (AAI) was used to assess Academic Advising Style. For measuring level of the satisfaction, descriptive statistics was used. To compare the mean difference department-wise and gender-wise about academic advising satisfaction t.test was applied. It was concluded that from the major findings of the study those students who received departmental academic advising style are more satisfied as compared to those students who provided prescriptive academic advising style. Female students seemed more satisfied as compared to male students regarding the academic advising style provided to them. Students who satisfied from developmental academic advising style and they were also highly satisfied from the advising provided to them at Personalizing Education (PE) and this is the subscale of developmental academic advising whereas students who received prescriptive academic advising they were also satisfied from the advising provided to them regarding personalizing education and academic decision making but their percentage is less. It is recommended to Universities Administration to focus on Developmental Academic Advising Style and establish centers at universities/department level and nominate staff who may be responsible to provide developmental academic advising. Keyswords: Academic Advising, Higher Level, Students’ Perception Pages: 134-144 Article: 12 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)12 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)12 Download Pdf: download pdf view article Creative Commons License Perceptions of Sexual Harassment in Higher Education Institutions: A Gender Analysis Authors: Ruhina Ghassan Dr. Subha Malik Nayab Javed Abstract: Sexual harassment is a social issue which is present in every society, globally, which interferes in an individual’s social and professional life. It happens almost everywhere i.e. at workplaces, public places or institutes as well. The focus of the present study was to explore the differences of male and female students’ perception of sexual harassment. This study was a quantitative research. Sample of the study included of 400 students (200 males and 200 females) from two government and two private universities. In the present study, Sexual Harassment Perception Questionnaire (SHPQ) was used to find out these differences in perceptions as every person has his own view for different situations. The study revealed the significant differences in perception of students. Study showed that both genders perceived that female students get more harassed than male students. The factors that affect the perception frequently were gender and age. The findings recommended that regulations for sexual harassment should be implemented in universities; laws should be made for sexual harassment in higher education institutes. Students should be aware of sexual harassment through seminars, self-defense classes and awareness campaigns. And every institute should have a counseling center for the better mental health of students. Keyswords: Gender Differences, Higher Educational Institutions, Sexual Harassment Pages: 145-158 Article: 13 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)13 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)13 Download Pdf: download pdf view article Creative Commons License Role of IMF Over the Governance Structure and Economic Development of Pakistan Authors: Ali Qamar Sheikh Dr. Muhammad Imran Pasha Muhammad Shakeel Ahmad Siddiqui Abstract: Developing countries like Pakistan seeks for financial assistance in order to fulfil their deficits. IMF is one of the largest financial institution who give loans to countries who need it. This research has studied the IMF role and the effects of IMF conditions on the economy of Pakistan. To carry out this research, both quantitative data from primary sources has been gathered and qualitative analysis has been made to signify whither this borrowing creating and maintaining dependency of Pakistan on West and financial and governance structure constructed to curtail Countries like Pakistan. The results concluded that there is negative and insignificant relationship between GDP and IMF loans in the long run. The short-term dynamic shows that weak economic and Political Institutions in Pakistan. The Development dilemma constitutes dependency even today. The Current Budget Deficit Pakistan's fiscal deficit climbs to Rs 3.403 trillion in 2020-21 needs to be readdressed in such a manner that Pakistan can counter Balance of Payments and import/export imbalance. Keyswords: Dependency, Development, IMF, Loans, Debt, Pakistan, Governance structure Pages: 159-172 Article: 14 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)14 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)14 Download Pdf: download pdf view article Creative Commons License Climate Change and the Indus Basin: Prospects of Cooperation between India and Pakistan Authors: Sarah Saeed Prof. Dr. Rana Eijaz Ahmad Abstract: Climate change is transforming the global societies. The shift in average temperature is putting negative impacts on human health, food production and the natural resources. In the wake of the altered climate, water flow in the river systems is experiencing variability and uncertainty. This paper aims at studying the negative impacts of climate change on the water resources of the Indus Basin and investigate the prospects of cooperation between India and Pakistan; two major riparian nations sharing the basin. Adopting the case study approach, a theoretical framework has been built on the ‘Theory of the International Regimes’. It has been argued that institutional capacity and the dispute resolution mechanism provided in any water sharing agreement determine the extent of cooperation among the member states. Since India and Pakistan are bound by the provisions of the Indus Waters Treaty, this study tries to assess the effectiveness of this agreement in managing the negative consequences of the climate change. Keyswords: Climate Change, Cooperation, Dispute Resolution Mechanism, Institutional Capacity Pages: 173-185 Article: 15 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)15 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)15 Download Pdf: download pdf view article Creative Commons License Translation, Cultural Adaptation and Validation of Behavioral-Emotional Reactivity Index for Adolescents Authors: Saima Saeed Farah Malik Suzanne Bartle Haring Abstract: Measuring differentiation of self in terms of behavioral/emotional reactivity towards parents is important because of the complex parent-child connection. This needs a valid and reliable measure to assess the differentiation of self particularly in a relationship with parents. Behavior\\Emotional Reactivity Index is such a tool that fulfills this purpose. The present study was carried out to culturaly adapt and translate BERI into the Urdu language and establish the psychometric properties of Urdu version. A sample of 303 adolescents of age (M = 16.07, SD = 1.77) was taken from different schools and colleges. Scale was split into Mother and father forms for the convenience of respondents. Findings supported the original factor structure of the BERI-original version. Higher-order factor analysis showed good fit indices with excellent alpha ranges (α= .91 to α=.80). BERI scores were compared for the adolescents who were securely attached with parents and insecurely attached with parents which showed a significant difference between the groups. BERI-Urdu version was found to be a valid and reliable measure in the Pakistani cultural context which gives researchers new directions to work with adolescents. Keyswords: Adolescence, Differentiation of Self, Behavioral, Emotional Reactivit, Index, Parental Attachment Pages: 186-200 Article: 16 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)16 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)16 Download Pdf: download pdf view article Creative Commons License Notion of Repression in Modern Society: A Comparative Analysis of Sigmund Freud and Herbert Marcuse Authors: Khadija Naz Abstract: One of the fundamental issues for modern civilized man is how to adapt a modern society without losing his individual status. Is it possible for an individual to adjust in a society where he/she loses his/her individuality and becomes part of collectivity? One point of view is that for society to flourish, man needs to be repressed. But to what extent is repression necessary for societies to rise and survive? This paper shall examine the above given questions from the standpoint of two thinkers who greatly influenced twentieth-century thought: Sigmund Freud and Herbert Marcuse. To undertake this task, first the term Repression shall be examined and then the notions of Freud and Marcuse will be discussed to determine the degree of repression required for the development of modern society. Keyswords: Modern Society, Performance Principle, Repression, Surplus-Repression, The Pleasure Principle, The Reality Principle Pages: 201-214 Article: 17 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)17 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)17 Download Pdf: download pdf view article Creative Commons License Perceptions of Teacher Educators about Integration of (ESD) in Elementary Teachers Education Program Authors: Dr. Rukhsana Durrani Dr. Fazal ur Rahman Dr. Shaista Anjum Abstract: Education and sustainable development have a close relationship as education provides sustainability to society. This study explored the perceptions of teacher educators for integration of Education for Sustainable Development (ESD) in B.Ed. 4 years’ elementary program. Four major components of ESD i.e., Education, Social & Culture, Economic and Environment were included in study. 127 teacher educators from departments of education were randomly selected from public universities of Pakistan who were offering B.Ed. 4 years’ elementary program. Data was collected through questionnaires from teacher educators. The findings recommended the inclusion of the components of Education for Sustainable Development (ESD) in curriculum of B.Ed. 4 years’ elementary program. Keyswords: B.Ed. 4 Years Elementary Curriculum, Sustainable Development, Integration, Teacher Education Pages: 215-225 Article: 18 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)18 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)18 Download Pdf: download pdf view article Creative Commons License Exploring TPACK skills of prospective teachers and challenges faced in digital technology integration in Pakistan Authors: Tariq Saleem Ghayyur Dr. Nargis Abbas Mirza Abstract: The current study was aimed to explore TPACK skills of prospective teachers and challenges faced in digital technology integration in Pakistan. The study was qualitative in nature and semi structured interview schedule was developed to collect data from prospective teachers. Purposive sampling technique was employed to collect data from 20 prospective teachers of 7 public sector universities. It was concluded that majority of the prospective teachers used general technological and pedagogical practices (GTPP), technological knowledge practices (TKP), Technological Pedagogical Knowledge practices (TPKP), Technological Content Knowledge practices (TCKP). Majority of prospective teachers reported multiple challenges in integration of digital technology in teacher education programs including lack of teacher training as one of the largest hurdle in digital technology integration, lack of digital technology resources or outdated digital technology resources, inadequate computer lab, lack of learning apps (courseware), financial constraints, lack of teachers’ motivation to use digital technology, slow computers available at computer labs, and unavailability of technical support. It was recommended that digital technology infrastructure should be improved across all teacher education institution and it was further recommended that TPACK model of digital technology integration should serve digital technology integration in teacher education programs in Pakistan. Keyswords: Challenges, Digital Technology Integration, Digital Technology Resources, Digital Technology, TPACK Pages: 226-241 Article: 19 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)19 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)19 Download Pdf: download pdf view article Creative Commons License Revisiting the Linkage between Money Supply and Income: A Simultaneous Equation Model for Pakistan Authors: Zenab Faizullah Dr. Shahid Ali Muhammad Imad Khan Abstract: A reliable estimate of the money supply is an important sign of the Gross Domestic Product (GDP) and many other macroeconomic indicators. It is widely discussed that over a long period of time, there is a strong link between GDP and money supply. This link is significantly important for formation of monetary policy. The main aim of this study is to estimate the income-money supply model for Pakistan. This study estimates the income-money supply model for Pakistan over the period of 2009 to 2019. The study uses Two Stage Least Square (2SLS) econometric technique due to the presence of endogeneity problem in the model under consideration. The existence of simultaneity between money supply (M2) and income (GDP) is also clear from the results of Hausman Specification test for simultaneity between M2 and GDP. The results further show that there exists a strong money-income relationship in case of Pakistan. Keyswords: Money Supply, Income, Simultaneous Equations Pages: 242-247 Article: 20 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)20 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)20 Download Pdf: download pdf view article Creative Commons License Analyzing the Mechanism of Language Learning Process by the Use of Language Learning Strategies Authors: Shafiq Ahmad Farooqi Dr. Muhammad Shakir Sher Muhammad Awan Abstract: This analytical research study involves the use of learning strategies to know the mechanism of learning a second language. People acquire their native language (L1) without any conscious effort and they have a complete knowledge of L1 and are competent in their native language even without going to school. It is believed that language learning is a process as well as an outcome and the focus of current study is to understand the process of learning a second language. The population in this study comprised of 182 boys and Girls Govt. Higher Secondary Schools studying at intermediate level in the 11 Districts of the Southern Punjab. The sample was selected through random probability sampling and consisted of 40 subject specialists teaching the subject of English in Govt. higher secondary schools with 400 students studying English at Intermediate level. A questionnaire comprising some common and easily accessible learning strategies was designed to determine the frequency of these strategies used in the classrooms by the language learners through the specialists of the subject. The data was collected from the selected sample through the subject specialists teaching in these schools. The data was collected quantitatively and was analyzed in the statistical package for social sciences (SPSS) version 20. The most common 27 language learning strategies (LLS) were applied to analyze the process of language learning. In the light of the results of the study, it was concluded that application of the learning strategies according to the nature of the text is helpful in understanding the language functions and its application. Keyswords: Language Acquisition, Learning Strategies, Mechanism of Language Learning Pages: 249-258 Article: 21 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)21 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)21 Download Pdf: download pdf view article Creative Commons License Secondary School Science Teachers’ Practices for the Development of Critical Thinking Skills: An Observational Study Authors: Dr. Muhammad Jamil Dr. Yaar Muhammad Dr. Naima Qureshi Abstract: In the National curriculum policy documents, to produce rationale and independent critical thinkers, different pedagogical practices have been recommended like cooperative learning, questioning, discussion, etc. This qualitative case study aimed at analyzing secondary school science teachers’ practices for the development of critical thinking skills in secondary school students. There were twelve classrooms (four from each subject of Physics, Chemistry and Biology) selected as cases. Video recording was used for the observations for six lessons in each classroom. In this way, a total of 72 observations were conducted lasting for approximately 35 minutes. Qualitative content analysis was used for data analysis through Nvivo 12. The findings of the observations revealed that all the teachers used the lecture method. They used this to cover the content at a given specific time. There was not much focus on the development of critical thinking. In a few of the classrooms, the students were engaged and active during learning different specific topics. Whiteboard was used as a visual aid by most of the teachers. Furthermore, to some extent, discussion, questioning, and daily life examples were used in different classrooms. It is recommended that teachers’ professional development should be conducted to focus on the development of critical thinking skills through pedagogical practices which have been recommended by the national education policy documents. Keyswords: Analysis, Critical Thinking, Curriculum Policy, Pedagogy, Secondary Level Pages: 259-265 Article: 22 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)22 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)22 Download Pdf: download pdf view article Creative Commons License Historical Development of Clinical Psychology in Pakistan: A Critical Review-based Study Authors: Muhammad Nawaz Shahzad Dr. Mushtaq Ahmad Dr. Muhammad Waseem Tufail Abstract: Clinical Psychology is clinical and curing psychological practices in Pakistan. The present research study endeavors to examine the contemporary status of Clinical Psychology in the country and descriptively analyzes the significant contribution of various psychologists in its development. The study also elaborates the emergence of Clinical Psychology and its treatment aspects in the country. The experimental approach of the treatment psychology has also been defined. The role of different scholars to set and promote the Clinical Psychology as discipline and dealing about treatment of Human mind has also been discussed here. The study also presented the scenario of the issues of legislative acknowledgment, qualifications mandatory for practice, communal awareness of cerebral treatment, the tradition of ethnic and native practices about the clinical psychological treatments has also been discussed. Keyswords: Approaches, Clinical Psychology, Psychologist, Therapist Pages: 266-272 Article: 23 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)23 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)23 Download Pdf: download pdf view article Creative Commons License Impact of Devolution of Power on School Education Performance in Sindh after 18th Constitutional Amendment Authors: Abdul Hafeez Dr. Saima Iqbal Muhammad Imran Abstract: Devolution of the authority from central units of empowering authorities to the local level to develop and exercise policies at local or organizational level is under debate in various countries of the world. The legation in with the name of 18th constitutional amendment in constitution of 1973 of Pakistan ensures more autonomy to federal units. The difference between province and federation mostly creates misunderstanding in the belief of cooperation and universalism of education standards, expenditures and service delivery. Very currently the ministry of education and local government encoring principles and headmasters to adopt self-management skills to be updated to accept the spin of power from higher authorities to lower authorities’ pedagogical and local schools. In this qualitative research semi structured questioner were incorporated as data collection tool equally, the data was analyzed by usage of NVivo software. In this regard Government of Sindh has introduced various reforms and new trends like objectives and policy pillars, better government schools, improved learning outcomes and increased and improved funding in the education sector Sindh government has so far been unable to effectively use its resources to implement effective governance system which provides quality and sustained education in the province. To achieve this basic universal education, equally fourth objective of Sustainable Development Goal (SDG) the educational leaders must develop a comparative education setup that help to educate planers to plan and design standards for school leaders, instruction, appropriate professional development of teachers, ways to support school leaders to change in mission. Parallel, develop new program for early childhood, school and class size and ensure school enrollment. Keyswords: 18th Constitutional Amendment, Devolution of Power, Sindh Education Performance Pages: 273-285 Article: 24 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)24 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)24 Download Pdf: download pdf view article Creative Commons License Legal Aspects of Evidence Collected by Modern Devices: A Case Study Authors: Muhammad Hassan Zia Alvina Ali Abstract: This paper is a qualitative research of different case laws dealing with modern technological evidence. Courts were required to adopt new methods, techniques and devices obtained through advancement of science without affecting the original intention of law. Because of modern technology, a benefit could be taken from said technology to preserve evidences and to assist proceedings of the Court in the dispensation of justice in modern times. Owing to the scientific and technological advancements the admissibility of audio and visual proofs has grown doubtful. No doubt modern evidence assist the court in reaching out to the just decision but at the same time certain criteria need to be laid down which must be satisfied to consider such evidence admissible. Different Case laws are discussed here to show how the cases were resolved on the basis of technological evidence and when and why such evidence have been rejected by the court, if it did. Moreover, legal practices developed in various countries allow our Courts to record evidence through video conferencing. The Honorable Supreme Court of Pakistan directed that in appropriate cases statement of juvenile rape victims and other cases of sensitive nature must be recorded through video conferencing to avoid inconvenience for them to come to the Court. Nevertheless, it has some problems. The most important among them is the identification of the witness and an assurance that he is not being prompted when his statement is recorded. In this paper protocols that are necessary to follow while examining witness through video link are discussed Keyswords: DNA Profiling, Finger Prints, , Telephone Calls, Video Tape Pages: 286-297 Article: 25 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)25 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)25 Download Pdf: download pdf view article Creative Commons License The Political Economy of Terrorisms: Economic Cost of War on Terror for Pakistan Authors: Muhammad Shakeel Ahmad Siddiqui Dr. Muhammad Imran Pasha Saira Akram Abstract: Terrorism and its effect on contemporary society is one of the core and vital subjects of International Political Economy (IPE) during the last years. Despite the fact that this is not a new phenomenon, special attention has been given to this issue, specifically after the terrorist attacks of 9/11, 2001. The objective of this paper analyzes to what dimensions terrorism affects the global economy mainly the two predominant actors of the conflict i.e. Pakistan and the United States. For this purpose, this article will take a look at the financial cost of War for Pakistan and how Pakistan’s decision to become frontline State has affected its Economy, its effect on agriculture, manufacturing, tourism, FDI, increased defense costs The normative and qualitative methodology shows a significant disadvantage between terrorist activities and economic growth, social progress, and political development. The results shows that Pakistan has bear slow economic growth while facing terrorist activities more than US. In this last section, the paper suggests ways and means to satisfy people around the world not to go in the hands of fundamentals and terrorists. Keyswords: Cost of War, Economic Growth, Frontline States, Pak Us Relations, Terrorism Pages: 297-309 Article: 26 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)26 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)26 Download Pdf: download pdf view article Creative Commons License A Comparative Study of Grade 10 English Textbooks of Sindh Textbook Board and Cambridge “O Level” in the perspective of Revised Bloom’s Taxonomy Authors: Mahnoor Shaikh Dr. Shumaila Memon Abstract: The present study evaluated the cognitive levels of reading comprehension questions present in grade 10 English Textbooks namely English Textbook for grade 10 by Sindh Textbook Board and compared it to Oxford Progressive English book 10 used in Cambridge “O Level” in the perspective of Revised Bloom’s Taxonomy. Qualitative content analysis was used as a methodology to carry out the study. To collect the data, a checklist based on Revised Bloom’s taxonomy was used as an instrument. A total of 260 reading comprehension questions from both the textbooks were evaluated. The findings of the study revealed that reading comprehension questions in English textbook for grade 10 were solely based on remembering level (100%) whereas the questions in Oxford Progressive English 10 were mainly based on understanding level (75.5%) with a small percentage of remembering (12.5%), analyzing (11.1%) and evaluating level (0.74%). This suggests that the reading comprehension questions in both the textbooks are dominantly based on lower-order thinking skills. Keyswords: Bloom’s Taxonomy, Content Analysis, Reading Comprehension, Textbook Evaluation Pages: 310-320 Article: 27 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)27 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)27 Download Pdf: download pdf view article Creative Commons License Assessing the Preparedness of Government Hospitals: A Case of Quetta City, Balochiatan Authors: Sahar Arshad Syed Ainuddin Jamal ud din Abstract: Earthquake with high magnitude is often resulting in massive destruction with more causalities and high mortality rate. Timely providence of critical healthcare facilities to affected people during an emergency response is the core principle of disaster resilient communities. The main objective of this paper is assessing the hospital preparedness of government hospitals in Quetta. Primary data was collected through questionnaire survey. Total of 165 sample size chosen via simple random sampling. Relative important index (RII) is used to analyze the overall situation of hospitals preparedness in term of earthquake disaster. Findings of the study showed that the preparedness level of government hospitals in Quetta is weak to moderate level. Based on the findings this study recommends the necessary measures to minimize the risk of earthquake disaster including training and exercise programs for the staff of hospital, proper resource management to efficiently use the existing machinery and equipment in the meeting of disaster to enhance employee’s performance and preparedness of government hospitals in Quetta to deal with earthquake disaster. Keyswords: Earthquake, Preparedness, Relative Important Index Pages: 321-329 Article: 28 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)28 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)28 Download Pdf: download pdf view article Creative Commons License Development of Reasoning Skills among Prospective Teachers through Cognitive Acceleration Approach Authors: Memoona Bibi Dr. Shamsa Aziz Abstract: The main objectives of this study were to; investigate the effects of the Cognitive Acceleration approach on the reasoning skills of the prospective teachers at the university level and compare the effects of the Cognitive Acceleration approach and traditional approach concerning reasoning skills of prospective teachers’ at the university level. The study was experimental and followed a pre-test post-test control group experimental design. The sample of the study included the experimental group and control group from the BS Education program in the Department of Education at International Islamic University Islamabad. A simple random sampling technique was used to select the sample after pre-test and pairing of prospective teachers. CTSR (classroom test for scientific reasoning) developed by A.E. Lawson (2000) was used to collect the data through pre-tests and post-tests. The experimental group’s perception about different activities of the experiment was taken through a self-made rating scale. Collected data were analyzed by calculating mean scores and t-test for hypothesis testing by using SPSS. The main findings of the study revealed that the Cognitive Acceleration teaching approach has a significant positive effect on the reasoning skills development of prospective teachers at the university level. Findings also showed that participants found this teaching approach effective and learned many new concepts and skills with the help of thinking activities. Based on findings it has been concluded that the Cognitive Acceleration teaching approach might be encouraged for training prospective teachers at the university level and training sessions about the use of the Cognitive Acceleration approach must be arranged by teacher education programs and institutions. Keyswords: Cognitive Acceleration Approach, Prospective Teachers, Reasoning Skills, Traditional Approach Pages: 330-342 Article: 29 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)29 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)29 Download Pdf: download pdf view article Creative Commons License Spatial Injustice in Shamsie’s Kartography Authors: Syeda Hibba Zainab Zaidi Dr. Ali Usman Saleem Sadia Waheed Abstract: Social space under postmodernism and wave of globalization have suffered in and its idealistic representations are lost and deteriorated which ultimately led to discursiveness in the lives of postmodern man, especially Karachiites. The boundaries of geographies play a significant role in shaping fates, biographies, social superstructures and shared collective histories of its residents. Considering this, Henri Lefebvre and Edward William Soja, argue that space is something which determines the living circumstances within the particular social framework and instigates and controls various societal happenings. City space of Karachi suffers from appalling distortions as a part of postmodern, globalized and capitalist world. By employing Lefebvre’s idea of spatial triad and Soja’s views of the trialectrics of spaciality, this paper foregrounds how social space enforces spatial injustice and serves for the inculcation of spatial cleansing in the lives of inhabitants of urban space. Using Shamsie’s Kartography as an interpretive tool for contemporary urban environment, this paper inquires the engrafting of spatial cleansing in the lives of Karachiites resulting in multiple standardization and segregation on the basis of living standards among different social strata. This research substantiates how in Kartography, Materialism nibbles the roots of social values and norms while sequentially administering Spatial Injustice in the lives of Karachiites. This paper proclaims the scarcity of execution of Spatial Justice in the lives of common people in this postmodern globalized capitalist era. This paper urges the possibility of a utopian urban space with enforced spatial justice where people can be saved from dilemmas of injustice and segregation, especially Karachiites. Keyswords: Capitalistic Hegemony, City Space, Globalization, Spatial Cleansing, Spatial Injustice Pages: 343-352 Article: 30 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)30 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)30 Download Pdf: download pdf view article Creative Commons License A Quasi-Experimental Study on the Performance and Attitudes of Pakistani Undergraduate Students towards Hello English Language Learning Application Authors: Wafa Pirzada Dr. Shumaila Memon Dr. Habibullah Pathan Abstract: With the advancement of technology, more and more avenues of bringing creativity and innovation in language learning have opened up. These exciting advances have given rise to a new field of study within linguistics, termed Mobile Assisted Language Learning (MALL). This paper aims to fill the gap of MALL research in the area of grammar teaching in the Pakistan. Two BS Part 1 classes from University of Sindh, Jamshoro, were chosen for this quasi-experimental study. In total, 62 out of 101 students volunteered to use the Hello English application for 2 months, making up the experiment group, and the remaining 39 students were put in a control group. Paired Samples T-Test was run on pretest and posttest results which revealed no significant difference in both groups’ performances, proving that Hello English application could not significantly improve students’ grammar performance. However, in spite of the lack of a significant difference between the test results, the data gathered through the attitudinal survey showed that students still found mobile application very easy to use and effective in language learning. Keyswords: Attitudes, Grammar Learning, Hello English, Mobile Language Learning, Technology In Language Learning Pages: 353-367 Article: 31 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)31 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)31 Download Pdf: download pdf view article Creative Commons License Impact of Determinants on the Profile Elevation of Secondary School Teachers in Pakistan Authors: Zahida Aziz Sial Dr. Farah Latif Naz Humaira Saadia Abstract: The foremost purpose of this research paper was to interrogate the effects of determinants on the educational and social profile of secondary school teachers in Pakistan. The key question taken was related to determinants that affect teachers’ profile. The Population of the study was secondary school teachers of Punjab province. A questionnaire was used as research instrument. The researcher personally visited the schools to administer the questionnaire. E-Views software was used for data analysis. Moreover, OLS regression model and LOGIT regression model were carried out. It was found that the variable years of teaching experience (EXPYR) (*** 0.03) can have a vital concrete effect upon the societal figuration of teachers as the experience of teachers grows, so does their social interactions with officials, colleagues, students and friends increases. The said variable is significant at 10 percent level. The variable, Residence (RESIDE) (** 0.53) have a significant impact upon civic links. This obviously associated with less community connection of country side teachers than the teachers residing in urban areas. Keyswords: Determinants, Elevation, Educational Profile, Social Profile, Secondary School Teacher Pages: 368-372 Article: 32 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)32 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)32 Download Pdf: download pdf view article Creative Commons License Impact of War on Terror on the Tourism Industry in Swat, Pakistan Authors: Sabir Ihsan Prof. Dr. Anwar Alam Aman Ullah Abstract: The present study was designed to ascertain the status of tourism before insurgency, during insurgency and after insurgency in District Swat-KP Pakistan. The study is quantitative and descriptive in nature. A diverse sample size of 370 out of 9014 was selected through convenient sampling strategy. Notwithstanding, the objectives of the study was achieved through structured questionnaire. Data was analysed through chi-square at Bi Variate level. Findings of the study revealed that earning livelihood in swat was significantly associated (P=0.016), (P=0.003) with tourism industry prior 2009 and present time respective, but the same statement was observed non-significant (P=0.075) at the time of insurgency. Arranging different festivals in the study area and establishment of different showrooms for local handcrafts, artificial jewellery and woollen shawl are some of the recommendations of the study. Keyswords: Business, Insurgency, Swat, Tourism Pages: 373-385 Article: 33 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)33 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)33 Download Pdf: download pdf view article Creative Commons License Challenges and Prospects of Pak-China Economic Corridor Authors: Muhammad Mudabbir Malik Prof. Dr. Muqarrab Akbar Abstract: Pak-China has historic relationships from the emergence of both states, and were proved long-lasting in every thick and thin times. In initial times they supported each other in foreign policies and regional issues. Pakistan and China have border disputes with India, which forced them to come close to counter India, letter on the economic interests strengthened these relations. In order to maximize the economic benefits, China announced economic corridor with the name China Pakistan Economic Corridor (CEPC). It was thought it will boost the economic growth of China, and as a prime partner Pakistan will also get economic benefits. In order to completely understand how Pakistan and China came on the same page and decided to put CPEC into reality we have to understand the Geo-political Importance of Pakistan, Strategic and economic importance of CPEC for China and Pakistan, Influence and concerns of West and neighboring countries including India. Domestic limitations and all the possible benefits and risks involved in this project for both Pakistan and China, this research acknowledges all these questions. Keyswords: Challenges, China, CPEC, Domestic Limitations Economic Growth, Pakistan, Western and Regional Concerns Pages: 386-404 Article: 34 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)34 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)34 Download Pdf: download pdf view article Creative Commons License An Analysis of Learning Practices and Habits of Children at Early Childhood Education: Students’ Perspective Authors: Masood Ahmad Sabiha Iqbal Shaista Noreen Abstract: The study was designed to analysis learning practices and habits of children at early childhood education. The major objective of the study was to find out the learning practices and habits of children. Problem was related to current situation, so survey method was exercised, 220 students were selected with the help of convenient sampling technique. Self-constructed questionnaire were exercised. The collected data was analyzed and calculate frequency, percentage, mean score, standard deviation and t-test of independent variable. The major findings of the study were; students learn from the pictures, cartoons and funny face; student’s eyes get tired of reading. When student read context continuously then they feel that their eyes get tired. There was a significance difference between male and female student about learning practices and habits of children. Keyswords: Early Childhood Education, Learning Practices and Habits, Pre-School Students Pages: 405-416 Article: 35 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)35 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)35 Download Pdf: download pdf view article Creative Commons License Gender Identity Construction in Akhtar’s Melody of a Tear Authors: Dr. Amna Saeed Hina Quddus Abstract: This study aims to discuss the notion of gender in terms of performativity and social construction. It also draws upon the idea of gender identity construction and how it relates to the society, performativity and biology. As its theoretical framework, the study relies upon the Performative Theory of Gender and Sex (1990) presented by Judith Butler and studies the gender identity construction in the female protagonist of Akhtar’s Melody of a Tear. Zara is a girl who is raised as a boy from his father and there is a kind of dilemma in Zara’s personality related to being masculine and feminine. The cultural norms of a particular gender are also a cause of this dilemma. Throughout the novel, she is in a conflicting state whether she should behave feminine or masculine. She is being depicted as an incomplete person until she finds and resolves this issue of gender identity. The paper discusses the gender performativity, social construction, cultural norms and identity as these are all contributing to the confusion and construction of the protagonist’s identity. Character analysis is used as the methodology of analysis. Keyswords: Cultural Norms, Femininity And Identity Confusion, Gender, Performativity, Masculinity, Social Construction Pages: 417-427 Article: 36 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)36 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)36 Download Pdf: download pdf view article Creative Commons License The Level of Impulsivity and Aggression among Crystal Meth and Cannabis Users Authors: Dr. Umbreen Khizar Muhammad Shafique Sana Nawab Abstract: Cannabis and crystal meth use is pervading in our society. Present study was conducted to explore the relationship between level of impulsivity and aggression among crystal meth and cannabis users. The sample of the present study was comprised of 100 participants. There were 50 cannabis and 50 crystal meth users who were diagnosed on the basis of DSM-V without any comorbidity. The sample were taken from all age range of population. The minimum education level was primary and maximum education level was graduation and above. The sample was selected from different drug rehabilitation centers of Rawalpindi and Islamabad, Pakistan. Demographic Performa was used to collect the initial important information, The “Barratt Impulsiveness Scale was used to measure the impulsivity and “Aggression Questionnaire” were used to measure the level of aggression. Finding of the study showed that there are significant differences among crystal meth and cannabis users on level of aggression. The calculated mean value for crystal meth user and for cannabis users indicates that crystal meth users have higher level of aggression as compared to the cannabis user. Over all analysis indicates a significant positive correlation of impulsivity with the variable aggression. The alpha coefficient value for all scale is acceptable. Keyswords: Aggression, Cannabis Users, Crystal Meth, Impulsivity Pages: 428-439 Article: 37 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)37 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)37 Download Pdf: download pdf view article Creative Commons License Impact of Social Factors on the Status of Tribal Women: A Case Study of the (Erstwhile) Mohmand Agency Authors: Sadia Jabeen Prof. Dr. Anwar Alam Muhammad Jawad Abstract: This study investigates the impact of socio-economic and cultural factors on the status of tribal women in the erstwhile Mohmand agency of the Ex-Federally Administered Tribal Area (FATA), Pakistan. Cultural practices and illiteracy impede the role of women in socio-economic development. The respondents were randomly selected from tehsil Ekka Ghund and Pindialai with a sample size of 370, through stratified random sampling. Data collected through structured interview schedule, FGD and observation technique. The study reveals that tribal practices early marriages, joint family system, tradition of forced marriages, compensation/Swara, exchange, purchase marriages, hampers women’s socioeconomic status. The illiteracy rate is high among the tribal women and it further undermines their role and negatively affects their socio-economic status. However, improvement in women status needs peace and stability, reforms in the constitution for women empowerment and active participation, improvement in the quality and quantity of education, women employability, skills development and women entrepreneurship Keyswords: Empowerment and Education, Marriage Types, Tribal Women Role, Tribal Women Status, Violence against Women Pages: 440-455 Article: 38 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)38 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)38 Download Pdf: download pdf view article Creative Commons License Effects of Heavy School Bags on Students’ Health at Primary Level in District Haveli (Kahutta) Azad Jammu and Kashmir Authors: Dr. Muhammad Mushtaq Shamsa Rathore Mishbah Saba Abstract: Heavy school bags is a very serious issue for the health of the primary level students throughout the world particularly in Azad Jammu and Kashmir. This study intends to explore the effect of heavy school bags on students’ health at primary level in district Kahuta. Naturally the study was descriptive and survey method was used, the population consists of one hundred ninety teachers and a sample of one hundred twenty seven teachers was selected using non probability sampling technique. A likert scale questionnaire was developed validated and distributed among the sampled respondents. The researcher personally visited the schools and collected the filled questionnaire. The data was coded and fed to the SPSS to analyze and interpret. The Chi Square test was applied to see the effect of heavy school bags on student’s health and academic achievement. The study found that heavy bags have negative effect on their health as well as their academic achievement. Students were found complaining their sickness, body and back pain. They were also found improper in their gait and their body postures. The researcher recommended the policy makers to take and develop strategies to decrease the heavy school bags. The school administration needs to make alternate days’ time tables of the subjects. Keyswords: Health, Primary Level, School, Bags, Students Heavy Pages: 456-466 Article: 39 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)39 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)39 Download Pdf: download pdf view article Creative Commons License Exploring the ‘Civil Repair’ Function of Media: A Case Study of The Christchurch Mosques Shootings Authors: Ayaz Khan Dr. Muhammad Junaid Ghauri Riffat Alam Abstract: This research endeavor is an attempt to explore and analyze the discourse produced by The New Zealand Herald; a newspaper from New Zealand and by The News International; a Pakistani newspaper. The researchers intend to determine whether and to what extent both the newspapers have the role of ‘civil repair’ played after the Christchurch mosques shootings. The researchers have incorporated the ‘lexicalization’ and the ‘ideological square’ techniques proposed by Tuen A. van Dijk within the scope of Critical Discourse Analysis. The findings of this study show that both the selected newspapers assuming the social status of ‘vital center’ performed the role of ‘civil repair’ in the aftermath of the shootings by producing the ‘solidarity discourse’. The ‘solidarity discourse’ has been produced in terms of the ‘we-ness’, harmony, understanding, and by mitigating the conflicting opinions. Keyswords: Christchurch Mosque Shootings, Civil Repair, Civil Sphere Theory, Lexicalization, Solidarity Discourse Pages: 467-484 Article: 40 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)40 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)40 Download Pdf: download pdf view article Creative Commons License China Pakistan Economic Corridor: Regional Dominance into Peace and Economic Development Authors: Tayba Anwar Asia Saif Alvi Abstract: The purpose of this qualitative study was to investigate the true motivations behind CPEC idea and the advantages it delivers to Pakistan and China. It also recognizes the Corridor's potential for mixing regional economies while dissolving geographical borders. The study is deductive in character, since it examines financial, political, and military elements of Pakistan and China's positions and situations. Enhancing geographical linkages through improved road, train, and air transport systems with regular and free exchanges of development and individual’s interaction, boosting through educational, social, and regional civilization and wisdom, activity of larger quantity of investment and commerce flow, generating and moving energy to provide more optimal businesses for the region. Keyswords: Geographical Linkages, Globalized World, Landlocked, Regional Connectivity, Regionalization Pages: 485-497 Article: 41 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)41 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)41 Download Pdf: download pdf view article Creative Commons License China’s New Great Game in Central Asia: Its Interest and Development Authors: Bushra Fatima Rana Eijaz Ahmad Abstract: Central Asia is rich in hydrocarbon resources. It’s geostrategic, geopolitical, and geo-economic significance has grasped the attention of multiple actors such as China, the USA, Russia, Turkey, the European Union, Pakistan, Afghanistan, and India. Due to its location, the Central Asian region appeared as a strategic hub. In the present scenario, China’s strategy is massive economic development, energy interest, peace, and stability. This article highlights China’s interest, political and economic development, and its role as a major player in the New Great Game in Central Asia. Shanghai Cooperation Organization (SCO) which presents as a platform where China is playing an active role in political, economic, and security concerns for achieving its objectives in Central Asia. The new step of the Belt and Road Initiative (BRI) sheds light on China’s progressive move in this region via land and sea routes, which creates opportunities for globalization. Keyswords: Belt and Road Initiative, Central Asia, China, New Great Game Pages: 498-509 Article: 42 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)42 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)42 Download Pdf: download pdf view article Creative Commons License Personality Traits as Predictors of Self-Esteem and Death Anxiety among Drug Addicts Authors: Umbreen Khizar Saira Irfan Iram Ramzan Abstract: This study seeks to investigate whether personality traits predict self-esteem and death anxiety among drug addicts. The sample consisted of 100 drug addicts taken from the two hospitals in Multan city. Only men between the ages of 20 and 65 were included in the study. Data was collected through reliable and valid questionnaires. Results revealed positive relationship between conscientiousness, openness to experience and self-esteem. Moreover, findings showed positive relationship between extraversion and death anxiety, and negative correlation between neuroticism and death anxiety. Findings also showed that self-esteem and death anxiety are significantly and negatively correlated. Additionally, findings revealed that conscientiousness positively predicted self-esteem and neuroticism negatively predicted death anxiety. Furthermore, significant differences were observed in self-esteem, and death anxiety based on age. Significant differences were also found in extraversion, agreeableness, openness to experience, and death anxiety based on location. Understanding how personality traits affect behavior can help drug addicts get the support they need to live a better life and reduce their risk of death anxiety and premature death. Keyswords: Death Anxiety, Drug Users, Personality Traits, Self- Esteem Pages: 510-524 Article: 43 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)43 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)43 Download Pdf: download pdf view article Creative Commons License Middle East: A Regional Instability Prototype Provoking Third Party Interventions Authors: Waseem Din Prof. Dr. Iram Khalid Abstract: Third party interventions always prolong the interstate or civil wars with unending sufferings and devastations. The entire Middle East region is fraught with tensions, conflicts, civil wars and rivalries. From strategic interests to power grabbing, sectarian divisions, flaws in the civil and social structure of the state and society, ethnic insurrections, and many other shapes of instability syndromes can be diagnosed in this region. In the post-Arab Spring, 2011, the emerging new regional hierarchical order for power/dominance, in addition to the weakening/declining dominant US power in the region, changed the entire shape of already conflict-ridden region. New weak or collapsing states and bifurcation of the ‘status quo’ and ‘counter-hegemonic’ states along with their respective allies, made this region a prototype of instability in the regional security complex of the Middle East, as a direct result of these developments. The perpetuation of these abnormalities would not recede this instability conundrum from the region, provoking third party intervention, if not contained. Keyswords: Conflicts/Civil Wars, Dominant Power, Instability, Intervention, Middle East, Middle Powers, Regional Hierarchy, Regional Powers, Security Complex, Weak State Pages: 525-542 Article: 44 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)44 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)44 Download Pdf: download pdf view article Creative Commons License Impact of Classroom Environment on Second Language Learning Anxiety Authors: Zohaib Zahid Abstract: Second language learning anxiety has attained the attention of the researchers in almost every part of the world. Pakistan is a country where English is taught as a second language from the very beginning of school education. Second Language learning anxiety is a phenomenon which has been prominently found among the learners because of their less proficiency in learning English language. This study has been conducted to investigate the effect of anxiety in learning and using English language in classroom, university and outside the classroom. There are variables that affect language learning performance of the learners but this paper has solely investigated the effect of anxiety. The paper has concluded that anxiety is a variable which has a striking affect in second language learning and its use inside classrooms. Keyswords: Effect of Anxiety, Proficiency, Second Language Learning Anxiety, Striking Affect Pages: 485-497 Article: 45 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)45 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)45 Download Pdf: download pdf view article Creative Commons License Struggling for Democracy: A Case of Democratization in Pakistan Authors: Ammara Tariq Cheema Dr. Rehana Saeed Hashmi Abstract: The objective of this research paper is to review the challenges for democratization in Pakistan. The problem of democratization and consolidation refers to the structure of democracy following the collapse of non-democratic regime. Ten factors as given by Michael J. Sodaro are considered effective in helping a democratically unstable state to stabilize its system in other words helps in the democratic consolidation. It is argued in this research that the ten factors of democratization as given by Michael J. Sodaro have been absent in the political system of Pakistan and working on these factors can lead Pakistan to the road of democratization. This study uses qualitative method of research and proposes a novel framework for the deed of parliament, because the effectiveness of parliament can contribute positively to democratization/consolidated democracy. Keyswords: Electoral Politics, General Elections, Political Participation, Women Empowerment Pages: 554-562 Article: 46 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)46 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)46 Download Pdf: download pdf view article Creative Commons License Impact of Dependency Ratio on Economic Growth among Most Populated Asian Countries Authors: Dilshad Ahmad Salyha Zulfiqar Ali Shah Abstract: Demographic transition through different channels significantly influences economic growth. Malthusian view postulated as dependency ratio adversely affects economic growth while Julian Simon's view is quite different, highlighted the long-run benefits of the population in the range of 5 to15 years on economic growth. This study can be a valuable addition in research to analyzing the association of dependency ratio and economic growth of the five most populated Asian countries (Bangladesh, China, Indonesia, India, and Pakistan). Empirical findings of the study indicated that a total dependency and younger dependency ratio has a positive and significant influence on economic growth in both short-run and long-run scenarios while the old dependency ratio shows a negative influence on economic growth in the long run while short-run results are unpredictable. There is a need for state-based proper policy measures in focusing the higher financing in human capital development specifically in education and health. Keyswords: Economic Growth, Gross Saving, Old Dependency Ratio, Young Dependency Ratio Pages: 563-579 Article: 47 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)47 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)47 Download Pdf: download pdf view article Creative Commons License Chinese Geo-Strategic Objectives and Economic Interests in Afghanistan under President Xi Jinping Authors: Farooq Ahmed Prof. Dr. Iram Khalid Abstract: China has its own distinctive interests, concerns and strategies with respect to the changing security dynamics in Afghanistan. China has taken an active interest, though retaining a low profile and avoiding direct military interaction. China has exclusively relished on economic engagement actively and provided numerous financial aid and financial support in the rebuilding of Afghanistan's economy. The aim of this research study is to analyze the geo-strategic objectives and economic interests of China under the leadership of President Xi Jinping. This study looks at the actual diplomatic, economic and protection commitments of both countries as well as the basis of the geopolitical complexities – core variables that form China's current foreign policy to Afghanistan. Keyswords: Afghanistan, BRI, China, NATO Withdrawal Pages: 580-592 Article: 48 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)48 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)48 Download Pdf: download pdf view article Creative Commons License The Argument Structure of Intransitive Verbs in Pashto Authors: Abdul Hamid Nadeem Haider Bukhari Ghani Rehman Abstract: This study focuses on the description and categorization of intransitive verbs in terms of its argument structure. The study concludes that the unaccusative verbs only project an internal argument. It does not require the event argument. However, the said verb can be causativised by adding external argument and at the same time the event argument gets included in the valency of the derived causative of the unaccusative root. The unergative, on the other hand, requires an external argument as an obligatory argument while the internal argument is not the obligatory argument of the verb. The event argument is also a part of the valency of the verb. The APFs require one argument which is the internal argument of the verb. However, since the external argument is not available, the internal argument of the verb gets realized as the subject of the verb. The verb does not project event argument. The ergative predicates are derived by the suppression of the external argument and by the externalization of the internal argument. Keyswords: Argument Structure, Ergative Case, Event Argument, External Argument, Internal Argument, Valency Pages: 593-610 Article: 49 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)49 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)49 Download Pdf: download pdf view article Creative Commons License Positive, Negative and Criminal Orientation of Beggars in Okara: Perspective of Students Authors: Shahzad Farid Saif-Ur-Rehman Saif Abbasi Hassan Raza Abstract: This study aimed to measure the perspective of students about the criminal orientation of beggars. The sample size of the study (i.e., 100 students) was explored using Taro Yamane’ equation from the university of Okara, Punjab, Pakistan. The respondents were approached using simple random sampling and interviewed using face to face interview schedule. The data was collected using a structured questionnaire. The analysis was administered through SPSS-20.The study explored that parental illiteracy is associated with the high criminal and negative orientation of students towards beggars. It was also explored that females and respondents from rural background have low negative orientation towards beggars. However, males and respondents from urban background have medium criminal orientation and low positive orientation towards beggars, respectively. The study is useful for the government of Punjab, Pakistan campaign and policy for anti-begging. The study introduced the geometrical model of youth’s orientation toward begging. The study also contributed to the literature on begging by extending its domain from Law and Criminology to sociology as it incorporated social variables e.g., parents’ education, gender, etc., to explore their association with the youth’s socialization about begging. Keyswords: Begging, Crime, Education, Gender, Students Pages: 611-621 Article: 50 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)50 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)50 Download Pdf: download pdf view article Creative Commons License Relationship between Entrepreneurial Export Orientation and Export Entrepreneurship through Mediation of Entrepreneurial Capabilities Authors: Muhammad Saqib Nawaz Masood ul Hassan Abstract: Export led growth is prominent paradigm in developing world since decades. Exports play vital role in the economy by improving the level of balance of payments, economic growth and employment. Due to strategic importance of exports, organizational researchers focused on finding antecedents of export performance of the organizations. To line with this, current study aims to find the impact of entrepreneurial export orientation on export entrepreneurship through mediation of entrepreneurial capabilities in the Pakistani context. For this purpose, data was collected from 221 exporting firms of Pakistan by using questionnaire. Collected data was analyzed with the help of Smart PLS. In findings, measurement model confirmed the validity and reliability of measures of variables. Additionally, structural model provides the positive impact of entrepreneurial export orientation on export entrepreneurship. Similarly, entrepreneurial capabilities mediate the relationship between entrepreneurial export orientation on export entrepreneurship. The findings provide important implications for the managers of exporting firms to improve export performance. Keyswords: Entrepreneurial Capabilities, Entrepreneurial Export Orientation, Export Entrepreneurship Pages: 622-636 Article: 51 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)51 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)51 Download Pdf: download pdf view article Creative Commons License China Pakistan Economic Corridor: Explaining U.S-India Strategic Concerns Authors: Nasreen Akhtar Dilshad Bano Abstract: Regional and International political and economic landscape is being changed owing to China Pakistan Economic Corridor (CEPEC)-the new security paradigm has taken place-that has increased the strategic concerns of the U.S. and India. This research paper attempts to re-examine China-Pakistan relations in the new emerging geo-political compass. This paper has investigated the question that how regional, and global developments have impacted the China-Pakistan relationship? And why China – Pakistan have become partners of CPEC? In the global context, this paper assesses the emerging International Order, Indo-U. S strategic narrative vis-à-vis CPEC, and the containment of China through the new alliances and their impacts on China -Pakistan vis-à-vis the Belt Road Initiative (BRI). Quadrilateral (Quad) alliances is shaping the new strategic political and security paradigms in the world politics. Keyswords: BRI, China, CPEC, India, Pakistan, Silk Road, Strategic Concerns Pages: 637-649 Article: 52 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)52 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)52 Download Pdf: download pdf view article Creative Commons License The Structure of Domestic Politics and 1973 Constitution of Pakistan Authors: Dr. Fida Bazai Dr. Ruqia Rehman Amjad Rashid Abstract: Pakistan is located in a pivotal region. Its geo-strategic location affects its national identity as a nation state. Unlike Europe in South Asia security dilemma, proxy warfare and nuclear arms race are consistent features of the regional politics. The identity of Pakistan as security-centric state gives its army disproportional power, which created institutional imbalance that directly affected constitutionalism in the country. The constitution of Pakistan is based on principles of civilian supremacy and separation of power but in reality Pakistan’s army is the most powerful institution in country. This paper argues that the structure of Pakistani politics; created institutional imbalances by the disproportionate distribution of resources is the key variable in creating dichotomy. The structure of domestic politics is based upon the principles of hostility to India, use of Islam for national unity and strategic alliances with major powers to finance defense against the neighboring countries. Keyswords: Constitutionalism, Identity, Islam, South Asia Pages: 650-661 Article: 53 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)53 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)53 Download Pdf: download pdf view article Creative Commons License National Integration and Regionalism in Pakistan: Government’s Strategy and Response toward Regionalist Demands 1947-77 Authors: Najeeb ur Rehman Mohammad Dilshad Mohabbat Muhammad Wahid Abstract: The countries of South Asian region have pluralistic societies with different language, religious, and ethnic identities. Pakistan is no exception who is facing the challenge of regionalism since its inception. Different ethnic groups have been consistently raising their voices for separatism or autonomy within the frame work of an existing territorial state. The issues of provincialism, ethnicity, and regionalism is posing a serious challenge to the integrity of the country. This paper aims to explore the causes of the regionalism in Pakistan and intends to analyze the policies and strategies of different political governments which they launched to tackle this all important issue. The paper follows the historical method of research and analyzes different types of qualitative data to conclude the finding of the research. The paper develops the theory of “Regionalists Demand and Government Response” which shows how different regionalist forces put their demands and how the governments react on these demands. It recommends the grant of greater regional autonomy to the regionalists to enhance internal security and to protect the country from disintegration. Keyswords: Demands, Ethnicity, Government Strategy, National Integrity, Nationalism, Regionalism Pages: 662-678 Article: 54 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)54 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)54 Download Pdf: download pdf view article Creative Commons License Fostering Entrepreneurial Mindset through Entrepreneurial Education: A Qualitative Study Authors: Saira Maqbool Dr. Qaisara Parveen Dr. Muhammad Hanif Abstract: Research on entrepreneurial mindset has flourished in these recent years. Its significance lies in a critical suspicion and its matters for inventive behavior. Entrepreneurship joined with innovative abilities, seen as one of the most wanted in this day and age. This study aims to determine the perceptions about entrepreneurial mindset, its importance, and the role of entrepreneurship education and Training in developing the entrepreneurial mindset. This is a qualitative study based on interviews conducted by professors of Pakistan and Germany. The analysis was determined through content analysis. The results determine that 'Making Entrepreneurial Mindset' assists with seeing better all parts of business venture, which will undoubtedly influence their view of business venture, pioneering abilities, and mentalities. Keyswords: Entrepreneurship Education, Entrepreneurial Mindset Pages: 679-691 Article: 55 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)55 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)55 Download Pdf: download pdf view article Creative Commons License Benefits of Implementing Single National Curriculum in Special Schools of Lahore city for Children with Intellectual Disability: Teachers’ Perception Authors: Dr. Hina Fazil Khurram Rameez Sidra Ansar Abstract: Single national curriculum (SNC) is an important issue across the Punjab Province of Pakistan. Making and implementing SNC is not only focusing the education of normal pupils, but also focusing students with disabilities (SWD). The field of special education experienced an increased discussion of curriculum for students with intellectual disabilities (SID). The present research aimed to know the benefits to implement first stage of single national curriculum for students with Intellectual disability and to know the differences about the benefits between public and private schools regarding SNC for students with ID based on demographic characteristics. Likert type researchers-made questionnaire with reliability) Cronbach alpha .922) was used. 90 special educationists from public and private schools were chosen through random sampling technique. The findings raised some benefits such as: SNC will bridge the social and economic disparities which will increase the acceptance of ID students. It was recommended that SNC should include areas of adaptive skills, motor, and vocational skills to get involved in work activities. Keyswords: Benefits, Children with Intellectual Disability, Single National Curriculum Pages: 692-703 Article: 56 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)56 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)56 Download Pdf: download pdf view article Creative Commons License Last Rituals and Problems Faced by the Hindu Community in Punjab: A Case Study of Lahore Authors: Sabir Naz Abstract: Lahore is the provincial capital of Punjab, where a sizeable population of the Hindus has been residing there since the inception of Pakistan. There had been many crematoriums in the city but with the passage of time, one after another, disappeared from the land after partition of the Sub-continent. Those places were replaced by commercial or residential sites. There is also a graveyard in the city which is in the use of Hindu Valmik Sect. However, it was encroached by some Muslims due to very small size of population and indolence of the Hindus. Later on, the encroachments were removed by the District Government Lahore in compliance of order of the Supreme Court of Pakistan. Presently, there is a graveyard as well as a crematorium in the city. The community remained deprived of a place to dispose of a dead body according to their faith for a long period which is contravention with the guidelines of the Quaid-e-Azam, founder of the nation Keyswords: Crematorium, Graveyard, Hindu community, Last Rituals Pages: 704-713 Article: 57 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)57 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)57 Download Pdf: download pdf view article Creative Commons License Estimating Growth Model by Non-Nested Encompassing: A Cross Country Analysis Authors: Benish Rashid Dr. Shahid Razzaque Dr. Atiq ur Rehman Abstract: Whether models are nested or non-nested it is important to be able to compare them and evaluate their comparative results. In this study six growth models have been used for analyzing the main determinants of economic growth in case of cross countries, therefore by using these six models we have tested them for non-nested and nested encompassing through Cox test and F-test respectively. Data from 1980 to 2020 were used to analyze the cross country growth factors so therefore, the current study looked at about forty four countries with modelling these different comparative studies based on growth modelling. So, we can make these six individual models and we can estimate the General Unrestricted Model with the use of econometric technique of Non-Nested Encompassing. By evaluating the data using the Non-Nested Encompassing econometric technique, different sets of economic variables has been used to evaluate which sets of the economic variables are important to boost up the growth level of the country. And found that in case of nested model or full model it is concluded that model with lag value of GDP, trade openness, population, real export, and gross fix capital formation are the main and potential determinants to boost up the Economic Growth in most of the countries. Keyswords: Cross Country, Economic Growth, Encompassing, Nested, Non-nested Pages: 714-727 Article: 58 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)58 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)58 Download Pdf: download pdf view article Creative Commons License Assessment of Youth Buying Behaviour for Organic Food Products in Southern Punjab: Perceptions and Hindrances Authors: Ayousha Rahman Asif Yaseen Muhammad Arif Nawaz Abstract: This research examined the cognitive antecedental effects on organic food purchase behaviour for understanding the perceptions and hindrances associated with purchasing organic food products. Theory of Planned Behaviour (TPB) was adopted as a theoretical framework. A total of 250 young consumers in the two cities of Southern Punjab, Pakistan was randomly sampled and data were collected via a face-to-face survey method. Partial least square technique was employed to test the model. The results showed that attitude towards organic food purchasing motivated when moral norms were activated to consume organic food products. Further, environmental knowledge moderated the relationship of organic food purchase intentions and behaviour significantly. The findings highlighted the importance of moral norms as a meaningful antecedent that could increase the TP-based psychosocial processes if consumers have sufficient environmental knowledge. Therefore, farmers, organic products marketers, government administrators, and food retailers should take initiatives not only to highlight the norms and values but also when promoting organic food production and consumption. Keyswords: Environmental Knowledge, Organic Food Purchase Behaviour, Personal Attitude, PLS-SEM, Subjective & Moral Norms Pages: 728-748 Article: 59 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)59 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)59 Download Pdf: download pdf view article Creative Commons License An Analysis on Students Ideas about English and Urdu as Medium of Instructions in the Subjects of Social Sciences studying in the Colleges of the Punjab, Pakistan Authors: Ashiq Hussain Asma Amanat Abstract: The worth and usefulness of English education as a foreign language is of great concern to language rule and planning (LRP) researchers compared to teaching their native language globally in higher education. The study under research examines the perspectives of two similar groups of the final year students of at Higher Education Institutions of Pakistan. The first group consists of art students who received the Urdu medium of instruction (UMI), and the second group received the English medium of instruction (EMI). An empirical methodology was carried out in the present year, students answered questionnaires to find out the benefits and challenges of learning subject-based knowledge, what subject-based knowledge means to them, and their understanding of language as a teaching language. Interviews were conducted with the selected group of students who wished to participate in research. Additional information is available from the tests and results obtained in the two equivalent courses. Although many similarities have been identified between the two groups, the overall knowledge of disciplinary knowledge of English medium instruction students was not very effective, while that of UMI students was very effective. It explains the implications of the findings to continue the language rule as policy experience for teaching in higher education institutions. Keyswords: English as Medium of Instruction (EMI), Higher Education Institutions (HEIs), Urdu as Medium of Instruction (UMI) Pages: 749-760 Article: 60 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)60 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)60 Download Pdf: download pdf view article Creative Commons License Environment and Women in Kurt Vonnegut’s ‘Happy Birthday Wanda Juny’: An Eco- Critical and Feminist Analysis Authors: Dr. Muhammad Asif Safana Hashmat Khan Muhammad Afzal Khan Janjua Abstract: This is an Eco-feminist study of Vonnegut’s ‘Happy Birthday Wanda Juny’ and focuses on how both women and environment are exploited by patriarchy. Ecofeminism critiques masculine dominance highlighting its role in creating and perpetuating gender discrimination, social inequity and environmental degradation. Women suffer more because of power disparity in society. Environmental crises affect women more than men because of their already precarious existence and subaltern position. There is affinity between women and nature are victims of climate change and other environmental hazards. Cheryl Glotfelty introduced interdisciplinary approach to the study of literature and environment. Literary ecology as an emerging discipline explores the intriguing relationship between environment and literature. Ecofeminism draws on feminist critique of gender inequality showing how gender categories inscribed in power structure exploit both women and nature. Francoise d‘Eaubonne coined the term ecofeminism to critique the prevalent exploitation of both women and environment. Ecofeminism asserts that exploitation of women and degradation of the environment are the direct result of male dominance and capitalism. Ecofeminism argues for redressing the plight of women and protection of environment. Vonnegut’s play ‘Happy Birthday Wanda June’ was written at a time when the movement for the right of women and protection of environment were gaining momentum. The play shows how toxic masculinity rooted in power and capitalism exploit both women and environment. Keyswords: Eco-Feminism, Eco-Criticism, Ecology, Environment, Exploitation Pages: 761-773 Article: 61 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)61 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)61 Download Pdf: download pdf view article Creative Commons License Critical Analysis of Social Equity and Economic Opportunities in the Light of Quranic Message Authors: Prof. Dr. Muhammad Yousuf Sharjeel Mahnaz Aslam Zahida Shah Abstract: This study critically evaluated the key verses of Surah Al-Baqarah -the second chapter of Quran, a sacred scripture of Islam- which specifically relates to social equity opportunities and a code of conduct in the context of economics. The Quran claims that it is a book which explains every situation; therefore, the aim of this study remained to extract those verses of Surah Al-Baqarah which can guide us in Economics. The authentic and approved Islamic clerics and their translations were consulted for the interpretations of the Holy verses. The researchers chiefly focused and studied Surah Baqarah with regards to social equity and economic opportunities. The translations were primarily in the regional language Urdu so the interpretations must not be related exactly equitable in English. The study engaged the document analysis research strategy. This study is only an endeavour to decipher Holy Quran’s message from Allah for the mankind so it must not be considered as the full and complete solution to the all the economic issues, challenges and opportunities. Ahadees and the saying of the Holy prophet were referred to where ever required and available. The researcher also considered the Tafasir (detail intellectual interpretations) of the Quran done by the well-known scholars of Islam for the verses studied therein and any statements and/or material - such as ideas, studies, articles, documentation, data, reports, facts, statistics etc. For the study, data was collected and analyzed qualitatively. On the basis of the study, recommendations were also primed. Keyswords: Economic Issues and Challenges, Social Equity, Surah Al-Baqarah, Al Quran Pages: 774-790 Article: 62 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)62 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)62 Download Pdf: download pdf view article Creative Commons License A Critical Discourse Analysis of Dastak by Mirza Adeeb Authors: Muhammad Afzal Dr. Syed Kazim Shah Umar Hayat Abstract: The present research aims to explore ideology in Pakistani drama. The drama, “Dastak”, written by Mirza Adeeb, has been taken for exploration ideologically. Fairclough’s (1992) three-dimensional model has been used for analyzing the text of the above-mentioned drama which includes textual, discursive practice and social practice analyses. The linguistic and social analyses of the drama reveal the writer’s ideology about socio-cultural, conventional and professional aspects of life. The study has also explored the past and present states of mind of Dr. Zaidi, the central and principal character of the drama, Dastak. The text implies that the writer has conveyed personal as well as social aspects of his times through the drama of Dastak. Keyswords: Dastak, Drama, Ideology, Semiotics Pages: 791-807 Article: 63 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)63 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)63 Download Pdf: download pdf view article Creative Commons License Linking Job Satisfaction to Employee Performance: The Moderating Role of Islamic Work Ethics Authors: Dr. Shakira Huma Siddiqui Dr. Hira Salah ud din Khan Dr. Nabeel Younus Ansari Abstract: The most pervasive concern in public sector organizations is declining employee performance and workforce of these organizations are less satisfied with their jobs. The aim of this study is to investigate the impact of Job Satisfaction on employee’s performance and how Islamic work ethics moderates the above mentioned direct relationship in the public sector organizations of Pakistan. The data were collected from the sample of 193 permanent employees working in public sector organizations through stratified sampling technique. The results revealed that employees Job satisfaction is significantly related to higher performance. Further, the findings indicated that Islamic work ethics moderates the relationship between job satisfaction and employee performance. The present research has some theoretical and empirical implications for academicians, policymakers, especially of public sector organizations, for the improvement of performance of their workforce. Keyswords: Employee Performance, Islamic Work Ethics, Job Satisfaction, Person-Environment Fit Theory Pages: 808-821 Article: 64 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)64 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)64 Download Pdf: download pdf view article Creative Commons License Semantics of Qawwali: Poetry, Perception, and Cultural Consumption Authors: Rao Nadeem Alam Tayyaba Khalid Abstract: Semantics is about meanings and meanings are arbitrary and shared. Understanding qawwali context requires comprehension of semantics or process of meaning creation and meaning sharing among the qawwal party and the audience. This interactive activity might frequently be hindered when interrupted by subjective meanings creation during cultural consumption. Qawwali is a cultural tradition, its semantics are conditioned by axiological premises of poetry and perceptions which are transforming. The previous researches revealed that qawwali is associated with religion which provides the religious message by singing hamd and naat. It was a means to experience Divine; therefore, semantics are multi-layered and often crossroad with values and subjective experiences. It is novel due to its ritual of Sama. It has the therapeutic power that helps mentally disturbed people and they find refuge. This study is exploratory having a small sample size of twenty purposively selected audiences. This phenomenological inquiry used ethnographic method of conversational interviews at selected shrines and cultural spaces in Islamabad. The results indicate that qawwali is a strong refuge for people facing miseries of life and they attend Sama with a belief that attending and listening will consequently resolve their issues, either psychological or physiological. They participate in Sama which teaches them how to be optimistic in a negative situation; this paper brings forth this nodal phenomenon using the verbatim explanations by the interlocutors. Semantics of Qawwali are conditioned and some of these elements are highlighted including poetry and axiology based perceptions and cultural consumption of a cultural realm. Keyswords: Cognition, Culture, Poetry, Qawwal, Qawwali, Semantics Pages: 822-834 Article: 65 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)65 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)65 Download Pdf: download pdf view article Creative Commons License Political Economy of Smuggling: The Living Source for the Natives (A Case Study of Jiwani-Iran Border, Baluchistan) Authors: Abdul Raheem Dr. Ikram Badshah Wasia Arshed Abstract: This study explores the political economy of smuggling on Jiwani-Iran border. The natives are majorly involved in illegal transportation of goods and objects, therefore; the study sets to explain how significant smuggling for the local people is. It describes the kinship role in reciprocity of their trade and transportation. The qualitative methods such as purposive sampling and interview guide were employed for data collection. The research findings revealed that local people were satisfied with their illegal trading which is depended largely on their expertise and know-how of smuggling at borders. They disclosed that their total economy was predominantly based on smuggling of stuff like drugs, diesel, oil, gas, petrol, ration food from Iran, and human trafficking. They also enjoyed the privilege of possessing Sajjil (Iranian identity card), thus; the dual nationality helped them in their daily business and rahdari (border crossing agreement), enabling them to travel to Iran for multiple purposes. Keyswords: Drugs, Human, Navigation, Political Economy, Reciprocity, Smuggling, Trafficking Pages: 835-848 Article: 66 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)66 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)66 Download Pdf: download pdf view article Creative Commons License The Vicious Circles of System: A Kafkaesque Study of Kobo Abe’s The Woman in the Dunes Authors: Imran Aslam Kainat Azhar Abstract: This paper analyses the Kafkaesque/Kafkan features of Kobo Abe’s novel The Woman in the as formulated by Kundera in “Kafka’s World.” For Kundera, in a Kafkaesque work human existence is bleakly represented through intermingling of tragedy and comedy in an indifferent world dominated by hegemonic systems. The Kafkaesque is characterised by the following: World is a huge forking labyrinthine institution where the man has been thrown to suffer its complexities, confrontation with the labyrinth makes his existence meaningless because freedom is a taboo in no man’s land, he is punished for an unknown sin for which he seeks justification from the superior authorities, but his efforts are viewed as ludicrous or comic despite the underlying sense of tragedy. (5) The Kafkaesque tendency to present tragic situation comically is also explored in Abe’s novel. The paper studies the effect of higher authorities exercising their power over man and the inscrutability of cosmic structures continuously undermining human freedom in nightmarish conditions. The paper establishes Kobo Abe in the literary world as a writer who portrays the hollowness and futility of human lives with a Kafkaesque touch. Keyswords: Authority, Institutions, Kafka, Kafkaesque, Kafkan, Kobo Abe, Kundera, The Trial, The Woman in the Dune Pages: 849-861 Article: 67 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)67 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)67 Download Pdf: download pdf view article Creative Commons License Subjectivity and Ideological Interpellation: An Investigation of Omar Shahid Hamid’s The Spinner’s Tale Authors: Hina Iqbal Dr. Muhammad Asif Asia Saeed Abstract: Louis Althusser’s concept of interpellation is a process in which individuals internalize cultural values and ideology and becomes subject. Althusser believes that ideology is a belief system of a society in which ideological agencies establish hierarchies in society through reinforcement and discrimination for cultural conditioning. These agencies function through ideological state apparatuses. These ideological agencies help to construct individual identity in society. The undesirable ideologies promote repressive political agendas. The non-repressive ideologies are inhaled by the individuals as a natural way of looking at the culture and society. This research seeks to investigate Omar Shahid Hamid’s novel The Spinners Tales through the lens of Althusser’s ideology and interpellation. This study examines how the characters of Shahid’s novel inhaled ideology and became its subjects. This research also depicts the alarming effects of cultural hegemony that creates cultural infidelity and hierarchies between the bourgeoisie and proletariat classes. Keyswords: Cultural Hegemony, Ideological State Apparatus, Ideology, Interpellation, Repressive Factors Pages: 862-872 Article: 68 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)68 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)68 Download Pdf: download pdf view article Creative Commons License Blessing in Disguise: Recommendations of Indian Education Commission (1882) and Christian Missionaries’ Educational Policy in the Colonial Punjab Authors: Mohammad Dilshad Mohabbat Muhammad Hassan Muhammad Ayaz Rafi Abstract: Woods Education Despatch is considered to be the Magna Carta of Indian Education. It controlled the Indian education field till the establishment of Indian Education Commission, 1882. The Despatch provided space to Christian missionaries by promising government’s gradual withdrawal from the education in favour of missionaries. It also facilitated the missionaries by offering system of ‘grants on aid’ to the private bodies. Consequently, the missionaries fancied to replace the government institutions in the Punjab and initiated their efforts to increase the number of their educational institutions. They tried to occupy the educational field by establishing more and more educational institutions. But after the Recommendations of the Indian Education Commission 1882, a change in their policy of numeric increase of educational institutions is quite visible. With the turn of the century, they are found to be eager to establish a few institutions with good quality of education. This paper intends to analyse different factors behind the change of their policy of quantitative dominance to qualitative improvement. It also attempts to evaluate how their change of policy worked and what steps were taken to improve the quality of their educational institutions. Following the historical method qualitative data comprising educational reports, missionaries’ autobiographies, Reports of missionaries’ conferences, and the other relevant primary and secondary sources has been collected from different repositories. The analysis of the data suggests that the attitude of the administration of the education department and the recommendations of Indian Education Commission were the major driving forces behind the change of missionaries’ educational policy in the 20th century. The missionaries, after adopting the new policy, worked on the quality of education in their institutions and became successful. Keyswords: Christian Missionaries, Indian Education Commission, Missionary Schools, Numeric Increase, Quality of Education. The Punjab, Woods Education Despatch Pages: 873-887 Article: 69 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)69 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)69 Download Pdf: download pdf view article Creative Commons License Basic Life Values of Prospective Special Education Teachers Authors: Dr. Maria Sohaib Qureshi Dr. Syeda Samina Tahira Dr. Muhammad Irfan Arif Abstract: Future teachers' preconceived values about how to live their lives and how that affects the lives of their students were the focus of this study. Descriptive research was used by the researchers. The study was carried out by using Morris's Ways to Live Scale. Researchers used this scale to study prospective special education teachers' gender, social status, personal relationships, aesthetics and mental approach using purposive sampling method. Descriptive and inferential stats were used to analyse the data collected from those who participated in the study on basic life values of prospective teachers. Results indicated that being social and sympathetic are the most important values among prospective special education teachers. It was also found that male and female prospective special education teachers living in urban and rural areas had no significant differences in their basic life values. Keyswords: Special Education, Teacher, Values Pages: 888-896 Article: 70 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)70 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)70 Download Pdf: download pdf view article Creative Commons License Perception of Dowry: Effects on Women Rights in Punjab Authors: Dr. Bushra Yasmeen Dr. Muhammad Ramzan Dr. Asma Seemi Malik Abstract: Dowry is a common tradition in south Asian countries, especially in Pakistan and India. Daughters became curses and liability for parents causing serious consequences. For control, there are legal ban/restrictions (Dowry and Wedding Gifts (Restriction) Act, 1976; Amendment in Act, 1993) on its practice in Pakistan. Despite the legal cover, the custom has been extended. Dowry amount seems to be increasing due to changing lifestyle and trends of society. To understand males’ and females’ perceptions about dowry; impacts of dowry; why dowry is essential; and how it is affecting women’s rights and eventually affecting women’s autonomy. A qualitative study was conducted. Data was collected by using unstructured interviews from males and females including social activists, economists, and married couples about wedding expenses, demands, society pressure, men’s support, and perception against dowry especially with regards to women’s rights and autonomy. The study concluded heavy dowry especially in terms of furniture, electronics, kitchenware, car, furnished houses, and cash highly associated with women’s development and their rights. General people’s perception showed that dowry is no longer remained a custom or tradition in Asian countries. It is just a trend and people follow it as a symbol of respect for parents and women as well. Keyswords: Dowry, Effects, Impacts Of Dowry, Perceptions, Women Autonomy, Women Rights Pages: 897-909 Article: 71 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)71 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)71 Download Pdf: download pdf view article Creative Commons License NCOC-An Emblem of Effective Governance: An analysis of Pakistan’s Counter Strategy for Covid-19 as a Non-Traditional Security Challenge Authors: Dr. Iram Khalid Abstract: COVID -19 affected the world unprecedentedly. Lack of capacity and poor standards of governance caused nontraditional security challenges to Pakistan too. The NCOC is the central nerve center to guide the national response to COVID-19 by Pakistan and can be best analyzed in the light of the decision-making theory of Naturalist Decision Making (NDM). The study points out the effective role performed by NCOC at policy formation through a more prosaic combination of science, data, decision making and execution of decisions at the level of federalism. The study highlights the changing patterns of government’s approach during the pandemic at various levels. Pakistan faced economic, political and social crisis during this phase. This study uses a survey and key informant interviews as the source of analysis for qualitative data collection. By applying the decision- making theory, the paper extends that there is a need to use a model to balance the existing gap within the system, to meet challenges. The study suggests a coordinating approach among various units and center; that might raise the level of performance to meet the nontraditional security challenges with innovation, creativity and boldness. Keyswords: COVID-19, Decision Making Theory, Governance, Nontraditional Threats, Strategy Pages: 910-930 Article: 72 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)72 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)72 Download Pdf: download pdf view article Creative Commons License Comparative Implications of Wednesbury Principle in England and Pakistan Authors: Safarat Ahmad Ali Shah Dr. Sara Qayum Arzoo Farhad Abstract: Wednesbury principle is one of the most important and useful grounds of the Judicial Review. Judicial review is a remedy provided by the public law and is exercised by the superior and higher courts to supervise administrative authorities' powers and functions. The main objective of the judicial review is to ensure the fair and transparent treatment of individuals by public authorities. The ground of the judicial review, i.e., Unreasonableness or irrationality or popularly known as Wednesbury Unreasonableness was introduced by lord Greene in the Wednesbury Corporation case in 1948. Initially, the scope of this ground of judicial review was very narrow and was allowed only in rare cases. However, with the development of administrative law and Human rights, it also developed. Its development resulted in different controversies and issues about the application of this ground. The main issue is about its encroachment in the jurisdiction of other branches of the government i.e., the parliament and executive. The free and loose application of this principle results in confusion and conflict between different organs of the government. The present paper is based on the implications of the limitations on the ground of Wednesbury Unreasonableness both on the judicial and administrative bodies in Pakistan to avoid the chaos and confusion that results in the criticisms on this ground of judicial review. Keyswords: Administrative Authorities, Critical Analysis, Illegality, Judicial Review, Pakistan, Wednesbury Unreasonableness Pages: 931-946 Article: 73 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)73 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)73 Download Pdf: download pdf view article Creative Commons License Water Sharing Issues in Pakistan: Impacts on Inter-Provincial Relations",
"year": "2017"
},
{
"authors": [
"K Choromanski",
"M Rowland",
"T Sarlós",
"V Sindhwani",
"R E Turner",
"A Weller"
],
"doi": "",
"ref_id": "b4",
"title": "The geometry of random features",
"year": "9-11 April 2018. 2018"
},
{
"authors": [
"K Choromanski",
"V Likhosherstov",
"D Dohan",
"X Song",
"A Gane",
"T Sarlos",
"P Hawkins",
"J Davis",
"A Mohiuddin",
"L Kaiser"
],
"doi": "",
"ref_id": "b5",
"title": "Rethinking attention with performers",
"year": "2020"
},
{
"authors": [
"K M Choromanski",
"M Rowland",
"A Weller"
],
"doi": "",
"ref_id": "b6",
"title": "The unreasonable effectiveness of structured random orthogonal embeddings",
"year": "2017"
},
{
"authors": [
"S P Chowdhury",
"A Solomou",
"A Dubey",
"M Sachan"
],
"doi": "10.1007/s00350-021-6046-0",
"ref_id": "b7",
"title": "Personenbezogene Ausgestaltung der Belegarztanerkennung",
"year": "2021"
},
{
"authors": [
"T Dao",
"A Gu",
"M Eichhorn",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b8",
"title": "Learning fast algorithms for linear transforms using butterfly factorizations",
"year": "9-15 June 2019. 2019"
},
{
"authors": [
"Anirban Dasgupta",
"Ravi Kumar",
"Tamás Sarlos"
],
"doi": "10.1145/1806689.1806737",
"ref_id": "b9",
"title": "A sparse Johnson",
"year": "5-8 June 2010. 2010"
},
{
"authors": [
"J Deng",
"W Dong",
"R Socher",
"L Li",
"K Li",
"L Fei-Fei"
],
"doi": "10.1109/CVPR.2009.5206848",
"ref_id": "b10",
"title": "Imagenet: A large-scale hierarchical image database",
"year": "2009. 20-25 June 2009. 2009"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly",
"J Uszkoreit",
"N Houlsby"
],
"doi": "",
"ref_id": "b11",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "May 3-7, 2021. 2021"
},
{
"authors": [
"D Dua",
"C Graff"
],
"doi": "10.7717/peerj-cs.1806/table-3",
"ref_id": "b12",
"title": "Table 3: Health datasets from UCI machine learning repository.",
"year": "2017"
},
{
"authors": [
"D Dua",
"C Graff"
],
"doi": "10.7717/peerj-cs.1195/supp-7",
"ref_id": "b13",
"title": "Supplemental Information 7: The wheat seeds dataset which was used as the second validation dataset is available at the UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/seeds.",
"year": "2017"
},
{
"authors": [
"D Dua",
"C Graff"
],
"doi": "10.7717/peerj-cs.1195/supp-7",
"ref_id": "b14",
"title": "Supplemental Information 7: The wheat seeds dataset which was used as the second validation dataset is available at the UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/seeds.",
"year": "2017"
},
{
"authors": [
"W Faris"
],
"doi": "",
"ref_id": "b15",
"title": "Radial functions and the fourier transform",
"year": "2008. 20-10-2022"
},
{
"authors": [
"G V Horn",
"O M Aodha",
"Y Song",
"Y Cui",
"C Sun",
"A Shepard",
"H Adam",
"P Perona",
"S J Belongie"
],
"doi": "",
"ref_id": "b16",
"title": "The inaturalist species classification and detection dataset",
"year": "June 18-22, 2018"
},
{
"authors": [
"Grant Van Horn",
"Oisin Mac Aodha",
"Yang Song",
"Yin Cui",
"Chen Sun",
"Alex Shepard",
"Hartwig Adam",
"Pietro Perona",
"Serge Belongie"
],
"doi": "10.1109/cvpr.2018.00914",
"ref_id": "b17",
"title": "The iNaturalist Species Classification and Detection Dataset",
"year": "2018"
},
{
"authors": [
"M Horn",
"K Shridhar",
"E Groenewald",
"P F M Baumann"
],
"doi": "",
"ref_id": "b18",
"title": "Translational equivariance in kernelizable attention",
"year": "2021"
},
{
"authors": [
"P Horton",
"K Nakai"
],
"doi": "",
"ref_id": "b19",
"title": "A probabilistic classification system for predicting the cellular localization sites of proteins",
"year": "1996"
},
{
"authors": [
"William B Johnson",
"Joram Lindenstrauss"
],
"doi": "10.1090/conm/026/737400",
"ref_id": "b20",
"title": "Extensions of Lipschitz mappings into a Hilbert space",
"year": "1984"
},
{
"authors": [
"Daniel M Kane",
"Jelani Nelson"
],
"doi": "10.1145/2559902",
"ref_id": "b21",
"title": "Sparser Johnson-Lindenstrauss Transforms",
"year": "2014"
},
{
"authors": [
"José A Rondón-Ayala"
],
"doi": "10.21931/rb/2018.03.04.10",
"ref_id": "b22",
"title": "Cáncer hereditario de colon no polipósico asociado a adenocarcinoma de endometrio, piel actínica y consanguinidad. A propósito de un caso",
"year": "April 21-23, 2012. 2012"
},
{
"authors": [
"Ramesh Redrouthu",
"Venkatesa Prabhu Sundramurthy",
"Bekele Zergu"
],
"doi": "10.35940/ijeat.d8420.049420",
"ref_id": "b23",
"title": "Extraction of Essential Oils from Pumpkin Seeds RSM Based Process Modeling, Optimization and Oil Characterization",
"year": "April 26-30, 2020. 2020"
},
{
"authors": [
"Alex Kulesza",
"Ben Taskar"
],
"doi": "10.1561/2200000044",
"ref_id": "b24",
"title": "Determinantal Point Processes for Machine Learning",
"year": "2012"
},
{
"authors": [
"Q V Le",
"T Sarlós",
"A J Smola"
],
"doi": "",
"ref_id": "b25",
"title": "Fastfood -computing hilbert space expansions in loglinear time",
"year": "16-21 June 2013. 2013"
},
{
"authors": [
"Fuxin Li",
"Catalin Ionescu",
"Cristian Sminchisescu"
],
"doi": "10.1007/978-3-642-15986-2_27",
"ref_id": "b26",
"title": "Random Fourier Approximations for Skewed Multiplicative Histogram Kernels",
"year": "September 22-24, 2010. 2010"
},
{
"authors": [
"Edo Liberty",
"Nir Ailon",
"Amit Singer"
],
"doi": "10.1007/s00454-010-9309-5",
"ref_id": "b27",
"title": "Dense Fast Random Projections and Lean Walsh Transforms",
"year": "2011"
},
{
"authors": [
"V Likhosherstov",
"K M Choromanski",
"J Q Davis",
"X Song",
"A Weller"
],
"doi": "10.48550/arXiv.2012.11346",
"ref_id": "b28",
"title": "Sub-linear memory: How to make performers slim",
"year": "2021. December 6-14, 2021. 2021"
},
{
"authors": [
"V Likhosherstov",
"K Choromanski",
"A Dubey",
"F Liu",
"T Sarlos",
"A Weller"
],
"doi": "10.48550/arXiv.2205.15317",
"ref_id": "b29",
"title": "Chefs' random tables: Non-trigonometric random features",
"year": "2022"
},
{
"authors": [
"Tjen-Sien Lim",
"Wei-Yin Loh",
"Yu-Shan Shih"
],
"doi": "10.1023/a:1007608224229",
"ref_id": "b30",
"title": "A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms",
"year": "2000"
},
{
"authors": [
"H Lin",
"H Chen",
"K M Choromanski",
"T Zhang",
"C Laroche"
],
"doi": "10.48550/arXiv.2005.13590",
"ref_id": "b31",
"title": "Demystifying orthogonal monte carlo and beyond",
"year": "2020. December 6-12, 2020. 2020"
},
{
"authors": [
"Fanghui Liu",
"Xiaolin Huang",
"Yudong Chen",
"Johan A K Suykens"
],
"doi": "10.1109/tpami.2021.3097011",
"ref_id": "b32",
"title": "Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond",
"year": "2022"
},
{
"authors": [
"A Liutkus",
"O Cífka",
"S Wu",
"U Simsekli",
"Y Yang",
"G Richard"
],
"doi": "",
"ref_id": "b33",
"title": "Relative positional encoding for transformers with linear complexity",
"year": "July 2021. 2021"
},
{
"authors": [
"S Luo",
"S Li",
"T Cai",
"D He",
"D Peng",
"S Zheng",
"G Ke",
"L Wang",
"T Liu"
],
"doi": "10.48550/arXiv.2106.12566",
"ref_id": "b34",
"title": "Stable, fast and accurate: Kernelized attention with relative positional encoding",
"year": "2021. December 6-14, 2021. 2021"
},
{
"authors": [
"W J Nash",
"T L Sellers",
"S R Talbot",
"A J Cawthorn",
"W B Ford"
],
"doi": "",
"ref_id": "b35",
"title": "The population biology of abalone (haliotis species) in tasmania. i. blacklip abalone (h. rubra) from the north coast and islands of bass strait",
"year": "1994"
},
{
"authors": [
"M Olave",
"V Rajkovic",
"M Bohanec"
],
"doi": "",
"ref_id": "b36",
"title": "An application for admission in public school systems",
"year": "1989"
},
{
"authors": [
"J Pennington",
"F X Yu",
"S Kumar"
],
"doi": "",
"ref_id": "b37",
"title": "Spherical random features for polynomial kernels",
"year": "December 7-12, 2015. 2015"
},
{
"authors": [
"A Rahimi",
"B Recht"
],
"doi": "",
"ref_id": "b38",
"title": "Random features for large-scale kernel machines",
"year": "2007"
},
{
"authors": [
"A Rahimi",
"B Recht"
],
"doi": "",
"ref_id": "b39",
"title": "Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning",
"year": "December 8-11, 2008"
},
{
"authors": [],
"doi": "10.2172/6920585",
"ref_id": "b40",
"title": "Mitigation Monitoring Plan",
"year": "2008"
},
{
"authors": [
"Aurko Roy",
"Mohammad Saffar",
"Ashish Vaswani",
"David Grangier"
],
"doi": "10.1162/tacl_a_00353",
"ref_id": "b41",
"title": "Efficient Content-Based Sparse Attention with Routing Transformers",
"year": "2021"
},
{
"authors": [
"I Schlag",
"K Irie",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b42",
"title": "Linear transformers are secretly fast weight programmers",
"year": "2021. July 2021. 2021"
},
{
"authors": [
"Y Tay",
"M Dehghani",
"S Abnar",
"Y Shen",
"D Bahri",
"P Pham",
"J Rao",
"L Yang",
"S Ruder",
"D Metzler"
],
"doi": "",
"ref_id": "b43",
"title": "Long range arena : A benchmark for efficient transformers",
"year": "May 3-7, 2021. 2021"
},
{
"authors": [
"A Trokicic",
"B Todorovic"
],
"doi": "10.1007/978-3-030-21363-3_21",
"ref_id": "b44",
"title": "Randomized nyström features for fast regression: An error analysis",
"year": "2019. June 30 -July 4, 2019. 2019"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b45",
"title": "Attention Is All You Need",
"year": "December 4-9, 2017. 2017"
},
{
"authors": [
"H Xiao",
"K Rasul",
"R Vollgraf"
],
"doi": "10.7717/peerj-cs.3589/fig-5",
"ref_id": "b46",
"title": "Figure 5: Federated learning with fashion-MNIST dataset.",
"year": "2017"
},
{
"authors": [
"X Xiao",
"T Zhang",
"K Choromanski",
"T E Lee",
"A G Francis",
"J Varley",
"S Tu",
"S Singh",
"P Xu",
"F Xia",
"S M Persson",
"D Kalashnikov",
"L Takayama",
"R Frostig",
"J Tan",
"C Parada",
"V Sindhwani"
],
"doi": "10.48550/arXiv.2209.10780",
"ref_id": "b47",
"title": "Learning model predictive controllers with real-time attention for real-world navigation",
"year": "2022"
},
{
"authors": [
"Jiyan Yang",
"Vikas Sindhwani",
"Quanfu Fan",
"Haim Avron",
"Michael Mahoney"
],
"doi": "10.1109/cvpr.2014.129",
"ref_id": "b48",
"title": "Random Laplace Feature Maps for Semigroup Kernels on Histograms",
"year": "21-26 June 2014. 2014"
},
{
"authors": [
"F X Yu",
"A Bhaskara",
"S Kumar",
"Y Gong",
"S Chang"
],
"doi": "",
"ref_id": "b49",
"title": "On binary embedding using circulant matrices",
"year": "2017"
},
{
"authors": [
"F X X Yu",
"A T Suresh",
"K M Choromanski",
"D N Holtmann-Rice",
"S Kumar"
],
"doi": "10.48550/arXiv.1610.09072",
"ref_id": "b50",
"title": "Orthogonal random features",
"year": "2016"
},
{
"authors": [
"Li Yuan",
"Yunpeng Chen",
"Tao Wang",
"Weihao Yu",
"Yujun Shi",
"Zihang Jiang",
"Francis E H Tay",
"Jiashi Feng",
"Shuicheng Yan"
],
"doi": "10.1109/iccv48922.2021.00060",
"ref_id": "b51",
"title": "Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet",
"year": "October 10-17, 2021. 2021"
},
{
"authors": [
"Bolei Zhou",
"Agata Lapedriza",
"Aditya Khosla",
"Aude Oliva",
"Antonio Torralba"
],
"doi": "10.1109/tpami.2017.2723009",
"ref_id": "b52",
"title": "Places: A 10 Million Image Database for Scene Recognition",
"year": "2018"
}
] |
[
"f02d61070eaf8878",
"fb98a0f0756a233d",
"8935d626a7d57b40",
"440526123ba5d706",
"f9bf1cfb7b10c557",
"9dd0d4be75993e0e",
"a7eda674d6b0bb34",
"532951179f33db3c",
"c40e6358a2772e19",
"95773d7bbff463ee",
"6ef0f977e98ccf34",
"0c0305d1902c3cbb",
"14962bcbced13eb7",
"fa006ec84bc63163",
"1a98de30d43b5933",
"459d961ebc13a15b",
"1bda4f22c02ab8b1",
"2f90c4d6258eba15"
] |
[
"95773d7bbff463ee",
"f9bf1cfb7b10c557",
"5e16a99ae1e06952",
"aeff23003728fd51",
"9dd0d4be75993e0e",
"8935d626a7d57b40",
"6ef0f977e98ccf34",
"532951179f33db3c",
"a7153c819a7cd7df",
"0da631f55eede081",
"74f00384ec87eb26",
"9b1d0156ad91a15f",
"2eaa1a40b2b73c51",
"f716f7facd14f660",
"f716f7facd14f660",
"90ca7ded4575d960",
"062794e64d7d727a",
"6753168153be7ff8",
"404a0b71ae56a85b",
"ce7693e7e5018335",
"31859d6d3e7727da",
"b9c30529d7890116",
"1137579b7b91cbbb",
"14962bcbced13eb7",
"459d961ebc13a15b",
"f02d61070eaf8878",
"9d05713a9b280b28",
"440526123ba5d706",
"c40e6358a2772e19",
"7f0aa83ab7811686",
"2cf96f1ffe70e8af",
"a7eda674d6b0bb34",
"9270f26046085f44",
"e56f1cda7ebbe883",
"1a98de30d43b5933",
"e4063361ee230dce",
"7fc0ece8e30b2161",
"adc924e5b1a17f20",
"28e2d3138ce3b9b5",
"c43a9fb45c43c0fd",
"b99f12bd47f5b713",
"fb98a0f0756a233d",
"1bda4f22c02ab8b1",
"7b0720f2725aaea6",
"d945bcbeeefa66e6",
"99133ee9ee295b97",
"73c3c55baa59dec3",
"0c0305d1902c3cbb",
"74de60585fa5b21e",
"fa006ec84bc63163",
"2f90c4d6258eba15",
"3cc7a0fc79d367bb",
"91ec953b44777ad8"
] |
eStrtvtXiN
|
Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods
|
data/openreview_paper/ICML_2023_oral/eStrtvtXiN//paper.pdf
| 74
| 37
|
[
{
"authors": [
"Eric Lei",
"Hamed Hassani",
"Shirin Saeedi Bidokhti"
],
"doi": "10.1109/isit50566.2022.9834845",
"ref_id": "b34",
"title": "Neural Estimation of the Rate-Distortion Function for Massive Datasets",
"year": "2022"
},
{
"authors": [
"S Arimoto"
],
"doi": "10.1109/TIT.1972.1054753",
"ref_id": "b2",
"title": "An algorithm for computing the capacity of arbitrary discrete memoryless channels",
"year": "1972"
},
{
"authors": [
"Stephen J Wright"
],
"doi": "10.1007/s10107-015-0892-3",
"ref_id": "b69",
"title": "Coordinate descent algorithms",
"year": "2015"
},
{
"authors": [
"Y Yang",
"S Mandt"
],
"doi": "",
"ref_id": "b71",
"title": "Towards empirical sandwich bounds on the rate-distortion function",
"year": "2021"
},
{
"authors": [
"G Gidel",
"F Bach",
"S Lacoste-Julien"
],
"doi": "",
"ref_id": "b21",
"title": "Implicit regularization of discrete gradient dynamics in linear neural networks",
"year": "2019"
},
{
"authors": [
"S Jain",
"A Radhakrishnan",
"C Uhler"
],
"doi": "",
"ref_id": "b29",
"title": "A mechanism for producing aligned latent spaces with autoencoders",
"year": "2021"
},
{
"authors": [
"R Gray"
],
"doi": "10.1109/massp.1984.1162229",
"ref_id": "b23",
"title": "Vector quantization",
"year": "1984"
},
{
"authors": [
"Petros T Boufounos",
"Richard G Baraniuk"
],
"doi": "10.1109/ciss.2008.4558487",
"ref_id": "b9",
"title": "1-Bit compressive sensing",
"year": "2008. 2008"
},
{
"authors": [
"X Bao",
"J Lucas",
"S Sachdeva",
"R B Grosse"
],
"doi": "",
"ref_id": "b6",
"title": "Regularized linear autoencoders recover the principal components, eventually",
"year": "2020"
},
{
"authors": [
"E Agustsson",
"F Mentzer",
"M Tschannen",
"L Cavigelli",
"R Timofte",
"L Benini",
"L Gool"
],
"doi": "",
"ref_id": "b1",
"title": "Soft-to-hard vector quantization for end-to-end learning compressible representations",
"year": "2017"
},
{
"authors": [
"Jona Ballé",
"Valero Laparra",
"Eero P Simoncelli"
],
"doi": "10.1109/pcs.2016.7906310",
"ref_id": "b4",
"title": "End-to-end optimization of nonlinear transform codes for perceptual quality",
"year": "2017"
},
{
"authors": [
"D Kunin",
"J Bloom",
"A Goeva",
"C Seed"
],
"doi": "",
"ref_id": "b33",
"title": "Loss landscapes of regularized linear autoencoders",
"year": "2019"
},
{
"authors": [
"T V Nguyen",
"R K Wong",
"C Hegde"
],
"doi": "",
"ref_id": "b45",
"title": "On the dynamics of gradient descent for autoencoders",
"year": "2019"
},
{
"authors": [
"L Chizat",
"E Oyallon",
"F Bach"
],
"doi": "",
"ref_id": "b14",
"title": "On lazy training in differentiable programming",
"year": "2019"
},
{
"authors": [
"A Radhakrishnan",
"M Belkin",
"C Uhler"
],
"doi": "",
"ref_id": "b50",
"title": "Overparameterized neural networks implement associative memory",
"year": "2020"
},
{
"authors": [
"Junjie Ma",
"Ji Xu",
"Arian Maleki"
],
"doi": "10.1109/tit.2023.3307553",
"ref_id": "b38",
"title": "Toward Designing Optimal Sensing Matrices for Generalized Linear Inverse Problems",
"year": "2021"
},
{
"authors": [
"T M Cover",
"J A Thomas"
],
"doi": "10.1002/9780470048146.scard",
"ref_id": "b16",
"title": "Wiley Series in Telecommunications and Signal Processing",
"year": "2006"
},
{
"authors": [
"R Blahut"
],
"doi": "10.1109/tit.1972.1054855",
"ref_id": "b8",
"title": "Computation of channel capacity and rate-distortion functions",
"year": "1972"
},
{
"authors": [
"Maria Refinetti",
"Sebastian Goldt"
],
"doi": "10.1088/1742-5468/ad01af",
"ref_id": "b53",
"title": "The dynamics of representation learning in shallow, non-linear autoencoders <sup>*</sup>",
"year": "2022"
},
{
"authors": [
"Martin J Wainwright",
"Elitza Maneva",
"Emin Martinian"
],
"doi": "10.1109/tit.2009.2039160",
"ref_id": "b67",
"title": "Lossy Source Compression Using Low-Density Generator Matrix Codes: Analysis and Algorithms",
"year": "2010"
},
{
"authors": [
"Emmanuel J Candès",
"Thomas Strohmer",
"Vladislav Voroninski"
],
"doi": "10.1002/cpa.21432",
"ref_id": "b11",
"title": "PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming",
"year": "2013"
},
{
"authors": [
"Jona Ballé",
"Philip A Chou",
"David Minnen",
"Saurabh Singh",
"Nick Johnston",
"Eirikur Agustsson",
"Sung Jin Hwang",
"George Toderici"
],
"doi": "10.1109/jstsp.2020.3034501",
"ref_id": "b5",
"title": "Nonlinear Transform Coding",
"year": "2021"
},
{
"authors": [
"Akshay Rangamani",
"Anirbit Mukherjee",
"Amitabh Basu",
"Ashish Arora",
"Tejaswini Ganapathi",
"Sang Chin",
"Trac D Tran"
],
"doi": "10.1109/isit.2018.8437533",
"ref_id": "b51",
"title": "Sparse Coding and Autoencoders",
"year": "2018. 2018"
},
{
"authors": [
"H Liu",
"T Chen",
"P Guo",
"Q Shen",
"X Cao",
"Y Wang",
"Z Ma"
],
"doi": "",
"ref_id": "b35",
"title": "Non-local attention optimized deep image compression",
"year": "2019"
},
{
"authors": [
"Thanh V Nguyen",
"Raymond K W Wong",
"Chinmay Hegde"
],
"doi": "10.1109/tit.2021.3065212",
"ref_id": "b46",
"title": "Benefits of Jointly Training Autoencoders: An Improved Neural Tangent Kernel Analysis",
"year": "2021"
},
{
"authors": [
"L Theis",
"T Salimans",
"M D Hoffman",
"F Mentzer"
],
"doi": "",
"ref_id": "b60",
"title": "Lossy compression with gaussian diffusion",
"year": "2022"
},
{
"authors": [
"C E Shannon"
],
"doi": "10.1109/9780470544242.ch21",
"ref_id": "b58",
"title": "Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959.",
"year": "1959. 1959"
},
{
"authors": [
"R Oftadeh",
"J Shen",
"Z Wang",
"D Shell"
],
"doi": "",
"ref_id": "b48",
"title": "Eliminating the invariance on the loss landscape of linear autoencoders",
"year": "2020"
},
{
"authors": [
"Stefano Ciliberti",
"Marc Mézard",
"Riccardo Zecchina"
],
"doi": "10.1159/000094188",
"ref_id": "b15",
"title": "Message-Passing Algorithms for Non-Linear Nodes and Data Compression",
"year": "2006"
},
{
"authors": [
"Namiko Matsumoto",
"Arya Mazumdar"
],
"doi": "10.1109/focs54457.2022.00082",
"ref_id": "b39",
"title": "Binary Iterative Hard Thresholding Converges with Optimal Number of Measurements for 1-Bit Compressed Sensing",
"year": "2022"
},
{
"authors": [
"Z Cheng",
"H Sun",
"M Takeuchi",
"J Katto"
],
"doi": "",
"ref_id": "b13",
"title": "Learned image compression with discretized gaussian mixture likelihoods and attention modules",
"year": "2020"
},
{
"authors": [
"L Theis",
"W Shi",
"A Cunningham",
"F Huszár"
],
"doi": "",
"ref_id": "b59",
"title": "Lossy image compression with compressive autoencoders",
"year": "2017"
},
{
"authors": [
"Aaron B Wagner",
"Jona Ballé"
],
"doi": "10.1109/dcc50243.2021.00022",
"ref_id": "b66",
"title": "Neural Networks Optimally Compress the Sawbridge",
"year": "2021. 2021"
},
{
"authors": [
"C E Shannon"
],
"doi": "10.1002/j.1538-7305.1948.tb01338.x",
"ref_id": "b57",
"title": "A Mathematical Theory of Communication",
"year": "1948"
},
{
"authors": [
"P.-M Nguyen"
],
"doi": "",
"ref_id": "b44",
"title": "Analysis of feature learning in weight-tied autoencoders via the mean field lens",
"year": "2021"
},
{
"authors": [
"Satish Babu Korada",
"Rüdiger L Urbanke"
],
"doi": "10.1109/tit.2010.2040961",
"ref_id": "b32",
"title": "Polar Codes are Optimal for Lossy Source Coding",
"year": "2010"
},
{
"authors": [
"Arthur Jacot",
"Franck Gabriel",
"Clément Hongler"
],
"doi": "10.1145/3406325.3465355",
"ref_id": "b28",
"title": "Neural tangent kernel: convergence and generalization in neural networks (invited paper)",
"year": "2018"
}
] |
[
{
"authors": [
"P-A Absil",
"R Mahony",
"R Sepulchre"
],
"doi": "10.1515/9781400830244",
"ref_id": "b0",
"title": "Optimization Algorithms on Matrix Manifolds",
"year": "2009"
},
{
"authors": [
"E Agustsson",
"F Mentzer",
"M Tschannen",
"L Cavigelli",
"R Timofte",
"L Benini",
"L Gool"
],
"doi": "",
"ref_id": "b1",
"title": "Soft-to-hard vector quantization for end-to-end learning compressible representations",
"year": "2017"
},
{
"authors": [
"S Arimoto"
],
"doi": "10.1109/TIT.1972.1054753",
"ref_id": "b2",
"title": "An algorithm for computing the capacity of arbitrary discrete memoryless channels",
"year": "1972"
},
{
"authors": [
"Pierre Baldi",
"Kurt Hornik"
],
"doi": "10.1016/0893-6080(89)90014-2",
"ref_id": "b3",
"title": "Neural networks and principal component analysis: Learning from examples without local minima",
"year": "1989"
},
{
"authors": [
"Jona Ballé",
"Valero Laparra",
"Eero P Simoncelli"
],
"doi": "10.1109/pcs.2016.7906310",
"ref_id": "b4",
"title": "End-to-end optimization of nonlinear transform codes for perceptual quality",
"year": "2017"
},
{
"authors": [
"Jona Ballé",
"Philip A Chou",
"David Minnen",
"Saurabh Singh",
"Nick Johnston",
"Eirikur Agustsson",
"Sung Jin Hwang",
"George Toderici"
],
"doi": "10.1109/jstsp.2020.3034501",
"ref_id": "b5",
"title": "Nonlinear Transform Coding",
"year": "2021"
},
{
"authors": [
"X Bao",
"J Lucas",
"S Sachdeva",
"R B Grosse"
],
"doi": "",
"ref_id": "b6",
"title": "Regularized linear autoencoders recover the principal components, eventually",
"year": "2020"
},
{
"authors": [
"Y Bengio",
"L Yao",
"G Alain",
"P Vincent"
],
"doi": "",
"ref_id": "b7",
"title": "Generalized denoising auto-encoders as generative models",
"year": "2013"
},
{
"authors": [
"R Blahut"
],
"doi": "10.1109/tit.1972.1054855",
"ref_id": "b8",
"title": "Computation of channel capacity and rate-distortion functions",
"year": "1972"
},
{
"authors": [
"Petros T Boufounos",
"Richard G Baraniuk"
],
"doi": "10.1109/ciss.2008.4558487",
"ref_id": "b9",
"title": "1-Bit compressive sensing",
"year": "2008. 2008"
},
{
"authors": [
"Stephen Boyd",
"Lieven Vandenberghe"
],
"doi": "10.1017/cbo9780511804441",
"ref_id": "b10",
"title": "Convex Optimization",
"year": "2004"
},
{
"authors": [
"Emmanuel J Candès",
"Thomas Strohmer",
"Vladislav Voroninski"
],
"doi": "10.1002/cpa.21432",
"ref_id": "b11",
"title": "PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming",
"year": "2013"
},
{
"authors": [
"Emmanuel J Candès",
"Xiaodong Li",
"Mahdi Soltanolkotabi"
],
"doi": "10.1109/tit.2015.2399924",
"ref_id": "b12",
"title": "Phase Retrieval via Wirtinger Flow: Theory and Algorithms",
"year": "2015"
},
{
"authors": [
"Z Cheng",
"H Sun",
"M Takeuchi",
"J Katto"
],
"doi": "",
"ref_id": "b13",
"title": "Learned image compression with discretized gaussian mixture likelihoods and attention modules",
"year": "2020"
},
{
"authors": [
"L Chizat",
"E Oyallon",
"F Bach"
],
"doi": "",
"ref_id": "b14",
"title": "On lazy training in differentiable programming",
"year": "2019"
},
{
"authors": [
"Stefano Ciliberti",
"Marc Mézard",
"Riccardo Zecchina"
],
"doi": "10.1159/000094188",
"ref_id": "b15",
"title": "Message-Passing Algorithms for Non-Linear Nodes and Data Compression",
"year": "2006"
},
{
"authors": [
"T M Cover",
"J A Thomas"
],
"doi": "10.1002/9780470048146.scard",
"ref_id": "b16",
"title": "Wiley Series in Telecommunications and Signal Processing",
"year": "2006"
},
{
"authors": [
"Guido E Del Pino",
"H Galaz"
],
"doi": "10.1016/0167-7152(84)90023-3",
"ref_id": "b17",
"title": "Linear restrictions and two step least squares with applications",
"year": "1995"
},
{
"authors": [
"Rishabh Dudeja",
"S Sen",
"Y M Lu"
],
"doi": "10.1109/tit.2024.3458953/mm1",
"ref_id": "b18",
"title": "Spectral Universality in Regularized Linear Regression with Nearly Deterministic Sensing Matrices_supp1-3458953.pdf",
"year": "2022"
},
{
"authors": [
"Alyson Fletcher",
"Mojtaba Sahraee-Ardakan",
"Sundeep Rangan",
"Philip Schniter"
],
"doi": "10.1109/isit.2016.7541287",
"ref_id": "b19",
"title": "Expectation consistent approximate inference: Generalizations and convergence",
"year": "2016. 2016"
},
{
"authors": [
"A K Fletcher",
"S Rangan",
"P Schniter"
],
"doi": "",
"ref_id": "b20",
"title": "Inference in deep networks in high dimensions",
"year": "2018. 2018"
},
{
"authors": [
"G Gidel",
"F Bach",
"S Lacoste-Julien"
],
"doi": "",
"ref_id": "b21",
"title": "Implicit regularization of discrete gradient dynamics in linear neural networks",
"year": "2019"
},
{
"authors": [
"Sebastian Goldt",
"Marc Mézard",
"Florent Krzakala",
"Lenka Zdeborová"
],
"doi": "10.1103/physrevx.10.041044",
"ref_id": "b22",
"title": "Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model",
"year": "2022"
},
{
"authors": [
"R Gray"
],
"doi": "10.1109/massp.1984.1162229",
"ref_id": "b23",
"title": "Vector quantization",
"year": "1984"
},
{
"authors": [
"Trevor Hastie",
"Andrea Montanari",
"Saharon Rosset",
"Ryan J Tibshirani"
],
"doi": "10.1214/21-aos2133",
"ref_id": "b24",
"title": "Surprises in high-dimensional ridgeless least squares interpolation",
"year": "2022"
},
{
"authors": [
"Hengtao He",
"Chao-Kai Wen",
"Shi Jin"
],
"doi": "10.1109/isit.2017.8006946",
"ref_id": "b25",
"title": "Generalized expectation consistent signal recovery for nonlinear measurements",
"year": "2017"
},
{
"authors": [
"G E Hinton",
"R R Salakhutdinov"
],
"doi": "10.1126/science.1127647",
"ref_id": "b26",
"title": "Reducing the Dimensionality of Data with Neural Networks",
"year": "2006"
},
{
"authors": [
"H Hu",
"Y M Lu"
],
"doi": "",
"ref_id": "b27",
"title": "Universality laws for high-dimensional learning with random features",
"year": "2022"
},
{
"authors": [
"Arthur Jacot",
"Franck Gabriel",
"Clément Hongler"
],
"doi": "10.1145/3406325.3465355",
"ref_id": "b28",
"title": "Neural tangent kernel: convergence and generalization in neural networks (invited paper)",
"year": "2018"
},
{
"authors": [
"S Jain",
"A Radhakrishnan",
"C Uhler"
],
"doi": "",
"ref_id": "b29",
"title": "A mechanism for producing aligned latent spaces with autoencoders",
"year": "2021"
},
{
"authors": [
"A Khare"
],
"doi": "",
"ref_id": "b30",
"title": "Sharp nonzero lower bounds for the schur product theorem",
"year": "2021"
},
{
"authors": [
"D P Kingma",
"M Welling"
],
"doi": "",
"ref_id": "b31",
"title": "Auto-encoding variational bayes",
"year": "2014"
},
{
"authors": [
"Satish Babu Korada",
"Rüdiger L Urbanke"
],
"doi": "10.1109/tit.2010.2040961",
"ref_id": "b32",
"title": "Polar Codes are Optimal for Lossy Source Coding",
"year": "2010"
},
{
"authors": [
"D Kunin",
"J Bloom",
"A Goeva",
"C Seed"
],
"doi": "",
"ref_id": "b33",
"title": "Loss landscapes of regularized linear autoencoders",
"year": "2019"
},
{
"authors": [
"Eric Lei",
"Hamed Hassani",
"Shirin Saeedi Bidokhti"
],
"doi": "10.1109/isit50566.2022.9834845",
"ref_id": "b34",
"title": "Neural Estimation of the Rate-Distortion Function for Massive Datasets",
"year": "2022"
},
{
"authors": [
"H Liu",
"T Chen",
"P Guo",
"Q Shen",
"X Cao",
"Y Wang",
"Z Ma"
],
"doi": "",
"ref_id": "b35",
"title": "Non-local attention optimized deep image compression",
"year": "2019"
},
{
"authors": [
"Bruno Loureiro",
"Cédric Gerbelot",
"Hugo Cui",
"Sebastian Goldt",
"Florent Krzakala",
"Marc Mézard",
"Lenka Zdeborová"
],
"doi": "10.1088/1742-5468/ac9825",
"ref_id": "b36",
"title": "Learning curves of generic features maps for realistic datasets with a teacher-student model*",
"year": "2021"
},
{
"authors": [
"Junjie Ma",
"Li Ping"
],
"doi": "10.1109/access.2017.2653119",
"ref_id": "b37",
"title": "Orthogonal AMP",
"year": "2017"
},
{
"authors": [
"Junjie Ma",
"Ji Xu",
"Arian Maleki"
],
"doi": "10.1109/tit.2023.3307553",
"ref_id": "b38",
"title": "Toward Designing Optimal Sensing Matrices for Generalized Linear Inverse Problems",
"year": "2021"
},
{
"authors": [
"Namiko Matsumoto",
"Arya Mazumdar"
],
"doi": "10.1109/focs54457.2022.00082",
"ref_id": "b39",
"title": "Binary Iterative Hard Thresholding Converges with Optimal Number of Measurements for 1-Bit Compressed Sensing",
"year": "2022"
},
{
"authors": [
"Elizabeth S Meckes"
],
"doi": "10.1017/9781108303453",
"ref_id": "b40",
"title": "The Random Matrix Theory of the Classical Compact Groups",
"year": "2019"
},
{
"authors": [
"Song Mei",
"Yu Bai",
"Andrea Montanari"
],
"doi": "10.1214/17-aos1637",
"ref_id": "b41",
"title": "The landscape of empirical risk for nonconvex losses",
"year": "2018"
},
{
"authors": [
"T P Minka"
],
"doi": "",
"ref_id": "b42",
"title": "Expectation propagation for approximate bayesian inference",
"year": "2001"
},
{
"authors": [
"A Montanari",
"B N Saeed"
],
"doi": "",
"ref_id": "b43",
"title": "Universality of empirical risk minimization",
"year": "2022"
},
{
"authors": [
"P.-M Nguyen"
],
"doi": "",
"ref_id": "b44",
"title": "Analysis of feature learning in weight-tied autoencoders via the mean field lens",
"year": "2021"
},
{
"authors": [
"T V Nguyen",
"R K Wong",
"C Hegde"
],
"doi": "",
"ref_id": "b45",
"title": "On the dynamics of gradient descent for autoencoders",
"year": "2019"
},
{
"authors": [
"Thanh V Nguyen",
"Raymond K W Wong",
"Chinmay Hegde"
],
"doi": "10.1109/tit.2021.3065212",
"ref_id": "b46",
"title": "Benefits of Jointly Training Autoencoders: An Improved Neural Tangent Kernel Analysis",
"year": "2021"
},
{
"authors": [
"R O'donnell"
],
"doi": "10.1017/cbo9781139814782.002",
"ref_id": "b47",
"title": "Boolean Functions and the Fourier Expansion",
"year": "2014"
},
{
"authors": [
"R Oftadeh",
"J Shen",
"Z Wang",
"D Shell"
],
"doi": "",
"ref_id": "b48",
"title": "Eliminating the invariance on the loss landscape of linear autoencoders",
"year": "2020"
},
{
"authors": [
"M Opper",
"O Winther",
"M J Jordan"
],
"doi": "",
"ref_id": "b49",
"title": "Expectation consistent approximate inference",
"year": "2005"
},
{
"authors": [
"A Radhakrishnan",
"M Belkin",
"C Uhler"
],
"doi": "",
"ref_id": "b50",
"title": "Overparameterized neural networks implement associative memory",
"year": "2020"
},
{
"authors": [
"Akshay Rangamani",
"Anirbit Mukherjee",
"Amitabh Basu",
"Ashish Arora",
"Tejaswini Ganapathi",
"Sang Chin",
"Trac D Tran"
],
"doi": "10.1109/isit.2018.8437533",
"ref_id": "b51",
"title": "Sparse Coding and Autoencoders",
"year": "2018. 2018"
},
{
"authors": [
"Sundeep Rangan",
"Philip Schniter",
"Alyson K Fletcher"
],
"doi": "10.1109/tit.2019.2916359",
"ref_id": "b52",
"title": "Vector Approximate Message Passing",
"year": "2019"
},
{
"authors": [
"Maria Refinetti",
"Sebastian Goldt"
],
"doi": "10.1088/1742-5468/ad01af",
"ref_id": "b53",
"title": "The dynamics of representation learning in shallow, non-linear autoencoders <sup>*</sup>",
"year": "2022"
},
{
"authors": [
"D J Rezende",
"S Mohamed",
"D Wierstra"
],
"doi": "",
"ref_id": "b54",
"title": "Stochastic backpropagation and approximate inference in deep generative models",
"year": "2014"
},
{
"authors": [
"F Santambrogio",
"{euclidean"
],
"doi": "",
"ref_id": "b55",
"title": "metric, and Wasserstein} gradient flows: an overview",
"year": "2017"
},
{
"authors": [
"Philip Schniter",
"Sundeep Rangan",
"Alyson K Fletcher"
],
"doi": "10.1109/acssc.2016.7869633",
"ref_id": "b56",
"title": "Vector approximate message passing for the generalized linear model",
"year": "2016"
},
{
"authors": [
"C E Shannon"
],
"doi": "10.1002/j.1538-7305.1948.tb01338.x",
"ref_id": "b57",
"title": "A Mathematical Theory of Communication",
"year": "1948"
},
{
"authors": [
"C E Shannon"
],
"doi": "10.1109/9780470544242.ch21",
"ref_id": "b58",
"title": "Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959.",
"year": "1959. 1959"
},
{
"authors": [
"L Theis",
"W Shi",
"A Cunningham",
"F Huszár"
],
"doi": "",
"ref_id": "b59",
"title": "Lossy image compression with compressive autoencoders",
"year": "2017"
},
{
"authors": [
"L Theis",
"T Salimans",
"M D Hoffman",
"F Mentzer"
],
"doi": "",
"ref_id": "b60",
"title": "Lossy compression with gaussian diffusion",
"year": "2022"
},
{
"authors": [
"M Tschannen",
"O Bachem",
"M Lucic"
],
"doi": "",
"ref_id": "b61",
"title": "Recent advances in autoencoder-based representation learning",
"year": "2018"
},
{
"authors": [
"Antonia M Tulino",
"Giuseppe Caire",
"Sergio Verdu",
"Shlomo Shamai"
],
"doi": "10.1109/tit.2013.2250578",
"ref_id": "b62",
"title": "Support Recovery With Sparsely Sampled Free Random Matrices",
"year": "2013"
},
{
"authors": [
"Roman Vershynin"
],
"doi": "10.1017/9781108231596",
"ref_id": "b63",
"title": "High-Dimensional Probability",
"year": "2018"
},
{
"authors": [
"Pascal Vincent",
"Hugo Larochelle",
"Yoshua Bengio",
"Pierre-Antoine Manzagol"
],
"doi": "10.1145/1390156.1390294",
"ref_id": "b64",
"title": "Extracting and composing robust features with denoising autoencoders",
"year": "2008"
},
{
"authors": [
"George Visick"
],
"doi": "10.1016/s0024-3795(99)00187-1",
"ref_id": "b65",
"title": "A quantitative version of the observation that the Hadamard product is a principal submatrix of the Kronecker product",
"year": "2000"
},
{
"authors": [
"Aaron B Wagner",
"Jona Ballé"
],
"doi": "10.1109/dcc50243.2021.00022",
"ref_id": "b66",
"title": "Neural Networks Optimally Compress the Sawbridge",
"year": "2021. 2021"
},
{
"authors": [
"Martin J Wainwright",
"Elitza Maneva",
"Emin Martinian"
],
"doi": "10.1109/tit.2009.2039160",
"ref_id": "b67",
"title": "Lossy Source Compression Using Low-Density Generator Matrix Codes: Analysis and Algorithms",
"year": "2010"
},
{
"authors": [
"Tianhao Wang",
"Xinyi Zhong",
"Zhou Fan"
],
"doi": "10.1214/24-aap2056",
"ref_id": "b68",
"title": "Universality of approximate message passing algorithms and tensor networks",
"year": "2022"
},
{
"authors": [
"Stephen J Wright"
],
"doi": "10.1007/s10107-015-0892-3",
"ref_id": "b69",
"title": "Coordinate descent algorithms",
"year": "2015"
},
{
"authors": [
"R Yang",
"S Mandt"
],
"doi": "",
"ref_id": "b70",
"title": "Lossy image compression with conditional diffusion models",
"year": "2022"
},
{
"authors": [
"Y Yang",
"S Mandt"
],
"doi": "",
"ref_id": "b71",
"title": "Towards empirical sandwich bounds on the rate-distortion function",
"year": "2021"
},
{
"authors": [
"Y Yang",
"S Mandt",
"L Theis"
],
"doi": "",
"ref_id": "b72",
"title": "An introduction to neural data compression",
"year": "2022"
},
{
"authors": [
"Penghang Yin",
"Shuai Zhang",
"Jiancheng Lyu",
"Stanley Osher",
"Yingyong Qi",
"Jack Xin"
],
"doi": "10.1137/18m1166134",
"ref_id": "b73",
"title": "BinaryRelax: A Relaxation Approach for Training Deep Neural Networks with Quantized Weights",
"year": "2019"
}
] |
[
"a6d4bbfb9896be5c",
"9786bbcac833a78e",
"1c6d78f8fed0183e",
"c09e0349e2058d65",
"c81cabd7a89a522c",
"ad0ababf7dd38db6",
"4f89712880a192b5",
"fe5f4a4327c73fb1",
"73236e717db220cb",
"6f525cbda83b5738",
"acd6ca904c00834d",
"b70e17194f489d78",
"46f1e00115c54a8f",
"1d3b9c7cb4b65866",
"8096ef6a17128ec8",
"6173449a0a24afce",
"6124cec145709029",
"530b5d2fdc98f539",
"2d74fb8042426f48",
"14510ee42597b252",
"b9baee7513f9064d",
"651401b7b38e2128",
"cc2cb2fea1511cc3",
"f16687ac31e1e14f",
"a2c78748492adf9d",
"5fef2b02751b2d1f",
"f01786bd81b7d345",
"e8b3444cf5814356",
"76aef188dee751ad",
"960157f25490a4d3",
"b2d8519f98fddf75",
"4c044de8d9b85ada",
"6a6756efa64a55dd",
"10b53d2818eac7d7",
"8b18ee7a5689b0d2",
"334297fd24e07b6e",
"97a68ce831c3bf88"
] |
[
"d6dbd3984d601480",
"6f525cbda83b5738",
"9786bbcac833a78e",
"f5eb97b30fc67cca",
"acd6ca904c00834d",
"651401b7b38e2128",
"73236e717db220cb",
"ba4ab8c2747192a4",
"530b5d2fdc98f539",
"fe5f4a4327c73fb1",
"95bfe2df968133cf",
"b9baee7513f9064d",
"7be2c7357820ae27",
"b2d8519f98fddf75",
"1d3b9c7cb4b65866",
"76aef188dee751ad",
"6124cec145709029",
"32e83f4d32a25b49",
"c981c86b584b794e",
"821e8d2299cc256f",
"6b6983cc47b16738",
"c81cabd7a89a522c",
"1d3986b1ac231a0f",
"4f89712880a192b5",
"872cee3d5eda6272",
"aa5846ae8bf2f66f",
"e8025da60dfa17c0",
"28a192251f009721",
"97a68ce831c3bf88",
"ad0ababf7dd38db6",
"8450f070f94f65c8",
"da809eabc29d9719",
"334297fd24e07b6e",
"b70e17194f489d78",
"a6d4bbfb9896be5c",
"f16687ac31e1e14f",
"9a7e4dfc0b726bba",
"748087e617efd4ae",
"6173449a0a24afce",
"960157f25490a4d3",
"31347b5c86c712d3",
"74881099699f1edb",
"309219dc1a9e419c",
"024e4130f15ed456",
"8b18ee7a5689b0d2",
"46f1e00115c54a8f",
"a2c78748492adf9d",
"9132f769d1adace8",
"e8b3444cf5814356",
"2ce45a45ea29ed91",
"8096ef6a17128ec8",
"cc2cb2fea1511cc3",
"fe7156104e8ee6d7",
"2d74fb8042426f48",
"ccd9c0a92c2d8cbd",
"74d67617b0e98306",
"9a2ff65dadb9b992",
"10b53d2818eac7d7",
"f01786bd81b7d345",
"4c044de8d9b85ada",
"5fef2b02751b2d1f",
"eb008bab1bf150fc",
"bfa894e36bf90a9c",
"51a174609e5fe600",
"3b100fc50bc40c27",
"1477e369b11a6c05",
"6a6756efa64a55dd",
"14510ee42597b252",
"28fab21377e7aa66",
"1c6d78f8fed0183e",
"30021e0c4d10a909",
"c09e0349e2058d65",
"e30d5431cf7601f8",
"bb3beac92d551eca"
] |
gLH40bhHpm
|
Fast Private Kernel Density Estimation via Locality Sensitive Quantization
|
data/openreview_paper/ICML_2023_oral/gLH40bhHpm//paper.pdf
| 45
| 17
|
[
{
"authors": [
"Moses Charikar",
"Paris Siminelakis"
],
"doi": "10.1109/focs.2017.99",
"ref_id": "b11",
"title": "Hashing-Based-Estimators for Kernel Density in High Dimensions",
"year": "2017. 2017"
},
{
"authors": [
"B Coleman",
"A Shrivastava"
],
"doi": "",
"ref_id": "b15",
"title": "Sub-linear race sketches for approximate kernel density estimation on streaming data",
"year": "2020"
},
{
"authors": [
"P Siminelakis",
"K Rong",
"P Bailis",
"M Charikar",
"P Levis"
],
"doi": "",
"ref_id": "b42",
"title": "Rehashing kernel evaluation in high dimensions",
"year": "2019"
},
{
"authors": [
"A Backurs",
"M Charikar",
"P Indyk",
"P Siminelakis"
],
"doi": "",
"ref_id": "b4",
"title": "Efficient density evaluation for smooth kernels",
"year": "2018. 2018"
},
{
"authors": [
"A Gupta",
"A Roth",
"J Ullman"
],
"doi": "",
"ref_id": "b23",
"title": "Iterative constructions and private data release",
"year": "2012"
},
{
"authors": [
"Piotr Indyk",
"Rajeev Motwani"
],
"doi": "10.1145/276698.276876",
"ref_id": "b30",
"title": "Approximate nearest neighbors",
"year": "1998"
},
{
"authors": [
"Y Cherapanamjeri",
"J Nelson"
],
"doi": "",
"ref_id": "b13",
"title": "On adaptive distance estimation",
"year": "2020"
},
{
"authors": [
"Jeff M Phillips",
"Wai Ming Tai"
],
"doi": "10.1007/s00454-019-00134-6",
"ref_id": "b39",
"title": "Near-Optimal Coresets of Kernel Density Estimates",
"year": "2020"
},
{
"authors": [
"Benjamin Coleman",
"Anshumali Shrivastava"
],
"doi": "10.1145/3460120.3485255",
"ref_id": "b16",
"title": "A One-Pass Distributed and Private Sketch for Kernel Sums with Applications to Machine Learning at Scale",
"year": "2021"
},
{
"authors": [
"Moritz Hardt",
"Guy N Rothblum"
],
"doi": "10.1109/focs.2010.85",
"ref_id": "b26",
"title": "A Multiplicative Weights Mechanism for Privacy-Preserving Data Analysis",
"year": "2010. 2010"
},
{
"authors": [
"Avrim Blum",
"Katrina Ligett",
"Aaron Roth"
],
"doi": "10.1145/2450142.2450148",
"ref_id": "b9",
"title": "A learning theory approach to noninteractive database privacy",
"year": "2013"
},
{
"authors": [
"A Backurs",
"P Indyk",
"T Wagner"
],
"doi": "",
"ref_id": "b5",
"title": "Space and time efficient kernel density estimation in high dimensions",
"year": "2019"
},
{
"authors": [
"A Rahimi",
"B Recht"
],
"doi": "",
"ref_id": "b40",
"title": "Random features for large-scale kernel machines",
"year": "2007"
},
{
"authors": [
"D Lopez-Paz",
"K Muandet",
"B Schölkopf",
"I Tolstikhin"
],
"doi": "",
"ref_id": "b35",
"title": "Towards a learning theory of cause-effect inference",
"year": "2015"
},
{
"authors": [
"S Lacoste-Julien",
"F Lindsten",
"F Bach"
],
"doi": "",
"ref_id": "b34",
"title": "Sequential kernel herding: Frank-wolfe optimization for particle filtering",
"year": "2015"
},
{
"authors": [
"Z Karnin",
"E Liberty"
],
"doi": "",
"ref_id": "b33",
"title": "Discrepancy, coresets, and sketches in machine learning",
"year": "2019"
},
{
"authors": [
"Alexandr Andoni",
"Mayur Datar",
"Nicole Immorlica",
"Piotr Indyk",
"Vahab Mirrokni"
],
"doi": "10.7551/mitpress/4908.003.0006",
"ref_id": "b2",
"title": "Locality-Sensitive Hashing Using Stable Distributions",
"year": "2009"
}
] |
[
{
"authors": [
"Alda",
"F Rubinstein",
"B I"
],
"doi": "",
"ref_id": "b0",
"title": "The bernstein mechanism: Function release under differential privacy",
"year": "2017"
},
{
"authors": [
"Josh Alman",
"Timothy Chu",
"Aaron Schild",
"Zhao Song"
],
"doi": "10.1109/focs46700.2020.00057",
"ref_id": "b1",
"title": "Algorithms and Hardness for Linear Algebra on Geometric Graphs",
"year": "2020. 2020"
},
{
"authors": [
"Alexandr Andoni",
"Mayur Datar",
"Nicole Immorlica",
"Piotr Indyk",
"Vahab Mirrokni"
],
"doi": "10.7551/mitpress/4908.003.0006",
"ref_id": "b2",
"title": "Locality-Sensitive Hashing Using Stable Distributions",
"year": "2009"
},
{
"authors": [
"Martin Aumüller",
"Christian Janos Lebeda",
"Rasmus Pagh"
],
"doi": "10.1145/3460120.3484735",
"ref_id": "b3",
"title": "Differentially Private Sparse Vectors with Low Error, Optimal Space, and Fast Access",
"year": "2021"
},
{
"authors": [
"A Backurs",
"M Charikar",
"P Indyk",
"P Siminelakis"
],
"doi": "",
"ref_id": "b4",
"title": "Efficient density evaluation for smooth kernels",
"year": "2018. 2018"
},
{
"authors": [
"A Backurs",
"P Indyk",
"T Wagner"
],
"doi": "",
"ref_id": "b5",
"title": "Space and time efficient kernel density estimation in high dimensions",
"year": "2019"
},
{
"authors": [
"A Backurs",
"P Indyk",
"C Musco",
"T Wagner"
],
"doi": "",
"ref_id": "b6",
"title": "Faster kernel matrix algebra via density estimation",
"year": "2021"
},
{
"authors": [
"Jock A Blackard",
"Denis J Dean"
],
"doi": "10.1016/s0168-1699(99)00046-0",
"ref_id": "b7",
"title": "Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables",
"year": "1999"
},
{
"authors": [
"Jeremiah Blocki",
"Avrim Blum",
"Anupam Datta",
"Or Sheffet"
],
"doi": "10.1109/focs.2012.67",
"ref_id": "b8",
"title": "The Johnson-Lindenstrauss Transform Itself Preserves Differential Privacy",
"year": "2012. 2012"
},
{
"authors": [
"Avrim Blum",
"Katrina Ligett",
"Aaron Roth"
],
"doi": "10.1145/2450142.2450148",
"ref_id": "b9",
"title": "A learning theory approach to noninteractive database privacy",
"year": "2013"
},
{
"authors": [
"J Lawrence Carter",
"Mark N Wegman"
],
"doi": "10.1145/800105.803400",
"ref_id": "b10",
"title": "Universal classes of hash functions (Extended Abstract)",
"year": "1977"
},
{
"authors": [
"Moses Charikar",
"Paris Siminelakis"
],
"doi": "10.1109/focs.2017.99",
"ref_id": "b11",
"title": "Hashing-Based-Estimators for Kernel Density in High Dimensions",
"year": "2017. 2017"
},
{
"authors": [
"A Chavez",
"D Sterling",
"J Elliott",
"Sagar",
"W Cukierski"
],
"doi": "",
"ref_id": "b12",
"title": "New york city taxi fare prediction",
"year": "2018"
},
{
"authors": [
"Y Cherapanamjeri",
"J Nelson"
],
"doi": "",
"ref_id": "b13",
"title": "On adaptive distance estimation",
"year": "2020"
},
{
"authors": [
"Flavio Chierichetti",
"Ravi Kumar"
],
"doi": "10.1145/2816813",
"ref_id": "b14",
"title": "LSH-Preserving Functions and Their Applications",
"year": "2015"
},
{
"authors": [
"B Coleman",
"A Shrivastava"
],
"doi": "",
"ref_id": "b15",
"title": "Sub-linear race sketches for approximate kernel density estimation on streaming data",
"year": "2020"
},
{
"authors": [
"Benjamin Coleman",
"Anshumali Shrivastava"
],
"doi": "10.1145/3460120.3485255",
"ref_id": "b16",
"title": "A One-Pass Distributed and Private Sketch for Kernel Sums with Applications to Machine Learning at Scale",
"year": "2021"
},
{
"authors": [
"Teddy Cunningham",
"Graham Cormode",
"Hakan Ferhatosmanoglu"
],
"doi": "10.1145/3469830.3470893",
"ref_id": "b17",
"title": "Privacy-Preserving Synthetic Location Data in the Real World",
"year": "2021"
},
{
"authors": [
"Cynthia Dwork",
"Frank Mcsherry",
"Kobbi Nissim",
"Adam Smith"
],
"doi": "10.1007/11681878_14",
"ref_id": "b18",
"title": "Calibrating Noise to Sensitivity in Private Data Analysis",
"year": "2006"
},
{
"authors": [
"C Dwork",
"A Roth"
],
"doi": "",
"ref_id": "b19",
"title": "The algorithmic foundations of differential privacy",
"year": "2014"
},
{
"authors": [
"V Feldman",
"K Talwar"
],
"doi": "",
"ref_id": "b20",
"title": "Lossless compression of efficient private local randomizers",
"year": "2021"
},
{
"authors": [
"L Greengard",
"V Rokhlin"
],
"doi": "10.1016/0021-9991(87)90140-9",
"ref_id": "b21",
"title": "A fast algorithm for particle simulations",
"year": "1987"
},
{
"authors": [
"Leslie Greengard",
"John Strain"
],
"doi": "10.1137/0912004",
"ref_id": "b22",
"title": "The Fast Gauss Transform",
"year": "1991"
},
{
"authors": [
"A Gupta",
"A Roth",
"J Ullman"
],
"doi": "",
"ref_id": "b23",
"title": "Iterative constructions and private data release",
"year": "2012"
},
{
"authors": [
"Sara Moussawi",
"Joseph Mertz",
"Jeria Quesenberry",
"Xiaoying Tu",
"Julia Poepping",
"Larry Heimann",
"Raja Sooriamurthi",
"Divakaran Liginlal",
"Christopher Kowalsky",
"Martin Barrett",
"Gabriela Gongora-Svartzman",
"Oscar Veliz",
"Laura Pottmeyer",
"Michael Melville"
],
"doi": "10.17705/1cais.05536",
"ref_id": "b24",
"title": "Building Future Information Systems Leaders: The Crucial Role of Problem Scoping in Service-Learning Experiences",
"year": "2013"
},
{
"authors": [
"Robert Hall",
"Larry Wasserman",
"Alessandro Rinaldo"
],
"doi": "10.29012/jpc.v4i2.621",
"ref_id": "b25",
"title": "Random Differential Privacy",
"year": "Feb. 2013"
},
{
"authors": [
"Moritz Hardt",
"Guy N Rothblum"
],
"doi": "10.1109/focs.2010.85",
"ref_id": "b26",
"title": "A Multiplicative Weights Mechanism for Privacy-Preserving Data Analysis",
"year": "2010. 2010"
},
{
"authors": [
"T Hofmann",
"B Schölkopf",
"A J Smola"
],
"doi": "",
"ref_id": "b27",
"title": "Kernel methods in machine learning",
"year": "2008"
},
{
"authors": [
"Mengdi Huai",
"Di Wang",
"Chenglin Miao",
"Jinhui Xu",
"Aidong Zhang"
],
"doi": "10.24963/ijcai.2019/353",
"ref_id": "b28",
"title": "Privacy-aware Synthesizing for Crowdsourced Data",
"year": "0015. 2019"
},
{
"authors": [
"Piotr Indyk"
],
"doi": "10.1145/1147954.1147955",
"ref_id": "b29",
"title": "Stable distributions, pseudorandom generators, embeddings, and data stream computation",
"year": "2006"
},
{
"authors": [
"Piotr Indyk",
"Rajeev Motwani"
],
"doi": "10.1145/276698.276876",
"ref_id": "b30",
"title": "Approximate nearest neighbors",
"year": "1998"
},
{
"authors": [
"T S Jaakkola",
"M Diekhans",
"D Haussler"
],
"doi": "",
"ref_id": "b31",
"title": "Using the fisher kernel method to detect remote protein homologies",
"year": "1999"
},
{
"authors": [
"W B Johnson",
"G Schechtman"
],
"doi": "",
"ref_id": "b32",
"title": "Embedding l pˆm into l 1ˆn",
"year": "1982"
},
{
"authors": [
"Z Karnin",
"E Liberty"
],
"doi": "",
"ref_id": "b33",
"title": "Discrepancy, coresets, and sketches in machine learning",
"year": "2019"
},
{
"authors": [
"S Lacoste-Julien",
"F Lindsten",
"F Bach"
],
"doi": "",
"ref_id": "b34",
"title": "Sequential kernel herding: Frank-wolfe optimization for particle filtering",
"year": "2015"
},
{
"authors": [
"D Lopez-Paz",
"K Muandet",
"B Schölkopf",
"I Tolstikhin"
],
"doi": "",
"ref_id": "b35",
"title": "Towards a learning theory of cause-effect inference",
"year": "2015"
},
{
"authors": [
"A Nikolov"
],
"doi": "",
"ref_id": "b36",
"title": "Private query release via the johnsonlindenstrauss transform",
"year": "2023"
},
{
"authors": [
"R Pagh",
"M Thorup"
],
"doi": "",
"ref_id": "b37",
"title": "Improved utility analysis of private countsketch",
"year": "2022"
},
{
"authors": [
"Jeffrey Pennington",
"Richard Socher",
"Christopher Manning"
],
"doi": "10.3115/v1/d14-1162",
"ref_id": "b38",
"title": "Glove: Global Vectors for Word Representation",
"year": "2014"
},
{
"authors": [
"Jeff M Phillips",
"Wai Ming Tai"
],
"doi": "10.1007/s00454-019-00134-6",
"ref_id": "b39",
"title": "Near-Optimal Coresets of Kernel Density Estimates",
"year": "2020"
},
{
"authors": [
"A Rahimi",
"B Recht"
],
"doi": "",
"ref_id": "b40",
"title": "Random features for large-scale kernel machines",
"year": "2007"
},
{
"authors": [
"J Shawe-Taylor",
"N Cristianini"
],
"doi": "",
"ref_id": "b41",
"title": "Kernel methods for pattern analysis",
"year": "2004"
},
{
"authors": [
"P Siminelakis",
"K Rong",
"P Bailis",
"M Charikar",
"P Levis"
],
"doi": "",
"ref_id": "b42",
"title": "Rehashing kernel evaluation in high dimensions",
"year": "2019"
},
{
"authors": [
"Beata Strack",
"Jonathan P Deshazo",
"Chris Gennings",
"Juan L Olmo",
"Sebastian Ventura",
"Krzysztof J Cios",
"John N Clore"
],
"doi": "10.1155/2014/781670",
"ref_id": "b43",
"title": "Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records",
"year": "2014. 2014"
},
{
"authors": [
"Z Wang",
"C Jin",
"K Fan",
"J Zhang",
"J Huang",
"Y Zhong",
"L Wang"
],
"doi": "",
"ref_id": "b44",
"title": "Differentially private data releasing for smooth queries",
"year": "2016"
}
] |
[
"654c06defbd83de2",
"72b738362d402bfb",
"6d2e50c547189dcc",
"683eccbb51d4fe9a",
"b60e16f1894863b6",
"302a41ac31cab2dd",
"850dde96fa68de66",
"8f927ab80acabc27",
"677bc5f51591fede",
"b82b209e993927ae",
"51a76a3c024b700d",
"f8ecdfce089d5285",
"28e2d3138ce3b9b5",
"e2b88336308be31f",
"c517a27c3fd00ca5",
"7118d6a9c9992a03",
"bc73f17b553114b4"
] |
[
"caa925b7b154b820",
"cc6f9aed9bf1a2d2",
"bc73f17b553114b4",
"1ba756a3291b3526",
"683eccbb51d4fe9a",
"f8ecdfce089d5285",
"3df150b45ffa673e",
"aa77eb315dca0e2f",
"f9a17dc6e65dadf3",
"51a76a3c024b700d",
"7d2a552489e00207",
"654c06defbd83de2",
"6578b14341297d8c",
"850dde96fa68de66",
"fb0ced474f081653",
"72b738362d402bfb",
"677bc5f51591fede",
"0834fd11e1ad3c2e",
"8ca672d841e344b7",
"dffe54b1f9e663a5",
"d3e9986795c9ac6a",
"8fc90e287570431d",
"77a8e68098aba3f3",
"b60e16f1894863b6",
"73c01cbb8b53949c",
"fbd99209acfb5459",
"b82b209e993927ae",
"9fe0472a0e28ad6b",
"8d5208011d2938e1",
"015d91983fa88ff4",
"302a41ac31cab2dd",
"f08a7a4f35aa6b38",
"d10a865c647f9905",
"7118d6a9c9992a03",
"c517a27c3fd00ca5",
"e2b88336308be31f",
"9c7724d7fef5312f",
"8cc9e8d369c7d193",
"cb5fc7881e66263c",
"8f927ab80acabc27",
"28e2d3138ce3b9b5",
"18480578ba258115",
"6d2e50c547189dcc",
"98938d01ab9dc908",
"dcece8edda4cb1b7"
] |
dx5rPfq6Hr
|
Towards Theoretical Understanding of Inverse Reinforcement Learning
|
data/openreview_paper/ICML_2023_oral/dx5rPfq6Hr//paper.pdf
| 44
| 0
|
[] |
[
{
"authors": [
"Pieter Abbeel",
"Andrew Y Ng"
],
"doi": "10.1145/1015330.1015430",
"ref_id": "b0",
"title": "Apprenticeship learning via inverse reinforcement learning",
"year": "2004"
},
{
"authors": [
"Stephen Adams",
"Tyler Cody",
"Peter A Beling"
],
"doi": "10.1007/s10462-021-10108-x",
"ref_id": "b1",
"title": "A survey of inverse reinforcement learning",
"year": "2022"
},
{
"authors": [
"S Arora",
"P Doshi"
],
"doi": "",
"ref_id": "b2",
"title": "A survey of inverse reinforcement learning: Challenges, methods and progress",
"year": "2021"
},
{
"authors": [
"G D Cohen",
"P Frankl"
],
"doi": "",
"ref_id": "b3",
"title": "Good coverings of hamming spaces with spheres",
"year": "1985"
},
{
"authors": [
"A Damiani",
"G Manganini",
"A M Metelli",
"M Restelli"
],
"doi": "",
"ref_id": "b4",
"title": "Balancing sample efficiency and suboptimality in inverse reinforcement learning",
"year": "2022"
},
{
"authors": [
"C Dann",
"E Brunskill"
],
"doi": "",
"ref_id": "b5",
"title": "Sample complexity of episodic fixed-horizon reinforcement learning",
"year": "2015"
},
{
"authors": [
"G Dexter",
"K Bello",
"J Honorio"
],
"doi": "",
"ref_id": "b6",
"title": "Inverse reinforcement learning in a continuous state space with formal guarantees",
"year": "2021"
},
{
"authors": [
"O D Domingues",
"P Ménard",
"E Kaufmann",
"M Valko"
],
"doi": "",
"ref_id": "b7",
"title": "Episodic reinforcement learning in finite mdps: Minimax lower bounds revisited",
"year": "2021"
},
{
"authors": [
"Sébastien Gerchinovitz",
"Pierre Ménard",
"Gilles Stoltz"
],
"doi": "10.1214/19-sts716",
"ref_id": "b8",
"title": "Fano’s Inequality for Random Variables",
"year": "2020"
},
{
"authors": [
"László Györfi",
"Michael Kohler",
"Adam Krzyżak",
"Harro Walk"
],
"doi": "10.1007/b97848",
"ref_id": "b9",
"title": "A Distribution-Free Theory of Nonparametric Regression",
"year": "2002"
},
{
"authors": [
"Mahdi Imani",
"Ulisses M Braga-Neto"
],
"doi": "10.1109/tcbb.2018.2830357",
"ref_id": "b10",
"title": "Control of Gene Regulatory Networks Using Bayesian Inverse Reinforcement Learning",
"year": "2019"
},
{
"authors": [
"C Jin",
"A Krishnamurthy",
"M Simchowitz",
"T Yu"
],
"doi": "",
"ref_id": "b11",
"title": "Reward-free exploration for reinforcement learning",
"year": "2020"
},
{
"authors": [
"A Jonsson",
"E Kaufmann",
"P Ménard",
"O D Domingues",
"E Leurent",
"M Valko"
],
"doi": "",
"ref_id": "b12",
"title": "Planning in markov decision processes with gap-dependent sample complexity",
"year": "2020"
},
{
"authors": [
"E Kaufmann",
"P Ménard",
"O D Domingues",
"A Jonsson",
"E Leurent",
"M Valko"
],
"doi": "",
"ref_id": "b13",
"title": "Adaptive reward-free exploration",
"year": "2021"
},
{
"authors": [
"A Komanduru",
"J Honorio"
],
"doi": "",
"ref_id": "b14",
"title": "On the correctness and sample complexity of inverse reinforcement learning",
"year": "2019"
},
{
"authors": [
"A Komanduru",
"J Honorio"
],
"doi": "",
"ref_id": "b15",
"title": "A lower bound for the sample complexity of inverse reinforcement learning",
"year": "2021"
},
{
"authors": [
"Tor Lattimore",
"Csaba Szepesvári"
],
"doi": "10.1017/9781108571401",
"ref_id": "b16",
"title": "Bandit Algorithms",
"year": "2020"
},
{
"authors": [
"Amarildo Likmeta",
"Alberto Maria Metelli",
"Giorgia Ramponi",
"Andrea Tirinzoni",
"Matteo Giuliani",
"Marcello Restelli"
],
"doi": "10.1007/s10994-020-05939-8",
"ref_id": "b17",
"title": "Dealing with multiple experts and non-stationarity in inverse reinforcement learning: an application to real-life problems",
"year": "2021"
},
{
"authors": [
"D Lindner",
"A Krause",
"G Ramponi"
],
"doi": "",
"ref_id": "b18",
"title": "Active exploration for inverse reinforcement learning",
"year": "2022"
},
{
"authors": [
"P Ménard",
"O D Domingues",
"A Jonsson",
"E Kaufmann",
"E Leurent",
"M Valko"
],
"doi": "",
"ref_id": "b19",
"title": "Fast active learning for pure exploration in reinforcement learning",
"year": "2021"
},
{
"authors": [
"A M Metelli",
"M Pirotta",
"M Restelli"
],
"doi": "",
"ref_id": "b20",
"title": "Compatible reward inverse reinforcement learning",
"year": "2017"
},
{
"authors": [
"Alberto Maria Metelli",
"Matteo Pirotta",
"Marcello Restelli"
],
"doi": "10.3233/ia-180011",
"ref_id": "b21",
"title": "On the use of the policy gradient and Hessian in inverse reinforcement learning",
"year": "2020"
},
{
"authors": [
"A M Metelli",
"G Ramponi",
"A Concetti",
"M Restelli"
],
"doi": "",
"ref_id": "b22",
"title": "Provably efficient learning of transferable rewards",
"year": "2021"
},
{
"authors": [
"A Y Ng",
"S Russell"
],
"doi": "",
"ref_id": "b23",
"title": "Algorithms for inverse reinforcement learning",
"year": ""
},
{
"authors": [
"Morgan Kaufmann"
],
"doi": "",
"ref_id": "b24",
"title": "",
"year": "2000"
},
{
"authors": [
"T Osa",
"J Pajarinen",
"G Neumann",
"J A Bagnell",
"P Abbeel",
"J Peters"
],
"doi": "",
"ref_id": "b25",
"title": "An algorithmic perspective on imitation learning",
"year": "2018"
},
{
"authors": [
"Matteo Pirotta",
"Marcello Restelli"
],
"doi": "10.1609/aaai.v30i1.10313",
"ref_id": "b26",
"title": "Inverse Reinforcement Learning through Policy Gradient Minimization",
"year": "2016"
},
{
"authors": [
"Martin L Puterman"
],
"doi": "10.1002/9780470316887",
"ref_id": "b27",
"title": "Markov Decision Processes",
"year": "1994"
},
{
"authors": [
"G Ramponi",
"A Likmeta",
"A M Metelli",
"A Tirinzoni",
"M Restelli"
],
"doi": "",
"ref_id": "b28",
"title": "Truly batch model-free inverse reinforcement learning about multiple intentions",
"year": "2020"
},
{
"authors": [
"N D Ratliff",
"J A Bagnell",
"M Zinkevich"
],
"doi": "",
"ref_id": "b29",
"title": "Maximum margin planning",
"year": "2006"
},
{
"authors": [
"A Ravsky"
],
"doi": "",
"ref_id": "b30",
"title": "How to prove upper bound for partial sum of binomial coefficients",
"year": ""
},
{
"authors": [
"Nigini Oliveira",
"Michael Muller",
"Nazareno Andrade",
"Katharina Reinecke"
],
"doi": "10.1145/3274399",
"ref_id": "b31",
"title": "The Exchange in StackExchange",
"year": "2018"
},
{
"authors": [
"R T Rockafellar",
"R J Wets",
"-B"
],
"doi": "",
"ref_id": "b32",
"title": "Variational analysis",
"year": "2009"
},
{
"authors": [
"S Sharifzadeh",
"I Chiotellis",
"R Triebel",
"D Cremers"
],
"doi": "",
"ref_id": "b33",
"title": "Learning to drive using inverse reinforcement learning and deep q-networks",
"year": "2016"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b34",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"U Syed",
"R E Schapire"
],
"doi": "",
"ref_id": "b35",
"title": "A game-theoretic approach to apprenticeship learning",
"year": ""
},
{
"authors": [
"Baxter Vieux",
"Jean Vieux"
],
"doi": "10.14796/jwmm.r227-13",
"ref_id": "b36",
"title": "Continuous Distributed Modeling for Evaluation of Stormwater Quality Impacts from Urban Development",
"year": "2007"
},
{
"authors": [
"M C Vroman"
],
"doi": "",
"ref_id": "b37",
"title": "Maximum likelihood inverse reinforcement learning",
"year": "2014"
},
{
"authors": [
"T Weissman",
"E Ordentlich",
"G Seroussi",
"S Verdu",
"M J Weinberger"
],
"doi": "10.1109/isit.2003.1228098",
"ref_id": "b38",
"title": "Universal discrete denoising: known channel",
"year": "2003"
},
{
"authors": [
"Xingjiao Wu",
"Luwei Xiao",
"Yixuan Sun",
"Junhang Zhang",
"Tianlong Ma",
"Liang He"
],
"doi": "10.1016/j.future.2022.05.014",
"ref_id": "b39",
"title": "A survey of human-in-the-loop for machine learning",
"year": "2022"
},
{
"authors": [
"Z Wu",
"L Sun",
"W Zhan",
"C Yang",
"M Tomizuka"
],
"doi": "",
"ref_id": "b40",
"title": "Efficient sampling-based maximum entropy inverse reinforcement learning with application to autonomous driving",
"year": "2020"
},
{
"authors": [
"Chao Yu",
"Guoqi Ren",
"Jiming Liu"
],
"doi": "10.1109/ichi.2019.8904645",
"ref_id": "b41",
"title": "Deep Inverse Reinforcement Learning for Sepsis Treatment",
"year": "2019. 2019. June 10-13, 2019. 2019"
},
{
"authors": [
"S Zeng",
"C Li",
"A Garcia",
"M Hong"
],
"doi": "",
"ref_id": "b42",
"title": "Maximumlikelihood inverse reinforcement learning with finite-time guarantees",
"year": "2022"
},
{
"authors": [
"B D Ziebart",
"A L Maas",
"J A Bagnell",
"A K Dey"
],
"doi": "",
"ref_id": "b43",
"title": "Maximum entropy inverse reinforcement learning",
"year": "2008"
}
] |
[] |
[
"0d7686c22c3ee5fe",
"80b0eb95ec92b37b",
"ec299e45e9e57e70",
"dd33782d36f4eb5c",
"4d96e7d510c7bc7b",
"baa0300fad0b7ffe",
"53306e4242873e99",
"2fd31e8910a49b5c",
"59b36277438ce834",
"cccbcb2c63a0a8b4",
"37d20652e381956d",
"1fb0e66e025848ba",
"2e1b0f55fec8c784",
"5d8e1fd1c81a4a3c",
"5158ef6b146dca7f",
"7276eb065f576ef2",
"a8e5aa6f2a215a01",
"cfd0f45c110a8ea7",
"ec28a58959dc4ffc",
"edbb851d8110bfbf",
"4ccfca6cd92ee562",
"19eba10a6b955781",
"09d7b311b60aa027",
"cfb809db5e63cc1c",
"c6e4a793989e7791",
"397bb33362fbdcad",
"8098aec4b917935c",
"d94251b50cda1da0",
"13c87f8ff6e27f7a",
"675588224365c236",
"ee823869e9fa8982",
"986fe1dc02096d85",
"fd74ff7ff9545c6c",
"39af7d5c2fd39d84",
"34dc3e64fa458b25",
"8917bf7c8c7881cb",
"1d0ae6001da3f174",
"9035ffed6c148d0e",
"364c836477373a3f",
"4bff532ac4bc8440",
"2a43671215b76559",
"a6308aadc1919927",
"410a00fc726590a4",
"aab7096ead430b99"
] |
neTWpgvVbo
|
RankMe: Assessing the Downstream Performance of Pretrained Self-Supervised Representations by Their Rank
|
data/openreview_paper/ICML_2023_oral/neTWpgvVbo//paper.pdf
| 64
| 15
|
[
{
"authors": [
"A V D Oord",
"Y Li",
"O Vinyals"
],
"doi": "",
"ref_id": "b43",
"title": "Representation learning with contrastive predictive coding",
"year": "2018"
},
{
"authors": [
"Mathilde Caron",
"Hugo Touvron",
"Ishan Misra",
"Herve Jegou",
"Julien Mairal",
"Piotr Bojanowski",
"Armand Joulin"
],
"doi": "10.1109/iccv48922.2021.00951",
"ref_id": "b7",
"title": "Emerging Properties in Self-Supervised Vision Transformers",
"year": "2021"
},
{
"authors": [
"B He",
"M Ozay"
],
"doi": "",
"ref_id": "b25",
"title": "Exploring the gap between collapsed & whitened features in self-supervised learning",
"year": "2022"
},
{
"authors": [
"J.-B Grill",
"F Strub",
"F Altché",
"C Tallec",
"P H Richemond",
"E Buchatskaya",
"C Doersch",
"B A Pires",
"Z D Guo",
"M G Azar",
"B Piot",
"K Kavukcuoglu",
"R Munos",
"M Valko"
],
"doi": "",
"ref_id": "b23",
"title": "Bootstrap your own latent: A new approach to self-supervised learning",
"year": "2020"
},
{
"authors": [
"O Ganea",
"S Gelly",
"G Bécigneul",
"A Severyn"
],
"doi": "",
"ref_id": "b17",
"title": "Breaking the softmax bottleneck via learnable monotonic pointwise non-linearities",
"year": "2019"
},
{
"authors": [
"J Z Haochen",
"C Wei",
"A Gaidon",
"T Ma"
],
"doi": "",
"ref_id": "b24",
"title": "Provable guarantees for self-supervised deep learning with spectral contrastive loss",
"year": "2021"
},
{
"authors": [
"J Zbontar",
"L Jing",
"I Misra",
"Y Lecun",
"S Deny"
],
"doi": "",
"ref_id": "b55",
"title": "Barlow twins: Self-supervised learning via redundancy reduction",
"year": "2021"
},
{
"authors": [
"A Bardes",
"J Ponce",
"Y Lecun"
],
"doi": "",
"ref_id": "b1",
"title": "Vicreg: Varianceinvariance-covariance regularization for self-supervised learning",
"year": "2021"
},
{
"authors": [
"Aleksandr Ermolov",
"Enver Sangineto",
"Nicu Sebe"
],
"doi": "10.1109/icpr56361.2022.9956553",
"ref_id": "b15",
"title": "Temporal Alignment for History Representation in Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"Tianyu Hua",
"Wenxiao Wang",
"Zihui Xue",
"Sucheng Ren",
"Yue Wang",
"Hang Zhao"
],
"doi": "10.1109/iccv48922.2021.00946",
"ref_id": "b32",
"title": "On Feature Decorrelation in Self-Supervised Learning",
"year": "2021"
},
{
"authors": [
"Kaiming He",
"Haoqi Fan",
"Yuxin Wu",
"Saining Xie",
"Ross Girshick"
],
"doi": "10.1109/cvpr42600.2020.00975",
"ref_id": "b27",
"title": "Momentum Contrast for Unsupervised Visual Representation Learning",
"year": "2020"
},
{
"authors": [
"R Balestriero",
"Y Lecun"
],
"doi": "10.7717/peerjcs.1045/table-5",
"ref_id": "b0",
"title": "Table 5: Summary of contrastive self-supervised learning methods in medical imaging.",
"year": "2022"
},
{
"authors": [
"L Jing",
"P Vincent",
"Y Lecun",
"Y Tian"
],
"doi": "",
"ref_id": "b33",
"title": "Understanding dimensional collapse in contrastive self-supervised learning",
"year": "2022"
},
{
"authors": [
"M Caron",
"P Bojanowski",
"A Joulin",
"M Douze"
],
"doi": "",
"ref_id": "b5",
"title": "Deep clustering for unsupervised learning",
"year": "2018"
},
{
"authors": [
"Chun-Hsiao Yeh",
"Cheng-Yao Hong",
"Yen-Chi Hsu",
"Tyng-Luh Liu",
"Yubei Chen",
"Yann Lecun"
],
"doi": "10.1007/978-3-031-19809-0_38",
"ref_id": "b53",
"title": "Decoupled Contrastive Learning",
"year": "2021"
}
] |
[
{
"authors": [
"R Balestriero",
"Y Lecun"
],
"doi": "10.7717/peerjcs.1045/table-5",
"ref_id": "b0",
"title": "Table 5: Summary of contrastive self-supervised learning methods in medical imaging.",
"year": "2022"
},
{
"authors": [
"A Bardes",
"J Ponce",
"Y Lecun"
],
"doi": "",
"ref_id": "b1",
"title": "Vicreg: Varianceinvariance-covariance regularization for self-supervised learning",
"year": "2021"
},
{
"authors": [
"F Bordes",
"R Balestriero",
"P Vincent"
],
"doi": "",
"ref_id": "b2",
"title": "High fidelity visualization of what your self-supervised representation knows about",
"year": "2021"
},
{
"authors": [
"Lukas Bossard",
"Matthieu Guillaumin",
"Luc Van Gool"
],
"doi": "10.1007/978-3-319-10599-4_29",
"ref_id": "b3",
"title": "Food-101 – Mining Discriminative Components with Random Forests",
"year": "2014"
},
{
"authors": [
"Jane Bromley",
"James W Bentz",
"Léon Bottou",
"Isabelle Guyon",
"Yann Lecun",
"Cliff Moore",
"Eduard Säckinger",
"Roopak Shah"
],
"doi": "10.1142/9789812797926_0003",
"ref_id": "b4",
"title": "SIGNATURE VERIFICATION USING A “SIAMESE” TIME DELAY NEURAL NETWORK",
"year": "1994"
},
{
"authors": [
"M Caron",
"P Bojanowski",
"A Joulin",
"M Douze"
],
"doi": "",
"ref_id": "b5",
"title": "Deep clustering for unsupervised learning",
"year": "2018"
},
{
"authors": [
"Mathilde Caron",
"Piotr Bojanowski",
"Julien Mairal",
"Armand Joulin"
],
"doi": "10.1109/iccv.2019.00305",
"ref_id": "b6",
"title": "Unsupervised Pre-Training of Image Features on Non-Curated Data",
"year": "2020"
},
{
"authors": [
"Mathilde Caron",
"Hugo Touvron",
"Ishan Misra",
"Herve Jegou",
"Julien Mairal",
"Piotr Bojanowski",
"Armand Joulin"
],
"doi": "10.1109/iccv48922.2021.00951",
"ref_id": "b7",
"title": "Emerging Properties in Self-Supervised Vision Transformers",
"year": "2021"
},
{
"authors": [
"T Chen",
"S Kornblith",
"M Norouzi",
"G Hinton"
],
"doi": "",
"ref_id": "b8",
"title": "A simple framework for contrastive learning of visual representations",
"year": "2020"
},
{
"authors": [
"Xinlei Chen",
"Kaiming He"
],
"doi": "10.1109/cvpr46437.2021.01549",
"ref_id": "b9",
"title": "Exploring Simple Siamese Representation Learning",
"year": "2020"
},
{
"authors": [
"X Chen",
"H Fan",
"R Girshick",
"K He"
],
"doi": "",
"ref_id": "b10",
"title": "Improved baselines with momentum contrastive learning",
"year": "2020"
},
{
"authors": [
"Xinlei Chen",
"Saining Xie",
"Kaiming He"
],
"doi": "10.1109/iccv48922.2021.00950",
"ref_id": "b11",
"title": "An Empirical Study of Training Self-Supervised Vision Transformers",
"year": "2021"
},
{
"authors": [
"Rankme Cover",
"T M"
],
"doi": "10.1109/pgec.1965.264137",
"ref_id": "b12",
"title": "Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition",
"year": "1965"
},
{
"authors": [
"Jia Deng",
"Wei Dong",
"Richard Socher",
"Li-Jia Li",
"Kai Li",
"Li Fei-Fei"
],
"doi": "10.1109/cvpr.2009.5206848",
"ref_id": "b13",
"title": "ImageNet: A large-scale hierarchical image database",
"year": "2009"
},
{
"authors": [
"C Eckart",
"G Young"
],
"doi": "",
"ref_id": "b14",
"title": "The approximation of one matrix by another of lower rank",
"year": "1936"
},
{
"authors": [
"Aleksandr Ermolov",
"Enver Sangineto",
"Nicu Sebe"
],
"doi": "10.1109/icpr56361.2022.9956553",
"ref_id": "b15",
"title": "Temporal Alignment for History Representation in Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"Mark Everingham",
"Luc Van Gool",
"Christopher K I Williams",
"John Winn",
"Andrew Zisserman"
],
"doi": "10.1007/s11263-009-0275-4",
"ref_id": "b16",
"title": "The Pascal Visual Object Classes (VOC) Challenge",
"year": "2007. 2007"
},
{
"authors": [
"O Ganea",
"S Gelly",
"G Bécigneul",
"A Severyn"
],
"doi": "",
"ref_id": "b17",
"title": "Breaking the softmax bottleneck via learnable monotonic pointwise non-linearities",
"year": "2019"
},
{
"authors": [
"Q Garrido",
"Y Chen",
"A Bardes",
"L Najman",
"Y Lecun"
],
"doi": "",
"ref_id": "b18",
"title": "On the duality between contrastive and noncontrastive self-supervised learning",
"year": "2022"
},
{
"authors": [
"A Ghosh",
"A K Mondal",
"K K Agrawal",
"B Richards"
],
"doi": "",
"ref_id": "b19",
"title": "Investigating power laws in deep representation learning",
"year": "2022"
},
{
"authors": [
"S Girish",
"D Dey",
"N Joshi",
"V Vineet",
"S Shah",
"C C T Mendes",
"A Shrivastava",
"Y Song"
],
"doi": "",
"ref_id": "b20",
"title": "One network doesn't rule them all: Moving beyond handcrafted architectures in self-supervised learning",
"year": "2022"
},
{
"authors": [
"P Goyal",
"P Dollár",
"R Girshick",
"P Noordhuis",
"L Wesolowski",
"A Kyrola",
"A Tulloch",
"Y Jia",
"K He",
"Accurate"
],
"doi": "",
"ref_id": "b21",
"title": "large minibatch sgd: Training imagenet in 1 hour",
"year": "2017"
},
{
"authors": [
"P Goyal",
"Q Duval",
"J Reizenstein",
"M Leavitt",
"M Xu",
"B Lefaudeux",
"M Singh",
"V Reis",
"M Caron",
"P Bojanowski",
"A Joulin",
"I Misra",
"Vissl"
],
"doi": "",
"ref_id": "b22",
"title": "",
"year": "2021"
},
{
"authors": [
"J.-B Grill",
"F Strub",
"F Altché",
"C Tallec",
"P H Richemond",
"E Buchatskaya",
"C Doersch",
"B A Pires",
"Z D Guo",
"M G Azar",
"B Piot",
"K Kavukcuoglu",
"R Munos",
"M Valko"
],
"doi": "",
"ref_id": "b23",
"title": "Bootstrap your own latent: A new approach to self-supervised learning",
"year": "2020"
},
{
"authors": [
"J Z Haochen",
"C Wei",
"A Gaidon",
"T Ma"
],
"doi": "",
"ref_id": "b24",
"title": "Provable guarantees for self-supervised deep learning with spectral contrastive loss",
"year": "2021"
},
{
"authors": [
"B He",
"M Ozay"
],
"doi": "",
"ref_id": "b25",
"title": "Exploring the gap between collapsed & whitened features in self-supervised learning",
"year": "2022"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b26",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"Kaiming He",
"Haoqi Fan",
"Yuxin Wu",
"Saining Xie",
"Ross Girshick"
],
"doi": "10.1109/cvpr42600.2020.00975",
"ref_id": "b27",
"title": "Momentum Contrast for Unsupervised Visual Representation Learning",
"year": "2020"
},
{
"authors": [
"K He",
"X Chen",
"S Xie",
"Y Li",
"P Dollár",
"R Girshick"
],
"doi": "",
"ref_id": "b28",
"title": "Masked autoencoders are scalable vision learners",
"year": "2021"
},
{
"authors": [
"Kaiming He",
"Xinlei Chen",
"Saining Xie",
"Yanghao Li",
"Piotr Dollar",
"Ross Girshick"
],
"doi": "10.1109/cvpr52688.2022.01553",
"ref_id": "b29",
"title": "Masked Autoencoders Are Scalable Vision Learners",
"year": "2022"
},
{
"authors": [
"Patrick Helber",
"Benjamin Bischke",
"Andreas Dengel",
"Damian Borth"
],
"doi": "10.1109/jstars.2019.2918242",
"ref_id": "b30",
"title": "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification",
"year": "2019"
},
{
"authors": [
"G V Horn",
"O M Aodha",
"Y Song",
"Y Cui",
"C Sun",
"A Shepard",
"H Adam",
"P Perona",
"S Belongie"
],
"doi": "",
"ref_id": "b31",
"title": "The inaturalist species classification and detection dataset",
"year": "2018"
},
{
"authors": [
"Tianyu Hua",
"Wenxiao Wang",
"Zihui Xue",
"Sucheng Ren",
"Yue Wang",
"Hang Zhao"
],
"doi": "10.1109/iccv48922.2021.00946",
"ref_id": "b32",
"title": "On Feature Decorrelation in Self-Supervised Learning",
"year": "2021"
},
{
"authors": [
"L Jing",
"P Vincent",
"Y Lecun",
"Y Tian"
],
"doi": "",
"ref_id": "b33",
"title": "Understanding dimensional collapse in contrastive self-supervised learning",
"year": "2022"
},
{
"authors": [
"Justin Johnson",
"Bharath Hariharan",
"Laurens Van Der Maaten",
"Li Fei-Fei",
"C Lawrence Zitnick",
"Ross Girshick"
],
"doi": "10.1109/cvpr.2017.215",
"ref_id": "b34",
"title": "CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning",
"year": "2017"
},
{
"authors": [
"Jonathan Krause",
"Michael Stark",
"Jia Deng",
"Li Fei-Fei"
],
"doi": "10.1109/iccvw.2013.77",
"ref_id": "b35",
"title": "3D Object Representations for Fine-Grained Categorization",
"year": "2013"
},
{
"authors": [
"Rankme Krizhevsky",
"A Hinton",
"G"
],
"doi": "",
"ref_id": "b36",
"title": "Learning multiple layers of features from tiny images",
"year": "2009"
},
{
"authors": [
"Kuang-Huei Lee",
"Ofir Nachum",
"Tingnan Zhang",
"Sergio Guadarrama",
"Jie Tan",
"Wenhao Yu"
],
"doi": "10.1109/iros47612.2022.9981952",
"ref_id": "b37",
"title": "PI-ARS: Accelerating Evolution-Learned Visual-Locomotion with Predictive Information Representations",
"year": "2021"
},
{
"authors": [
"Alexander C Li",
"Alexei A Efros",
"Deepak Pathak"
],
"doi": "10.1007/978-3-031-19821-2_28",
"ref_id": "b38",
"title": "Understanding Collapse in Non-contrastive Siamese Representation Learning",
"year": "2022"
},
{
"authors": [
"C Li",
"J Yang",
"P Zhang",
"M Gao",
"B Xiao",
"X Dai",
"L Yuan",
"J Gao"
],
"doi": "",
"ref_id": "b39",
"title": "Efficient self-supervised vision transformers for representation learning",
"year": "2022"
},
{
"authors": [
"Z Li",
"Y Chen",
"Y Lecun",
"F T Sommer"
],
"doi": "",
"ref_id": "b40",
"title": "Neural manifold clustering and embedding",
"year": "2022"
},
{
"authors": [
"I Loshchilov",
"F Hutter"
],
"doi": "",
"ref_id": "b41",
"title": "Decoupled weight decay regularization",
"year": "2017"
},
{
"authors": [
"Ishan Misra",
"Laurens Van Der Maaten"
],
"doi": "10.1109/cvpr42600.2020.00674",
"ref_id": "b42",
"title": "Self-Supervised Learning of Pretext-Invariant Representations",
"year": "2020"
},
{
"authors": [
"A V D Oord",
"Y Li",
"O Vinyals"
],
"doi": "",
"ref_id": "b43",
"title": "Representation learning with contrastive predictive coding",
"year": "2018"
},
{
"authors": [
"W H Press",
"S A Teukolsky",
"W T Vetterling",
"B P Flannery"
],
"doi": "",
"ref_id": "b44",
"title": "Numerical recipes 3rd edition: The art of scientific computing",
"year": "2007"
},
{
"authors": [
"C J Reed",
"S Metzger",
"A Srinivas",
"T Darrell",
"K Keutzer"
],
"doi": "",
"ref_id": "b45",
"title": "Selfaugment: Automatic augmentation policies for self-supervised learning",
"year": "2021"
},
{
"authors": [
"O Roy",
"M Vetterli"
],
"doi": "",
"ref_id": "b46",
"title": "The effective rank: A measure of effective dimensionality",
"year": "2007"
},
{
"authors": [
"S Santurkar",
"D Tsipras",
"A Ilyas",
"A Madry"
],
"doi": "",
"ref_id": "b47",
"title": "How does batch normalization help optimization",
"year": "2018"
},
{
"authors": [
"C E Shannon"
],
"doi": "",
"ref_id": "b48",
"title": "A mathematical theory of communication",
"year": "1948"
},
{
"authors": [
"N Tomasev",
"I Bica",
"B Mcwilliams",
"L Buesing",
"R Pascanu",
"C Blundell",
"J Mitrovic"
],
"doi": "",
"ref_id": "b49",
"title": "Pushing the limits of self-supervised resnets: Can we outperform supervised learning without labels on imagenet?",
"year": "2022"
},
{
"authors": [
"D Ulyanov",
"A Vedaldi",
"V Lempitsky"
],
"doi": "",
"ref_id": "b50",
"title": "Deep image prior",
"year": "2018"
},
{
"authors": [
"Zhirong Wu",
"Yuanjun Xiong",
"Stella X Yu",
"Dahua Lin"
],
"doi": "10.1109/cvpr.2018.00393",
"ref_id": "b51",
"title": "Unsupervised Feature Learning via Non-parametric Instance Discrimination",
"year": "2018"
},
{
"authors": [
"Jianxiong Xiao",
"James Hays",
"Krista A Ehinger",
"Aude Oliva",
"Antonio Torralba"
],
"doi": "10.1109/cvpr.2010.5539970",
"ref_id": "b52",
"title": "SUN database: Large-scale scene recognition from abbey to zoo",
"year": "2010. 2010"
},
{
"authors": [
"Chun-Hsiao Yeh",
"Cheng-Yao Hong",
"Yen-Chi Hsu",
"Tyng-Luh Liu",
"Yubei Chen",
"Yann Lecun"
],
"doi": "10.1007/978-3-031-19809-0_38",
"ref_id": "b53",
"title": "Decoupled Contrastive Learning",
"year": "2021"
},
{
"authors": [
"Y You",
"I Gitman",
"B Ginsburg"
],
"doi": "",
"ref_id": "b54",
"title": "Large batch training of convolutional networks",
"year": "2017"
},
{
"authors": [
"J Zbontar",
"L Jing",
"I Misra",
"Y Lecun",
"S Deny"
],
"doi": "",
"ref_id": "b55",
"title": "Barlow twins: Self-supervised learning via redundancy reduction",
"year": "2021"
},
{
"authors": [
"Bolei Zhou",
"Agata Lapedriza",
"Antonio Torralba",
"Aude Oliva"
],
"doi": "10.1167/17.10.296",
"ref_id": "b56",
"title": "Places: An Image Database for Deep Scene Understanding",
"year": "2014"
},
{
"authors": [
"J Zhou",
"C Wei",
"H Wang",
"W Shen",
"C Xie",
"A Yuille",
"T Kong"
],
"doi": "",
"ref_id": "b57",
"title": "ibot: Image bert pre-training with online tokenizer",
"year": "2022"
},
{
"authors": [
"P Zhou",
"Y Zhou",
"C Si",
"W Yu",
"T K Ng",
"S Yan"
],
"doi": "",
"ref_id": "b58",
"title": "Mugs: A multi-granular self-supervised learning framework",
"year": "2022"
},
{
"authors": [
"Chengxu Zhuang",
"Alex Zhai",
"Daniel Yamins"
],
"doi": "10.1109/iccv.2019.00610",
"ref_id": "b59",
"title": "Local Aggregation for Unsupervised Learning of Visual Embeddings",
"year": "2019"
},
{
"authors": [
"J Rankme"
],
"doi": "",
"ref_id": "b60",
"title": "Detailed tables for hyperparameter selection Table S3. Top-1 accuracies computed on representations when tuning hyperparameters with ImageNet validation performance, RankMe or with α-ReQ",
"year": ""
},
{
"authors": [
"Rankme Table",
"S4"
],
"doi": "10.1515/9783112463345-015",
"ref_id": "b61",
"title": "12",
"year": ""
},
{
"authors": [],
"doi": "",
"ref_id": "b62",
"title": "Rank after projector in all settings",
"year": ""
},
{
"authors": [
"Rankme Table",
"S23"
],
"doi": "10.4324/9780203005217-18",
"ref_id": "b63",
"title": "ex-nomination 24, 27, 31–2; in humanism: Catholic 69; technological French translation 6, 33 70; traditional 73 hyperconformity 2–3 design 81–3, 118–19; Bauhaus 71 dropping out 101–3 Internet 99; cybercops 101; cyberculture and business 9 effraction 90; break and entry 86; see implosion 4, 50, 94–8, 111, 122; and also symbolic exchange consciousness 83; and nationalism Einsteinism 18, 23 103 electricity: light 48–9; and language 49; and implosion 96–7 Japan 1 Eskimos 107–8, 110–11, 116 Jesus 104, 116 Expo ’67 5, 59, 92, 100; Christian j’explique rien 5 Pavilion 104; Québec Pavilion 5, 92 Expo ’92 4 Latin character 44; Gallic 7, 56, 57, 58; extensions of man 68, 85, 90; mediatic Gallicized name 53; opposed to 58 53; outering 12 liberalism 46, 103–4; cool media 105 families 101; human 102; mafia 101; M et M 58 McLuhan’s 56; commune-ist 116 Ma – Ma – Ma – Ma 58–9 figure and ground 21, 26, 35 Mac 53, 54, 58; Macbeth 54; MacBett French McLuhan 1, 2, 20, 76–8, 98; 57; Macheath 54; Big Mac 58 new 77 Le mac 62 Mack 55 galaxies 39, 41–2, 44, 99, 109, 116; McLuhan: Counterblast 118; Du and detribalization 107; Gutenberg cliché à l’archétype 119–20; 4, 14, 18, 26, 42–3, 47, 51, 85, Explorations in Communication 121; galactic shifts 38; galaxie 16; From Cliché to Archetype 119; MacLuhan 56; and tribalism 106 La galaxie Gutenberg 4, 44; The gap in historical experience 8, 91–2, Gutenberg Galaxy 4, 8, 18, 26, 49– 99, 106 50, 99, 107, 109; The Mechanical Gen-X 43, 105 Bride 18, 24–5, 27–9, 31–2, 34, 107; Global Village 4, 94, 100, 107, 111, Letters 15, 21, 55; The Medium is 121; global consciousness 102–3; the Massage 9, 26, 68; Message et and idiocy 12; and nomadology massage 44; Mutations 1990 44; 110–11; and teamness 9 Pour comprendre les médias 44, 87; grammatology 7, 39–41; écriture 37, 39, Through the Vanishing Point 120; 41; and logocentrism 40 Understanding Media 8, 13, 18–19, 23–4, 29, 68, 78, 85, 95; War and happenings 83, 119–20 Peace in the Global Village 16, 26 hemispheres 25 McLuhanacy 3, 84; McLuhanatic 108 McLuhan renaissance 1, 10, 12, 99",
"year": ""
}
] |
[
"5c1d8cb59cb00bb1",
"c6633ba2d12ec124",
"a310a37c1b47f60a",
"6535b732a473ba28",
"e9ba6550de23ec02",
"0d5c69611c295307",
"f592da160ec1ddb4",
"d2e9734c4421ee09",
"47b671b000a78551",
"310958592ae5da3f",
"26215087ab49e07e",
"fa37b3f0f53046f6",
"1ee6d0ecf1ecb932",
"9f2a61b376ec236e",
"3a58a1f373fe08ad"
] |
[
"fa37b3f0f53046f6",
"d2e9734c4421ee09",
"19de2c988c6c2332",
"72009ff64868e51b",
"f19409b86a70ca24",
"9f2a61b376ec236e",
"e6b7eeaf8ad6b223",
"c6633ba2d12ec124",
"9af835ad93ff8375",
"f7807e5acd71f6eb",
"bfc468e6b9bf61d7",
"408364478d5c5bc3",
"60856bc508182080",
"bf47ebe4281f5463",
"660b5e0fc81af1a1",
"47b671b000a78551",
"2c6133281ddeced7",
"e9ba6550de23ec02",
"b1fb8422dc5f145f",
"40b369cdc5146714",
"cacccffab6d0173f",
"fdfacf84466a6007",
"3891e35791d9b4d3",
"6535b732a473ba28",
"0d5c69611c295307",
"a310a37c1b47f60a",
"39ea51c87cdfdcfb",
"26215087ab49e07e",
"01e58a671c97e272",
"1c87dfa921ba5632",
"5fa9aa2730f12ca2",
"4e7ab44439d28f11",
"310958592ae5da3f",
"1ee6d0ecf1ecb932",
"f44a04269bc256d3",
"810e959b5eec514d",
"41fa17ea8f25f041",
"6ab67f000050dd70",
"6ba79661a5909460",
"197f781ecbd24bf7",
"7cc75e1e93d3bc0c",
"226900f0f371bacb",
"8934da566acf8e19",
"5c1d8cb59cb00bb1",
"2b79f80968473d37",
"bd31338cda9f7691",
"72a32ed25b20f8e0",
"6a9fa2e9cbff1198",
"c20a66332560e7e6",
"03d33a72011d64bc",
"ce6d5dc9074e479f",
"e7c111919528d2c6",
"8c48c1392dd7ed8c",
"3a58a1f373fe08ad",
"a85abea9bf4bd9d5",
"f592da160ec1ddb4",
"c661ae21b233dac3",
"81669c36bd24846d",
"91c481e1f83b609f",
"ea55ab31e6570568",
"02a9974b04f5400a",
"0388460ea95a1b6b",
"09b505623ae4c88c",
"71cb48d1b0f86277"
] |
xH0zbCNR5E
|
AdaBoost is not an Optimal Weak to Strong Learner
|
data/openreview_paper/ICML_2023_oral/xH0zbCNR5E//paper.pdf
| 14
| 6
|
[
{
"authors": [
"Gunnar Rätsch",
"Manfred K Warmuth"
],
"doi": "10.1007/3-540-45435-7_23",
"ref_id": "b12",
"title": "Maximizing the Margin with Boosting",
"year": "2005"
},
{
"authors": [
"L Breiman"
],
"doi": "",
"ref_id": "b0",
"title": "Prediction games and arcing algorithms",
"year": "1999"
},
{
"authors": [
"Steve Hanneke",
"Shay Moran",
"Qian Zhang"
],
"doi": "10.52202/079017-1356",
"ref_id": "b4",
"title": "Improved Sample Complexity for Multiclass PAC Learning",
"year": "2016"
},
{
"authors": [
"A Grønlund",
"L Kamma",
"K Green Larsen",
"A Mathiasen",
"J Nelson"
],
"doi": "",
"ref_id": "b2",
"title": "Margin-based generalization lower bounds for boosted classifiers",
"year": "2019"
},
{
"authors": [
"K G Larsen"
],
"doi": "",
"ref_id": "b8",
"title": "Bagging is an optimal PAC learner",
"year": "2022"
},
{
"authors": [
"Kasper Green Larsen",
"Markus Engelund Mathiasen",
"Mikael Møller Høgsgaard"
],
"doi": "10.52202/079017-1644",
"ref_id": "b9",
"title": "The Many Faces of Optimal Weak-to-Strong Learning",
"year": "2022. 2022"
}
] |
[
{
"authors": [
"L Breiman"
],
"doi": "",
"ref_id": "b0",
"title": "Prediction games and arcing algorithms",
"year": "1999"
},
{
"authors": [
"Y Freund",
"R E Schapire"
],
"doi": "",
"ref_id": "b1",
"title": "A decision-theoretic generalization of on-line learning and an application to boosting",
"year": "1997"
},
{
"authors": [
"A Grønlund",
"L Kamma",
"K Green Larsen",
"A Mathiasen",
"J Nelson"
],
"doi": "",
"ref_id": "b2",
"title": "Margin-based generalization lower bounds for boosted classifiers",
"year": "2019"
},
{
"authors": [
"A J Grove",
"D Schuurmans"
],
"doi": "",
"ref_id": "b3",
"title": "Boosting in the limit: Maximizing the margin of learned ensembles",
"year": "1998"
},
{
"authors": [
"Steve Hanneke",
"Shay Moran",
"Qian Zhang"
],
"doi": "10.52202/079017-1356",
"ref_id": "b4",
"title": "Improved Sample Complexity for Multiclass PAC Learning",
"year": "2016"
},
{
"authors": [
"S Janson"
],
"doi": "",
"ref_id": "b5",
"title": "Tail bounds for sums of geometric and exponential variables",
"year": "2018"
},
{
"authors": [
"Michael Kearns",
"Leslie Valiant"
],
"doi": "10.1145/174644.174647",
"ref_id": "b6",
"title": "Cryptographic limitations on learning Boolean formulae and finite automata",
"year": "1988"
},
{
"authors": [
"Michael Kearns",
"Leslie Valiant"
],
"doi": "10.1145/174644.174647",
"ref_id": "b7",
"title": "Cryptographic limitations on learning Boolean formulae and finite automata",
"year": "1994"
},
{
"authors": [
"K G Larsen"
],
"doi": "",
"ref_id": "b8",
"title": "Bagging is an optimal PAC learner",
"year": "2022"
},
{
"authors": [
"Kasper Green Larsen",
"Markus Engelund Mathiasen",
"Mikael Møller Høgsgaard"
],
"doi": "10.52202/079017-1644",
"ref_id": "b9",
"title": "The Many Faces of Optimal Weak-to-Strong Learning",
"year": "2022. 2022"
},
{
"authors": [
"S J Montgomery-Smith"
],
"doi": "10.1090/s0002-9939-1990-1013975-0",
"ref_id": "b10",
"title": "The distribution of Rademacher sums",
"year": "1990"
},
{
"authors": [
"Gunnar Rätsch",
"Manfred K Warmuth"
],
"doi": "10.1007/3-540-45435-7_23",
"ref_id": "b11",
"title": "Maximizing the Margin with Boosting",
"year": "2002"
},
{
"authors": [
"Gunnar Rätsch",
"Manfred K Warmuth"
],
"doi": "10.1007/3-540-45435-7_23",
"ref_id": "b12",
"title": "Maximizing the Margin with Boosting",
"year": "2005"
},
{
"authors": [
"Shai Shalev-Shwartz",
"Shai Ben-David"
],
"doi": "10.1017/cbo9781107298019",
"ref_id": "b13",
"title": "Understanding Machine Learning",
"year": "2014"
}
] |
[
"5ca39514f233c0df",
"69ab1cbde2f28bbd",
"b82f7bd2feca640f",
"d718862a676ea8dd",
"4444df5996d9bc51",
"84fb799807768595"
] |
[
"69ab1cbde2f28bbd",
"7afaab2049bc63eb",
"d718862a676ea8dd",
"f43aba351603236e",
"b82f7bd2feca640f",
"f36ee826c4611263",
"1f6c5e61cb2b4019",
"479538bf21f1861b",
"4444df5996d9bc51",
"84fb799807768595",
"9c744e1a98dd2b3a",
"c7627b2cbc5cce48",
"5ca39514f233c0df",
"16bf0ac41c1a6d8f"
] |
jawDXfCldp
|
Task-specific experimental design for treatment effect estimation
|
data/openreview_paper/ICML_2023_oral/jawDXfCldp//paper.pdf
| 36
| 7
|
[
{
"authors": [
"R Addanki",
"D Arbour",
"T Mai",
"C Musco",
"A Rao"
],
"doi": "",
"ref_id": "b0",
"title": "Sample constrained treatment effect estimation",
"year": "2022"
},
{
"authors": [
"O Sener",
"S Savarese"
],
"doi": "",
"ref_id": "b31",
"title": "Active learning for convolutional neural networks: A core-set approach",
"year": "2018"
},
{
"authors": [
"Farhad Pourkamali-Anaraki",
"Stephen Becker",
"Michael Wakin"
],
"doi": "10.1609/aaai.v32i1.11614",
"ref_id": "b21",
"title": "Randomized Clustered Nystrom for Large-Scale Kernel Machines",
"year": "2019"
},
{
"authors": [
"Kun Deng",
"Joelle Pineau",
"Susan Murphy"
],
"doi": "10.1109/adprl.2011.5967348",
"ref_id": "b3",
"title": "Active learning for personalizing treatment",
"year": "2011"
},
{
"authors": [
"Samrath Sinha",
"Sayna Ebrahimi",
"Trevor Darrell"
],
"doi": "10.1109/iccv.2019.00607",
"ref_id": "b32",
"title": "Variational Adversarial Active Learning",
"year": "2019"
},
{
"authors": [
"Zoltan Puha",
"Maurits Kaptein",
"Aurelie Lemmens"
],
"doi": "10.1109/icdmw51313.2020.00123",
"ref_id": "b22",
"title": "Batch Mode Active Learning for Individual Treatment Effect Estimation",
"year": "2020"
},
{
"authors": [
"Pengzhen Ren",
"Yun Xiao",
"Xiaojun Chang",
"Po-Yao Huang",
"Zhihui Li",
"Brij B Gupta",
"Xiaojiang Chen",
"Xin Wang"
],
"doi": "10.1145/3472291",
"ref_id": "b27",
"title": "A Survey of Deep Active Learning",
"year": "2021"
}
] |
[
{
"authors": [
"R Addanki",
"D Arbour",
"T Mai",
"C Musco",
"A Rao"
],
"doi": "",
"ref_id": "b0",
"title": "Sample constrained treatment effect estimation",
"year": "2022"
},
{
"authors": [
"R Agrawal",
"M Hegde",
"D Teneketzis"
],
"doi": "10.1109/cdc.1987.272574",
"ref_id": "b1",
"title": "The multi-armed bandit problem with switching cost",
"year": "2012"
},
{
"authors": [
"W Beluch",
"T Genewein",
"A Nürnberger",
"J Köhler"
],
"doi": "",
"ref_id": "b2",
"title": "The power of ensembles for active learning in image classification",
"year": "2018"
},
{
"authors": [
"Kun Deng",
"Joelle Pineau",
"Susan Murphy"
],
"doi": "10.1109/adprl.2011.5967348",
"ref_id": "b3",
"title": "Active learning for personalizing treatment",
"year": "2011"
},
{
"authors": [
"Floris Devriendt",
"Darie Moldovan",
"Wouter Verbeke"
],
"doi": "10.1089/big.2017.0104",
"ref_id": "b4",
"title": "A Literature Survey and Experimental Evaluation of the State-of-the-Art in Uplift Modeling: A Stepping Stone Toward the Development of Prescriptive Analytics",
"year": "2018"
},
{
"authors": [
"Floris Devriendt",
"Jeroen Berrevoets",
"Wouter Verbeke"
],
"doi": "10.1016/j.ins.2019.12.075",
"ref_id": "b5",
"title": "Why you should stop predicting customer churn and start using uplift models",
"year": "2021"
},
{
"authors": [
"E Diemert",
"A Betlei",
"C Renaudin",
"M.-R Amini"
],
"doi": "",
"ref_id": "b6",
"title": "A large scale benchmark for uplift modeling",
"year": "2018"
},
{
"authors": [
"R Greevy",
"B Lu",
"J Silber",
"P Rosenbaum"
],
"doi": "",
"ref_id": "b7",
"title": "Optimal multivariate matching before randomization",
"year": "2004"
},
{
"authors": [
"P Gutierrez",
"J.-Y Gérardy"
],
"doi": "10.1111/ele.14033/v1/review3",
"ref_id": "b8",
"title": "Review for \"Predictive models aren't for causal inference\"",
"year": "2017"
},
{
"authors": [
"Christopher Harshaw",
"Fredrik Sävje",
"Daniel A Spielman",
"Peng Zhang"
],
"doi": "10.1080/01621459.2023.2285474",
"ref_id": "b9",
"title": "Balancing Covariates in Randomized Experiments with the Gram–Schmidt Walk Design",
"year": "2019"
},
{
"authors": [
"G Hitsch",
"S Misra"
],
"doi": "",
"ref_id": "b10",
"title": "Heterogeneous treatment effects and optimal targeting policy evaluation",
"year": "2018"
},
{
"authors": [
"A Jesson",
"P Tigas",
"J Van Amersfoort",
"A Kirsch",
"U Shalit",
"Y Gal"
],
"doi": "",
"ref_id": "b11",
"title": "Causal-BALD: Deep bayesian active learning of outcomes to infer treatment-effects from observational data",
"year": "2021"
},
{
"authors": [
"N Kallus"
],
"doi": "",
"ref_id": "b12",
"title": "Optimal a priori balance in the design of controlled experiments",
"year": "2018"
},
{
"authors": [
"Emilie Kaufmann",
"Nathaniel Korda",
"Rémi Munos"
],
"doi": "10.1007/978-3-642-34106-9_18",
"ref_id": "b13",
"title": "Thompson Sampling: An Asymptotically Optimal Finite-Time Analysis",
"year": "2012"
},
{
"authors": [
"D Kingma",
"J Ba",
"Adam"
],
"doi": "",
"ref_id": "b14",
"title": "A method for stochastic optimization",
"year": "2015"
},
{
"authors": [
"Diederik P Kingma",
"Max Welling"
],
"doi": "10.1561/9781680836233",
"ref_id": "b15",
"title": "An Introduction to Variational Autoencoders",
"year": "2013"
},
{
"authors": [
"Sören R Künzel",
"Jasjeet S Sekhon",
"Peter J Bickel",
"Bin Yu"
],
"doi": "10.1073/pnas.1804597116",
"ref_id": "b16",
"title": "Metalearners for estimating heterogeneous treatment effects using machine learning",
"year": "2019"
},
{
"authors": [
"Georgios Markozannes",
"Georgia Vourli",
"Evangelia Ntzani"
],
"doi": "10.1186/s13643-021-01726-1",
"ref_id": "b17",
"title": "A survey of methodologies on causal inference methods in meta-analyses of randomized controlled trials",
"year": "2021"
},
{
"authors": [
"S Mindermann",
"J Brauner",
"M Razzak",
"M Sharma",
"A Kirsch",
"W Xu",
"B Höltgen",
"A Gomez",
"A Morisot",
"S Farquhar"
],
"doi": "",
"ref_id": "b18",
"title": "Prioritized training on points that are learnable, worth learning, and not yet learnt",
"year": "2022"
},
{
"authors": [
"Kari Lock Morgan",
"Donald B Rubin"
],
"doi": "10.1214/12-aos1008",
"ref_id": "b19",
"title": "Rerandomization to improve covariate balance in experiments",
"year": "2012"
},
{
"authors": [
"D Olaya",
"J Vásquez",
"S Maldonado",
"J Miranda",
"W Verbeke"
],
"doi": "",
"ref_id": "b20",
"title": "Uplift modeling for preventing student dropout in higher education",
"year": "2020"
},
{
"authors": [
"Farhad Pourkamali-Anaraki",
"Stephen Becker",
"Michael Wakin"
],
"doi": "10.1609/aaai.v32i1.11614",
"ref_id": "b21",
"title": "Randomized Clustered Nystrom for Large-Scale Kernel Machines",
"year": "2019"
},
{
"authors": [
"Zoltan Puha",
"Maurits Kaptein",
"Aurelie Lemmens"
],
"doi": "10.1109/icdmw51313.2020.00123",
"ref_id": "b22",
"title": "Batch Mode Active Learning for Individual Treatment Effect Estimation",
"year": "2020"
},
{
"authors": [
"Y Qi",
"Q Tang"
],
"doi": "",
"ref_id": "b23",
"title": "Predicting phase 3 clinical trial results by modeling phase 2 clinical trial subject level data using deep learning",
"year": "2019"
},
{
"authors": [
"T Qin",
"T.-Z Wang",
"Z.-H Zhou"
],
"doi": "",
"ref_id": "b24",
"title": "Budgeted heterogeneous treatment effect estimation",
"year": "2021"
},
{
"authors": [
"N Radcliffe"
],
"doi": "",
"ref_id": "b25",
"title": "Using control groups to target on predicted lift: Building and assessing uplift model",
"year": "2007"
},
{
"authors": [
"N Radcliffe",
"P Surry"
],
"doi": "10.1596/2817",
"ref_id": "b26",
"title": "2011 Philippines Development Report : Generating Inclusive Growth to Uplift the Poor",
"year": "2011"
},
{
"authors": [
"Pengzhen Ren",
"Yun Xiao",
"Xiaojun Chang",
"Po-Yao Huang",
"Zhihui Li",
"Brij B Gupta",
"Xiaojiang Chen",
"Xin Wang"
],
"doi": "10.1145/3472291",
"ref_id": "b27",
"title": "A Survey of Deep Active Learning",
"year": "2021"
},
{
"authors": [
"N Roy",
"A Mccallum"
],
"doi": "",
"ref_id": "b28",
"title": "Toward optimal active learning through Monte Carlo estimation of error reduction",
"year": "2001"
},
{
"authors": [
"Piotr Rzepakowski",
"Szymon Jaroszewicz"
],
"doi": "10.1007/s10115-011-0434-0",
"ref_id": "b29",
"title": "Decision trees for uplift modeling with single and multiple treatments",
"year": "2012"
},
{
"authors": [
"Peter Ag Sandercock",
"Maciej Niewada",
"Anna Członkowska"
],
"doi": "10.1186/1745-6215-12-101",
"ref_id": "b30",
"title": "The International Stroke Trial database",
"year": "2011"
},
{
"authors": [
"O Sener",
"S Savarese"
],
"doi": "",
"ref_id": "b31",
"title": "Active learning for convolutional neural networks: A core-set approach",
"year": "2018"
},
{
"authors": [
"Samrath Sinha",
"Sayna Ebrahimi",
"Trevor Darrell"
],
"doi": "10.1109/iccv.2019.00607",
"ref_id": "b32",
"title": "Variational Adversarial Active Learning",
"year": "2019"
},
{
"authors": [
"William R Thompson"
],
"doi": "10.2307/2332286",
"ref_id": "b33",
"title": "On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two Samples",
"year": "1933"
},
{
"authors": [
"Wouter Verbeke",
"Diego Olaya",
"Marie-Anne Guerry",
"Jente Van Belle"
],
"doi": "10.1016/j.ejor.2022.03.049",
"ref_id": "b34",
"title": "To do or not to do? Cost-sensitive causal classification with individual treatment effect estimates",
"year": "2023"
},
{
"authors": [
"Yan Zhao",
"Xiao Fang",
"David Simchi-Levi"
],
"doi": "10.1137/1.9781611974973.66",
"ref_id": "b35",
"title": "Uplift Modeling with Multiple Treatments and General Response Types",
"year": "2017"
}
] |
[
"8efa62385b60b6ea",
"2764e3a85994aa40",
"85ab2ff256628c6d",
"40f5620d05f9cdd7",
"f4d8324d66a89677",
"a67a03d038316595",
"2505801cf9e910d7"
] |
[
"8efa62385b60b6ea",
"f4bc58e301f0ee4b",
"931ba5f5e70df0c1",
"40f5620d05f9cdd7",
"0cae0d70badd971f",
"99c62ade857ddea4",
"d97c4233f8b8d89e",
"3784deead864e1d9",
"583f1b359583146b",
"2bd44725c2abaff3",
"996d62f7b1457119",
"9240cab27e2a0776",
"c8bd225fa5f8cc94",
"80b1fbe0095ccdd3",
"5e04c178bc5e147e",
"de39e9badb0c7703",
"2025574c37f58fa5",
"8cdb6eb80a332cb2",
"4e18fffb98d18149",
"a30475dee08ef4f8",
"db4b5df025d5ab23",
"85ab2ff256628c6d",
"a67a03d038316595",
"8064c78b9f08cb37",
"4d227565139c1f01",
"2f679fe5642673e8",
"b102be0b1c6f3435",
"2505801cf9e910d7",
"7cf8662e20cfda1e",
"058654496611b4fa",
"49c1b361e9b6993c",
"2764e3a85994aa40",
"f4d8324d66a89677",
"f1a771cfe329b7f2",
"1403ca77811274ca",
"3ac5370278524976"
] |
9PJ2V6qvQL
|
Inflow, Outflow, and Reciprocity in Machine Learning
|
data/openreview_paper/ICML_2023_oral/9PJ2V6qvQL//paper.pdf
| 31
| 0
|
[] |
[
{
"authors": [
"Martin Abadi",
"Andy Chu",
"Ian Goodfellow",
"H Brendan Mcmahan",
"Ilya Mironov",
"Kunal Talwar",
"Li Zhang"
],
"doi": "10.1145/2976749.2978318",
"ref_id": "b0",
"title": "Deep Learning with Differential Privacy",
"year": "2016"
},
{
"authors": [
"J Bobadilla",
"F Ortega",
"A Hernando",
"A Gutiérrez"
],
"doi": "10.1016/j.knosys.2013.03.012",
"ref_id": "b1",
"title": "Recommender systems survey",
"year": "2013"
},
{
"authors": [
"N Brajer",
"B Cozzi",
"M Gao",
"M Nichols",
"M Revoir",
"S Balu",
"J Futoma",
"J Bae",
"N Setji",
"A Hernandez",
"M Sendak"
],
"doi": "",
"ref_id": "b2",
"title": "Prospective and External Evaluation of a Machine Learning Model to Predict In-Hospital Mortality of Adults at Time of Admission",
"year": "2020"
},
{
"authors": [
"Cynthia Dwork",
"Aaron Roth"
],
"doi": "10.1561/0400000042",
"ref_id": "b3",
"title": "The Algorithmic Foundations of Differential Privacy",
"year": "2014"
},
{
"authors": [
"Bradley Efron",
"Trevor Hastie",
"Iain Johnstone",
"Robert Tibshirani"
],
"doi": "10.1214/009053604000000067",
"ref_id": "b4",
"title": "Least angle regression",
"year": "2004"
},
{
"authors": [
"E Fehr",
"S Gächter"
],
"doi": "",
"ref_id": "b5",
"title": "Fairness and retaliation: The economics of reciprocity",
"year": "September 2000"
},
{
"authors": [
"Amirata Ghorbani",
"James Zou",
"Andre Esteva"
],
"doi": "10.1109/ieeeconf56349.2022.10064696",
"ref_id": "b6",
"title": "Data Shapley Valuation for Efficient Batch Active Learning",
"year": "2019"
},
{
"authors": [
"J S Gill",
"K Tinckam",
"M C Fortin",
"C Rose",
"K Shick-Makaroff",
"K Young",
"J Lesage",
"E H Cole",
"M Toews",
"D N Landsberg",
"J Gill"
],
"doi": "10.1111/ajt.14275",
"ref_id": "b7",
"title": "Reciprocity to Increase Participation of Compatible Living Donor and Recipient Pairs in Kidney Paired Donation",
"year": "2017"
},
{
"authors": [
"Alvin W Gouldner"
],
"doi": "10.2307/2092623",
"ref_id": "b8",
"title": "The Norm of Reciprocity: A Preliminary Statement",
"year": "1960"
},
{
"authors": [
"J Guibert",
"A Rayón"
],
"doi": "",
"ref_id": "b9",
"title": "Uk's turing scheme",
"year": "Apr. 2021"
},
{
"authors": [
"Varun Gulshan",
"Lily Peng",
"Marc Coram",
"Martin C Stumpe",
"Derek Wu",
"Arunachalam Narayanaswamy",
"Subhashini Venugopalan",
"Kasumi Widner",
"Tom Madams",
"Jorge Cuadros",
"Ramasamy Kim",
"Rajiv Raman",
"Philip C Nelson",
"Jessica L Mega",
"Dale R Webster"
],
"doi": "10.1001/jama.2016.17216",
"ref_id": "b10",
"title": "Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs",
"year": "2016"
},
{
"authors": [
"S Hara",
"A Nitanda",
"T Maehara"
],
"doi": "",
"ref_id": "b11",
"title": "Data cleansing for models trained with sgd",
"year": "2019"
},
{
"authors": [
"F Maxwell Harper",
"Joseph A Konstan"
],
"doi": "10.1145/2827872",
"ref_id": "b12",
"title": "The MovieLens Datasets",
"year": "December 2015"
},
{
"authors": [
"David C Hoaglin",
"Roy E Welsch"
],
"doi": "10.1080/00031305.1978.10479237",
"ref_id": "b13",
"title": "The Hat Matrix in Regression and ANOVA",
"year": "1978"
},
{
"authors": [
"Ruoxi Jia",
"David Dao",
"Boxin Wang",
"Frances Ann Hubis",
"Nezihe Merve Gurel",
"Bo Li",
"Ce Zhang",
"Costas Spanos",
"Dawn Song"
],
"doi": "10.14778/3342263.3342637",
"ref_id": "b14",
"title": "Efficient task-specific data valuation for nearest neighbor algorithms",
"year": "2019"
},
{
"authors": [
"Peter Kairouz",
"H Brendan Mcmahan",
"Brendan Avent",
"Aurélien Bellet",
"Mehdi Bennis",
"Arjun Nitin Bhagoji",
"Kallista Bonawitz",
"Zachary Charles",
"Graham Cormode",
"Rachel Cummings",
"Rafael G L D’oliveira",
"Hubert Eichner",
"Salim El Rouayheb",
"David Evans",
"Josh Gardner",
"Zachary Garrett",
"Adrià Gascón",
"Badih Ghazi",
"Phillip B Gibbons",
"Marco Gruteser",
"Zaid Harchaoui",
"Chaoyang He",
"Lie He",
"Zhouyuan Huo",
"Ben Hutchinson",
"Justin Hsu",
"Martin Jaggi",
"Tara Javidi",
"Gauri Joshi",
"Mikhail Khodak",
"Jakub Konecný",
"Aleksandra Korolova",
"Farinaz Koushanfar",
"Sanmi Koyejo",
"Tancrède Lepoint",
"Yang Liu",
"Prateek Mittal",
"Mehryar Mohri",
"Richard Nock",
"Ayfer Özgür",
"Rasmus Pagh",
"Hang Qi",
"Daniel Ramage",
"Ramesh Raskar",
"Mariana Raykova",
"Dawn Song",
"Weikang Song",
"Sebastian U Stich",
"Ziteng Sun",
"Ananda Theertha Suresh",
"Florian Tramèr",
"Praneeth Vepakomma",
"Jianyu Wang",
"Li Xiong",
"Zheng Xu",
"Qiang Yang",
"Felix X Yu",
"Han Yu",
"Sen Zhao"
],
"doi": "10.1561/9781680837896",
"ref_id": "b15",
"title": "Advances and Open Problems in Federated Learning",
"year": "jun 2021"
},
{
"authors": [
"P W Koh",
"P Liang"
],
"doi": "",
"ref_id": "b16",
"title": "Understanding black-box predictions via influence functions",
"year": "2017"
},
{
"authors": [
"P W Koh",
"P Liang"
],
"doi": "",
"ref_id": "b17",
"title": "Understanding black-box predictions via influence functions",
"year": "06-11 Aug 2017b"
},
{
"authors": [
"Yehuda Koren",
"Robert Bell"
],
"doi": "10.1007/978-1-4899-7637-6_3",
"ref_id": "b18",
"title": "Advances in Collaborative Filtering",
"year": "2015"
},
{
"authors": [
"Yehuda Koren",
"Robert Bell",
"Chris Volinsky"
],
"doi": "10.1109/mc.2009.263",
"ref_id": "b19",
"title": "Matrix Factorization Techniques for Recommender Systems",
"year": "2009"
},
{
"authors": [
"Ninareh Mehrabi",
"Fred Morstatter",
"Nripsuta Saxena",
"Kristina Lerman",
"Aram Galstyan"
],
"doi": "10.1145/3457607",
"ref_id": "b20",
"title": "A Survey on Bias and Fairness in Machine Learning",
"year": "jul 2021"
},
{
"authors": [
"R Pascanu",
"T Mikolov",
"Y Bengio"
],
"doi": "",
"ref_id": "b21",
"title": "On the difficulty of training recurrent neural networks",
"year": "2013"
},
{
"authors": [
"Marco V Perez",
"Kenneth W Mahaffey",
"Haley Hedlin",
"John S Rumsfeld",
"Ariadna Garcia",
"Todd Ferris",
"Vidhya Balasubramanian",
"Andrea M Russo",
"Amol Rajmane",
"Lauren Cheung",
"Grace Hung",
"Justin Lee",
"Peter Kowey",
"Nisha Talati",
"Divya Nag",
"Santosh E Gummidipundi",
"Alexis Beatty",
"Mellanie True Hills",
"Sumbul Desai",
"Christopher B Granger",
"Manisha Desai",
"Mintu P Turakhia"
],
"doi": "10.1056/nejmoa1901183",
"ref_id": "b22",
"title": "Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation",
"year": "2019"
},
{
"authors": [
"G Pruthi",
"F Liu",
"S Kale",
"M Sundararajan"
],
"doi": "",
"ref_id": "b23",
"title": "Estimating training data influence by tracing gradient descent",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b24",
"title": "",
"year": "2020"
},
{
"authors": [
"Alvin Rajkomar",
"Eyal Oren",
"Kai Chen",
"Andrew M Dai",
"Nissan Hajaj",
"Michaela Hardt",
"Peter J Liu",
"Xiaobing Liu",
"Jake Marcus",
"Mimi Sun",
"Patrik Sundberg",
"Hector Yee",
"Kun Zhang",
"Yi Zhang",
"Gerardo Flores",
"Gavin E Duggan",
"Jamie Irvine",
"Quoc Le",
"Kurt Litsch",
"Alexander Mossin",
"Justin Tansuwan",
"De Wang",
"James Wexler",
"Jimbo Wilson",
"Dana Ludwig",
"Samuel L Volchenboum",
"Katherine Chou",
"Michael Pearson",
"Srinivasan Madabushi",
"Nigam H Shah",
"Atul J Butte",
"Michael D Howell",
"Claire Cui",
"Greg S Corrado",
"Jeffrey Dean"
],
"doi": "10.1038/s41746-018-0029-1",
"ref_id": "b25",
"title": "Scalable and accurate deep learning with electronic health records",
"year": "2018"
},
{
"authors": [
"Ahmed Rashed",
"Josif Grabocka",
"Lars Schmidt-Thieme"
],
"doi": "10.1145/3298689.3346999",
"ref_id": "b26",
"title": "Attribute-aware non-linear co-embeddings of graph features",
"year": "2019"
},
{
"authors": [
"M Sundararajan",
"A Najmi"
],
"doi": "",
"ref_id": "b27",
"title": "The many shapley values for model explanation",
"year": "Jul 2020"
},
{
"authors": [
"D Wang",
"A Khosla",
"R Gargeya",
"H Irshad",
"A H Beck"
],
"doi": "",
"ref_id": "b28",
"title": "Deep learning for identifying metastatic breast cancer",
"year": "2016"
},
{
"authors": [
"C.-K Yeh",
"J Kim",
"I E Yen",
"-H Ravikumar",
"P K"
],
"doi": "",
"ref_id": "b29",
"title": "Representer point selection for explaining deep neural networks",
"year": "2018"
},
{
"authors": [
"S Zhang",
"L Yao",
"X Xu"
],
"doi": "",
"ref_id": "b30",
"title": "Autosvd++: An efficient hybrid collaborative filtering model via contractive autoencoders",
"year": "2017"
}
] |
[] |
[
"19a953f2de80c505",
"66594edd1f1f6204",
"4e0bd9743fd05020",
"13dee622b725cef9",
"940bd5518080058b",
"f93bd585b06fb7c2",
"54e25004693d4733",
"dfdff538e1d5e121",
"a27b7c681418c6d1",
"ce348f542b06c026",
"2929b13b08d872d6",
"24d3020a60296bec",
"3c3ed0e3040c9e64",
"8579255cca88becf",
"c943090ade63727b",
"d897bf5d6607fd24",
"742aafa522701b93",
"af60b7c4bfd1a7ee",
"6ca3694d93a97668",
"8de512c64a921e31",
"73ee6213735f6c26",
"13728e4d01c0ffe5",
"1ea9e4816c0cea2d",
"1739b4a697237805",
"c27b3e365f55765e",
"a5c7099590799bfd",
"dffc7951644d8602",
"2c7fccccc3746cc6",
"0ffe7a96c58745d9",
"b5a6133a45cb0d54",
"968c78ab403a40e4"
] |
qrH8ERUBcE
|
Hierarchies of Reward Machines
|
data/openreview_paper/ICML_2023_oral/qrH8ERUBcE//paper.pdf
| 65
| 37
|
[
{
"authors": [
"Christos K Verginis",
"Cevahir Koprulu",
"Sandeep Chinchali",
"Ufuk Topcu"
],
"doi": "10.1016/j.artint.2024.104146",
"ref_id": "b63",
"title": "Joint learning of reward machines and policies in environments with partially known semantics",
"year": "2022"
},
{
"authors": [
"Rodrigo Toro Icarte",
"Toryn Q Klassen",
"Richard Valenzano",
"Margarita P Castro",
"Ethan Waldie",
"Sheila A Mcilraith"
],
"doi": "10.1016/j.artint.2023.103989",
"ref_id": "b60",
"title": "Learning reward machines: A study in partially observable reinforcement learning",
"year": "2019"
},
{
"authors": [
"Matteo Leonetti",
"Luca Iocchi",
"Fabio Patrizi"
],
"doi": "10.1007/978-3-642-33185-5_15",
"ref_id": "b41",
"title": "Automatic Generation and Learning of Finite-State Controllers",
"year": "2012"
},
{
"authors": [
"A Levy",
"G D Konidaris",
"R P Jr",
"K Saenko"
],
"doi": "",
"ref_id": "b42",
"title": "Learning Multi-Level Hierarchies with Hindsight",
"year": "2019"
},
{
"authors": [
"Giuseppe De Giacomo",
"Marco Favorito",
"Luca Iocchi",
"Fabio Patrizi",
"Alessandro Ronca"
],
"doi": "10.24963/kr.2020/89",
"ref_id": "b18",
"title": "Temporal Logic Monitoring Rewards via Transducers",
"year": "2020"
},
{
"authors": [
"Guan Wang",
"Carl Trimbach",
"Jun Ki Lee",
"Mark K Ho",
"Michael L Littman"
],
"doi": "10.1145/3319502.3374824",
"ref_id": "b64",
"title": "Teaching a Robot Tasks of Arbitrary Complexity via Human Feedback",
"year": "2020"
},
{
"authors": [
"G Nangue Tasse",
"S D James",
"B Rosman"
],
"doi": "",
"ref_id": "b49",
"title": "A Boolean Task Algebra for Reinforcement Learning",
"year": "2020"
},
{
"authors": [
"Rodrigo Toro Icarte",
"Toryn Q Klassen",
"Richard Valenzano",
"Sheila A Mcilraith"
],
"doi": "10.1613/jair.1.12440",
"ref_id": "b59",
"title": "Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning",
"year": "2018"
},
{
"authors": [
"D Andre",
"S J Russell"
],
"doi": "",
"ref_id": "b0",
"title": "Programmable Reinforcement Learning Agents",
"year": "2000"
},
{
"authors": [
"Cyrus Neary",
"Zhe Xu",
"Bo Wu",
"Ufuk Topcu"
],
"doi": "10.65109/fzbc2933",
"ref_id": "b50",
"title": "Reward Machines for Cooperative Multi-Agent Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"M Chevalier-Boisvert",
"D Bahdanau",
"S Lahlou",
"L Willems",
"C Saharia",
"T H Nguyen",
"Y Bengio",
"Babyai"
],
"doi": "",
"ref_id": "b13",
"title": "A Platform to Study the Sample Efficiency of Grounded Language Learning",
"year": "2019"
},
{
"authors": [
"A C Li",
"Z Chen",
"P Vaezipoor",
"T Q Klassen",
"R Toro Icarte",
"S A Mcilraith"
],
"doi": "",
"ref_id": "b43",
"title": "Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines",
"year": "2022"
},
{
"authors": [
"A Mcgovern",
"A G Barto"
],
"doi": "",
"ref_id": "b46",
"title": "Automatic Discovery of Subgoals in Reinforcement Learning using Diverse Density",
"year": "2001"
},
{
"authors": [
"Martin Stolle",
"Doina Precup"
],
"doi": "10.1007/3-540-45622-8_16",
"ref_id": "b55",
"title": "Learning Options in Reinforcement Learning",
"year": "2002"
},
{
"authors": [
"Michael Dann",
"Yuan Yao",
"Natasha Alechina",
"Brian Logan",
"John Thangarajah"
],
"doi": "10.24963/ijcai.2022/31",
"ref_id": "b17",
"title": "Multi-Agent Intention Progression with Reward Machines",
"year": "2022"
},
{
"authors": [
"M C Machado",
"M G Bellemare",
"M H Bowling"
],
"doi": "",
"ref_id": "b44",
"title": "A Laplacian Framework for Option Discovery in Reinforcement Learning",
"year": "2017"
},
{
"authors": [
"Maor Gaon",
"Ronen Brafman"
],
"doi": "10.1609/aaai.v34i04.5814",
"ref_id": "b24",
"title": "Reinforcement Learning with Non-Markovian Rewards",
"year": "2020"
},
{
"authors": [
"Y Jinnai",
"J W Park",
"D Abel",
"G D Konidaris"
],
"doi": "",
"ref_id": "b32",
"title": "Discovering Options for Exploration by Minimizing Cover Time",
"year": "2019"
},
{
"authors": [
"Will Dabney",
"André Barreto",
"Mark Rowland",
"Robert Dadashi",
"John Quan",
"Marc G. Bellemare",
"David Silver"
],
"doi": "10.1609/aaai.v35i8.16880",
"ref_id": "b16",
"title": "The Value-Improvement Path: Towards Better Representations for Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"Taylor Dohmen",
"Noah Topper",
"George Atia",
"Andre Beckus",
"Ashutosh Trivedi",
"Alvaro Velasquez"
],
"doi": "10.1609/icaps.v32i1.19844",
"ref_id": "b21",
"title": "Inferring Probabilistic Reward Machines from Non-Markovian Reward Signals for Reinforcement Learning",
"year": "2022"
},
{
"authors": [
"T D Kulkarni",
"K Narasimhan",
"A Saeedi",
"J Tenenbaum"
],
"doi": "",
"ref_id": "b35",
"title": "Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation",
"year": "2016"
},
{
"authors": [
"Mohammadhosein Hasanbeig",
"Natasha Yogananda Jeppu",
"Alessandro Abate",
"Tom Melham",
"Daniel Kroening"
],
"doi": "10.1609/aaai.v35i9.16935",
"ref_id": "b27",
"title": "DeepSynth: Automata Synthesis for Automatic Task Segmentation in Deep Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"P Bacon",
"J Harb",
"D Precup"
],
"doi": "",
"ref_id": "b5",
"title": "The Option-Critic Architecture",
"year": "2017"
},
{
"authors": [
"K Jothimurugan",
"R Alur",
"O Bastani"
],
"doi": "",
"ref_id": "b33",
"title": "A Composable Specification Language for Reinforcement Learning Tasks",
"year": "2019"
},
{
"authors": [
"H Bourel",
"A Jonsson",
"O.-A Maillard",
"M Sadegh Talebi"
],
"doi": "",
"ref_id": "b9",
"title": "Exploration in Reward Machines with Low Regret",
"year": "2023"
},
{
"authors": [
"Daniel Furelos-Blanco",
"Mark Law",
"Anders Jonsson",
"Krysia Broda",
"Alessandra Russo"
],
"doi": "10.1613/jair.1.12372",
"ref_id": "b23",
"title": "Induction and Exploitation of Subgoal Automata for Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"Brandon Araki",
"Kiran Vodrahalli",
"Thomas Leech",
"Cristian-Ioan Vasile",
"Mark Donahue",
"Daniela Rus"
],
"doi": "10.1007/s10514-021-09993-6",
"ref_id": "b3",
"title": "Learning and planning with logical automata",
"year": "2021"
},
{
"authors": [
"J Andreas",
"D Klein",
"S Levine"
],
"doi": "",
"ref_id": "b1",
"title": "Modular Multitask Reinforcement Learning with Policy Sketches",
"year": "2017"
},
{
"authors": [
"Marc G. Bellemare",
"Georg Ostrovski",
"Arthur Guez",
"Philip Thomas",
"Remi Munos"
],
"doi": "10.1609/aaai.v30i1.10303",
"ref_id": "b7",
"title": "Increasing the Action Gap: New Operators for Reinforcement Learning",
"year": "2016"
},
{
"authors": [
"A Camacho",
"J Varley",
"A Zeng",
"D Jain",
"A Iscen",
"D Kalashnikov"
],
"doi": "",
"ref_id": "b11",
"title": "Reward Machines for Vision-Based Robotic Manipulation",
"year": "2021"
},
{
"authors": [
"León Illanes",
"Xi Yan",
"Rodrigo Toro Icarte",
"Sheila A Mcilraith"
],
"doi": "10.1609/icaps.v30i1.6750",
"ref_id": "b30",
"title": "Symbolic Plans as High-Level Instructions for Reinforcement Learning",
"year": "2020"
},
{
"authors": [
"R Parr",
"S J Russell"
],
"doi": "",
"ref_id": "b51",
"title": "Reinforcement Learning with Hierarchies of Machines",
"year": "1997"
},
{
"authors": [
"B G León",
"M Shanahan",
"F Belardinelli"
],
"doi": "",
"ref_id": "b40",
"title": "Systematic Generalisation through Task Temporal Logic and Deep Reinforcement Learning",
"year": "2020"
},
{
"authors": [
"P J K Christoffersen",
"A C Li",
"R Toro Icarte",
"S A Mcilraith"
],
"doi": "",
"ref_id": "b14",
"title": "Learning Symbolic Representations for Reinforcement Learning of Non-Markovian Behavior",
"year": "2020"
},
{
"authors": [
"Alberto Camacho",
"Rodrigo Toro Icarte",
"Toryn Q Klassen",
"Richard Valenzano",
"Sheila A Mcilraith"
],
"doi": "10.24963/ijcai.2019/840",
"ref_id": "b10",
"title": "LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning",
"year": "2019"
},
{
"authors": [
"Leo Ardon",
"Daniel Furelos-Blanco",
"Alessandra Russo"
],
"doi": "10.1007/978-3-031-56255-6_3",
"ref_id": "b4",
"title": "Learning Reward Machines in Cooperative Multi-agent Tasks",
"year": "2023"
},
{
"authors": [
"Jan Corazza",
"Ivan Gavran",
"Daniel Neider"
],
"doi": "10.1609/aaai.v36i6.20594",
"ref_id": "b15",
"title": "Reinforcement Learning with Stochastic Reward Machines",
"year": "2022"
}
] |
[
{
"authors": [
"D Andre",
"S J Russell"
],
"doi": "",
"ref_id": "b0",
"title": "Programmable Reinforcement Learning Agents",
"year": "2000"
},
{
"authors": [
"J Andreas",
"D Klein",
"S Levine"
],
"doi": "",
"ref_id": "b1",
"title": "Modular Multitask Reinforcement Learning with Policy Sketches",
"year": "2017"
},
{
"authors": [
"Dana Angluin"
],
"doi": "10.1016/s0019-9958(80)90285-5",
"ref_id": "b2",
"title": "Inductive inference of formal languages from positive data",
"year": "1980"
},
{
"authors": [
"Brandon Araki",
"Kiran Vodrahalli",
"Thomas Leech",
"Cristian-Ioan Vasile",
"Mark Donahue",
"Daniela Rus"
],
"doi": "10.1007/s10514-021-09993-6",
"ref_id": "b3",
"title": "Learning and planning with logical automata",
"year": "2021"
},
{
"authors": [
"Leo Ardon",
"Daniel Furelos-Blanco",
"Alessandra Russo"
],
"doi": "10.1007/978-3-031-56255-6_3",
"ref_id": "b4",
"title": "Learning Reward Machines in Cooperative Multi-agent Tasks",
"year": "2023"
},
{
"authors": [
"P Bacon",
"J Harb",
"D Precup"
],
"doi": "",
"ref_id": "b5",
"title": "The Option-Critic Architecture",
"year": "2017"
},
{
"authors": [
"Andrew G Barto",
"Sridhar Mahadevan"
],
"doi": "10.1023/a:1025696116075",
"ref_id": "b6",
"title": "Recent Advances in Hierarchical Reinforcement Learning",
"year": "2003"
},
{
"authors": [
"Marc G. Bellemare",
"Georg Ostrovski",
"Arthur Guez",
"Philip Thomas",
"Remi Munos"
],
"doi": "10.1609/aaai.v30i1.10303",
"ref_id": "b7",
"title": "Increasing the Action Gap: New Operators for Reinforcement Learning",
"year": "2016"
},
{
"authors": [
"Yoshua Bengio",
"Jérôme Louradour",
"Ronan Collobert",
"Jason Weston"
],
"doi": "10.1145/1553374.1553380",
"ref_id": "b8",
"title": "Curriculum learning",
"year": "2009"
},
{
"authors": [
"H Bourel",
"A Jonsson",
"O.-A Maillard",
"M Sadegh Talebi"
],
"doi": "",
"ref_id": "b9",
"title": "Exploration in Reward Machines with Low Regret",
"year": "2023"
},
{
"authors": [
"Alberto Camacho",
"Rodrigo Toro Icarte",
"Toryn Q Klassen",
"Richard Valenzano",
"Sheila A Mcilraith"
],
"doi": "10.24963/ijcai.2019/840",
"ref_id": "b10",
"title": "LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning",
"year": "2019"
},
{
"authors": [
"A Camacho",
"J Varley",
"A Zeng",
"D Jain",
"A Iscen",
"D Kalashnikov"
],
"doi": "",
"ref_id": "b11",
"title": "Reward Machines for Vision-Based Robotic Manipulation",
"year": "2021"
},
{
"authors": [
"M Chevalier-Boisvert",
"L Willems",
"S Pal"
],
"doi": "",
"ref_id": "b12",
"title": "Minimalistic Gridworld Environment for OpenAI Gym",
"year": "2018"
},
{
"authors": [
"M Chevalier-Boisvert",
"D Bahdanau",
"S Lahlou",
"L Willems",
"C Saharia",
"T H Nguyen",
"Y Bengio",
"Babyai"
],
"doi": "",
"ref_id": "b13",
"title": "A Platform to Study the Sample Efficiency of Grounded Language Learning",
"year": "2019"
},
{
"authors": [
"P J K Christoffersen",
"A C Li",
"R Toro Icarte",
"S A Mcilraith"
],
"doi": "",
"ref_id": "b14",
"title": "Learning Symbolic Representations for Reinforcement Learning of Non-Markovian Behavior",
"year": "2020"
},
{
"authors": [
"Jan Corazza",
"Ivan Gavran",
"Daniel Neider"
],
"doi": "10.1609/aaai.v36i6.20594",
"ref_id": "b15",
"title": "Reinforcement Learning with Stochastic Reward Machines",
"year": "2022"
},
{
"authors": [
"Will Dabney",
"André Barreto",
"Mark Rowland",
"Robert Dadashi",
"John Quan",
"Marc G. Bellemare",
"David Silver"
],
"doi": "10.1609/aaai.v35i8.16880",
"ref_id": "b16",
"title": "The Value-Improvement Path: Towards Better Representations for Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"Michael Dann",
"Yuan Yao",
"Natasha Alechina",
"Brian Logan",
"John Thangarajah"
],
"doi": "10.24963/ijcai.2022/31",
"ref_id": "b17",
"title": "Multi-Agent Intention Progression with Reward Machines",
"year": "2022"
},
{
"authors": [
"Giuseppe De Giacomo",
"Marco Favorito",
"Luca Iocchi",
"Fabio Patrizi",
"Alessandro Ronca"
],
"doi": "10.24963/kr.2020/89",
"ref_id": "b18",
"title": "Temporal Logic Monitoring Rewards via Transducers",
"year": "2020"
},
{
"authors": [
"T G Dietterich"
],
"doi": "10.1613/jair.639",
"ref_id": "b19",
"title": "Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition",
"year": "2000"
},
{
"authors": [
"T G Dietterich",
"P M Domingos",
"L Getoor",
"S Muggleton",
"P Tadepalli"
],
"doi": "",
"ref_id": "b20",
"title": "Structured machine learning: the next ten years",
"year": "2008"
},
{
"authors": [
"Taylor Dohmen",
"Noah Topper",
"George Atia",
"Andre Beckus",
"Ashutosh Trivedi",
"Alvaro Velasquez"
],
"doi": "10.1609/icaps.v32i1.19844",
"ref_id": "b21",
"title": "Inferring Probabilistic Reward Machines from Non-Markovian Reward Signals for Reinforcement Learning",
"year": "2022"
},
{
"authors": [
"Thomas Eiter",
"Georg Gottlob"
],
"doi": "10.1007/bf01536399",
"ref_id": "b22",
"title": "On the computational cost of disjunctive logic programming: Propositional case",
"year": "1995"
},
{
"authors": [
"Daniel Furelos-Blanco",
"Mark Law",
"Anders Jonsson",
"Krysia Broda",
"Alessandra Russo"
],
"doi": "10.1613/jair.1.12372",
"ref_id": "b23",
"title": "Induction and Exploitation of Subgoal Automata for Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"Maor Gaon",
"Ronen Brafman"
],
"doi": "10.1609/aaai.v34i04.5814",
"ref_id": "b24",
"title": "Reinforcement Learning with Non-Markovian Rewards",
"year": "2020"
},
{
"authors": [
"M Gelfond",
"Y Kahl"
],
"doi": "",
"ref_id": "b25",
"title": "Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach",
"year": "2014"
},
{
"authors": [
"M Gelfond",
"V Lifschitz"
],
"doi": "",
"ref_id": "b26",
"title": "The Stable Model Semantics for Logic Programming",
"year": "1988"
},
{
"authors": [
"Mohammadhosein Hasanbeig",
"Natasha Yogananda Jeppu",
"Alessandro Abate",
"Tom Melham",
"Daniel Kroening"
],
"doi": "10.1609/aaai.v35i9.16935",
"ref_id": "b27",
"title": "DeepSynth: Automata Synthesis for Automatic Task Segmentation in Deep Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"G Hinton",
"N Srivastava",
"K Swersky"
],
"doi": "",
"ref_id": "b28",
"title": "Neural Networks for Machine Learning -Lecture 6e -RMSprop: Divide the Gradient by a Running Average of its Recent Magnitude",
"year": "2012"
},
{
"authors": [
"M Igl",
"K Ciosek",
"Y Li",
"S Tschiatschek",
"C Zhang",
"S Devlin",
"K Hofmann"
],
"doi": "",
"ref_id": "b29",
"title": "Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck",
"year": "2019"
},
{
"authors": [
"León Illanes",
"Xi Yan",
"Rodrigo Toro Icarte",
"Sheila A Mcilraith"
],
"doi": "10.1609/icaps.v30i1.6750",
"ref_id": "b30",
"title": "Symbolic Plans as High-Level Instructions for Reinforcement Learning",
"year": "2020"
},
{
"authors": [
"M Jiang",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b31",
"title": "Prioritized Level Replay",
"year": "2021"
},
{
"authors": [
"Y Jinnai",
"J W Park",
"D Abel",
"G D Konidaris"
],
"doi": "",
"ref_id": "b32",
"title": "Discovering Options for Exploration by Minimizing Cover Time",
"year": "2019"
},
{
"authors": [
"K Jothimurugan",
"R Alur",
"O Bastani"
],
"doi": "",
"ref_id": "b33",
"title": "A Composable Specification Language for Reinforcement Learning Tasks",
"year": "2019"
},
{
"authors": [
"A Karpathy",
"Reinforcejs"
],
"doi": "10.2307/j.ctv2gs4gv7.9",
"ref_id": "b34",
"title": "Waterworld",
"year": "2015"
},
{
"authors": [
"T D Kulkarni",
"K Narasimhan",
"A Saeedi",
"J Tenenbaum"
],
"doi": "",
"ref_id": "b35",
"title": "Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation",
"year": "2016"
},
{
"authors": [
"M Law"
],
"doi": "",
"ref_id": "b36",
"title": "Inductive Learning of Answer Set Programs",
"year": "2018"
},
{
"authors": [
"Mark Law",
"Alessandra Russo",
"Krysia Broda"
],
"doi": "10.1016/j.artint.2018.03.005",
"ref_id": "b37",
"title": "The complexity and generality of learning answer set programs",
"year": "2015"
},
{
"authors": [
"Mark Law",
"Alessandra Russo",
"Krysia Broda"
],
"doi": "10.1017/s1471068416000351",
"ref_id": "b38",
"title": "Iterative Learning of Answer Set Programs from Context Dependent Examples",
"year": "2016"
},
{
"authors": [
"M Law",
"A Russo",
"K Broda"
],
"doi": "",
"ref_id": "b39",
"title": "The Meta-program Injection Feature in ILASP",
"year": "June 2018"
},
{
"authors": [
"B G León",
"M Shanahan",
"F Belardinelli"
],
"doi": "",
"ref_id": "b40",
"title": "Systematic Generalisation through Task Temporal Logic and Deep Reinforcement Learning",
"year": "2020"
},
{
"authors": [
"Matteo Leonetti",
"Luca Iocchi",
"Fabio Patrizi"
],
"doi": "10.1007/978-3-642-33185-5_15",
"ref_id": "b41",
"title": "Automatic Generation and Learning of Finite-State Controllers",
"year": "2012"
},
{
"authors": [
"A Levy",
"G D Konidaris",
"R P Jr",
"K Saenko"
],
"doi": "",
"ref_id": "b42",
"title": "Learning Multi-Level Hierarchies with Hindsight",
"year": "2019"
},
{
"authors": [
"A C Li",
"Z Chen",
"P Vaezipoor",
"T Q Klassen",
"R Toro Icarte",
"S A Mcilraith"
],
"doi": "",
"ref_id": "b43",
"title": "Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines",
"year": "2022"
},
{
"authors": [
"M C Machado",
"M G Bellemare",
"M H Bowling"
],
"doi": "",
"ref_id": "b44",
"title": "A Laplacian Framework for Option Discovery in Reinforcement Learning",
"year": "2017"
},
{
"authors": [
"T Matiisen",
"A Oliver",
"T Cohen",
"J Schulman"
],
"doi": "",
"ref_id": "b45",
"title": "Teacher-Student Curriculum Learning",
"year": "2020"
},
{
"authors": [
"A Mcgovern",
"A G Barto"
],
"doi": "",
"ref_id": "b46",
"title": "Automatic Discovery of Subgoals in Reinforcement Learning using Diverse Density",
"year": "2001"
},
{
"authors": [
"Steven Minton"
],
"doi": "10.1016/0004-3702(90)90059-9",
"ref_id": "b47",
"title": "Quantitative results concerning the utility of explanation-based learning",
"year": "1988"
},
{
"authors": [
"V Mnih",
"K Kavukcuoglu",
"D Silver",
"A A Rusu",
"J Veness",
"M G Bellemare",
"A Graves",
"M A Riedmiller",
"A Fidjeland",
"G Ostrovski",
"S Petersen",
"C Beattie",
"A Sadik",
"I Antonoglou",
"H King",
"D Kumaran",
"D Wierstra",
"S Legg",
"D Hassabis"
],
"doi": "",
"ref_id": "b48",
"title": "Human-level control through deep reinforcement learning",
"year": "2015"
},
{
"authors": [
"G Nangue Tasse",
"S D James",
"B Rosman"
],
"doi": "",
"ref_id": "b49",
"title": "A Boolean Task Algebra for Reinforcement Learning",
"year": "2020"
},
{
"authors": [
"Cyrus Neary",
"Zhe Xu",
"Bo Wu",
"Ufuk Topcu"
],
"doi": "10.65109/fzbc2933",
"ref_id": "b50",
"title": "Reward Machines for Cooperative Multi-Agent Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"R Parr",
"S J Russell"
],
"doi": "",
"ref_id": "b51",
"title": "Reinforcement Learning with Hierarchies of Machines",
"year": "1997"
},
{
"authors": [
"T Pierrot",
"G Ligner",
"S E Reed",
"O Sigaud",
"N Perrin",
"A Laterre",
"D Kas",
"K Beguir",
"N Freitas"
],
"doi": "",
"ref_id": "b52",
"title": "Learning Compositional Neural Programs with Recursive Tree Search and Planning",
"year": "2019"
},
{
"authors": [
"S Sidor"
],
"doi": "",
"ref_id": "b53",
"title": "Reinforcement Learning with Natural Language Signals",
"year": "2016"
},
{
"authors": [
"M Sipser"
],
"doi": "",
"ref_id": "b54",
"title": "Introduction to the Theory of Computation",
"year": "1997"
},
{
"authors": [
"Martin Stolle",
"Doina Precup"
],
"doi": "10.1007/3-540-45622-8_16",
"ref_id": "b55",
"title": "Learning Options in Reinforcement Learning",
"year": "2002"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b56",
"title": "Reinforcement Learning: An Introduction",
"year": "2018"
},
{
"authors": [
"R S Sutton",
"D Precup",
"S P Singh"
],
"doi": "",
"ref_id": "b57",
"title": "Intra-Option Learning about Temporally Abstract Actions",
"year": "1998"
},
{
"authors": [
"R S Sutton",
"D Precup",
"S P Singh"
],
"doi": "",
"ref_id": "b58",
"title": "Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning",
"year": "1999"
},
{
"authors": [
"Rodrigo Toro Icarte",
"Toryn Q Klassen",
"Richard Valenzano",
"Sheila A Mcilraith"
],
"doi": "10.1613/jair.1.12440",
"ref_id": "b59",
"title": "Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning",
"year": "2018"
},
{
"authors": [
"Rodrigo Toro Icarte",
"Toryn Q Klassen",
"Richard Valenzano",
"Margarita P Castro",
"Ethan Waldie",
"Sheila A Mcilraith"
],
"doi": "10.1016/j.artint.2023.103989",
"ref_id": "b60",
"title": "Learning reward machines: A study in partially observable reinforcement learning",
"year": "2019"
},
{
"authors": [
"R Toro Icarte",
"T Q Klassen",
"R Valenzano",
"S A Mcilraith"
],
"doi": "",
"ref_id": "b61",
"title": "Reward Machines: Exploiting Reward Function Structure in Reinforcement Learning",
"year": "2022"
},
{
"authors": [
"Hado Van Hasselt",
"Arthur Guez",
"David Silver"
],
"doi": "10.1609/aaai.v30i1.10295",
"ref_id": "b62",
"title": "Deep Reinforcement Learning with Double Q-Learning",
"year": "2016"
},
{
"authors": [
"Christos K Verginis",
"Cevahir Koprulu",
"Sandeep Chinchali",
"Ufuk Topcu"
],
"doi": "10.1016/j.artint.2024.104146",
"ref_id": "b63",
"title": "Joint learning of reward machines and policies in environments with partially known semantics",
"year": "2022"
},
{
"authors": [
"Guan Wang",
"Carl Trimbach",
"Jun Ki Lee",
"Mark K Ho",
"Michael L Littman"
],
"doi": "10.1145/3319502.3374824",
"ref_id": "b64",
"title": "Teaching a Robot Tasks of Arbitrary Complexity via Human Feedback",
"year": "2020"
}
] |
[
"b8ade0867756a3a3",
"aba6080053851adb",
"09ecf0d2ffbbd89a",
"c0ac4505228ee1fd",
"c1261b95c214c3ce",
"8aacdd2f77004485",
"61693a7f76b32282",
"a7885961cbd0ae4e",
"32ad29f327510cdd",
"6b06862ce6ea94f6",
"5bad400cc2e34409",
"aeaa01968e7a49a7",
"06a79b6821f2cb94",
"db45171edf4440e3",
"f73f5332a3b9d785",
"392adfe3c02a7ba9",
"d056230dd1af8cb9",
"6121da4ba3d78bc6",
"3aaf68ac7ce2f6b8",
"0bef91f3d432dc6c",
"bfcd610b0ebc49be",
"facd3c15698062ac",
"0ae453b6d09477c0",
"56a3c01903b15430",
"c7771062048be707",
"004bce51141473b0",
"000721d0ccda318e",
"af69674f834e2a58",
"eb54c6dc92c54e64",
"348b2045a003259d",
"9f17139d8c1d7bee",
"b77de138581dc159",
"c256ef0939b98b2a",
"bd04eba5f1f20f47",
"b943037189562d90",
"fcf8e19318d021c1",
"53232d72b7577996"
] |
[
"32ad29f327510cdd",
"af69674f834e2a58",
"ecdbb0a0c986f33d",
"000721d0ccda318e",
"fcf8e19318d021c1",
"0ae453b6d09477c0",
"aae6a1a2fbdd7479",
"eb54c6dc92c54e64",
"dc834960f884e743",
"c7771062048be707",
"b943037189562d90",
"348b2045a003259d",
"a3003891016eb6aa",
"5bad400cc2e34409",
"bd04eba5f1f20f47",
"53232d72b7577996",
"3aaf68ac7ce2f6b8",
"f73f5332a3b9d785",
"c1261b95c214c3ce",
"3e234f4ffae5a9a4",
"bf00d5b03b7f445c",
"0bef91f3d432dc6c",
"d21108dcda67cc64",
"004bce51141473b0",
"d056230dd1af8cb9",
"e1e569a819df9c99",
"29918031844ab131",
"facd3c15698062ac",
"7d64a946d5d69cb0",
"056da6b3a9052040",
"9f17139d8c1d7bee",
"ab10413ccb42189f",
"6121da4ba3d78bc6",
"56a3c01903b15430",
"0fcf4903976d386c",
"bfcd610b0ebc49be",
"04865b4f433ee5ed",
"1a5ade30796e9be1",
"8442204ea245edba",
"dc0692132cb35205",
"c256ef0939b98b2a",
"09ecf0d2ffbbd89a",
"c0ac4505228ee1fd",
"aeaa01968e7a49a7",
"392adfe3c02a7ba9",
"f1ff9bfbeddf835b",
"06a79b6821f2cb94",
"88f359a7a7ec2d60",
"d410e8a9f049457d",
"61693a7f76b32282",
"6b06862ce6ea94f6",
"b77de138581dc159",
"b08b138e3e12f946",
"9dfa77e3af05d236",
"036c0b6103b289b8",
"db45171edf4440e3",
"34dc3e64fa458b25",
"4613a4400bf68228",
"ddcf8942bd546ba3",
"a7885961cbd0ae4e",
"aba6080053851adb",
"7f67aea0407e9a38",
"7a2f500477d6b902",
"b8ade0867756a3a3",
"8aacdd2f77004485"
] |
fmLW8Eq3VQ
|
Active Ranking of Experts Based on their Performances in Many Tasks
|
data/openreview_paper/ICML_2023_oral/fmLW8Eq3VQ//paper.pdf
| 40
| 27
|
[
{
"authors": [
"Ashwin Pananjady",
"Cheng Mao",
"Vidya Muthukumar",
"Martin J Wainwright",
"Thomas A Courtade"
],
"doi": "10.1214/19-aos1838",
"ref_id": "b27",
"title": "Worst-case versus average-case design for estimation from partial pairwise comparisons",
"year": "2020"
},
{
"authors": [
"N B Shah",
"S Balakrishnan",
"M J Wainwright"
],
"doi": "",
"ref_id": "b33",
"title": "Feeling the bern: Adaptive estimators for bernoulli probabilities of pairwise comparisons",
"year": "2019"
},
{
"authors": [
"Donald A Berry",
"Robert W Chen",
"Alan Zame",
"David C Heath",
"Larry A Shepp"
],
"doi": "10.1214/aos/1069362389",
"ref_id": "b6",
"title": "Bandit problems with infinitely many arms",
"year": "1997"
},
{
"authors": [
"K G Jamieson",
"D Haas",
"B Recht"
],
"doi": "",
"ref_id": "b17",
"title": "The power of adaptivity in identifying statistical alternatives",
"year": "2016"
},
{
"authors": [
"A Liu",
"A Moitra"
],
"doi": "",
"ref_id": "b21",
"title": "Better algorithms for estimating nonparametric models in crowd-sourcing and rank aggregation",
"year": "2020"
},
{
"authors": [
"R De Heide",
"J Cheshire",
"P Ménard",
"A Carpentier"
],
"doi": "",
"ref_id": "b10",
"title": "Bandits with many optimal arms",
"year": "2021"
},
{
"authors": [
"K Jamieson",
"S Katariya",
"A Deshpande",
"R Nowak"
],
"doi": "",
"ref_id": "b15",
"title": "Sparse dueling bandits",
"year": "2015"
},
{
"authors": [
"Nicolas Flammarion",
"Cheng Mao",
"Philippe Rigollet"
],
"doi": "10.3150/17-bej1000",
"ref_id": "b11",
"title": "Optimal rates of statistical seriation",
"year": "2019"
},
{
"authors": [
"Nihar B Shah",
"Sivaraman Balakrishnan",
"Martin J Wainwright"
],
"doi": "10.1109/tit.2020.3045613",
"ref_id": "b34",
"title": "A Permutation-Based Model for Crowd Labeling: Optimal Estimation and Robustness",
"year": "2020"
},
{
"authors": [
"Emmanuel Pilliat",
"Alexandra Carpentier",
"Nicolas Verzelen"
],
"doi": "10.1214/23-aos2271",
"ref_id": "b29",
"title": "Optimal Permutation Estimation in CrowdSourcing problems",
"year": "2022"
},
{
"authors": [
"Shie Mannor",
"John N Tsitsiklis"
],
"doi": "10.1007/978-3-540-45167-9_31",
"ref_id": "b23",
"title": "Lower Bounds on the Sample Complexity of Exploration in the Multi-armed Bandit Problem",
"year": "Jun. 2004"
},
{
"authors": [
"Ashwin Pananjady",
"Richard J Samworth"
],
"doi": "10.1214/21-aos2107",
"ref_id": "b26",
"title": "Isotonic regression with unknown permutations: Statistics, computation and adaptation",
"year": "2022"
},
{
"authors": [
"Nihar B Shah",
"Sivaraman Balakrishnan",
"Adityanand Guntuboyina",
"Martin J Wainwright"
],
"doi": "10.1109/tit.2016.2634418",
"ref_id": "b32",
"title": "Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues",
"year": "2016"
},
{
"authors": [
"C Mao",
"A Pananjady",
"M J Wainwright"
],
"doi": "",
"ref_id": "b24",
"title": "Breaking the 1/ √ n barrier: Faster rates for permutation-based models in polynomial time",
"year": "2018"
},
{
"authors": [
"Rui M Castro"
],
"doi": "10.3150/13-bej555",
"ref_id": "b8",
"title": "Adaptive sensing performance lower bounds for sparse signal detection and support estimation",
"year": "2014"
},
{
"authors": [
"Reinhard Heckel",
"Nihar B Shah",
"Kannan Ramchandran",
"Martin J Wainwright"
],
"doi": "10.1214/18-aos1772",
"ref_id": "b13",
"title": "Active ranking from pairwise comparisons and when parametric assumptions do not help",
"year": "2019"
},
{
"authors": [
"E Kaufmann",
"O Cappé",
"A Garivier"
],
"doi": "",
"ref_id": "b20",
"title": "On the complexity of best-arm identification in multi-armed bandit models",
"year": "2016"
},
{
"authors": [
"T Urvoy",
"F Clerot",
"R Féraud",
"S Naamane"
],
"doi": "",
"ref_id": "b37",
"title": "Generic exploration and k-armed voting bandits",
"year": "2013"
},
{
"authors": [
"J Katz-Samuels",
"K Jamieson"
],
"doi": "10.1109/ai4g50087.2020",
"ref_id": "b19",
"title": "2020 IEEE / ITU International Conference on Artificial Intelligence for Good (AI4G)",
"year": "2020"
},
{
"authors": [
"K G Jamieson",
"R Nowak"
],
"doi": "",
"ref_id": "b16",
"title": "Active ranking using pairwise comparisons",
"year": "2011"
},
{
"authors": [
"H V Poor"
],
"doi": "10.1007/978-1-4757-2341-0_3",
"ref_id": "b30",
"title": "Signal Detection in Discrete Time",
"year": "1998"
},
{
"authors": [
"N Ailon",
"Z Karnin",
"T Joachims"
],
"doi": "",
"ref_id": "b0",
"title": "Reducing dueling bandits to cardinal bandits",
"year": "2014"
},
{
"authors": [
"Yisong Yue",
"Josef Broder",
"Robert Kleinberg",
"Thorsten Joachims"
],
"doi": "10.1016/j.jcss.2011.12.028",
"ref_id": "b38",
"title": "The K-armed dueling bandits problem",
"year": "2012"
},
{
"authors": [
"Y Baraud"
],
"doi": "",
"ref_id": "b4",
"title": "Non-asymptotic minimax rates of testing in signal detection",
"year": "2002"
},
{
"authors": [
"Ralph Allan Bradley",
"Milton E Terry"
],
"doi": "10.1093/biomet/39.3-4.324",
"ref_id": "b7",
"title": "RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS",
"year": "1952"
},
{
"authors": [
"Yuri I Ingster",
"Theofanis Sapatinas",
"Irina A Suslina"
],
"doi": "10.1214/12-aos1011",
"ref_id": "b14",
"title": "Minimax signal detection in ill-posed inverse problems",
"year": "2012"
},
{
"authors": [
"W Chen",
"Y Du",
"L Huang",
"H Zhao"
],
"doi": "",
"ref_id": "b9",
"title": "Combinatorial pure exploration for dueling bandit",
"year": "2020"
}
] |
[
{
"authors": [
"N Ailon",
"Z Karnin",
"T Joachims"
],
"doi": "",
"ref_id": "b0",
"title": "Reducing dueling bandits to cardinal bandits",
"year": "2014"
},
{
"authors": [
"J.-Y Audibert",
"S Bubeck",
"R Munos"
],
"doi": "",
"ref_id": "b1",
"title": "Best arm identification in multi-armed bandits",
"year": "2010"
},
{
"authors": [
"Maryam Aziz",
"Jesse Anderton",
"Kevin Jamieson",
"Alice Wang",
"Hugues Bouchard",
"Javed Aslam"
],
"doi": "10.1145/3523227.3546766",
"ref_id": "b2",
"title": "Identifying New Podcasts with High General Appeal Using a Pure Exploration Infinitely-Armed Bandit Strategy",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "",
"ref_id": "b3",
"title": "",
"year": "2018"
},
{
"authors": [
"Y Baraud"
],
"doi": "",
"ref_id": "b4",
"title": "Non-asymptotic minimax rates of testing in signal detection",
"year": "2002"
},
{
"authors": [
"V Bengs",
"R Busa-Fekete",
"A El Mesaoudi-Paul",
"E Hüllermeier"
],
"doi": "",
"ref_id": "b5",
"title": "Preference-based online learning with dueling bandits: A survey",
"year": "2021"
},
{
"authors": [
"Donald A Berry",
"Robert W Chen",
"Alan Zame",
"David C Heath",
"Larry A Shepp"
],
"doi": "10.1214/aos/1069362389",
"ref_id": "b6",
"title": "Bandit problems with infinitely many arms",
"year": "1997"
},
{
"authors": [
"Ralph Allan Bradley",
"Milton E Terry"
],
"doi": "10.1093/biomet/39.3-4.324",
"ref_id": "b7",
"title": "RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS",
"year": "1952"
},
{
"authors": [
"Rui M Castro"
],
"doi": "10.3150/13-bej555",
"ref_id": "b8",
"title": "Adaptive sensing performance lower bounds for sparse signal detection and support estimation",
"year": "2014"
},
{
"authors": [
"W Chen",
"Y Du",
"L Huang",
"H Zhao"
],
"doi": "",
"ref_id": "b9",
"title": "Combinatorial pure exploration for dueling bandit",
"year": "2020"
},
{
"authors": [
"R De Heide",
"J Cheshire",
"P Ménard",
"A Carpentier"
],
"doi": "",
"ref_id": "b10",
"title": "Bandits with many optimal arms",
"year": "2021"
},
{
"authors": [
"Nicolas Flammarion",
"Cheng Mao",
"Philippe Rigollet"
],
"doi": "10.3150/17-bej1000",
"ref_id": "b11",
"title": "Optimal rates of statistical seriation",
"year": "2019"
},
{
"authors": [
"A Garivier",
"E Kaufmann"
],
"doi": "",
"ref_id": "b12",
"title": "Optimal best arm identification with fixed confidence",
"year": "2016"
},
{
"authors": [
"Reinhard Heckel",
"Nihar B Shah",
"Kannan Ramchandran",
"Martin J Wainwright"
],
"doi": "10.1214/18-aos1772",
"ref_id": "b13",
"title": "Active ranking from pairwise comparisons and when parametric assumptions do not help",
"year": "2019"
},
{
"authors": [
"Yuri I Ingster",
"Theofanis Sapatinas",
"Irina A Suslina"
],
"doi": "10.1214/12-aos1011",
"ref_id": "b14",
"title": "Minimax signal detection in ill-posed inverse problems",
"year": "2012"
},
{
"authors": [
"K Jamieson",
"S Katariya",
"A Deshpande",
"R Nowak"
],
"doi": "",
"ref_id": "b15",
"title": "Sparse dueling bandits",
"year": "2015"
},
{
"authors": [
"K G Jamieson",
"R Nowak"
],
"doi": "",
"ref_id": "b16",
"title": "Active ranking using pairwise comparisons",
"year": "2011"
},
{
"authors": [
"K G Jamieson",
"D Haas",
"B Recht"
],
"doi": "",
"ref_id": "b17",
"title": "The power of adaptivity in identifying statistical alternatives",
"year": "2016"
},
{
"authors": [
"David R Karger",
"Sewoong Oh",
"Devavrat Shah"
],
"doi": "10.1287/opre.2013.1235",
"ref_id": "b18",
"title": "Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems",
"year": "2011"
},
{
"authors": [
"J Katz-Samuels",
"K Jamieson"
],
"doi": "10.1109/ai4g50087.2020",
"ref_id": "b19",
"title": "2020 IEEE / ITU International Conference on Artificial Intelligence for Good (AI4G)",
"year": "2020"
},
{
"authors": [
"E Kaufmann",
"O Cappé",
"A Garivier"
],
"doi": "",
"ref_id": "b20",
"title": "On the complexity of best-arm identification in multi-armed bandit models",
"year": "2016"
},
{
"authors": [
"A Liu",
"A Moitra"
],
"doi": "",
"ref_id": "b21",
"title": "Better algorithms for estimating nonparametric models in crowd-sourcing and rank aggregation",
"year": "2020"
},
{
"authors": [
"Jie Lu",
"Dianshuang Wu",
"Mingsong Mao",
"Wei Wang",
"Guangquan Zhang"
],
"doi": "10.1016/j.dss.2015.03.008",
"ref_id": "b22",
"title": "Recommender system application developments: A survey",
"year": "2015"
},
{
"authors": [
"Shie Mannor",
"John N Tsitsiklis"
],
"doi": "10.1007/978-3-540-45167-9_31",
"ref_id": "b23",
"title": "Lower Bounds on the Sample Complexity of Exploration in the Multi-armed Bandit Problem",
"year": "Jun. 2004"
},
{
"authors": [
"C Mao",
"A Pananjady",
"M J Wainwright"
],
"doi": "",
"ref_id": "b24",
"title": "Breaking the 1/ √ n barrier: Faster rates for permutation-based models in polynomial time",
"year": "2018"
},
{
"authors": [
"Elia Morgulev",
"Ofer H Azar",
"Ronnie Lidor"
],
"doi": "10.1007/s41060-017-0093-7",
"ref_id": "b25",
"title": "Sports analytics and the big-data era",
"year": "2018"
},
{
"authors": [
"Ashwin Pananjady",
"Richard J Samworth"
],
"doi": "10.1214/21-aos2107",
"ref_id": "b26",
"title": "Isotonic regression with unknown permutations: Statistics, computation and adaptation",
"year": "2022"
},
{
"authors": [
"Ashwin Pananjady",
"Cheng Mao",
"Vidya Muthukumar",
"Martin J Wainwright",
"Thomas A Courtade"
],
"doi": "10.1214/19-aos1838",
"ref_id": "b27",
"title": "Worst-case versus average-case design for estimation from partial pairwise comparisons",
"year": "2020"
},
{
"authors": [
"Luca Pappalardo",
"Paolo Cintia",
"Paolo Ferragina",
"Emanuele Massucco",
"Dino Pedreschi",
"Fosca Giannotti"
],
"doi": "10.1145/3343172",
"ref_id": "b28",
"title": "PlayeRank",
"year": "2019"
},
{
"authors": [
"Emmanuel Pilliat",
"Alexandra Carpentier",
"Nicolas Verzelen"
],
"doi": "10.1214/23-aos2271",
"ref_id": "b29",
"title": "Optimal Permutation Estimation in CrowdSourcing problems",
"year": "2022"
},
{
"authors": [
"H V Poor"
],
"doi": "10.1007/978-1-4757-2341-0_3",
"ref_id": "b30",
"title": "Signal Detection in Discrete Time",
"year": "1998"
},
{
"authors": [
"V C Raykar",
"S Yu",
"L H Zhao",
"G H Valadez",
"C Florin",
"L Bogoni",
"L Moy"
],
"doi": "",
"ref_id": "b31",
"title": "Learning from crowds",
"year": "2010"
},
{
"authors": [
"Nihar B Shah",
"Sivaraman Balakrishnan",
"Adityanand Guntuboyina",
"Martin J Wainwright"
],
"doi": "10.1109/tit.2016.2634418",
"ref_id": "b32",
"title": "Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues",
"year": "2016"
},
{
"authors": [
"N B Shah",
"S Balakrishnan",
"M J Wainwright"
],
"doi": "",
"ref_id": "b33",
"title": "Feeling the bern: Adaptive estimators for bernoulli probabilities of pairwise comparisons",
"year": "2019"
},
{
"authors": [
"Nihar B Shah",
"Sivaraman Balakrishnan",
"Martin J Wainwright"
],
"doi": "10.1109/tit.2020.3045613",
"ref_id": "b34",
"title": "A Permutation-Based Model for Crowd Labeling: Optimal Estimation and Robustness",
"year": "2020"
},
{
"authors": [
"Rion Snow",
"Brendan O'connor",
"Daniel Jurafsky",
"Andrew Y Ng"
],
"doi": "10.3115/1613715.1613751",
"ref_id": "b35",
"title": "Cheap and fast---but is it good?",
"year": "2008"
},
{
"authors": [
"Alexandre B Tsybakov"
],
"doi": "10.1007/b13794",
"ref_id": "b36",
"title": "Introduction to Nonparametric Estimation",
"year": "2009. (10), 2004"
},
{
"authors": [
"T Urvoy",
"F Clerot",
"R Féraud",
"S Naamane"
],
"doi": "",
"ref_id": "b37",
"title": "Generic exploration and k-armed voting bandits",
"year": "2013"
},
{
"authors": [
"Yisong Yue",
"Josef Broder",
"Robert Kleinberg",
"Thorsten Joachims"
],
"doi": "10.1016/j.jcss.2011.12.028",
"ref_id": "b38",
"title": "The K-armed dueling bandits problem",
"year": "2012"
},
{
"authors": [
"Xujuan Zhou",
"Yue Xu",
"Yuefeng Li",
"Audun Josang",
"Clive Cox"
],
"doi": "10.1007/s10462-011-9222-1",
"ref_id": "b39",
"title": "The state-of-the-art in personalized recommender systems for social networking",
"year": "2012"
}
] |
[
"baaa34cd7f11b1a0",
"882e62aac92bebd3",
"a1be57caf450f30e",
"7f1cfa81264a20fb",
"1d7e5b7f3d063109",
"272ce3a0a496e59e",
"51e94135ee7fc068",
"8882acffdefdd601",
"de39455907db32c9",
"cb3c22b10017bf63",
"5543b698edf1d801",
"df6ec2f6175cf163",
"0d391039e5782b5e",
"a4eceba42ddd6608",
"203c33cac9158cff",
"dfd4d71eab5dbf02",
"d2d363409692db37",
"f7bbfef463ea0c9a",
"4f852d8aa0277587",
"ae1fa0419f9df947",
"1202c70d8d59ec31",
"5ea99a3e343f779a",
"4e72c422e6ab34e2",
"1a82d83f152c39dc",
"2df0dc2706291cac",
"38a3c6d7a113225c",
"f3e1b43f6fb5a918"
] |
[
"5ea99a3e343f779a",
"e97aa0e0c1acbd91",
"9ec1e9f307daa8e7",
"595a7471f08b9743",
"1a82d83f152c39dc",
"f0e525a129ffd4ab",
"a1be57caf450f30e",
"2df0dc2706291cac",
"203c33cac9158cff",
"f3e1b43f6fb5a918",
"272ce3a0a496e59e",
"8882acffdefdd601",
"a1495a650ed293d1",
"dfd4d71eab5dbf02",
"38a3c6d7a113225c",
"51e94135ee7fc068",
"ae1fa0419f9df947",
"7f1cfa81264a20fb",
"24e093d213f3a1da",
"4f852d8aa0277587",
"d2d363409692db37",
"1d7e5b7f3d063109",
"34b14e27ce995595",
"5543b698edf1d801",
"a4eceba42ddd6608",
"3825d2d1e1c51022",
"df6ec2f6175cf163",
"baaa34cd7f11b1a0",
"ff7f601871d57dbc",
"cb3c22b10017bf63",
"1202c70d8d59ec31",
"2c0290bcfcc77726",
"0d391039e5782b5e",
"882e62aac92bebd3",
"de39455907db32c9",
"41abf4d7667cb5cd",
"9e040f7374765aee",
"f7bbfef463ea0c9a",
"4e72c422e6ab34e2",
"5e223a28103a3cd1"
] |
wIPIhHd00i
|
Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time
|
data/openreview_paper/ICML_2023_oral/wIPIhHd00i//paper.pdf
| 144
| 42
|
[
{
"authors": [
"Z Yao",
"R Y Aminabadi",
"M Zhang",
"X Wu",
"C Li",
"Y He",
"Zeroquant"
],
"doi": "",
"ref_id": "b138",
"title": "Efficient and affordable post-training quantization for large-scale transformers",
"year": "2022"
},
{
"authors": [
"W.-C Chang",
"F X Yu",
"Y.-W Chang",
"Y Yang",
"S Kumar"
],
"doi": "",
"ref_id": "b26",
"title": "Pre-training tasks for embedding-based large-scale retrieval",
"year": "2020"
},
{
"authors": [
"H Bansal",
"K Gopalakrishnan",
"S Dingliwal",
"S Bodapati",
"K Kirchhoff",
"D Roth"
],
"doi": "",
"ref_id": "b13",
"title": "Rethinking the role of scale for in-context learning: An interpretability-based case study at 66 billion scale",
"year": "2022"
},
{
"authors": [
"I Bello",
"W Fedus",
"X Du",
"E D Cubuk",
"A Srinivas",
"T.-Y Lin",
"J Shlens",
"B Zoph"
],
"doi": "",
"ref_id": "b15",
"title": "Revisiting resnets: Improved training and scaling strategies",
"year": "2021"
},
{
"authors": [
"N Kitaev",
"Ł Kaiser",
"A Levskaya"
],
"doi": "",
"ref_id": "b79",
"title": "Reformer: The efficient transformer",
"year": "2020"
},
{
"authors": [
"E Frantar",
"S Ashkboos",
"T Hoefler",
"D Alistarh",
"Gptq"
],
"doi": "",
"ref_id": "b52",
"title": "Accurate post-training quantization for generative pretrained transformers",
"year": "2022"
},
{
"authors": [
"A Gionis",
"P Indyk",
"R Motwani"
],
"doi": "",
"ref_id": "b58",
"title": "Similarity search in high dimensions via hashing",
"year": "1999"
},
{
"authors": [
"Benoit Jacob",
"Skirmantas Kligys",
"Bo Chen",
"Menglong Zhu",
"Matthew Tang",
"Andrew Howard",
"Hartwig Adam",
"Dmitry Kalenichenko"
],
"doi": "10.1109/cvpr.2018.00286",
"ref_id": "b75",
"title": "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference",
"year": "2018"
},
{
"authors": [
"Y Bengio",
"R Ducharme",
"P Vincent",
"C Jauvin"
],
"doi": "",
"ref_id": "b16",
"title": "A neural probabilistic language model",
"year": "Feb. 2003"
},
{
"authors": [
"A Veit",
"M J Wilber",
"S Belongie"
],
"doi": "",
"ref_id": "b129",
"title": "Residual networks behave like ensembles of relatively shallow networks",
"year": "2016"
},
{
"authors": [
"Reza Yazdani Aminabadi",
"Samyam Rajbhandari",
"Ammar Ahmad Awan",
"Cheng Li",
"Du Li",
"Elton Zheng",
"Olatunji Ruwase",
"Shaden Smith",
"Minjia Zhang",
"Jeff Rasley",
"Yuxiong He"
],
"doi": "10.1109/sc41404.2022.00051",
"ref_id": "b5",
"title": "DeepSpeed- Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale",
"year": "2022. 2022"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li"
],
"doi": "",
"ref_id": "b1",
"title": "What can resnet learn efficiently, going beyond kernels",
"year": "2019"
},
{
"authors": [
"Markus Nagel",
"Mart Van Baalen",
"Tijmen Blankevoort",
"Max Welling"
],
"doi": "10.1109/iccv.2019.00141",
"ref_id": "b103",
"title": "Data-Free Quantization Through Weight Equalization and Bias Correction",
"year": "2019"
},
{
"authors": [
"Yury Malkov",
"Alexander Ponomarenko",
"Andrey Logvinov",
"Vladimir Krylov"
],
"doi": "10.1016/j.is.2013.10.006",
"ref_id": "b95",
"title": "Approximate nearest neighbor algorithm based on navigable small world graphs",
"year": "2014"
},
{
"authors": [
"Leonid Boytsov",
"David Novak",
"Yury Malkov",
"Eric Nyberg"
],
"doi": "10.1145/2983323.2983815",
"ref_id": "b21",
"title": "Off the Beaten Path",
"year": "2016"
},
{
"authors": [
"Ritchie Zhao",
"Yuwei Hu",
"Jordan Dotzel",
"Christopher De Sa",
"Zhiru Zhang"
],
"doi": "10.1109/cvpr.2019.01156",
"ref_id": "b143",
"title": "Building Efficient Deep Neural Networks With Unitary Group Convolutions",
"year": "2019"
},
{
"authors": [
"T Hoefler",
"D Alistarh",
"T Ben-Nun",
"N Dryden",
"A Peste"
],
"doi": "",
"ref_id": "b68",
"title": "Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks",
"year": "2021"
},
{
"authors": [
"D Balduzzi",
"M Frean",
"L Leary",
"J Lewis",
"K W Ma",
"-D Mcwilliams",
"B"
],
"doi": "",
"ref_id": "b12",
"title": "The shattered gradients problem: If resnets are the answer, then what is the question",
"year": "2017"
},
{
"authors": [
"Rob Hall",
"Josh Attenberg"
],
"doi": "10.1145/2740908.2742000",
"ref_id": "b62",
"title": "Fast and Accurate Maximum Inner Product Recommendations on Map-Reduce",
"year": "2015"
},
{
"authors": [
"G Hinton",
"O Vinyals",
"J Dean"
],
"doi": "",
"ref_id": "b67",
"title": "Distilling the knowledge in a neural network",
"year": "2015"
},
{
"authors": [
"Hong-Jian Xue",
"Xinyu Dai",
"Jianbing Zhang",
"Shujian Huang",
"Jiajun Chen"
],
"doi": "10.24963/ijcai.2017/447",
"ref_id": "b137",
"title": "Deep Matrix Factorization Models for Recommender Systems",
"year": "2017"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b65",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"G Park",
"B Park",
"S J Kwon",
"B Kim",
"Y Lee",
"D Lee"
],
"doi": "",
"ref_id": "b107",
"title": "nuqmm: Quantized matmul for efficient inference of large-scale generative language models",
"year": "2022"
},
{
"authors": [
"G Xiao",
"J Lin",
"M Seznec",
"J Demouth",
"S Han"
],
"doi": "",
"ref_id": "b135",
"title": "Smoothquant: Accurate and efficient post-training quantization for large language models",
"year": "2022"
},
{
"authors": [
"M Zhang",
"W Wang",
"X Liu",
"J Gao",
"Y He"
],
"doi": "",
"ref_id": "b142",
"title": "Navigating with graph representations for fast and scalable decoding of neural language models",
"year": "2018"
},
{
"authors": [
"R Pope",
"S Douglas",
"A Chowdhery",
"J Devlin",
"J Bradbury",
"A Levskaya",
"J Heek",
"K Xiao",
"S Agrawal",
"J Dean"
],
"doi": "",
"ref_id": "b108",
"title": "Efficiently scaling transformer inference",
"year": "2022"
},
{
"authors": [
"S Han",
"H Mao",
"W J Dally"
],
"doi": "",
"ref_id": "b63",
"title": "Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding",
"year": "2015"
},
{
"authors": [
"Yang He",
"Ping Liu",
"Ziwei Wang",
"Zhilan Hu",
"Yi Yang"
],
"doi": "10.1109/cvpr.2019.00447",
"ref_id": "b66",
"title": "Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration",
"year": "2019"
},
{
"authors": [
"Jang Hyun Cho",
"Bharath Hariharan"
],
"doi": "10.1109/iccv.2019.00489",
"ref_id": "b34",
"title": "On the Efficacy of Knowledge Distillation",
"year": "2019"
},
{
"authors": [
"Z Liu",
"Z Xu",
"A Ji",
"J Zhang",
"J Li",
"B Chen",
"A Shrivastava"
],
"doi": "",
"ref_id": "b93",
"title": "Halos: Hashing large output space for cheap inference",
"year": "2022"
},
{
"authors": [
"E Frantar",
"D Alistarh"
],
"doi": "",
"ref_id": "b51",
"title": "Massive language models can be accurately pruned in one-shot",
"year": "2023"
},
{
"authors": [
"Pavlo Molchanov",
"Xiaodong Yang",
"Shalini Gupta",
"Kihwan Kim",
"Stephen Tyree",
"Jan Kautz"
],
"doi": "10.1109/cvpr.2016.456",
"ref_id": "b102",
"title": "Online Detection and Classification of Dynamic Hand Gestures with Recurrent 3D Convolutional Neural Networks",
"year": "2016"
},
{
"authors": [
"S Frei",
"Y Cao",
"Q Gu"
],
"doi": "",
"ref_id": "b53",
"title": "Algorithm-dependent generalization bounds for overparameterized deep residual networks",
"year": "2019"
},
{
"authors": [
"H Touvron",
"M Cord",
"M Douze",
"F Massa",
"A Sablayrolles",
"H Jégou"
],
"doi": "",
"ref_id": "b128",
"title": "Training data-efficient image transformers & distillation through attention",
"year": "2021"
},
{
"authors": [
"Jiarui Fang",
"Yang Yu",
"Chengduo Zhao",
"Jie Zhou"
],
"doi": "10.1145/3437801.3441578",
"ref_id": "b49",
"title": "TurboTransformers",
"year": "2021"
},
{
"authors": [
"T Dettmers",
"M Lewis",
"Y Belkada",
"L Zettlemoyer",
"Llm"
],
"doi": "",
"ref_id": "b46",
"title": "bit matrix multiplication for transformers at scale",
"year": "2022"
},
{
"authors": [
"Ziang Chen",
"Eli Chien",
"Pan Li",
"Haoyu Wang"
],
"doi": "10.52202/079017-1228",
"ref_id": "b28",
"title": "Certified Machine Unlearning via Noisy Stochastic Gradient Descent",
"year": "2019"
},
{
"authors": [
"Minjoon Seo",
"Jinhyuk Lee",
"Tom Kwiatkowski",
"Ankur Parikh",
"Ali Farhadi",
"Hannaneh Hajishirzi"
],
"doi": "10.18653/v1/p19-1436",
"ref_id": "b115",
"title": "Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index",
"year": "2019"
},
{
"authors": [
"R Tang",
"Y Lu",
"L Liu",
"L Mou",
"O Vechtomova",
"J Lin"
],
"doi": "",
"ref_id": "b126",
"title": "Distilling task-specific knowledge from bert into simple neural networks",
"year": "2019"
},
{
"authors": [
"Z Liu",
"M Sun",
"T Zhou",
"G Huang",
"T Darrell"
],
"doi": "",
"ref_id": "b92",
"title": "Rethinking the value of network pruning",
"year": "2018"
},
{
"authors": [
"G.-I Yu",
"J S Jeong",
"G.-W Kim",
"S Kim",
"B.-G Chun",
"Orca"
],
"doi": "",
"ref_id": "b139",
"title": "A distributed serving system for {Transformer-Based} generative models",
"year": "2022"
},
{
"authors": [
"M Lee",
"X He",
"W.-T Yih",
"J Gao",
"L Deng",
"P Smolensky"
],
"doi": "",
"ref_id": "b83",
"title": "Reasoning in vector space: An exploratory study of question answering",
"year": "2016"
}
] |
[
{
"authors": [
"Winogrande"
],
"doi": "",
"ref_id": "b0",
"title": "An adversarial winograd schema challenge at scale",
"year": "2019"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li"
],
"doi": "",
"ref_id": "b1",
"title": "What can resnet learn efficiently, going beyond kernels",
"year": "2019"
},
{
"authors": [
"J Alman",
"Z Song"
],
"doi": "",
"ref_id": "b2",
"title": "Fast attention requires bounded entries",
"year": "2023"
},
{
"authors": [
"J Alman",
"J Liang",
"Z Song",
"R Zhang",
"D Zhuo"
],
"doi": "",
"ref_id": "b3",
"title": "Bypass exponential time preprocessing: Fast neural network training via weight-data correlation preprocessing",
"year": "2022"
},
{
"authors": [
"Noga Alon",
"Yossi Matias",
"Mario Szegedy"
],
"doi": "10.1145/237814.237823",
"ref_id": "b4",
"title": "The space complexity of approximating the frequency moments",
"year": "1996"
},
{
"authors": [
"Reza Yazdani Aminabadi",
"Samyam Rajbhandari",
"Ammar Ahmad Awan",
"Cheng Li",
"Du Li",
"Elton Zheng",
"Olatunji Ruwase",
"Shaden Smith",
"Minjia Zhang",
"Jeff Rasley",
"Yuxiong He"
],
"doi": "10.1109/sc41404.2022.00051",
"ref_id": "b5",
"title": "DeepSpeed- Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale",
"year": "2022. 2022"
},
{
"authors": [
"A Andoni",
"I Razenshteyn"
],
"doi": "",
"ref_id": "b6",
"title": "Optimal data-dependent hashing for approximate near neighbors",
"year": "2015"
},
{
"authors": [
"Alexandr Andoni",
"Piotr Indyk",
"Huy L Nguyễn",
"Ilya Razenshteyn"
],
"doi": "10.1137/1.9781611973402.76",
"ref_id": "b7",
"title": "Beyond Locality-Sensitive Hashing",
"year": "2014"
},
{
"authors": [
"A Andoni",
"P Indyk",
"T Laarhoven",
"I Razenshteyn",
"L Schmidt"
],
"doi": "",
"ref_id": "b8",
"title": "Practical and optimal lsh for angular distance",
"year": ""
},
{
"authors": [
"A Andoni",
"T Laarhoven",
"I Razenshteyn",
"E Waingarten"
],
"doi": "",
"ref_id": "b9",
"title": "Optimal hashing-based time-space trade-offs for approximate near neighbors",
"year": "2017"
},
{
"authors": [
"Alexandr Andoni",
"Piotr Indyk",
"Ilya Razenshteyn"
],
"doi": "10.1142/9789813272880_0182",
"ref_id": "b10",
"title": "APPROXIMATE NEAREST NEIGHBOR SEARCH IN HIGH DIMENSIONS",
"year": "2018"
},
{
"authors": [
"Sunil Arya",
"David M Mount",
"Nathan S Netanyahu",
"Ruth Silverman",
"Angela Y Wu"
],
"doi": "10.1145/293347.293348",
"ref_id": "b11",
"title": "An optimal algorithm for approximate nearest neighbor searching fixed dimensions",
"year": "1993"
},
{
"authors": [
"D Balduzzi",
"M Frean",
"L Leary",
"J Lewis",
"K W Ma",
"-D Mcwilliams",
"B"
],
"doi": "",
"ref_id": "b12",
"title": "The shattered gradients problem: If resnets are the answer, then what is the question",
"year": "2017"
},
{
"authors": [
"H Bansal",
"K Gopalakrishnan",
"S Dingliwal",
"S Bodapati",
"K Kirchhoff",
"D Roth"
],
"doi": "",
"ref_id": "b13",
"title": "Rethinking the role of scale for in-context learning: An interpretability-based case study at 66 billion scale",
"year": "2022"
},
{
"authors": [
"Leonard E Baum",
"Ted Petrie"
],
"doi": "10.1214/aoms/1177699147",
"ref_id": "b14",
"title": "Statistical Inference for Probabilistic Functions of Finite State Markov Chains",
"year": "1966"
},
{
"authors": [
"I Bello",
"W Fedus",
"X Du",
"E D Cubuk",
"A Srinivas",
"T.-Y Lin",
"J Shlens",
"B Zoph"
],
"doi": "",
"ref_id": "b15",
"title": "Revisiting resnets: Improved training and scaling strategies",
"year": "2021"
},
{
"authors": [
"Y Bengio",
"R Ducharme",
"P Vincent",
"C Jauvin"
],
"doi": "",
"ref_id": "b16",
"title": "A neural probabilistic language model",
"year": "Feb. 2003"
},
{
"authors": [
"Yonatan Bisk",
"Rowan Zellers",
"Ronan Le Bras",
"Jianfeng Gao",
"Yejin Choi"
],
"doi": "10.1609/aaai.v34i05.6239",
"ref_id": "b17",
"title": "PIQA: Reasoning about Physical Commonsense in Natural Language",
"year": "2020"
},
{
"authors": [
"Sidney Black",
"Stella Biderman",
"Eric Hallahan",
"Quentin Anthony",
"Leo Gao",
"Laurence Golding",
"Horace He",
"Connor Leahy",
"Kyle Mcdonell",
"Jason Phang",
"Michael Pieler",
"Usvsn Sai Prashanth",
"Shivanshu Purohit",
"Laria Reynolds",
"Jonathan Tow",
"Ben Wang",
"Samuel Weinbach"
],
"doi": "10.18653/v1/2022.bigscience-1.9",
"ref_id": "b18",
"title": "GPT-NeoX-20B: An Open-Source Autoregressive Language Model",
"year": "2022"
},
{
"authors": [
"R Bommasani",
"D A Hudson",
"E Adeli",
"R Altman",
"S Arora",
"S Von Arx",
"M S Bernstein",
"J Bohg",
"A Bosselut",
"E Brunskill"
],
"doi": "",
"ref_id": "b19",
"title": "On the opportunities and risks of foundation models",
"year": "2021"
},
{
"authors": [
"Christos Boutsidis",
"David P Woodruff",
"Peilin Zhong"
],
"doi": "10.1145/2897518.2897646",
"ref_id": "b20",
"title": "Optimal principal component analysis in distributed and streaming models",
"year": "2016"
},
{
"authors": [
"Leonid Boytsov",
"David Novak",
"Yury Malkov",
"Eric Nyberg"
],
"doi": "10.1145/2983323.2983815",
"ref_id": "b21",
"title": "Off the Beaten Path",
"year": "2016"
},
{
"authors": [
"J V D Brand",
"B Peng",
"Z Song",
"O Weinstein"
],
"doi": "",
"ref_id": "b22",
"title": "Training (overparametrized) neural networks in near-linear time",
"year": "2021"
},
{
"authors": [
"J V D Brand",
"Z Song",
"T Zhou"
],
"doi": "",
"ref_id": "b23",
"title": "Algorithm and hardness for dynamic attention maintenance in large language models",
"year": "2023"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell"
],
"doi": "",
"ref_id": "b24",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"S C Chan",
"A Santoro",
"A K Lampinen",
"J X Wang",
"A K Singh",
"P H Richemond",
"J Mcclelland",
"F Hill"
],
"doi": "",
"ref_id": "b25",
"title": "Data distributional properties drive emergent in-context learning in transformers",
"year": "2022"
},
{
"authors": [
"W.-C Chang",
"F X Yu",
"Y.-W Chang",
"Y Yang",
"S Kumar"
],
"doi": "",
"ref_id": "b26",
"title": "Pre-training tasks for embedding-based large-scale retrieval",
"year": "2020"
},
{
"authors": [
"Moses Charikar",
"Kevin Chen",
"Martin Farach-Colton"
],
"doi": "10.1007/3-540-45465-9_59",
"ref_id": "b27",
"title": "Finding Frequent Items in Data Streams",
"year": "2002"
},
{
"authors": [
"Ziang Chen",
"Eli Chien",
"Pan Li",
"Haoyu Wang"
],
"doi": "10.52202/079017-1228",
"ref_id": "b28",
"title": "Certified Machine Unlearning via Noisy Stochastic Gradient Descent",
"year": "2019"
},
{
"authors": [
"B Chen",
"T Medini",
"J Farwell",
"C Tai",
"A Shrivastava"
],
"doi": "",
"ref_id": "b29",
"title": "Slide: In defense of smart algorithms over hardware acceleration for large-scale deep learning systems",
"year": "2020"
},
{
"authors": [
"B Chen",
"T Dao",
"E Winsor",
"Z Song",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b30",
"title": "Scatterbrain: Unifying sparse and low-rank attention",
"year": "2021"
},
{
"authors": [
"B Chen",
"Z Liu",
"B Peng",
"Z Xu",
"J L Li",
"T Dao",
"Z Song",
"A Shrivastava",
"C Re"
],
"doi": "",
"ref_id": "b31",
"title": "Mongoose: A learnable lsh framework for efficient neural network training",
"year": "2021"
},
{
"authors": [
"H Chen",
"I Chillotti",
"Y Dong",
"O Poburinnaya",
"I Razenshteyn",
"M S Riazi",
"{sanns}"
],
"doi": "",
"ref_id": "b32",
"title": "Scaling up secure approximate k-nearest neighbors search",
"year": "2020"
},
{
"authors": [
"L Chen"
],
"doi": "",
"ref_id": "b33",
"title": "On the hardness of approximate and exact (bichromatic) maximum inner product",
"year": "2018"
},
{
"authors": [
"Jang Hyun Cho",
"Bharath Hariharan"
],
"doi": "10.1109/iccv.2019.00489",
"ref_id": "b34",
"title": "On the Efficacy of Knowledge Distillation",
"year": "2019"
},
{
"authors": [
"A Chowdhery",
"S Narang",
"J Devlin",
"M Bosma",
"G Mishra",
"A Roberts",
"P Barham",
"H W Chung",
"C Sutton",
"S Gehrmann"
],
"doi": "",
"ref_id": "b35",
"title": "Scaling language modeling with pathways",
"year": "2022"
},
{
"authors": [
"Kenneth L Clarkson",
"David P Woodruff"
],
"doi": "10.1145/2488608.2488620",
"ref_id": "b36",
"title": "Low rank approximation and regression in input sparsity time",
"year": "2013"
},
{
"authors": [
"Michael B Cohen"
],
"doi": "10.1137/1.9781611974331.ch21",
"ref_id": "b37",
"title": "Nearly Tight Oblivious Subspace Embeddings by Trace Inequalities",
"year": "2016"
},
{
"authors": [
"Shane Cook"
],
"doi": "10.1016/b978-0-12-415933-4.00002-8",
"ref_id": "b38",
"title": "Understanding Parallelism with GPUs",
"year": "2012"
},
{
"authors": [
"M Cox",
"T Cox"
],
"doi": "",
"ref_id": "b39",
"title": "Multidimensional scaling",
"year": "2008"
},
{
"authors": [
"T Dao",
"D Y Fu",
"S Ermon",
"A Rudra",
"C Ré"
],
"doi": "",
"ref_id": "b40",
"title": "Flashattention: Fast and memory-efficient exact attention with io-awareness",
"year": "2022"
},
{
"authors": [
"Mayur Datar",
"Nicole Immorlica",
"Piotr Indyk",
"Vahab S Mirrokni"
],
"doi": "10.1145/997817.997857",
"ref_id": "b41",
"title": "Locality-sensitive hashing scheme based on p-stable distributions",
"year": "2004"
},
{
"authors": [
"M.-C De Marneffe",
"M Simons",
"J Tonhauser"
],
"doi": "",
"ref_id": "b42",
"title": "The commitmentbank: Investigating projection in naturally occurring discourse",
"year": "2019"
},
{
"authors": [
"Y Deng",
"Z Li",
"Z Song"
],
"doi": "",
"ref_id": "b43",
"title": "Attention scheme inspired softmax regression",
"year": "2023"
},
{
"authors": [
"Y Deng",
"S Mahadevan",
"Z Song"
],
"doi": "",
"ref_id": "b44",
"title": "Randomized and deterministic attention sparsification algorithms for over-parameterized feature dimension",
"year": "2023"
},
{
"authors": [
"K G Derpanis"
],
"doi": "",
"ref_id": "b45",
"title": "Mean shift clustering",
"year": "2005"
},
{
"authors": [
"T Dettmers",
"M Lewis",
"Y Belkada",
"L Zettlemoyer",
"Llm"
],
"doi": "",
"ref_id": "b46",
"title": "bit matrix multiplication for transformers at scale",
"year": "2022"
},
{
"authors": [
"Sally Dong",
"Yin Tat Lee",
"Guanghao Ye"
],
"doi": "10.1145/3406325.3451056",
"ref_id": "b47",
"title": "A nearly-linear time algorithm for linear programs with small treewidth: a multiscale representation of robust central path",
"year": "2021"
},
{
"authors": [
"Y Dong",
"P Indyk",
"I Razenshteyn",
"T Wagner"
],
"doi": "",
"ref_id": "b48",
"title": "Learning space partitions for nearest neighbor search",
"year": "2019"
},
{
"authors": [
"Jiarui Fang",
"Yang Yu",
"Chengduo Zhao",
"Jie Zhou"
],
"doi": "10.1145/3437801.3441578",
"ref_id": "b49",
"title": "TurboTransformers",
"year": "2021"
},
{
"authors": [
"J Frankle",
"M Carbin"
],
"doi": "",
"ref_id": "b50",
"title": "The lottery ticket hypothesis: Finding sparse, trainable neural networks",
"year": "2018"
},
{
"authors": [
"E Frantar",
"D Alistarh"
],
"doi": "",
"ref_id": "b51",
"title": "Massive language models can be accurately pruned in one-shot",
"year": "2023"
},
{
"authors": [
"E Frantar",
"S Ashkboos",
"T Hoefler",
"D Alistarh",
"Gptq"
],
"doi": "",
"ref_id": "b52",
"title": "Accurate post-training quantization for generative pretrained transformers",
"year": "2022"
},
{
"authors": [
"S Frei",
"Y Cao",
"Q Gu"
],
"doi": "",
"ref_id": "b53",
"title": "Algorithm-dependent generalization bounds for overparameterized deep residual networks",
"year": "2019"
},
{
"authors": [
"L Gao",
"J Tow",
"S Biderman",
"S Black",
"A Dipofi",
"C Foster",
"L Golding",
"J Hsu",
"K Mcdonell",
"N Muennighoff",
"J Phang",
"L Reynolds",
"E Tang",
"A Thite",
"B Wang",
"K Wang",
"A Zou"
],
"doi": "10.5281/zenodo.5371628",
"ref_id": "b54",
"title": "A framework for few-shot language model evaluation",
"year": "September 2021"
},
{
"authors": [
"Y Gao",
"S Mahadevan",
"Z Song"
],
"doi": "",
"ref_id": "b55",
"title": "An over-parameterized exponential regression",
"year": "2023"
},
{
"authors": [
"Y Gao",
"Z Song",
"X Yang"
],
"doi": "",
"ref_id": "b56",
"title": "Differentially private attention computation",
"year": "2023"
},
{
"authors": [
"Danilo Giampiccolo",
"Bernardo Magnini",
"Ido Dagan",
"Bill Dolan"
],
"doi": "10.3115/1654536.1654538",
"ref_id": "b57",
"title": "The third PASCAL recognizing textual entailment challenge",
"year": "June 2007"
},
{
"authors": [
"A Gionis",
"P Indyk",
"R Motwani"
],
"doi": "",
"ref_id": "b58",
"title": "Similarity search in high dimensions via hashing",
"year": "1999"
},
{
"authors": [
"A Gordon",
"Z Kozareva",
"M Roemmele"
],
"doi": "",
"ref_id": "b59",
"title": "SemEval-2012 task 7: Choice of plausible alternatives: An evaluation of commonsense causal reasoning",
"year": "7-8 June 2012"
},
{
"authors": [
"Y Gu",
"Z Song"
],
"doi": "",
"ref_id": "b60",
"title": "A faster small treewidth sdp solver",
"year": "2022"
},
{
"authors": [
"Y Gu",
"Z Song",
"J Yin",
"L Zhang"
],
"doi": "",
"ref_id": "b61",
"title": "Low rank matrix completion via robust alternating minimization in nearly linear time",
"year": "2023"
},
{
"authors": [
"Rob Hall",
"Josh Attenberg"
],
"doi": "10.1145/2740908.2742000",
"ref_id": "b62",
"title": "Fast and Accurate Maximum Inner Product Recommendations on Map-Reduce",
"year": "2015"
},
{
"authors": [
"S Han",
"H Mao",
"W J Dally"
],
"doi": "",
"ref_id": "b63",
"title": "Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding",
"year": "2015"
},
{
"authors": [
"M Harris"
],
"doi": "10.7717/peerjcs.404/table-2",
"ref_id": "b64",
"title": "Table 2: Memory of CUDA-capable GPU (NVIDIA, 2020a).",
"year": "Jan, 2013"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b65",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"Yang He",
"Ping Liu",
"Ziwei Wang",
"Zhilan Hu",
"Yi Yang"
],
"doi": "10.1109/cvpr.2019.00447",
"ref_id": "b66",
"title": "Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration",
"year": "2019"
},
{
"authors": [
"G Hinton",
"O Vinyals",
"J Dean"
],
"doi": "",
"ref_id": "b67",
"title": "Distilling the knowledge in a neural network",
"year": "2015"
},
{
"authors": [
"T Hoefler",
"D Alistarh",
"T Ben-Nun",
"N Dryden",
"A Peste"
],
"doi": "",
"ref_id": "b68",
"title": "Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks",
"year": "2021"
},
{
"authors": [
"Sara Hooker"
],
"doi": "10.1145/3467017",
"ref_id": "b69",
"title": "The hardware lottery",
"year": "2021"
},
{
"authors": [
"H Hu",
"Z Song",
"O Weinstein",
"D Zhuo"
],
"doi": "",
"ref_id": "b70",
"title": "Training overparametrized neural networks in sublinear time",
"year": "2022"
},
{
"authors": [
"Piotr Indyk",
"Rajeev Motwani"
],
"doi": "10.1145/276698.276876",
"ref_id": "b71",
"title": "Approximate nearest neighbors",
"year": "1998"
},
{
"authors": [
"Piotr Indyk",
"Rajeev Motwani"
],
"doi": "10.1145/276698.276876",
"ref_id": "b72",
"title": "Approximate nearest neighbors",
"year": "1998"
},
{
"authors": [
"Piotr Indyk",
"Rajeev Motwani"
],
"doi": "10.1145/276698.276876",
"ref_id": "b73",
"title": "Approximate nearest neighbors",
"year": "2018"
},
{
"authors": [
"A Ivanov",
"N Dryden",
"T Ben-Nun",
"S Li",
"T Hoefler"
],
"doi": "",
"ref_id": "b74",
"title": "Data movement is all you need: A case study on optimizing transformers",
"year": "2021"
},
{
"authors": [
"Benoit Jacob",
"Skirmantas Kligys",
"Bo Chen",
"Menglong Zhu",
"Matthew Tang",
"Andrew Howard",
"Hartwig Adam",
"Dmitry Kalenichenko"
],
"doi": "10.1109/cvpr.2018.00286",
"ref_id": "b75",
"title": "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference",
"year": "2018"
},
{
"authors": [
"Shunhua Jiang",
"Zhao Song",
"Omri Weinstein",
"Hengjie Zhang"
],
"doi": "10.1145/3406325.3451058",
"ref_id": "b76",
"title": "A faster algorithm for solving general LPs",
"year": "2021"
},
{
"authors": [
"Jeff Johnson",
"Matthijs Douze",
"Herve Jegou"
],
"doi": "10.1109/tbdata.2019.2921572",
"ref_id": "b77",
"title": "Billion-Scale Similarity Search with GPUs",
"year": "2019"
},
{
"authors": [
"William B Johnson",
"Joram Lindenstrauss"
],
"doi": "10.1090/conm/026/737400",
"ref_id": "b78",
"title": "Extensions of Lipschitz mappings into a Hilbert space",
"year": "1984"
},
{
"authors": [
"N Kitaev",
"Ł Kaiser",
"A Levskaya"
],
"doi": "",
"ref_id": "b79",
"title": "Reformer: The efficient transformer",
"year": "2020"
},
{
"authors": [
"M Kurtz",
"J Kopinsky",
"R Gelashvili",
"A Matveev",
"J Carr",
"M Goin",
"W Leiserson",
"S Moore",
"N Shavit",
"D Alistarh"
],
"doi": "",
"ref_id": "b80",
"title": "Inducing and exploiting activation sparsity for fast inference on deep neural networks",
"year": "13-18 Jul 2020"
},
{
"authors": [
"B Laurent",
"P Massart"
],
"doi": "10.1214/aos/1015957395",
"ref_id": "b81",
"title": "Adaptive estimation of a quadratic functional by model selection",
"year": "2000"
},
{
"authors": [
"Y Lecun",
"B Boser",
"J S Denker",
"D Henderson",
"R E Howard",
"W Hubbard",
"L D Jackel"
],
"doi": "10.1162/neco.1989.1.4.541",
"ref_id": "b82",
"title": "Backpropagation Applied to Handwritten Zip Code Recognition",
"year": "1989"
},
{
"authors": [
"M Lee",
"X He",
"W.-T Yih",
"J Gao",
"L Deng",
"P Smolensky"
],
"doi": "",
"ref_id": "b83",
"title": "Reasoning in vector space: An exploratory study of question answering",
"year": "2016"
},
{
"authors": [
"N Lee",
"T Ajanthan",
"P H Torr",
"Snip"
],
"doi": "",
"ref_id": "b84",
"title": "Single-shot network pruning based on connection sensitivity",
"year": "2018"
},
{
"authors": [
"Y T Lee",
"Z Song",
"Q Zhang"
],
"doi": "",
"ref_id": "b85",
"title": "Solving empirical risk minimization in the current matrix multiplication time",
"year": "2019"
},
{
"authors": [
"P Li",
"X Li",
"C.-H Zhang"
],
"doi": "",
"ref_id": "b86",
"title": "Re-randomized densification for one permutation hashing and bin-wise consistent weighted sampling",
"year": "2019"
},
{
"authors": [
"Shuai Li",
"Zhao Song",
"Yu Xia",
"Tong Yu",
"Tianyi Zhou"
],
"doi": "10.52202/079017-2001",
"ref_id": "b87",
"title": "The Closeness of In-Context Learning and Weight Shifting for Softmax Regression",
"year": "2023"
},
{
"authors": [
"X Li",
"P Li",
"C-Minhash"
],
"doi": "",
"ref_id": "b88",
"title": "Improving minwise hashing with circulant permutation",
"year": "17-23 Jul 2022"
},
{
"authors": [
"Z Li",
"C You",
"S Bhojanapalli",
"D Li",
"A S Rawat",
"S J Reddi",
"K Ye",
"F Chern",
"F Yu",
"R Guo",
"S Kumar"
],
"doi": "",
"ref_id": "b89",
"title": "Large models are parsimonious learners: Activation sparsity in trained transformers",
"year": "2022"
},
{
"authors": [
"Z Li",
"Z Song",
"T Zhou"
],
"doi": "",
"ref_id": "b90",
"title": "Solving regularized exp, cosh and sinh regression problems",
"year": "2023"
},
{
"authors": [
"P Liang",
"R Bommasani",
"T Lee",
"D Tsipras",
"D Soylu",
"M Yasunaga",
"Y Zhang",
"D Narayanan",
"Y Wu",
"A Kumar"
],
"doi": "",
"ref_id": "b91",
"title": "Holistic evaluation of language models",
"year": "2022"
},
{
"authors": [
"Z Liu",
"M Sun",
"T Zhou",
"G Huang",
"T Darrell"
],
"doi": "",
"ref_id": "b92",
"title": "Rethinking the value of network pruning",
"year": "2018"
},
{
"authors": [
"Z Liu",
"Z Xu",
"A Ji",
"J Zhang",
"J Li",
"B Chen",
"A Shrivastava"
],
"doi": "",
"ref_id": "b93",
"title": "Halos: Hashing large output space for cheap inference",
"year": "2022"
},
{
"authors": [
"Y Lu",
"P Dhillon",
"D P Foster",
"L Ungar"
],
"doi": "",
"ref_id": "b94",
"title": "Faster ridge regression via the subsampled randomized hadamard transform",
"year": "2013"
},
{
"authors": [
"Yury Malkov",
"Alexander Ponomarenko",
"Andrey Logvinov",
"Vladimir Krylov"
],
"doi": "10.1016/j.is.2013.10.006",
"ref_id": "b95",
"title": "Approximate nearest neighbor algorithm based on navigable small world graphs",
"year": "2014"
},
{
"authors": [
"Y A Malkov",
"D A Yashunin"
],
"doi": "",
"ref_id": "b96",
"title": "Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs",
"year": "2018"
},
{
"authors": [
"Xiangrui Meng",
"Michael W Mahoney"
],
"doi": "10.1145/2488608.2488621",
"ref_id": "b97",
"title": "Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression",
"year": "2013"
},
{
"authors": [
"S Merity",
"C Xiong",
"J Bradbury",
"R Socher"
],
"doi": "",
"ref_id": "b98",
"title": "Pointer sentinel mixture models",
"year": "2016"
},
{
"authors": [
"P Michel",
"O Levy",
"G Neubig"
],
"doi": "",
"ref_id": "b99",
"title": "Are sixteen heads really better than one? Advances in neural information processing systems",
"year": "2019"
},
{
"authors": [
"T Mihaylov",
"P Clark",
"T Khot",
"A Sabharwal"
],
"doi": "",
"ref_id": "b100",
"title": "Can a suit of armor conduct electricity? a new dataset for open book question answering",
"year": "2018"
},
{
"authors": [
"S Min",
"X Lyu",
"A Holtzman",
"M Artetxe",
"M Lewis",
"H Hajishirzi",
"L Zettlemoyer"
],
"doi": "",
"ref_id": "b101",
"title": "Rethinking the role of demonstrations: What makes in-context learning work?",
"year": "2022"
},
{
"authors": [
"Pavlo Molchanov",
"Xiaodong Yang",
"Shalini Gupta",
"Kihwan Kim",
"Stephen Tyree",
"Jan Kautz"
],
"doi": "10.1109/cvpr.2016.456",
"ref_id": "b102",
"title": "Online Detection and Classification of Dynamic Hand Gestures with Recurrent 3D Convolutional Neural Networks",
"year": "2016"
},
{
"authors": [
"Markus Nagel",
"Mart Van Baalen",
"Tijmen Blankevoort",
"Max Welling"
],
"doi": "10.1109/iccv.2019.00141",
"ref_id": "b103",
"title": "Data-Free Quantization Through Weight Equalization and Bias Correction",
"year": "2019"
},
{
"authors": [
"J Nelson",
"H L Nguyên",
"Osnap"
],
"doi": "",
"ref_id": "b104",
"title": "Faster numerical linear algebra algorithms via sparser subspace embeddings",
"year": "2013. 2013"
},
{
"authors": [
"B Neyshabur",
"N Srebro"
],
"doi": "",
"ref_id": "b105",
"title": "On symmetric and asymmetric lshs for inner product search",
"year": "2015"
},
{
"authors": [
"Jack Choquette"
],
"doi": "10.1109/hcs55958.2022.9895592",
"ref_id": "b106",
"title": "Nvidia Hopper GPU: Scaling Performance",
"year": "2022"
},
{
"authors": [
"G Park",
"B Park",
"S J Kwon",
"B Kim",
"Y Lee",
"D Lee"
],
"doi": "",
"ref_id": "b107",
"title": "nuqmm: Quantized matmul for efficient inference of large-scale generative language models",
"year": "2022"
},
{
"authors": [
"R Pope",
"S Douglas",
"A Chowdhery",
"J Devlin",
"J Bradbury",
"A Levskaya",
"J Heek",
"K Xiao",
"S Agrawal",
"J Dean"
],
"doi": "",
"ref_id": "b108",
"title": "Efficiently scaling transformer inference",
"year": "2022"
},
{
"authors": [
"L Qin",
"Z Song",
"Y Wang"
],
"doi": "",
"ref_id": "b109",
"title": "Fast submodular function maximization",
"year": "2023"
},
{
"authors": [
"L Qin",
"Z Song",
"L Zhang",
"D Zhuo"
],
"doi": "",
"ref_id": "b110",
"title": "An online and unified algorithm for projection matrix vector multiplication with application to empirical risk minimization",
"year": "2023"
},
{
"authors": [
"A Radford",
"J Wu",
"R Child",
"D Luan",
"D Amodei",
"I Sutskever"
],
"doi": "",
"ref_id": "b111",
"title": "Language models are unsupervised multitask learners",
"year": "2019"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P J Liu"
],
"doi": "",
"ref_id": "b112",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "2019"
},
{
"authors": [
"Ilya Razenshteyn",
"Zhao Song",
"David P Woodruff"
],
"doi": "10.1145/2897518.2897639",
"ref_id": "b113",
"title": "Weighted low rank approximations with provable guarantees",
"year": "2016"
},
{
"authors": [
"Tamas Sarlos"
],
"doi": "10.1109/focs.2006.37",
"ref_id": "b114",
"title": "Improved Approximation Algorithms for Large Matrices via Random Projections",
"year": "2006"
},
{
"authors": [
"Minjoon Seo",
"Jinhyuk Lee",
"Tom Kwiatkowski",
"Ankur Parikh",
"Ali Farhadi",
"Hannaneh Hajishirzi"
],
"doi": "10.18653/v1/p19-1436",
"ref_id": "b115",
"title": "Real-Time Open-Domain Question Answering with Dense-Sparse Phrase Index",
"year": "2019"
},
{
"authors": [
"A Shrivastava",
"Z Song",
"Z Xu"
],
"doi": "",
"ref_id": "b116",
"title": "Sublinear least-squares value iteration via locality sensitive hashing",
"year": "2021"
},
{
"authors": [
"James E Smith"
],
"doi": "10.1145/285930.285980",
"ref_id": "b117",
"title": "A study of branch prediction strategies",
"year": "1998"
},
{
"authors": [
"Christian Sohler",
"David P Woodruff"
],
"doi": "10.1145/1993636.1993736",
"ref_id": "b118",
"title": "Subspace embeddings for the L <sub>1</sub> -norm with applications",
"year": "2011"
},
{
"authors": [
"Z Song",
"M Ye"
],
"doi": "",
"ref_id": "b119",
"title": "Efficient asynchronize stochastic gradient algorithm with structured data",
"year": "2023"
},
{
"authors": [
"Z Song",
"Z Yu"
],
"doi": "",
"ref_id": "b120",
"title": "Oblivious sketching-based central path method for linear programming",
"year": "2021"
},
{
"authors": [
"Zhao Song",
"David P Woodruff",
"Peilin Zhong"
],
"doi": "10.1145/3055399.3055431",
"ref_id": "b121",
"title": "Low rank approximation with entrywise l <sub>1</sub> -norm error",
"year": "2017"
},
{
"authors": [
"Z Song",
"D P Woodruff",
"P Zhong"
],
"doi": "",
"ref_id": "b122",
"title": "Relative error tensor low rank approximation",
"year": "2019"
},
{
"authors": [
"Z Song",
"L Zhang",
"R Zhang"
],
"doi": "",
"ref_id": "b123",
"title": "Training multi-layer over-parametrized neural network in subquadratic time",
"year": "2021"
},
{
"authors": [
"Z Song",
"W Wang",
"C Yin"
],
"doi": "",
"ref_id": "b124",
"title": "Fast and efficient matching algorithm with deadline instances",
"year": "2023"
},
{
"authors": [
"Z Song",
"X Yang",
"Y Yang",
"L Zhang"
],
"doi": "",
"ref_id": "b125",
"title": "Sketching meets differential privacy: fast algorithm for dynamic kronecker projection maintenance",
"year": "2023"
},
{
"authors": [
"R Tang",
"Y Lu",
"L Liu",
"L Mou",
"O Vechtomova",
"J Lin"
],
"doi": "",
"ref_id": "b126",
"title": "Distilling task-specific knowledge from bert into simple neural networks",
"year": "2019"
},
{
"authors": [
"Philippe Tillet",
"H.-T T Kung",
"David Cox"
],
"doi": "10.1145/3315508.3329973",
"ref_id": "b127",
"title": "Triton: an intermediate language and compiler for tiled neural network computations",
"year": "2019"
},
{
"authors": [
"H Touvron",
"M Cord",
"M Douze",
"F Massa",
"A Sablayrolles",
"H Jégou"
],
"doi": "",
"ref_id": "b128",
"title": "Training data-efficient image transformers & distillation through attention",
"year": "2021"
},
{
"authors": [
"A Veit",
"M J Wilber",
"S Belongie"
],
"doi": "",
"ref_id": "b129",
"title": "Residual networks behave like ensembles of relatively shallow networks",
"year": "2016"
},
{
"authors": [
"A Viterbi"
],
"doi": "10.1109/tit.1967.1054010",
"ref_id": "b130",
"title": "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm",
"year": "1967"
},
{
"authors": [
"B Wang",
"A Komatsuzaki"
],
"doi": "10.1515/9781683926566-008",
"ref_id": "b131",
"title": "Chapter 7: Transformer, BERT, and GPT",
"year": "May 2021"
},
{
"authors": [
"R Wang",
"D P Woodruff"
],
"doi": "",
"ref_id": "b132",
"title": "Tight bounds for lp oblivious subspace embeddings",
"year": "2018"
},
{
"authors": [
"Xiaohui Wang",
"Ying Xiong",
"Yang Wei",
"Mingxuan Wang",
"Lei Li"
],
"doi": "10.18653/v1/2021.naacl-industry.15",
"ref_id": "b133",
"title": "LightSeq: A High Performance Inference Library for Transformers",
"year": "2021"
},
{
"authors": [
"D P Woodruff"
],
"doi": "",
"ref_id": "b134",
"title": "Sketching as a tool for numerical linear algebra",
"year": "2014"
},
{
"authors": [
"G Xiao",
"J Lin",
"M Seznec",
"J Demouth",
"S Han"
],
"doi": "",
"ref_id": "b135",
"title": "Smoothquant: Accurate and efficient post-training quantization for large language models",
"year": "2022"
},
{
"authors": [
"S M Xie",
"A Raghunathan",
"P Liang",
"T Ma"
],
"doi": "",
"ref_id": "b136",
"title": "An explanation of in-context learning as implicit bayesian inference",
"year": "2022"
},
{
"authors": [
"Hong-Jian Xue",
"Xinyu Dai",
"Jianbing Zhang",
"Shujian Huang",
"Jiajun Chen"
],
"doi": "10.24963/ijcai.2017/447",
"ref_id": "b137",
"title": "Deep Matrix Factorization Models for Recommender Systems",
"year": "2017"
},
{
"authors": [
"Z Yao",
"R Y Aminabadi",
"M Zhang",
"X Wu",
"C Li",
"Y He",
"Zeroquant"
],
"doi": "",
"ref_id": "b138",
"title": "Efficient and affordable post-training quantization for large-scale transformers",
"year": "2022"
},
{
"authors": [
"G.-I Yu",
"J S Jeong",
"G.-W Kim",
"S Kim",
"B.-G Chun",
"Orca"
],
"doi": "",
"ref_id": "b139",
"title": "A distributed serving system for {Transformer-Based} generative models",
"year": "2022"
},
{
"authors": [
"A Zandieh",
"I Han",
"M Daliri",
"A Karbasi",
"Kdeformer"
],
"doi": "",
"ref_id": "b140",
"title": "Accelerating transformers via kernel density estimation",
"year": "2023"
},
{
"authors": [
"L Zhang"
],
"doi": "",
"ref_id": "b141",
"title": "Speeding up optimizations via data structures: Faster search, sample and maintenance",
"year": "2022"
},
{
"authors": [
"M Zhang",
"W Wang",
"X Liu",
"J Gao",
"Y He"
],
"doi": "",
"ref_id": "b142",
"title": "Navigating with graph representations for fast and scalable decoding of neural language models",
"year": "2018"
},
{
"authors": [
"Ritchie Zhao",
"Yuwei Hu",
"Jordan Dotzel",
"Christopher De Sa",
"Zhiru Zhang"
],
"doi": "10.1109/cvpr.2019.01156",
"ref_id": "b143",
"title": "Building Efficient Deep Neural Networks With Unitary Group Convolutions",
"year": "2019"
}
] |
[
"a7422d112b2c151e",
"e71efda30a147c06",
"56886aa62880ce77",
"c281efac00388bd0",
"51f5562e9bbd49ac",
"0c457b78f088411e",
"a9a34f257cca18af",
"0aed416419a3283a",
"5e44a0d28f68b6fe",
"1a2926cfa5c7faa9",
"0a7ce59685650dc2",
"45fba243faa6f5eb",
"7872542393c4153c",
"a90ca20aa788bfbf",
"5220be8e01f6e69d",
"0c601e8d697ae8e6",
"c2e76f5d1265f6a6",
"931f78629a12dc30",
"7dc77b113131f66f",
"ad0c688e26ebaa3e",
"b25bc04b59116210",
"39ea51c87cdfdcfb",
"132d51b607119d2e",
"07a8b8765c366508",
"d3486e391adb466d",
"bd532648cce414da",
"db1951152df2c2cb",
"00393df462c0d925",
"c3155dbf65c22129",
"5dbf72cd15930b41",
"8d21cfc83d6a1583",
"176faefbc0e1d40a",
"03f0aa9c41a71410",
"73896b4466239eb5",
"147295813603ee5c",
"cc28ecd8a0f20b6e",
"df30535e0c8bc13c",
"028b22105e6740b8",
"c0526a3037433324",
"a37dad7beb6d9471",
"722ce17e7e19b8cd",
"fb0526a6eab08c15"
] |
[
"856e5332534ecf17",
"45fba243faa6f5eb",
"e68832f34b77f7b8",
"3d0345a12ff95330",
"31212c8a3907f952",
"0a7ce59685650dc2",
"e804097d1327d1a2",
"4039f83ea5b6df71",
"057630c77eb72c49",
"39dd70eb4dad79d4",
"354bf0b61517c04c",
"eaa1daef15e269d9",
"931f78629a12dc30",
"56886aa62880ce77",
"2fabf80bd42b51c4",
"c281efac00388bd0",
"5e44a0d28f68b6fe",
"f0e838dd0ba5ec96",
"7e538a59d9429972",
"6d3484cadaca36f0",
"dc368dd4df057cc7",
"5220be8e01f6e69d",
"91be26c76977dbb4",
"50ee57e402ebdbe7",
"294464a6d95efbcb",
"76fb5509163e873e",
"e71efda30a147c06",
"4e7ceb236737d0cd",
"df30535e0c8bc13c",
"161a453a5da0f568",
"0b6dd067cbd41ba0",
"19a267f94abd0913",
"2226c973f72e1fdd",
"61fe827f65af7c39",
"c3155dbf65c22129",
"f240fc5d37c96edd",
"35ef83cbdab69701",
"9ddbe5821bd334e4",
"bcd949787f385dff",
"f755cce7f7118103",
"c904913907ef12e1",
"28333c343ba3e127",
"9441cffdeb70e8b6",
"1c5a17efd9d10827",
"c1bc4bf684e9d4cd",
"aa0f6033d517dcb3",
"cc28ecd8a0f20b6e",
"a5d8bf3402b5f324",
"2576b1e58df7640c",
"147295813603ee5c",
"70f05b5d7619c47b",
"8d21cfc83d6a1583",
"0c457b78f088411e",
"03f0aa9c41a71410",
"2837dfc738efbe18",
"307a92047b05f150",
"dfa6deec38cb2576",
"90785a0ebcaf4466",
"a9a34f257cca18af",
"e1ebfb7631c73715",
"c89b530890408779",
"76cf0169ce14ed97",
"7dc77b113131f66f",
"db1951152df2c2cb",
"d023af11b9b1a3dd",
"39ea51c87cdfdcfb",
"00393df462c0d925",
"ad0c688e26ebaa3e",
"c2e76f5d1265f6a6",
"3d6ce445881cbe95",
"0ced1c271a52c47e",
"302a41ac31cab2dd",
"302a41ac31cab2dd",
"b6cba2c76b1404b8",
"205a3dbaa4863172",
"0aed416419a3283a",
"f0d223ba19fcd00f",
"f4605a95c10d759d",
"31859d6d3e7727da",
"51f5562e9bbd49ac",
"9ec546cb29c6846f",
"d5044c45b2af080f",
"3d4aee23e475ce17",
"fb0526a6eab08c15",
"727e2aaef300d945",
"e1adb59afae5464d",
"135f5d4842ccd617",
"f763e7ffea1cfec3",
"87c27cb9d204a8be",
"411844c681308e75",
"d01b66259478352e",
"41c16cba527387ed",
"a37dad7beb6d9471",
"5dbf72cd15930b41",
"9c732b914ea3e8de",
"a90ca20aa788bfbf",
"c541c1eb2734040b",
"c27b048cd99f3e58",
"247b652a102dd72b",
"6fd4e040de2b3c09",
"d5fad74cd9d402f7",
"c859b425cdc16e18",
"176faefbc0e1d40a",
"7872542393c4153c",
"9d78e25340c426d1",
"f72ba5f402526b87",
"7e65f40db9336da6",
"132d51b607119d2e",
"bd532648cce414da",
"606070b38303f5ab",
"95f5ee41e27e8ad0",
"c8beab030d8be9cb",
"0ef97d43aa0a44f5",
"17a533a86a43e856",
"966229b35ec65203",
"028b22105e6740b8",
"48ff3dd938f94e9a",
"f1b4a686410810f8",
"61a699c9bdf1f517",
"36fa3acf5bcaec6a",
"5d05b458f6ed43ec",
"3a633e2b926d2ce7",
"68e34b9ec250d926",
"f68062f1c990e0a3",
"a295134ab04a98b3",
"107ec12d31b3503d",
"c0526a3037433324",
"e0209e917b7c9aab",
"73896b4466239eb5",
"1a2926cfa5c7faa9",
"ff8d7474a13cc34d",
"8f227b17b3d83b2b",
"90e2be439cc47473",
"effe9f25684d65ff",
"3dfd03804bc18033",
"07a8b8765c366508",
"4551e6341a19fa9c",
"b25bc04b59116210",
"a7422d112b2c151e",
"722ce17e7e19b8cd",
"f23c25a830e6c19d",
"fd65d124c0aa6b83",
"d3486e391adb466d",
"0c601e8d697ae8e6"
] |
ORyo7fxcIA
|
Diffusion Models are Minimax Optimal Distribution Estimators
|
data/openreview_paper/ICML_2023_oral/ORyo7fxcIA//paper.pdf
| 64
| 12
|
[
{
"authors": [
"Dmitry Yarotsky"
],
"doi": "10.1016/j.neunet.2017.07.002",
"ref_id": "b62",
"title": "Error bounds for approximations with deep ReLU networks",
"year": "2017"
},
{
"authors": [
"N Schreuder",
"V.-E Brunel",
"A Dalalyan"
],
"doi": "",
"ref_id": "b45",
"title": "Statistical guarantees for generative models without domination",
"year": "2021"
},
{
"authors": [
"Jing Lei"
],
"doi": "10.3150/19-bej1151",
"ref_id": "b30",
"title": "Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces",
"year": "2020"
},
{
"authors": [
"Satoshi Hayakawa",
"Taiji Suzuki"
],
"doi": "10.1016/j.neunet.2019.12.014",
"ref_id": "b21",
"title": "On the minimax optimality and superiority of deep neural network learning over sparse parameter spaces",
"year": "2020"
},
{
"authors": [
"Jonathan Weed",
"Francis Bach"
],
"doi": "10.3150/18-bej1065",
"ref_id": "b60",
"title": "Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance",
"year": "2019"
},
{
"authors": [
"Jonathan Niles-Weed",
"Quentin Berthet"
],
"doi": "10.1214/21-aos2161",
"ref_id": "b36",
"title": "Minimax estimation of smooth densities in Wasserstein distance",
"year": "2022"
},
{
"authors": [
"Philipp Petersen",
"Felix Voigtlaender"
],
"doi": "10.1016/j.neunet.2018.08.019",
"ref_id": "b38",
"title": "Optimal approximation of piecewise smooth functions using deep ReLU neural networks",
"year": "2018"
},
{
"authors": [
"Johannes Schmidt-Hieber"
],
"doi": "10.1214/19-aos1875",
"ref_id": "b44",
"title": "Nonparametric regression using deep neural networks with ReLU activation function",
"year": "2020"
},
{
"authors": [
"Ian Goodfellow",
"Jean Pouget-Abadie",
"Mehdi Mirza",
"Bing Xu",
"David Warde-Farley",
"Sherjil Ozair",
"Aaron Courville",
"Yoshua Bengio"
],
"doi": "10.1145/3422622",
"ref_id": "b18",
"title": "Generative adversarial networks",
"year": "2020"
},
{
"authors": [
"Tengyuan Liang"
],
"doi": "10.2139/ssrn.3714011",
"ref_id": "b31",
"title": "How Well Generative Adversarial Networks Learn Distributions",
"year": "2017"
},
{
"authors": [
"T Suzuki"
],
"doi": "",
"ref_id": "b52",
"title": "Adaptivity of deep relu network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality",
"year": "2018"
},
{
"authors": [
"A R Barron"
],
"doi": "10.1109/18.256500",
"ref_id": "b3",
"title": "Universal approximation bounds for superpositions of a sigmoidal function",
"year": "1993"
}
] |
[
{
"authors": [
"H Amann",
"J Bourguignon",
"K Grove",
"P Lions",
"H Araki",
"F Brezzi",
"K Chang",
"N Hitchin",
"H Hofer",
"H Knörrer"
],
"doi": "",
"ref_id": "b0",
"title": "",
"year": "1983"
},
{
"authors": [
"S Arora",
"N Cohen",
"W Hu",
"Y Luo"
],
"doi": "",
"ref_id": "b1",
"title": "Implicit regularization in deep matrix factorization",
"year": "2019"
},
{
"authors": [
"D Bakry",
"I Gentil",
"M Ledoux"
],
"doi": "",
"ref_id": "b2",
"title": "Analysis and geometry of Markov diffusion operators",
"year": "2014"
},
{
"authors": [
"A R Barron"
],
"doi": "10.1109/18.256500",
"ref_id": "b3",
"title": "Universal approximation bounds for superpositions of a sigmoidal function",
"year": "1993"
},
{
"authors": [
"G Batzolis",
"J Stanczuk",
"C.-B Schönlieb"
],
"doi": "",
"ref_id": "b4",
"title": "Your diffusion model secretly knows the dimension of the data manifold",
"year": "2022"
},
{
"authors": [
"A Block",
"Y Mroueh",
"A Rakhlin"
],
"doi": "",
"ref_id": "b5",
"title": "Generative modeling with denoising auto-encoders and langevin sampling",
"year": "2020"
},
{
"authors": [
"N Boullé",
"Y Nakatsukasa",
"A Townsend"
],
"doi": "10.1016/b978-0-12-817078-6.00011-8",
"ref_id": "b6",
"title": "Neural identification using recurrent high-order neural networks for discrete nonlinear systems with unknown time delays",
"year": "2020"
},
{
"authors": [
"Seok-Ho Chang",
"Pamela C Cosman",
"Laurence B Milstein"
],
"doi": "10.1109/tcomm.2011.072011.100049",
"ref_id": "b7",
"title": "Chernoff-Type Bounds for the Gaussian Error Function",
"year": "2011"
},
{
"authors": [
"M Chen",
"K Huang",
"T Zhao",
"M Wang"
],
"doi": "",
"ref_id": "b8",
"title": "Score approximation, estimation and distribution recovery of diffusion models on low-dimensional data",
"year": "2023"
},
{
"authors": [
"N Chen",
"Y Zhang",
"H Zen",
"R J Weiss",
"M Norouzi",
"W Chan",
"Wavegrad"
],
"doi": "",
"ref_id": "b9",
"title": "Estimating gradients for waveform generation",
"year": "2020"
},
{
"authors": [
"S Chen",
"S Chewi",
"J Li",
"Y Li",
"A Salim",
"A Zhang"
],
"doi": "",
"ref_id": "b10",
"title": "Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions",
"year": "2023"
},
{
"authors": [
"V De Bortoli"
],
"doi": "",
"ref_id": "b11",
"title": "Convergence of denoising diffusion models under the manifold hypothesis",
"year": "2022"
},
{
"authors": [
"Valentin De Bortoli",
"Arnaud Doucet",
"Iryna Korshunova",
"Andriy Mnih"
],
"doi": "10.52202/079017-3285",
"ref_id": "b12",
"title": "Schrodinger Bridge Flow for Unpaired Data Translation",
"year": "2021"
},
{
"authors": [
"Ronald A Devore",
"Vasil A Popov"
],
"doi": "10.2307/2001060",
"ref_id": "b13",
"title": "Interpolation of Besov Spaces",
"year": "1988"
},
{
"authors": [
"P Dhariwal",
"A Nichol"
],
"doi": "",
"ref_id": "b14",
"title": "Diffusion models beat gans on image synthesis",
"year": "2021"
},
{
"authors": [
"R M Dudley"
],
"doi": "10.1214/aoms/1177697802",
"ref_id": "b15",
"title": "The Speed of Mean Glivenko-Cantelli Convergence",
"year": "1969"
},
{
"authors": [
"C Fefferman",
"S Mitter",
"H Narayanan"
],
"doi": "",
"ref_id": "b16",
"title": "Testing the manifold hypothesis",
"year": "2016"
},
{
"authors": [
"X Glorot",
"A Bordes",
"Y Bengio"
],
"doi": "",
"ref_id": "b17",
"title": "Deep sparse rectifier neural networks",
"year": "2011"
},
{
"authors": [
"Ian Goodfellow",
"Jean Pouget-Abadie",
"Mehdi Mirza",
"Bing Xu",
"David Warde-Farley",
"Sherjil Ozair",
"Aaron Courville",
"Yoshua Bengio"
],
"doi": "10.1145/3422622",
"ref_id": "b18",
"title": "Generative adversarial networks",
"year": "2020"
},
{
"authors": [
"Suriya Gunasekar",
"Blake Woodworth",
"Srinadh Bhojanapalli",
"Behnam Neyshabur",
"Nathan Srebro"
],
"doi": "10.1109/ita.2018.8503198",
"ref_id": "b19",
"title": "Implicit Regularization in Matrix Factorization",
"year": "2017"
},
{
"authors": [
"U G Haussmann",
"E Pardoux"
],
"doi": "10.1214/aop/1176992362",
"ref_id": "b20",
"title": "Time Reversal of Diffusions",
"year": "1986"
},
{
"authors": [
"Satoshi Hayakawa",
"Taiji Suzuki"
],
"doi": "10.1016/j.neunet.2019.12.014",
"ref_id": "b21",
"title": "On the minimax optimality and superiority of deep neural network learning over sparse parameter spaces",
"year": "2020"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b22",
"title": "Denoising diffusion probabilistic models",
"year": "2020"
},
{
"authors": [
"J Ho",
"T Salimans",
"A Gritsenko",
"W Chan",
"M Norouzi",
"D J Fleet"
],
"doi": "",
"ref_id": "b23",
"title": "Video diffusion models",
"year": "2022"
},
{
"authors": [
"Aapo Hyvärinen",
"Jarmo Hurri",
"Patrik O Hoyer"
],
"doi": "10.1007/978-1-84882-491-1_21",
"ref_id": "b24",
"title": "Estimation of Non-normalized Statistical Models",
"year": "2005"
},
{
"authors": [
"I A Ibragimov",
"R Z Khas'minskii"
],
"doi": "",
"ref_id": "b25",
"title": "More on the estimation of distribution densities",
"year": "1984"
},
{
"authors": [
"Ioannis Karatzas",
"Steven E Shreve"
],
"doi": "10.1007/978-1-4684-0302-2",
"ref_id": "b26",
"title": "Brownian Motion and Stochastic Calculus",
"year": "1991"
},
{
"authors": [
"Z Kong",
"W Ping",
"J Huang",
"K Zhao",
"B Catanzaro",
"Diffwave"
],
"doi": "",
"ref_id": "b27",
"title": "A versatile diffusion model for audio synthesis",
"year": "2020"
},
{
"authors": [
"Jin Sub Lee",
"Philip Kim"
],
"doi": "10.21203/rs.3.rs-1855828/v1",
"ref_id": "b28",
"title": "ProteinSGM: Score-based generative modeling for de novo protein design",
"year": "2022"
},
{
"authors": [
"H Lee",
"J Lu",
"Y Tan"
],
"doi": "",
"ref_id": "b29",
"title": "Convergence for score-based generative modeling with polynomial complexity",
"year": "2022"
},
{
"authors": [
"Jing Lei"
],
"doi": "10.3150/19-bej1151",
"ref_id": "b30",
"title": "Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces",
"year": "2020"
},
{
"authors": [
"Tengyuan Liang"
],
"doi": "10.2139/ssrn.3714011",
"ref_id": "b31",
"title": "How Well Generative Adversarial Networks Learn Distributions",
"year": "2017"
},
{
"authors": [
"Lukas Meier",
"Sara Van De Geer",
"Peter Bühlmann"
],
"doi": "10.1214/09-aos692",
"ref_id": "b32",
"title": "High-dimensional additive modeling",
"year": "2009"
},
{
"authors": [
"H N Mhaskar",
"Charles A Micchelli"
],
"doi": "10.1016/0196-8858(92)90016-p",
"ref_id": "b33",
"title": "Approximation by superposition of sigmoidal and radial basis functions",
"year": "1992"
},
{
"authors": [
"V Nair",
"G E Hinton"
],
"doi": "",
"ref_id": "b34",
"title": "Rectified linear units improve restricted boltzmann machines",
"year": "2010"
},
{
"authors": [
"R Nakada",
"M Imaizumi"
],
"doi": "",
"ref_id": "b35",
"title": "Adaptive approximation and generalization of deep neural network with intrinsic dimensionality",
"year": "2020"
},
{
"authors": [
"Jonathan Niles-Weed",
"Quentin Berthet"
],
"doi": "10.1214/21-aos2161",
"ref_id": "b36",
"title": "Minimax estimation of smooth densities in Wasserstein distance",
"year": "2022"
},
{
"authors": [
"K Oono",
"T Suzuki"
],
"doi": "",
"ref_id": "b37",
"title": "Approximation and non-parametric estimation of resnet-type convolutional neural networks",
"year": "2019"
},
{
"authors": [
"Philipp Petersen",
"Felix Voigtlaender"
],
"doi": "10.1016/j.neunet.2018.08.019",
"ref_id": "b38",
"title": "Optimal approximation of piecewise smooth functions using deep ReLU neural networks",
"year": "2018"
},
{
"authors": [
"Philipp Petersen",
"Felix Voigtlaender"
],
"doi": "10.1090/proc/14789",
"ref_id": "b39",
"title": "Equivalence of approximation by convolutional neural networks and fully-connected networks",
"year": "2020"
},
{
"authors": [
"J Pidstrigach"
],
"doi": "",
"ref_id": "b40",
"title": "Score-based generative models detect manifolds",
"year": "2022"
},
{
"authors": [
"A Ramesh",
"P Dhariwal",
"A Nichol",
"C Chu",
"M Chen"
],
"doi": "",
"ref_id": "b41",
"title": "Hierarchical text-conditional image generation with clip latents",
"year": "2022"
},
{
"authors": [
"Olaf Ronneberger",
"Philipp Fischer",
"Thomas Brox"
],
"doi": "10.1007/978-3-319-24574-4_28",
"ref_id": "b42",
"title": "U-Net: Convolutional Networks for Biomedical Image Segmentation",
"year": "2015"
},
{
"authors": [
"J Schmidt-Hieber"
],
"doi": "",
"ref_id": "b43",
"title": "Deep relu network approximation of functions on a manifold",
"year": "2019"
},
{
"authors": [
"Johannes Schmidt-Hieber"
],
"doi": "10.1214/19-aos1875",
"ref_id": "b44",
"title": "Nonparametric regression using deep neural networks with ReLU activation function",
"year": "2020"
},
{
"authors": [
"N Schreuder",
"V.-E Brunel",
"A Dalalyan"
],
"doi": "",
"ref_id": "b45",
"title": "Statistical guarantees for generative models without domination",
"year": "2021"
},
{
"authors": [
"S Singh",
"B Póczos"
],
"doi": "",
"ref_id": "b46",
"title": "Minimax distribution estimation in Wasserstein distance",
"year": "2018"
},
{
"authors": [
"S Singh",
"A Uppal",
"B Li",
"C.-L Li",
"M Zaheer",
"B Póczos"
],
"doi": "",
"ref_id": "b47",
"title": "Nonparametric density estimation under adversarial losses",
"year": "2018"
},
{
"authors": [
"J Sohl-Dickstein",
"E Weiss",
"N Maheswaranathan",
"S Ganguli"
],
"doi": "",
"ref_id": "b48",
"title": "Deep unsupervised learning using nonequilibrium thermodynamics",
"year": "2015"
},
{
"authors": [
"Y Song",
"S Ermon"
],
"doi": "",
"ref_id": "b49",
"title": "Generative modeling by estimating gradients of the data distribution",
"year": "2019"
},
{
"authors": [
"Y Song",
"J Sohl-Dickstein",
"D P Kingma",
"A Kumar",
"S Ermon",
"B Poole"
],
"doi": "",
"ref_id": "b50",
"title": "Score-based generative modeling through stochastic differential equations",
"year": "2020"
},
{
"authors": [
"D Soudry",
"E Hoffer",
"M S Nacson",
"S Gunasekar",
"N Srebro"
],
"doi": "",
"ref_id": "b51",
"title": "The implicit bias of gradient descent on separable data",
"year": "2018"
},
{
"authors": [
"T Suzuki"
],
"doi": "",
"ref_id": "b52",
"title": "Adaptivity of deep relu network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality",
"year": "2018"
},
{
"authors": [
"T Suzuki",
"A Nitanda"
],
"doi": "",
"ref_id": "b53",
"title": "Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic Besov space",
"year": "2021"
},
{
"authors": [
"M Telgarsky"
],
"doi": "",
"ref_id": "b54",
"title": "Neural networks and rational functions",
"year": "2017"
},
{
"authors": [
"Joshua B Tenenbaum",
"Vin De Silva",
"John C Langford"
],
"doi": "10.1126/science.290.5500.2319",
"ref_id": "b55",
"title": "A Global Geometric Framework for Nonlinear Dimensionality Reduction",
"year": "2000"
},
{
"authors": [
"Hans Triebel"
],
"doi": "10.1007/s13163-010-0034-7",
"ref_id": "b56",
"title": "Entropy numbers in function spaces with mixed integrability",
"year": "2011"
},
{
"authors": [
"Alexandre B Tsybakov"
],
"doi": "10.1007/b13794",
"ref_id": "b57",
"title": "Introduction to Nonparametric Estimation",
"year": "2009"
},
{
"authors": [
"A Vahdat",
"K Kreis",
"J Kautz"
],
"doi": "",
"ref_id": "b58",
"title": "Score-based generative modeling in latent space",
"year": "2021"
},
{
"authors": [
"P Vincent"
],
"doi": "",
"ref_id": "b59",
"title": "A connection between score matching and denoising autoencoders",
"year": "2011"
},
{
"authors": [
"Jonathan Weed",
"Francis Bach"
],
"doi": "10.3150/18-bej1065",
"ref_id": "b60",
"title": "Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance",
"year": "2019"
},
{
"authors": [
"Yuhong Yang",
"Andrew Barron"
],
"doi": "10.1214/aos/1017939142",
"ref_id": "b61",
"title": "Information-theoretic determination of minimax rates of convergence",
"year": "1999"
},
{
"authors": [
"Dmitry Yarotsky"
],
"doi": "10.1016/j.neunet.2017.07.002",
"ref_id": "b62",
"title": "Error bounds for approximations with deep ReLU networks",
"year": "2017"
},
{
"authors": [
"D.-X Zhou"
],
"doi": "10.1016/j.acha.2019.06.004",
"ref_id": "b63",
"title": "Universality of deep convolutional neural networks",
"year": "2020"
}
] |
[
"c79940ae12566add",
"331eaccc1805f55b",
"12295b9cf2df470f",
"f09e48d57c02d622",
"336628892cc3632a",
"b457c9f17400eecb",
"49bbe7bdd7f0a832",
"96f9833f6591adbb",
"2273372ed4f1bf9f",
"cac6874e6742682e",
"a98c14df56aafc8e",
"ba7880ecd97195e4"
] |
[
"590dbed3087a6f49",
"70fcf1e42d47fe64",
"c855cb4f386df9fb",
"ba7880ecd97195e4",
"2c8b8a908170d6ca",
"1b9c7845604b0dd2",
"482f4ccb216250cb",
"da48d18da7a1827c",
"bfd25602d66f65ce",
"e8ec2a9159961369",
"5e225fb9f65245ed",
"02d33e334c7eef8f",
"3588636985789dff",
"519331812e89a665",
"3d663db2552f763a",
"ef5738b73af086fc",
"82d9e49860b615d9",
"55e1923780c64be5",
"2273372ed4f1bf9f",
"aaee0153bf36377e",
"23ad3e63f63e959f",
"f09e48d57c02d622",
"7cb4584473814329",
"4b81a4e1b71bd64b",
"234927bc24a64bff",
"7c7e7be602e52916",
"fc2459433f690b16",
"7be0b9105ff48773",
"24c59dc52148eaaf",
"3b376d5b85853751",
"12295b9cf2df470f",
"cac6874e6742682e",
"d0c27456506bcdc1",
"995e3eebb782fccc",
"99a2bbd2a377576a",
"c836231e3e953135",
"b457c9f17400eecb",
"a6ab41540771b9aa",
"49bbe7bdd7f0a832",
"ef663c0ce1a5eba4",
"335e54f015d2a9b8",
"68b82b5cb5331481",
"4feda749d4e343ea",
"82110813fdbff742",
"96f9833f6591adbb",
"331eaccc1805f55b",
"878be5858bc08cd1",
"215279e77ba0cccc",
"26236d4d41c060e4",
"d3a70afe342f62b3",
"23fd87b86607c5d1",
"681ad0a249b4be49",
"a98c14df56aafc8e",
"6ab59a6ea809133a",
"2d8c91841e44002e",
"90e603a30af1dd9a",
"62960774dc1f28f1",
"0c28be7687796ff9",
"44c9b3b625634f37",
"897c28e8ad420936",
"336628892cc3632a",
"a21ae54c6da74007",
"c79940ae12566add",
"8edfcdea70d3d708"
] |
p5ZMcFXKvm
|
Warm-Start Actor-Critic: From Approximation Error to Sub-optimality Gap
|
data/openreview_paper/ICML_2023_oral/p5ZMcFXKvm//paper.pdf
| 59
| 24
|
[
{
"authors": [
"J Bagnell",
"S M Kakade",
"J Schneider",
"A Ng"
],
"doi": "",
"ref_id": "b2",
"title": "Policy search by dynamic programming",
"year": "2003"
},
{
"authors": [
"A.-M Farahmand",
"C Szepesvári",
"R Munos"
],
"doi": "",
"ref_id": "b12",
"title": "Error propagation for approximate policy and value iteration",
"year": "2010"
},
{
"authors": [
"Z Fu",
"Z Yang",
"Z Wang"
],
"doi": "",
"ref_id": "b13",
"title": "Single-timescale actor-critic provably finds globally optimal policy",
"year": "2020"
},
{
"authors": [
"Y Li"
],
"doi": "",
"ref_id": "b33",
"title": "Deep reinforcement learning: An overview",
"year": "2017"
},
{
"authors": [
"Manuel S Santos",
"John Rust"
],
"doi": "10.1137/s0363012902399824",
"ref_id": "b41",
"title": "Convergence Properties of Policy Iteration",
"year": "2004"
},
{
"authors": [
"A Nair",
"M Dalal",
"A Gupta",
"S Levine"
],
"doi": "",
"ref_id": "b35",
"title": "Accelerating online reinforcement learning with offline datasets",
"year": "2020"
},
{
"authors": [
"Abhishek Gupta",
"Corey Lynch",
"Brandon Kinman",
"Garrett Peake",
"Sergey Levine",
"Karol Hausman"
],
"doi": "10.1109/icra48891.2023.10161447",
"ref_id": "b20",
"title": "Demonstration-Bootstrapped Autonomous Practicing via Multi-Task Reinforcement Learning",
"year": "2020"
},
{
"authors": [
"R Munos"
],
"doi": "",
"ref_id": "b34",
"title": "Error bounds for approximate policy iteration",
"year": "2003"
},
{
"authors": [
"Y Song",
"Y Zhou",
"A Sekhari",
"J A Bagnell",
"A Krishnamurthy",
"W Sun"
],
"doi": "",
"ref_id": "b46",
"title": "Hybrid rl: Using both offline and online data can make rl efficient",
"year": "2022"
},
{
"authors": [
"B Kim",
"A.-M Farahmand",
"J Pineau",
"D Precup"
],
"doi": "",
"ref_id": "b25",
"title": "Learning from limited demonstrations",
"year": "2013"
},
{
"authors": [
"Auke Jan Ijspeert",
"Jun Nakanishi",
"Heiko Hoffmann",
"Peter Pastor",
"Stefan Schaal"
],
"doi": "10.1162/neco_a_00393",
"ref_id": "b21",
"title": "Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors",
"year": "2002"
},
{
"authors": [
"I Uchendu",
"T Xiao",
"Y Lu",
"B Zhu",
"M Yan",
"J Simon",
"M Bennice",
"C Fu",
"C Ma",
"J Jiao"
],
"doi": "",
"ref_id": "b50",
"title": "Jump-start reinforcement learning",
"year": "2022"
},
{
"authors": [
"Martin L Puterman"
],
"doi": "10.1002/9780470316887",
"ref_id": "b39",
"title": "Markov Decision Processes",
"year": "2014"
},
{
"authors": [
"Martin L Puterman",
"Shelby L Brumelle"
],
"doi": "10.1287/moor.4.1.60",
"ref_id": "b40",
"title": "On the Convergence of Policy Iteration in Stationary Dynamic Programming",
"year": "1979"
},
{
"authors": [
"A Wagenmaker",
"A Pacchiano"
],
"doi": "",
"ref_id": "b52",
"title": "Leveraging offline data in online reinforcement learning",
"year": "2022"
},
{
"authors": [
"A Lazaric",
"M Ghavamzadeh",
"R Munos"
],
"doi": "",
"ref_id": "b29",
"title": "Analysis of a classification-based policy iteration algorithm",
"year": "2010"
},
{
"authors": [
"David Silver",
"Thomas Hubert",
"Julian Schrittwieser",
"Ioannis Antonoglou",
"Matthew Lai",
"Arthur Guez",
"Marc Lanctot",
"Laurent Sifre",
"Dharshan Kumaran",
"Thore Graepel",
"Timothy Lillicrap",
"Karen Simonyan",
"Demis Hassabis"
],
"doi": "10.1126/science.aar6404",
"ref_id": "b44",
"title": "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play",
"year": "2017"
},
{
"authors": [
"M Gargiani",
"A Zanelli",
"D Liao-Mcpherson",
"T Summers",
"J Lygeros"
],
"doi": "",
"ref_id": "b16",
"title": "Dynamic programming through the lens of semismooth newton-type methods",
"year": "2022"
},
{
"authors": [
"T Xie",
"N Jiang",
"H Wang",
"C Xiong",
"Y Bai"
],
"doi": "",
"ref_id": "b54",
"title": "Policy finetuning: Bridging sample-efficient offline and online reinforcement learning",
"year": "2021"
},
{
"authors": [
"Harshat Kumar",
"Alec Koppel",
"Alejandro Ribeiro"
],
"doi": "10.1007/s10994-023-06303-2",
"ref_id": "b28",
"title": "On the sample complexity of actor-critic method for reinforcement learning with function approximation",
"year": "2023"
},
{
"authors": [
"Z Yang",
"Y Chen",
"M Hong",
"Z Wang"
],
"doi": "",
"ref_id": "b57",
"title": "Provably global convergence of actor-critic: A case for linear quadratic regulator with ergodic cost",
"year": "2019"
},
{
"authors": [
"Kyunghyun Lee",
"Ukcheol Shin",
"Byeong-Uk Lee"
],
"doi": "10.1109/cvpr52733.2024.00287",
"ref_id": "b30",
"title": "Learning to Control Camera Exposure via Reinforcement Learning",
"year": "2022"
},
{
"authors": [
"D Bertsekas"
],
"doi": "",
"ref_id": "b4",
"title": "Lessons from Alphazero for Optimal, Model Predictive, and Adaptive Control",
"year": "2022b"
},
{
"authors": [
"Sajad Khodadadian",
"Thinh T Doan",
"Justin Romberg",
"Siva Theja Maguluri"
],
"doi": "10.1109/tac.2022.3190032",
"ref_id": "b24",
"title": "Finite-Sample Analysis of Two-Time-Scale Natural Actor–Critic Algorithm",
"year": "2022"
}
] |
[
{
"authors": [
"A Agarwal",
"S M Kakade",
"J D Lee",
"G Mahajan"
],
"doi": "",
"ref_id": "b0",
"title": "Optimality and approximation with policy gradient methods in markov decision processes",
"year": "2020"
},
{
"authors": [
"A Ajalloeian",
"S U Stich"
],
"doi": "",
"ref_id": "b1",
"title": "On the convergence of SGD with biased gradients",
"year": "2020"
},
{
"authors": [
"J Bagnell",
"S M Kakade",
"J Schneider",
"A Ng"
],
"doi": "",
"ref_id": "b2",
"title": "Policy search by dynamic programming",
"year": "2003"
},
{
"authors": [
"Dimitri P Bertsekas"
],
"doi": "10.1137/16m1090946",
"ref_id": "b3",
"title": "Regular Policies in Abstract Dynamic Programming",
"year": "2022"
},
{
"authors": [
"D Bertsekas"
],
"doi": "",
"ref_id": "b4",
"title": "Lessons from Alphazero for Optimal, Model Predictive, and Adaptive Control",
"year": "2022b"
},
{
"authors": [
"Jalaj Bhandari",
"Daniel Russo",
"Raghav Singal"
],
"doi": "10.1287/opre.2020.2024",
"ref_id": "b5",
"title": "A Finite Time Analysis of Temporal Difference Learning with Linear Function Approximation",
"year": "2018"
},
{
"authors": [
"S Boyd",
"S P Boyd",
"L Vandenberghe"
],
"doi": "",
"ref_id": "b6",
"title": "Convex Optimization",
"year": "2004"
},
{
"authors": [
"James J Choi",
"David Laibson",
"Brigitte C Madrian",
"Andrew Metrick"
],
"doi": "10.1111/j.1540-6261.2009.01509.x",
"ref_id": "b7",
"title": "Reinforcement Learning and Savings Behavior",
"year": "2009"
},
{
"authors": [
"Gal Dalal",
"Balázs Szörényi",
"Gugan Thoppe",
"Shie Mannor"
],
"doi": "10.1609/aaai.v32i1.12079",
"ref_id": "b8",
"title": "Finite Sample Analyses for TD(0) With Function Approximation",
"year": "2018"
},
{
"authors": [
"Gal Dalal",
"Balazs Szorenyi",
"Gugan Thoppe"
],
"doi": "10.1609/aaai.v34i04.5779",
"ref_id": "b9",
"title": "A Tale of Two-Timescale Reinforcement Learning with the Tightest Finite-Time Bound",
"year": "2020"
},
{
"authors": [
"S Elfwing",
"E Uchibe",
"K Doya"
],
"doi": "",
"ref_id": "b10",
"title": "Sigmoid-weighted linear units for neural network function approximation in reinforcement learning",
"year": "2018"
},
{
"authors": [
"J Fan",
"B Jiang",
"Q Sun"
],
"doi": "",
"ref_id": "b11",
"title": "Hoeffding's inequality for general markov chains and its applications to statistical learning",
"year": "2021"
},
{
"authors": [
"A.-M Farahmand",
"C Szepesvári",
"R Munos"
],
"doi": "",
"ref_id": "b12",
"title": "Error propagation for approximate policy and value iteration",
"year": "2010"
},
{
"authors": [
"Z Fu",
"Z Yang",
"Z Wang"
],
"doi": "",
"ref_id": "b13",
"title": "Single-timescale actor-critic provably finds globally optimal policy",
"year": "2020"
},
{
"authors": [
"S Fujimoto",
"H Hoof",
"D Meger"
],
"doi": "",
"ref_id": "b14",
"title": "Addressing function approximation error in actor-critic methods",
"year": "2018"
},
{
"authors": [
"J Garcıa",
"F Fernández"
],
"doi": "",
"ref_id": "b15",
"title": "A comprehensive survey on safe reinforcement learning",
"year": "2015"
},
{
"authors": [
"M Gargiani",
"A Zanelli",
"D Liao-Mcpherson",
"T Summers",
"J Lygeros"
],
"doi": "",
"ref_id": "b16",
"title": "Dynamic programming through the lens of semismooth newton-type methods",
"year": "2022"
},
{
"authors": [
"S Gelly",
"D Silver"
],
"doi": "",
"ref_id": "b17",
"title": "Combining online and offline knowledge in UCT",
"year": "2007"
},
{
"authors": [
"Julien Grand-Clément",
"Christian Kroer"
],
"doi": "10.1609/aaai.v35i13.17435",
"ref_id": "b18",
"title": "Scalable First-Order Methods for Robust MDPs",
"year": "2021"
},
{
"authors": [
"Ivo Grondman",
"Lucian Busoniu",
"Gabriel A D Lopes",
"Robert Babuska"
],
"doi": "10.1109/tsmcc.2012.2218595",
"ref_id": "b19",
"title": "A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gradients",
"year": "2012"
},
{
"authors": [
"Abhishek Gupta",
"Corey Lynch",
"Brandon Kinman",
"Garrett Peake",
"Sergey Levine",
"Karol Hausman"
],
"doi": "10.1109/icra48891.2023.10161447",
"ref_id": "b20",
"title": "Demonstration-Bootstrapped Autonomous Practicing via Multi-Task Reinforcement Learning",
"year": "2020"
},
{
"authors": [
"Auke Jan Ijspeert",
"Jun Nakanishi",
"Heiko Hoffmann",
"Peter Pastor",
"Stefan Schaal"
],
"doi": "10.1162/neco_a_00393",
"ref_id": "b21",
"title": "Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors",
"year": "2002"
},
{
"authors": [
"B Jiang",
"Q Sun",
"J Fan",
"Bernstein"
],
"doi": "",
"ref_id": "b22",
"title": "s inequality for general markov chains",
"year": "2018"
},
{
"authors": [
"L P Kaelbling",
"M L Littman",
"A W Moore"
],
"doi": "",
"ref_id": "b23",
"title": "Reinforcement learning: A survey",
"year": "1996"
},
{
"authors": [
"Sajad Khodadadian",
"Thinh T Doan",
"Justin Romberg",
"Siva Theja Maguluri"
],
"doi": "10.1109/tac.2022.3190032",
"ref_id": "b24",
"title": "Finite-Sample Analysis of Two-Time-Scale Natural Actor–Critic Algorithm",
"year": "2022"
},
{
"authors": [
"B Kim",
"A.-M Farahmand",
"J Pineau",
"D Precup"
],
"doi": "",
"ref_id": "b25",
"title": "Learning from limited demonstrations",
"year": "2013"
},
{
"authors": [
"Vijay R Konda",
"John N Tsitsiklis"
],
"doi": "10.1137/s0363012901385691",
"ref_id": "b26",
"title": "OnActor-Critic Algorithms",
"year": "1999"
},
{
"authors": [
"A Kumar",
"A Gupta",
"S Levine"
],
"doi": "",
"ref_id": "b27",
"title": "Discor: Corrective feedback in reinforcement learning via distribution correction",
"year": "2020"
},
{
"authors": [
"Harshat Kumar",
"Alec Koppel",
"Alejandro Ribeiro"
],
"doi": "10.1007/s10994-023-06303-2",
"ref_id": "b28",
"title": "On the sample complexity of actor-critic method for reinforcement learning with function approximation",
"year": "2023"
},
{
"authors": [
"A Lazaric",
"M Ghavamzadeh",
"R Munos"
],
"doi": "",
"ref_id": "b29",
"title": "Analysis of a classification-based policy iteration algorithm",
"year": "2010"
},
{
"authors": [
"Kyunghyun Lee",
"Ukcheol Shin",
"Byeong-Uk Lee"
],
"doi": "10.1109/cvpr52733.2024.00287",
"ref_id": "b30",
"title": "Learning to Control Camera Exposure via Reinforcement Learning",
"year": "2022"
},
{
"authors": [
"David Levin",
"Yuval Peres"
],
"doi": "10.1090/mbk/107",
"ref_id": "b31",
"title": "Markov Chains and Mixing Times",
"year": "2017"
},
{
"authors": [
"Pascal Lezaud"
],
"doi": "10.1214/aoap/1028903453",
"ref_id": "b32",
"title": "Chernoff-type bound for finite Markov chains",
"year": "1998"
},
{
"authors": [
"Y Li"
],
"doi": "",
"ref_id": "b33",
"title": "Deep reinforcement learning: An overview",
"year": "2017"
},
{
"authors": [
"R Munos"
],
"doi": "",
"ref_id": "b34",
"title": "Error bounds for approximate policy iteration",
"year": "2003"
},
{
"authors": [
"A Nair",
"M Dalal",
"A Gupta",
"S Levine"
],
"doi": "",
"ref_id": "b35",
"title": "Accelerating online reinforcement learning with offline datasets",
"year": "2020"
},
{
"authors": [
"Y Nesterov"
],
"doi": "",
"ref_id": "b36",
"title": "Introductory Lectures on Convex Optimization: A Basic Course",
"year": "2003"
},
{
"authors": [
"Ronald Ortner"
],
"doi": "10.1613/jair.1.11316",
"ref_id": "b37",
"title": "Regret Bounds for Reinforcement Learning via Markov Chain Concentration",
"year": "2020"
},
{
"authors": [
"Jan Peters",
"Stefan Schaal"
],
"doi": "10.1016/j.neucom.2007.11.026",
"ref_id": "b38",
"title": "Natural Actor-Critic",
"year": "2008"
},
{
"authors": [
"Martin L Puterman"
],
"doi": "10.1002/9780470316887",
"ref_id": "b39",
"title": "Markov Decision Processes",
"year": "2014"
},
{
"authors": [
"Martin L Puterman",
"Shelby L Brumelle"
],
"doi": "10.1287/moor.4.1.60",
"ref_id": "b40",
"title": "On the Convergence of Policy Iteration in Stationary Dynamic Programming",
"year": "1979"
},
{
"authors": [
"Manuel S Santos",
"John Rust"
],
"doi": "10.1137/s0363012902399824",
"ref_id": "b41",
"title": "Convergence Properties of Policy Iteration",
"year": "2004"
},
{
"authors": [
"S Shalev-Shwartz",
"S Shammah",
"A Shashua"
],
"doi": "",
"ref_id": "b42",
"title": "Safe, multi-agent, reinforcement learning for autonomous driving",
"year": "2016"
},
{
"authors": [
"D Silver",
"G Lever",
"N Heess",
"T Degris",
"D Wierstra",
"M Riedmiller"
],
"doi": "",
"ref_id": "b43",
"title": "Deterministic policy gradient algorithms",
"year": "2014"
},
{
"authors": [
"David Silver",
"Thomas Hubert",
"Julian Schrittwieser",
"Ioannis Antonoglou",
"Matthew Lai",
"Arthur Guez",
"Marc Lanctot",
"Laurent Sifre",
"Dharshan Kumaran",
"Thore Graepel",
"Timothy Lillicrap",
"Karen Simonyan",
"Demis Hassabis"
],
"doi": "10.1126/science.aar6404",
"ref_id": "b44",
"title": "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play",
"year": "2017"
},
{
"authors": [
"David Silver",
"Thomas Hubert",
"Julian Schrittwieser",
"Ioannis Antonoglou",
"Matthew Lai",
"Arthur Guez",
"Marc Lanctot",
"Laurent Sifre",
"Dharshan Kumaran",
"Thore Graepel",
"Timothy Lillicrap",
"Karen Simonyan",
"Demis Hassabis"
],
"doi": "10.1126/science.aar6404",
"ref_id": "b45",
"title": "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play",
"year": "2018"
},
{
"authors": [
"Y Song",
"Y Zhou",
"A Sekhari",
"J A Bagnell",
"A Krishnamurthy",
"W Sun"
],
"doi": "",
"ref_id": "b46",
"title": "Hybrid rl: Using both offline and online data can make rl efficient",
"year": "2022"
},
{
"authors": [
"R S Sutton",
"A G Barto"
],
"doi": "",
"ref_id": "b47",
"title": "Reinforcement learning: An introduction",
"year": "2018"
},
{
"authors": [
"R S Sutton",
"D Mcallester",
"S Singh",
"Y Mansour"
],
"doi": "",
"ref_id": "b48",
"title": "Policy gradient methods for reinforcement learning with function approximation",
"year": "1999"
},
{
"authors": [
"S Thrun",
"A Schwartz"
],
"doi": "",
"ref_id": "b49",
"title": "Issues in using function approximation for reinforcement learning",
"year": "1993"
},
{
"authors": [
"I Uchendu",
"T Xiao",
"Y Lu",
"B Zhu",
"M Yan",
"J Simon",
"M Bennice",
"C Fu",
"C Ma",
"J Jiao"
],
"doi": "",
"ref_id": "b50",
"title": "Jump-start reinforcement learning",
"year": "2022"
},
{
"authors": [
"Hado Van Hasselt",
"Arthur Guez",
"David Silver"
],
"doi": "10.1609/aaai.v30i1.10295",
"ref_id": "b51",
"title": "Deep Reinforcement Learning with Double Q-Learning",
"year": "2016"
},
{
"authors": [
"A Wagenmaker",
"A Pacchiano"
],
"doi": "",
"ref_id": "b52",
"title": "Leveraging offline data in online reinforcement learning",
"year": "2022"
},
{
"authors": [
"C Wu",
"A Kreidieh",
"K Parvate",
"E Vinitsky",
"A M Bayen"
],
"doi": "",
"ref_id": "b53",
"title": "Flow: Architecture and benchmarking for reinforcement learning in traffic control",
"year": "2017"
},
{
"authors": [
"T Xie",
"N Jiang",
"H Wang",
"C Xiong",
"Y Bai"
],
"doi": "",
"ref_id": "b54",
"title": "Policy finetuning: Bridging sample-efficient offline and online reinforcement learning",
"year": "2021"
},
{
"authors": [
"T Xu",
"Z Wang",
"Y Liang"
],
"doi": "",
"ref_id": "b55",
"title": "Improving sample complexity bounds for (natural) actor-critic algorithms",
"year": "2020"
},
{
"authors": [
"T Xu",
"Z Wang",
"Y Liang"
],
"doi": "",
"ref_id": "b56",
"title": "Non-asymptotic convergence analysis of two time-scale (natural) actor-critic algorithms",
"year": "2020"
},
{
"authors": [
"Z Yang",
"Y Chen",
"M Hong",
"Z Wang"
],
"doi": "",
"ref_id": "b57",
"title": "Provably global convergence of actor-critic: A case for linear quadratic regulator with ergodic cost",
"year": "2019"
},
{
"authors": [
"S Zou",
"T Xu",
"Y Liang"
],
"doi": "",
"ref_id": "b58",
"title": "Finite-sample analysis for SARSA with linear function approximation",
"year": "2019"
}
] |
[
"4cc6783d3594f4b5",
"ffec59f92b9d568f",
"317421cb636b9e1e",
"1b243c7eab7924cc",
"463a437a92ee30a6",
"9513b00b88c95977",
"ed9c3a83d35d5cea",
"c56cc50a0b21dcbd",
"09ebc89186d1077a",
"f04bd358a9a3b4db",
"bd6d6db344f0abc1",
"ba77652110bd70b9",
"8b204f41276d1e97",
"cd250b142884c381",
"956bdd678f4daef8",
"1c3413866a5c5ab2",
"637e507088203071",
"a0430ddf7ef791a7",
"d39a2d52b0c59ec7",
"3a1c309c961ebc15",
"a76c6e4e3615c771",
"a732b754fff68c40",
"41d829229a6b2ae6",
"ce868af4f03c0f81"
] |
[
"d460703cc0ec3498",
"96d583f912324a19",
"4cc6783d3594f4b5",
"c64b8d4d1b64fe6b",
"41d829229a6b2ae6",
"deea1b5e34090ba7",
"11522fff627d422f",
"0ac25c785878e7c0",
"7048dfc8f41eb802",
"36bb2f2abd2a68c9",
"3f5675f176a82794",
"8516810095a5e7aa",
"ffec59f92b9d568f",
"317421cb636b9e1e",
"211aacfec81b827e",
"1e09b985c707d04f",
"a0430ddf7ef791a7",
"52dca05ae27bcdf5",
"825df87039e217bc",
"70d389d2c24836cd",
"ed9c3a83d35d5cea",
"bd6d6db344f0abc1",
"9ff3d13d027a9097",
"4226235bcfc783c2",
"ce868af4f03c0f81",
"f04bd358a9a3b4db",
"663b15e40080cd50",
"34c01e02008cc330",
"3a1c309c961ebc15",
"1c3413866a5c5ab2",
"a732b754fff68c40",
"afffa8b1a6eb26b7",
"581d118cac6716be",
"1b243c7eab7924cc",
"c56cc50a0b21dcbd",
"9513b00b88c95977",
"9136bfc04eddbfdd",
"d0ac4ddf66664c6f",
"186ea51b99b9bd35",
"8b204f41276d1e97",
"cd250b142884c381",
"463a437a92ee30a6",
"da5b1f810db7d11f",
"171ef044ff664aa9",
"637e507088203071",
"ebb8698cd9b18be7",
"09ebc89186d1077a",
"34dc3e64fa458b25",
"c2bba5555d7aa6a5",
"be1b1f674686c58c",
"ba77652110bd70b9",
"7a2f500477d6b902",
"956bdd678f4daef8",
"952f142b89db5dae",
"d39a2d52b0c59ec7",
"e73a5c88d8bc3511",
"a3c008d7969ef40d",
"a76c6e4e3615c771",
"e7d2a4c70280c6b2"
] |
lKoEeUpkVm
|
Transformer-based Stagewise Decomposition for Large-Scale Multistage Stochastic Optimization
|
data/openreview_paper/ICML_2023_oral/lKoEeUpkVm//paper.pdf
| 34
| 0
|
[] |
[
{
"authors": [
"H Bae",
"J Lee",
"W C Kim",
"Y Lee"
],
"doi": "",
"ref_id": "b0",
"title": "Deep value function networks for large-scale multistage stochastic programs",
"year": "2023"
},
{
"authors": [
"D Bahdanau",
"K Cho",
"Y Bengio"
],
"doi": "",
"ref_id": "b1",
"title": "Neural machine translation by jointly learning to align and translate",
"year": "2014"
},
{
"authors": [
"Bjorn P Berg",
"Brian T Denton",
"S Ayca Erdogan",
"Thomas Rohleder",
"Todd Huschka"
],
"doi": "10.1016/j.cor.2014.04.007",
"ref_id": "b2",
"title": "Optimal booking and scheduling in outpatient procedure centers",
"year": "2014"
},
{
"authors": [
"Stephen Boyd",
"Lieven Vandenberghe"
],
"doi": "10.1017/cbo9780511804441",
"ref_id": "b3",
"title": "Convex Optimization",
"year": "2004"
},
{
"authors": [
"David R Cariño",
"Terry Kent",
"David H Myers",
"Celine Stacy",
"Mike Sylvanus",
"Andrew L Turner",
"Kouji Watanabe",
"William T Ziemba"
],
"doi": "10.1287/inte.24.1.29",
"ref_id": "b4",
"title": "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming",
"year": "1994"
},
{
"authors": [
"C C Carøe",
"R Schultz"
],
"doi": "",
"ref_id": "b5",
"title": "Dual decomposition in stochastic integer programming",
"year": "1999"
},
{
"authors": [
"Hechang Chen",
"Jifeng Hu",
"Sili Huang",
"Tao Luo",
"Lichao Sun",
"Bo Yang",
"Liwei Yang",
"Zhejian Yang"
],
"doi": "10.52202/079017-2314",
"ref_id": "b6",
"title": "Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling",
"year": "2021"
},
{
"authors": [
"H Dai",
"Y Xue",
"Z Syed",
"D Schuurmans",
"B Dai"
],
"doi": "",
"ref_id": "b7",
"title": "Neural stochastic dual dynamic programming",
"year": "2021"
},
{
"authors": [
"Vitor L De Matos",
"Andy B Philpott",
"Erlon C Finardi"
],
"doi": "10.1016/j.cam.2015.04.048",
"ref_id": "b8",
"title": "Improving the performance of Stochastic Dual Dynamic Programming",
"year": "2015"
},
{
"authors": [
"Linhao Dong",
"Shuang Xu",
"Bo Xu"
],
"doi": "10.1109/icassp.2018.8462506",
"ref_id": "b9",
"title": "Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for Speech Recognition",
"year": "2018"
},
{
"authors": [
"Edoardo Fadda",
"Guido Perboli",
"Roberto Tadei"
],
"doi": "10.1016/j.ejor.2019.02.052",
"ref_id": "b10",
"title": "A progressive hedging method for the optimization of social engagement and opportunistic IoT problems",
"year": "2019"
},
{
"authors": [
"S.-E Fleten",
"T K Kristoffersen"
],
"doi": "",
"ref_id": "b11",
"title": "Short-term hydropower production planning by stochastic programming",
"year": "2008"
},
{
"authors": [
"R Girdhar",
"J Carreira",
"C Doersch",
"A Zisserman"
],
"doi": "",
"ref_id": "b12",
"title": "Video action transformer network",
"year": "2019"
},
{
"authors": [
"Vincent Guigues"
],
"doi": "10.1007/s10589-013-9584-1",
"ref_id": "b13",
"title": "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning",
"year": "2014"
},
{
"authors": [
"Yanrong Ji",
"Zhihan Zhou",
"Han Liu",
"Ramana V Davuluri"
],
"doi": "10.1093/bioinformatics/btab083",
"ref_id": "b14",
"title": "DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome",
"year": "2021"
},
{
"authors": [
"B Karimi",
"S M T Fatemi Ghomi",
"J M Wilson"
],
"doi": "10.1016/s0305-0483(03)00059-8",
"ref_id": "b15",
"title": "The capacitated lot sizing problem: a review of models and algorithms",
"year": "2003"
},
{
"authors": [
"Y Kim",
"C Denton",
"L Hoang",
"A M Rush"
],
"doi": "",
"ref_id": "b16",
"title": "Structured attention networks",
"year": "2017"
},
{
"authors": [
"W Kool",
"H Van Hoof",
"M Welling",
"Attention"
],
"doi": "",
"ref_id": "b17",
"title": "learn to solve routing problems!",
"year": "2018"
},
{
"authors": [
"Jinkyu Lee",
"Sanghyeon Bae",
"Woo Chang Kim",
"Yongjae Lee"
],
"doi": "10.1016/j.ejor.2022.10.011",
"ref_id": "b18",
"title": "Value function gradient learning for large-scale multistage stochastic programming problems",
"year": "2022"
},
{
"authors": [
"Z Liu",
"Z Guo",
"Y Yao",
"Z Cen",
"W Yu",
"T Zhang",
"D Zhao"
],
"doi": "",
"ref_id": "b19",
"title": "Constrained decision transformer for offline safe reinforcement learning",
"year": "2023"
},
{
"authors": [
"Thang Luong",
"Hieu Pham",
"Christopher D Manning"
],
"doi": "10.18653/v1/d15-1166",
"ref_id": "b20",
"title": "Effective Approaches to Attention-based Neural Machine Translation",
"year": "2015"
},
{
"authors": [
"Robert C Merton"
],
"doi": "10.2307/1926560",
"ref_id": "b21",
"title": "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case",
"year": "1969"
},
{
"authors": [
"E Parisotto",
"F Song",
"J Rae",
"R Pascanu",
"C Gulcehre",
"S Jayakumar",
"M Jaderberg",
"R L Kaufman",
"A Clark",
"S Noury"
],
"doi": "",
"ref_id": "b22",
"title": "Stabilizing transformers for reinforcement learning",
"year": "2020"
},
{
"authors": [
"M V F Pereira",
"L M V G Pinto"
],
"doi": "10.1007/bf01582895",
"ref_id": "b23",
"title": "Multi-stage stochastic optimization applied to energy planning",
"year": "1991"
},
{
"authors": [
"L Pfeiffer",
"R Apparigliato",
"S Auchapt"
],
"doi": "10.1201/b11797-10",
"ref_id": "b24",
"title": "Application of The Developed (WQMIS) As A Decision Support Tool For Lake Management",
"year": "2012"
},
{
"authors": [
"R T Rockafellar",
"Null- B Wets"
],
"doi": "10.1287/moor.16.1.119",
"ref_id": "b25",
"title": "Scenarios and Policy Aggregation in Optimization Under Uncertainty",
"year": "1991"
},
{
"authors": [
"A Shapiro"
],
"doi": "",
"ref_id": "b26",
"title": "Analysis of stochastic dual dynamic programming method",
"year": "2011"
},
{
"authors": [
"Alexander Shapiro",
"Darinka Dentcheva",
"Andrzej Ruszczynski"
],
"doi": "10.1137/1.9781611976595",
"ref_id": "b27",
"title": "Lectures on Stochastic Programming: Modeling and Theory, Third Edition",
"year": "2021"
},
{
"authors": [
"Jeremy F Shapiro"
],
"doi": "10.1016/s0927-0507(05)80188-4",
"ref_id": "b28",
"title": "Chapter 8 Mathematical programming models and methods for production planning and scheduling",
"year": "1993"
},
{
"authors": [
"Takayuki Shiina",
"John R Birge"
],
"doi": "10.1007/bf03167428",
"ref_id": "b29",
"title": "Multistage stochastic programming model for electric power capacity expansion problem",
"year": "2003"
},
{
"authors": [
"Chefi Triki",
"Patrizia Beraldi",
"George Gross"
],
"doi": "10.1016/s0305-0548(03)00211-9",
"ref_id": "b30",
"title": "Optimal capacity allocation in multi-auction electricity markets under uncertainty",
"year": "2005"
},
{
"authors": [
"A Vaswani",
"N Shazeer",
"N Parmar",
"J Uszkoreit",
"L Jones",
"A N Gomez",
"Ł Kaiser",
"I Polosukhin"
],
"doi": "",
"ref_id": "b31",
"title": "Attention is all you need",
"year": "2017"
},
{
"authors": [
"H M Wagner",
"T M Whitin"
],
"doi": "",
"ref_id": "b32",
"title": "Dynamic version of the economic lot size model",
"year": "1958"
},
{
"authors": [
"Qiang Wang",
"Bei Li",
"Tong Xiao",
"Jingbo Zhu",
"Changliang Li",
"Derek F Wong",
"Lidia S Chao"
],
"doi": "10.18653/v1/p19-1176",
"ref_id": "b33",
"title": "Learning Deep Transformer Models for Machine Translation",
"year": "2019"
}
] |
[] |
[
"dcff1d784030eefd",
"5b269a431978487d",
"ddef8879f40e2d4f",
"95bfe2df968133cf",
"234ed68c0a9ddadf",
"f8b8975174802fd8",
"f5bd275dd911c0ce",
"8f65f008235389ac",
"8c906f4d6f5dd68b",
"fdf2614e0239fd0b",
"ab3843e27284abf7",
"045ddc3ba67b0305",
"3cee735d986ecf0f",
"ed3bb6aefa072e0b",
"3ba5d9530816ee29",
"79447cf9f1a86b8e",
"0a4ac60dbd6f7c0e",
"132fcb90be42c6c9",
"37af22f6da235ca4",
"fd27245c5a80da9e",
"e6b502f12e23d246",
"4892664038308070",
"5adc6607c3961a5e",
"412fdced423f11ba",
"262996016f743af0",
"451694fa322f415b",
"d4c4624b75369b51",
"2d5a644db451d809",
"9d46dc178d44fe47",
"b726cf37da7860ac",
"7478786654203b02",
"f3e09d57e222da76",
"4e57bbd6d197201b",
"4603121808ae8d5a"
] |
eyTrDtchE1
|
Generalized Teacher Forcing for Learning Chaotic Dynamics
|
data/openreview_paper/ICML_2023_oral/eyTrDtchE1//paper.pdf
| 88
| 28
|
[
{
"authors": [
"J Hanson",
"M Raginsky"
],
"doi": "",
"ref_id": "b31",
"title": "Universal simulation of stable dynamical systems by recurrent neural nets",
"year": "2020"
},
{
"authors": [
"Henning U Voss",
"Jens Timmer",
"Jürgen Kurths"
],
"doi": "10.1142/s0218127404010345",
"ref_id": "b83",
"title": "NONLINEAR DYNAMICAL SYSTEM IDENTIFICATION FROM UNCERTAIN AND INDIRECT MEASUREMENTS",
"year": "2004"
},
{
"authors": [
"M Kirchmeyer",
"Y Yin",
"J Dona",
"N Baskiotis",
"A Rakotomamonjy",
"P Gallinari"
],
"doi": "",
"ref_id": "b44",
"title": "Generalizing to new physical systems via context-informed dynamics model",
"year": "17-23 Jul 2022"
},
{
"authors": [
"D E Rumelhart",
"G E Hinton",
"R J Williams"
],
"doi": "",
"ref_id": "b68",
"title": "Learning representations by back-propagating errors",
"year": "1986"
},
{
"authors": [
"Joseph Bakarji",
"Kathleen Champion",
"J Nathan Kutz",
"Steven L Brunton"
],
"doi": "10.1098/rspa.2023.0422",
"ref_id": "b3",
"title": "Discovering governing equations from partial measurements with deep delay autoencoders",
"year": "2022"
},
{
"authors": [
"Steven L Brunton",
"Joshua L Proctor",
"J Nathan Kutz"
],
"doi": "10.1073/pnas.1517384113",
"ref_id": "b8",
"title": "Discovering governing equations from data by sparse identification of nonlinear dynamical systems",
"year": "2016"
},
{
"authors": [
"M Raissi"
],
"doi": "",
"ref_id": "b64",
"title": "Deep hidden physics models: Deep learning of nonlinear partial differential equations",
"year": "2018"
},
{
"authors": [
"Fernando Lejarza",
"Michael Baldea"
],
"doi": "10.1038/s41598-022-13644-w",
"ref_id": "b48",
"title": "Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization",
"year": "2022"
},
{
"authors": [
"D Schmidt",
"G Koppe",
"Z Monfared",
"M Beutelspacher",
"D Durstewitz"
],
"doi": "",
"ref_id": "b74",
"title": "Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies",
"year": "2021"
},
{
"authors": [
"Ken-Ichi Funahashi",
"Yuichi Nakamura"
],
"doi": "10.1016/s0893-6080(05)80125-x",
"ref_id": "b28",
"title": "Approximation of dynamical systems by continuous time recurrent neural networks",
"year": "1993"
},
{
"authors": [
"M Kimura",
"R Nakano"
],
"doi": "10.1016/s0893-6080(98)00098-7",
"ref_id": "b43",
"title": "Learning dynamical systems by recurrent neural networks from orbits",
"year": "1998"
},
{
"authors": [
"Bethany Lusch",
"J Nathan Kutz",
"Steven L Brunton"
],
"doi": "10.1038/s41467-018-07210-0",
"ref_id": "b53",
"title": "Deep learning for universal linear embeddings of nonlinear dynamics",
"year": "2018"
},
{
"authors": [
"Pantelis R Vlachas",
"Wonmin Byeon",
"Zhong Y Wan",
"Themistoklis P Sapsis",
"Petros Koumoutsakos"
],
"doi": "10.1098/rspa.2017.0844",
"ref_id": "b81",
"title": "Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks",
"year": "2213. 2018"
},
{
"authors": [
"J Smith",
"S Linderman",
"D Sussillo"
],
"doi": "",
"ref_id": "b76",
"title": "Reverse engineering recurrent neural networks with jacobian switching linear dynamical systems",
"year": "2021"
},
{
"authors": [
"Dhruvit Patel",
"Edward Ott"
],
"doi": "10.1063/5.0131787",
"ref_id": "b59",
"title": "Using machine learning to anticipate tipping points and extrapolate to post-tipping dynamics of non-stationary dynamical systems",
"year": "2022"
},
{
"authors": [
"Georgia Koppe",
"Hazem Toutounji",
"Peter Kirsch",
"Stefanie Lis",
"Daniel Durstewitz"
],
"doi": "10.1371/journal.pcbi.1007263",
"ref_id": "b45",
"title": "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI",
"year": "2019"
},
{
"authors": [
"Kathleen Champion",
"Bethany Lusch",
"J Nathan Kutz",
"Steven L Brunton"
],
"doi": "10.1073/pnas.1906995116",
"ref_id": "b11",
"title": "Data-driven discovery of coordinates and governing equations",
"year": "2019"
},
{
"authors": [
"M Brenner",
"F Hess",
"J M Mikhaeil",
"L F Bereska",
"Z Monfared",
"P.-C Kuo",
"D Durstewitz"
],
"doi": "",
"ref_id": "b7",
"title": "Tractable dendritic RNNs for reconstructing nonlinear dynamical systems",
"year": "2022"
},
{
"authors": [
"P R Vlachas",
"J Pathak",
"B R Hunt",
"T P Sapsis",
"M Girvan",
"E Ott",
"P Koumoutsakos"
],
"doi": "10.1016/j.neunet.2020.02.016",
"ref_id": "b82",
"title": "Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics",
"year": "2020"
},
{
"authors": [
"Daniel Durstewitz"
],
"doi": "10.1371/journal.pcbi.1005542",
"ref_id": "b22",
"title": "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements",
"year": "2017"
},
{
"authors": [
"Steven L Brunton",
"Marko Budišić",
"Eurika Kaiser",
"J Nathan Kutz"
],
"doi": "10.1137/21m1401243",
"ref_id": "b9",
"title": "Modern Koopman Theory for Dynamical Systems",
"year": "2022"
},
{
"authors": [
"Zongyi Li",
"Hongkai Zheng",
"Nikola Kovachki",
"David Jin",
"Haoxuan Chen",
"Burigede Liu",
"Kamyar Azizzadenesheli",
"Anima Anandkumar"
],
"doi": "10.1145/3648506",
"ref_id": "b49",
"title": "Physics-Informed Neural Operator for Learning Partial Differential Equations",
"year": "2021"
},
{
"authors": [
"Yuan Zhao",
"Il Memming Park"
],
"doi": "10.3389/fncom.2020.00071",
"ref_id": "b87",
"title": "Variational Online Learning of Neural Dynamics",
"year": "2020"
},
{
"authors": [
"M Ricci",
"N Moriel",
"Z Piran",
"M Nitzan"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b66",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2022"
},
{
"authors": [
"R T Chen",
"Y Rubanova",
"J Bettencourt",
"D K Duvenaud"
],
"doi": "",
"ref_id": "b14",
"title": "Neural ordinary differential equations",
"year": "2018"
},
{
"authors": [
"D Kramer",
"P L Bommer",
"D Durstewitz",
"C Tombolini",
"G Koppe"
],
"doi": "",
"ref_id": "b46",
"title": "Reconstructing nonlinear dynamical systems from multi-modal time series",
"year": "2022"
},
{
"authors": [
"D Hernandez",
"A K Moretti",
"S Saxena",
"Z Wei",
"J Cunningham",
"L Paninski"
],
"doi": "",
"ref_id": "b32",
"title": "Nonlinear evolution via spatially-dependent linear dynamics for electrophysiology and calcium data",
"year": "2020"
},
{
"authors": [
"Jaideep Pathak",
"Brian Hunt",
"Michelle Girvan",
"Zhixin Lu",
"Edward Ott"
],
"doi": "10.1103/physrevlett.120.024102",
"ref_id": "b60",
"title": "Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach",
"year": "2018"
}
] |
[
{
"authors": [
"Henry Abarbanel"
],
"doi": "10.1007/978-1-4614-7218-6",
"ref_id": "b0",
"title": "Predicting the Future",
"year": "2013"
},
{
"authors": [
"L Ardizzone",
"J Kruse",
"C Rother",
"U Köthe"
],
"doi": "",
"ref_id": "b1",
"title": "Analyzing inverse problems with invertible neural networks",
"year": "2019"
},
{
"authors": [
"M Arjovsky",
"A Shah",
"Y Bengio"
],
"doi": "",
"ref_id": "b2",
"title": "Unitary evolution recurrent neural networks",
"year": "2016"
},
{
"authors": [
"Joseph Bakarji",
"Kathleen Champion",
"J Nathan Kutz",
"Steven L Brunton"
],
"doi": "10.1098/rspa.2023.0422",
"ref_id": "b3",
"title": "Discovering governing equations from partial measurements with deep delay autoencoders",
"year": "2022"
},
{
"authors": [
"S Bengio",
"O Vinyals",
"N Jaitly",
"N Shazeer"
],
"doi": "",
"ref_id": "b4",
"title": "Scheduled sampling for sequence prediction with recurrent neural networks",
"year": "2015"
},
{
"authors": [
"Y Bengio",
"P Simard",
"P Frasconi"
],
"doi": "",
"ref_id": "b5",
"title": "Learning long-term dependencies with gradient descent is difficult",
"year": "1994"
},
{
"authors": [
"A Böttcher",
"D Wenzel"
],
"doi": "",
"ref_id": "b6",
"title": "The frobenius norm and the commutator",
"year": "2008"
},
{
"authors": [
"M Brenner",
"F Hess",
"J M Mikhaeil",
"L F Bereska",
"Z Monfared",
"P.-C Kuo",
"D Durstewitz"
],
"doi": "",
"ref_id": "b7",
"title": "Tractable dendritic RNNs for reconstructing nonlinear dynamical systems",
"year": "2022"
},
{
"authors": [
"Steven L Brunton",
"Joshua L Proctor",
"J Nathan Kutz"
],
"doi": "10.1073/pnas.1517384113",
"ref_id": "b8",
"title": "Discovering governing equations from data by sparse identification of nonlinear dynamical systems",
"year": "2016"
},
{
"authors": [
"Steven L Brunton",
"Marko Budišić",
"Eurika Kaiser",
"J Nathan Kutz"
],
"doi": "10.1137/21m1401243",
"ref_id": "b9",
"title": "Modern Koopman Theory for Dynamical Systems",
"year": "2022"
},
{
"authors": [
"T M Bury",
"R I Sujith",
"I Pavithran",
"M Scheffer",
"T M Lenton",
"M Anand",
"C T Bauch"
],
"doi": "10.1073/pnas.2106140118",
"ref_id": "b10",
"title": "Deep learning for early warning signals of tipping points",
"year": "2021"
},
{
"authors": [
"Kathleen Champion",
"Bethany Lusch",
"J Nathan Kutz",
"Steven L Brunton"
],
"doi": "10.1073/pnas.1906995116",
"ref_id": "b11",
"title": "Data-driven discovery of coordinates and governing equations",
"year": "2019"
},
{
"authors": [
"B Chang",
"M Chen",
"E Haber",
"Chi",
"E H"
],
"doi": "",
"ref_id": "b12",
"title": "Antisym-metricRNN: A dynamical system view on recurrent neural networks",
"year": "2019"
},
{
"authors": [
"Ashesh Chattopadhyay",
"Pedram Hassanzadeh",
"Devika Subramanian"
],
"doi": "10.5194/npg-27-373-2020",
"ref_id": "b13",
"title": "Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network",
"year": "2020"
},
{
"authors": [
"R T Chen",
"Y Rubanova",
"J Bettencourt",
"D K Duvenaud"
],
"doi": "",
"ref_id": "b14",
"title": "Neural ordinary differential equations",
"year": "2018"
},
{
"authors": [
"Kyunghyun Cho",
"Bart Van Merrienboer",
"Dzmitry Bahdanau",
"Yoshua Bengio"
],
"doi": "10.3115/v1/w14-4012",
"ref_id": "b15",
"title": "On the Properties of Neural Machine Translation: Encoder–Decoder Approaches",
"year": "2014"
},
{
"authors": [
"J W Cooley",
"J W Tukey"
],
"doi": "10.2307/2003354",
"ref_id": "b16",
"title": "An algorithm for the machine calculation of complex fourier series",
"year": "1965"
},
{
"authors": [
"George Datseris",
"Dynamicalsystems"
],
"doi": "10.21105/joss.00598",
"ref_id": "b17",
"title": "DynamicalSystems.jl: A Julia software library for chaos and nonlinear dynamics",
"year": "mar 2018"
},
{
"authors": [
"Brian De Silva",
"Kathleen Champion",
"Markus Quade",
"Jean-Christophe Loiseau",
"J Kutz",
"Steven Brunton"
],
"doi": "10.21105/joss.02104",
"ref_id": "b18",
"title": "PySINDy: A Python package for the sparse identification of nonlinear dynamical systems from data",
"year": "2020"
},
{
"authors": [
"L Dinh",
"J Sohl-Dickstein",
"S Bengio"
],
"doi": "",
"ref_id": "b19",
"title": "Density estimation using real NVP",
"year": "2017"
},
{
"authors": [
"K Doya"
],
"doi": "10.1109/iscas.1992.230622",
"ref_id": "b20",
"title": "Bifurcations in the learning of recurrent neural networks",
"year": "1992"
},
{
"authors": [
"Jorge Duarte",
"Cristina Januário",
"Nuno Martins",
"Josep Sardanyés"
],
"doi": "10.1063/1.3464327",
"ref_id": "b21",
"title": "Quantifying chaos for ecological stoichiometry",
"year": "September 2010"
},
{
"authors": [
"Daniel Durstewitz"
],
"doi": "10.1371/journal.pcbi.1005542",
"ref_id": "b22",
"title": "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements",
"year": "2017"
},
{
"authors": [
"D Durstewitz",
"T Gabriel"
],
"doi": "",
"ref_id": "b23",
"title": "Dynamical basis of irregular spiking in nmda-driven prefrontal cortex neurons",
"year": "2007"
},
{
"authors": [
"Daniel Durstewitz",
"Thomas Gabriel"
],
"doi": "10.1093/cercor/bhk044",
"ref_id": "b24",
"title": "Dynamical Basis of Irregular Spiking in NMDA-Driven Prefrontal Cortex Neurons",
"year": "1991. 2007"
},
{
"authors": [
"Rainer Engelken",
"Fred Wolf",
"L F Abbott"
],
"doi": "10.1103/physrevresearch.5.043044",
"ref_id": "b25",
"title": "Lyapunov spectra of chaotic recurrent neural networks",
"year": "2020"
},
{
"authors": [
"N B Erichson",
"O Azencot",
"A Queiruga",
"L Hodgkinson",
"M W Mahoney"
],
"doi": "",
"ref_id": "b26",
"title": "Lipschitz recurrent neural networks",
"year": "2021"
},
{
"authors": [
"Marisa Faggini"
],
"doi": "10.1063/1.4903797",
"ref_id": "b27",
"title": "Chaotic time series analysis in economics: Balance and perspectives",
"year": "2014"
},
{
"authors": [
"Ken-Ichi Funahashi",
"Yuichi Nakamura"
],
"doi": "10.1016/s0893-6080(05)80125-x",
"ref_id": "b28",
"title": "Approximation of dynamical systems by continuous time recurrent neural networks",
"year": "1993"
},
{
"authors": [
"Ary L Goldberger",
"Luis A N Amaral",
"Leon Glass",
"Jeffrey M Hausdorff",
"Plamen Ch. Ivanov",
"Roger G Mark",
"Joseph E Mietus",
"George B Moody",
"Chung-Kang Peng",
"H Eugene Stanley"
],
"doi": "10.1161/01.cir.101.23.e215",
"ref_id": "b29",
"title": "PhysioBank, PhysioToolkit, and PhysioNet",
"year": "2000"
},
{
"authors": [
"R B Govindan",
"K Narayanan",
"M S Gopinathan"
],
"doi": "10.1063/1.166330",
"ref_id": "b30",
"title": "On the evidence of deterministic chaos in ECG: Surrogate and predictability analysis",
"year": "1998"
},
{
"authors": [
"J Hanson",
"M Raginsky"
],
"doi": "",
"ref_id": "b31",
"title": "Universal simulation of stable dynamical systems by recurrent neural nets",
"year": "2020"
},
{
"authors": [
"D Hernandez",
"A K Moretti",
"S Saxena",
"Z Wei",
"J Cunningham",
"L Paninski"
],
"doi": "",
"ref_id": "b32",
"title": "Nonlinear evolution via spatially-dependent linear dynamics for electrophysiology and calcium data",
"year": "2020"
},
{
"authors": [
"John R Hershey",
"Peder A Olsen"
],
"doi": "10.1109/icassp.2007.366913",
"ref_id": "b33",
"title": "Approximating the Kullback Leibler Divergence Between Gaussian Mixture Models",
"year": "2007. 2007"
},
{
"authors": [
"N J Higham",
"L Lin"
],
"doi": "",
"ref_id": "b34",
"title": "A schur-padé algorithm for fractional powers of a matrix",
"year": "2011"
},
{
"authors": [
"S Hochreiter",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b35",
"title": "Long short-term memory",
"year": "1997"
},
{
"authors": [
"S Hochreiter",
"Y Bengio",
"P Frasconi",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b36",
"title": "Gradient flow in recurrent nets: the difficulty of learning long-term dependencies",
"year": "2001"
},
{
"authors": [
"K Inoue",
"S Ohara",
"Y Kuniyoshi",
"K Nakajima"
],
"doi": "",
"ref_id": "b37",
"title": "Transient chaos in bert",
"year": "2021"
},
{
"authors": [
"M I Jordan"
],
"doi": "",
"ref_id": "b38",
"title": "Attractor dynamics and parallelism in a connectionist sequential machine",
"year": "1990"
},
{
"authors": [
"Léandre Kamdjeu Kengne",
"Justin Roger Mboupda Pone",
"Hilaire Bertrand Fotsin"
],
"doi": "10.1016/j.chaos.2021.110795",
"ref_id": "b39",
"title": "On the dynamics of chaotic circuits based on memristive diode-bridge with variable symmetry: A case study",
"year": "2021"
},
{
"authors": [
"Holger Kantz"
],
"doi": "10.1016/0375-9601(94)90991-1",
"ref_id": "b40",
"title": "A robust method to estimate the maximal Lyapunov exponent of a time series",
"year": "1994"
},
{
"authors": [
"Alan Kaptanoglu",
"Brian De Silva",
"Urban Fasel",
"Kadierdan Kaheman",
"Andy Goldschmidt",
"Jared Callaham",
"Charles Delahunt",
"Zachary Nicolaou",
"Kathleen Champion",
"Jean-Christophe Loiseau",
"J N Kutz",
"Steven Brunton"
],
"doi": "10.21105/joss.03994",
"ref_id": "b41",
"title": "PySINDy: A comprehensive Python package for robust sparse system identification",
"year": "2022"
},
{
"authors": [
"Mounira Kesmia",
"Soraya Boughaba",
"Sabir Jacquir"
],
"doi": "10.1016/j.chaos.2020.109805",
"ref_id": "b42",
"title": "Control of continuous dynamical systems modeling physiological states",
"year": "2020"
},
{
"authors": [
"M Kimura",
"R Nakano"
],
"doi": "10.1016/s0893-6080(98)00098-7",
"ref_id": "b43",
"title": "Learning dynamical systems by recurrent neural networks from orbits",
"year": "1998"
},
{
"authors": [
"M Kirchmeyer",
"Y Yin",
"J Dona",
"N Baskiotis",
"A Rakotomamonjy",
"P Gallinari"
],
"doi": "",
"ref_id": "b44",
"title": "Generalizing to new physical systems via context-informed dynamics model",
"year": "17-23 Jul 2022"
},
{
"authors": [
"Georgia Koppe",
"Hazem Toutounji",
"Peter Kirsch",
"Stefanie Lis",
"Daniel Durstewitz"
],
"doi": "10.1371/journal.pcbi.1007263",
"ref_id": "b45",
"title": "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI",
"year": "2019"
},
{
"authors": [
"D Kramer",
"P L Bommer",
"D Durstewitz",
"C Tombolini",
"G Koppe"
],
"doi": "",
"ref_id": "b46",
"title": "Reconstructing nonlinear dynamical systems from multi-modal time series",
"year": "2022"
},
{
"authors": [
"K.-H Krämer",
"G Datseris",
"J Kurths",
"I Z Kiss",
"J L Ocampo-Espindola",
"N Marwan"
],
"doi": "",
"ref_id": "b47",
"title": "A unified and automated approach to attractor reconstruction",
"year": "2021"
},
{
"authors": [
"Fernando Lejarza",
"Michael Baldea"
],
"doi": "10.1038/s41598-022-13644-w",
"ref_id": "b48",
"title": "Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization",
"year": "2022"
},
{
"authors": [
"Zongyi Li",
"Hongkai Zheng",
"Nikola Kovachki",
"David Jin",
"Haoxuan Chen",
"Burigede Liu",
"Kamyar Azizzadenesheli",
"Anima Anandkumar"
],
"doi": "10.1145/3648506",
"ref_id": "b49",
"title": "Physics-Informed Neural Operator for Learning Partial Differential Equations",
"year": "2021"
},
{
"authors": [
"L Liu",
"H Jiang",
"P He",
"W Chen",
"X Liu",
"J Gao",
"J Han"
],
"doi": "",
"ref_id": "b50",
"title": "On the variance of the adaptive learning rate and beyond",
"year": "April 2020"
},
{
"authors": [
"E N Lorenz"
],
"doi": "",
"ref_id": "b51",
"title": "Deterministic nonperiodic flow",
"year": "1963"
},
{
"authors": [
"Edward N Lorenz"
],
"doi": "10.1017/cbo9780511617652.004",
"ref_id": "b52",
"title": "Predictability – a problem partly solved",
"year": "1996"
},
{
"authors": [
"Bethany Lusch",
"J Nathan Kutz",
"Steven L Brunton"
],
"doi": "10.1038/s41467-018-07210-0",
"ref_id": "b53",
"title": "Deep learning for universal linear embeddings of nonlinear dynamics",
"year": "2018"
},
{
"authors": [
"S Mangiarotti",
"M Peyre",
"Y Zhang",
"M Huc",
"F Roger",
"Y Kerr"
],
"doi": "10.1101/2020.04.02.20051441",
"ref_id": "b54",
"title": "Chaos theory applied to the outbreak of Covid-19: an ancillary approach to decision-making in pandemic context",
"year": "2020"
},
{
"authors": [
"J M Mikhaeil",
"Z Monfared",
"D Durstewitz"
],
"doi": "",
"ref_id": "b55",
"title": "On the difficulty of learning chaotic dynamics with RNNs",
"year": "2022"
},
{
"authors": [
"Z Monfared",
"D Durstewitz"
],
"doi": "",
"ref_id": "b56",
"title": "Transformation of relubased recurrent neural networks from discrete-time to continuous-time",
"year": "2020"
},
{
"authors": [
"L F Olsen",
"G L Truty",
"W M Schaffer"
],
"doi": "10.1016/0040-5809(88)90019-6",
"ref_id": "b57",
"title": "Oscillations and chaos in epidemics: A nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark",
"year": "1988"
},
{
"authors": [
"Samuel E Otto",
"Clarence W Rowley"
],
"doi": "10.1137/18m1177846",
"ref_id": "b58",
"title": "Linearly Recurrent Autoencoder Networks for Learning Dynamics",
"year": "2019"
},
{
"authors": [
"Dhruvit Patel",
"Edward Ott"
],
"doi": "10.1063/5.0131787",
"ref_id": "b59",
"title": "Using machine learning to anticipate tipping points and extrapolate to post-tipping dynamics of non-stationary dynamical systems",
"year": "2022"
},
{
"authors": [
"Jaideep Pathak",
"Brian Hunt",
"Michelle Girvan",
"Zhixin Lu",
"Edward Ott"
],
"doi": "10.1103/physrevlett.120.024102",
"ref_id": "b60",
"title": "Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach",
"year": "2018"
},
{
"authors": [
"Barak A Pearlmutter"
],
"doi": "10.1162/neco.1989.1.2.263",
"ref_id": "b61",
"title": "Learning State Space Trajectories in Recurrent Neural Networks",
"year": "1989"
},
{
"authors": [
"Lawrence Perko"
],
"doi": "10.1007/978-1-4613-0003-8",
"ref_id": "b62",
"title": "Differential Equations and Dynamical Systems",
"year": "2001"
},
{
"authors": [
"Fernando J Pineda"
],
"doi": "10.1016/0885-064x(88)90021-0",
"ref_id": "b63",
"title": "Dynamics and architecture for neural computation",
"year": "1988"
},
{
"authors": [
"M Raissi"
],
"doi": "",
"ref_id": "b64",
"title": "Deep hidden physics models: Deep learning of nonlinear partial differential equations",
"year": "2018"
},
{
"authors": [
"Attila Reiss",
"Ina Indlekofer",
"Philip Schmidt",
"Kristof Van Laerhoven"
],
"doi": "10.3390/s19143079",
"ref_id": "b65",
"title": "Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks",
"year": "2019"
},
{
"authors": [
"M Ricci",
"N Moriel",
"Z Piran",
"M Nitzan"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b66",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2022"
},
{
"authors": [
"Y Rubanova",
"R T Chen",
"D K Duvenaud"
],
"doi": "",
"ref_id": "b67",
"title": "Latent ordinary differential equations for irregularly-sampled time series",
"year": "2019"
},
{
"authors": [
"D E Rumelhart",
"G E Hinton",
"R J Williams"
],
"doi": "",
"ref_id": "b68",
"title": "Learning representations by back-propagating errors",
"year": "1986"
},
{
"authors": [
"T K Rusch",
"S Mishra"
],
"doi": "",
"ref_id": "b69",
"title": "Coupled oscillatory recurrent neural network (cornn): An accurate and (gradient) stable architecture for learning long time dependencies",
"year": "2020"
},
{
"authors": [
"T K Rusch",
"S Mishra"
],
"doi": "",
"ref_id": "b70",
"title": "Coupled oscillatory recurrent neural network (co{rnn}): An accurate and (gradient) stable architecture for learning long time dependencies",
"year": "2021"
},
{
"authors": [
"T K Rusch",
"S Mishra",
"N B Erichson",
"M W Mahoney"
],
"doi": "",
"ref_id": "b71",
"title": "Long expressive memory for sequence modeling",
"year": "2022"
},
{
"authors": [
"Tim Sauer",
"James A Yorke",
"Martin Casdagli"
],
"doi": "10.1007/bf01053745",
"ref_id": "b72",
"title": "Embedology",
"year": "1991"
},
{
"authors": [
"G Schalk",
"D J Mcfarland",
"T Hinterberger",
"N Birbaumer",
"J R Wolpaw"
],
"doi": "10.1109/tbme.2004.827072",
"ref_id": "b73",
"title": "BCI2000: A General-Purpose Brain-Computer Interface (BCI) System",
"year": "2000. 2000"
},
{
"authors": [
"D Schmidt",
"G Koppe",
"Z Monfared",
"M Beutelspacher",
"D Durstewitz"
],
"doi": "",
"ref_id": "b74",
"title": "Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies",
"year": "2021"
},
{
"authors": [
"Charalampos Skokos",
"Georg A Gottwald",
"Jacques Laskar"
],
"doi": "10.1007/978-3-662-48410-4_9",
"ref_id": "b75",
"title": "Erratum to: Chaos Detection and Predictability",
"year": "2016"
},
{
"authors": [
"J Smith",
"S Linderman",
"D Sussillo"
],
"doi": "",
"ref_id": "b76",
"title": "Reverse engineering recurrent neural networks with jacobian switching linear dynamical systems",
"year": "2021"
},
{
"authors": [
"Floris Takens"
],
"doi": "10.1007/bfb0091924",
"ref_id": "b77",
"title": "Detecting strange attractors in turbulence",
"year": "1980. 1981"
},
{
"authors": [
"Tobias Thornes",
"Peter Düben",
"Tim Palmer"
],
"doi": "10.1002/qj.2974",
"ref_id": "b78",
"title": "On the use of scale‐dependent precision in Earth System modelling",
"year": "2017"
},
{
"authors": [
"C Van Vreeswijk",
"H Sompolinsky"
],
"doi": "10.1126/science.274.5293.1724",
"ref_id": "b79",
"title": "Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity",
"year": "5293. 1996"
},
{
"authors": [
"P R Vlachas",
"P Koumoutsakos"
],
"doi": "",
"ref_id": "b80",
"title": "Learning from predictions: Fusing training and autoregressive inference for long-term spatiotemporal forecasts",
"year": "2023"
},
{
"authors": [
"Pantelis R Vlachas",
"Wonmin Byeon",
"Zhong Y Wan",
"Themistoklis P Sapsis",
"Petros Koumoutsakos"
],
"doi": "10.1098/rspa.2017.0844",
"ref_id": "b81",
"title": "Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks",
"year": "2213. 2018"
},
{
"authors": [
"P R Vlachas",
"J Pathak",
"B R Hunt",
"T P Sapsis",
"M Girvan",
"E Ott",
"P Koumoutsakos"
],
"doi": "10.1016/j.neunet.2020.02.016",
"ref_id": "b82",
"title": "Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics",
"year": "2020"
},
{
"authors": [
"Henning U Voss",
"Jens Timmer",
"Jürgen Kurths"
],
"doi": "10.1142/s0218127404010345",
"ref_id": "b83",
"title": "NONLINEAR DYNAMICAL SYSTEM IDENTIFICATION FROM UNCERTAIN AND INDIRECT MEASUREMENTS",
"year": "2004"
},
{
"authors": [
"P J Werbos"
],
"doi": "10.1109/5.58337",
"ref_id": "b84",
"title": "Backpropagation through time: what it does and how to do it",
"year": "1990"
},
{
"authors": [
"Ronald J Williams",
"David Zipser"
],
"doi": "10.1162/neco.1989.1.2.270",
"ref_id": "b85",
"title": "A Learning Algorithm for Continually Running Fully Recurrent Neural Networks",
"year": "1989"
},
{
"authors": [
"Xulin Xu",
"Zengqiang Chen",
"Guangya Si",
"Xiaofeng Hu",
"Yaqun Jiang",
"Xushan Xu"
],
"doi": "10.1007/s11071-010-9850-z",
"ref_id": "b86",
"title": "The chaotic dynamics of the social behavior selection networks in crowd simulation",
"year": "2011"
},
{
"authors": [
"Yuan Zhao",
"Il Memming Park"
],
"doi": "10.3389/fncom.2020.00071",
"ref_id": "b87",
"title": "Variational Online Learning of Neural Dynamics",
"year": "2020"
}
] |
[
"7b1d6858746642c6",
"f721e5b2be0744f6",
"53854d3e3c864a88",
"1343222685330ae9",
"b9723f0f804e9294",
"a142bdda39883eeb",
"9dafa7eefbc18683",
"800a199ef4766590",
"ebb74509c703107d",
"d81097a3e798b42d",
"030dcca514130a6d",
"f9f9653ff870ab76",
"b352102d8df1d54d",
"f13c18268127ed5a",
"26d2d0a7c56d4631",
"613e76111a46c05e",
"270a1fb2767e136d",
"6cda79cc633cbc37",
"0a1bc03554e0d5b8",
"8d71a57413f98a92",
"2a59590724a7a1a8",
"9384ad97652ef738",
"2d15c654de5827f0",
"e7f5ba056ee7b90a",
"164eac693c370e32",
"c44a698f26ba3fab",
"fc03b7e602f9a779",
"35b27e0aba5b084c"
] |
[
"5b879115e7fade22",
"2c76b827462b6ce0",
"41494c2a65f96edc",
"b9723f0f804e9294",
"2a178daf8e54aad7",
"7b0f228180b75270",
"12f9970c934ce961",
"6cda79cc633cbc37",
"a142bdda39883eeb",
"2a59590724a7a1a8",
"04bb0d3052374b61",
"270a1fb2767e136d",
"4d56eebbc6b1795e",
"f69bb42465e7559d",
"164eac693c370e32",
"126fb7eaba4739f4",
"f8e84fbea898714b",
"5e329862d71ca519",
"774a8c14b391b089",
"1608fb12af60a8fc",
"2309a6b3bcdab85d",
"de84370c358db3eb",
"8d71a57413f98a92",
"1a0d950f361a060d",
"19e174c8c8d0df71",
"07e5a03523ffbf0a",
"4f5cb796d778dc8b",
"297c3650c269ffc6",
"d81097a3e798b42d",
"397b60b062cb46af",
"687749e26c52fa96",
"7b1d6858746642c6",
"fc03b7e602f9a779",
"c59ca9b497df96bd",
"f81226ac09410376",
"27fd25ccee69c3e8",
"36a7737eab1dbcf7",
"a70488ccff78e312",
"7c750d2f07dc4843",
"cfdc4b362f8697ef",
"da7185b6dc553b98",
"3c4c00a7211ea0ef",
"f6096e583976db93",
"030dcca514130a6d",
"53854d3e3c864a88",
"613e76111a46c05e",
"c44a698f26ba3fab",
"aff35fd00919ab44",
"800a199ef4766590",
"9384ad97652ef738",
"dfb29bacbb489dff",
"75515388f35e382d",
"95b8e04e54b5df4d",
"f9f9653ff870ab76",
"6caf889307a2b439",
"c9ce9c3c2f8da35b",
"e432a148d31f3120",
"49a2b4e83c223826",
"f11013f92f46a7f6",
"26d2d0a7c56d4631",
"35b27e0aba5b084c",
"fe2cf70b3706f74f",
"5b1f5fe833863f6c",
"37ab57be880d7d94",
"9dafa7eefbc18683",
"ddcd5db673dee01f",
"e7f5ba056ee7b90a",
"627a4a819c0c8dfa",
"1343222685330ae9",
"f301893d87461298",
"7a1fc1c75cc255e2",
"99f1673d709930c6",
"ff907f2495cebaa4",
"08b5f74e1793c65f",
"ebb74509c703107d",
"5e79862324eeb8d6",
"f13c18268127ed5a",
"decb12ce5b3567c0",
"d15c10e3a6b0f5f9",
"18b348e5a39fd21f",
"662e55ff7b784b31",
"b352102d8df1d54d",
"0a1bc03554e0d5b8",
"f721e5b2be0744f6",
"33abdd7945cc2b89",
"cc6ed9eb8c1c0e23",
"d9b733b3afa08f4d",
"2d15c654de5827f0"
] |
oVwFwXO9Kg
|
Equivariant Polynomials for Graph Neural Networks
|
data/openreview_paper/ICML_2023_oral/oVwFwXO9Kg//paper.pdf
| 73
| 39
|
[
{
"authors": [
"Pablo Barceló",
"Egor V Kostylev",
"Mikaël Monet",
"Jorge Pérez",
"Juan L Reutter",
"Juan-Pablo Silva"
],
"doi": "10.1145/3442322.3442324",
"ref_id": "b5",
"title": "The Expressive Power of Graph Neural Networks as a Query Language",
"year": "2021"
},
{
"authors": [
"Ryoma Sato",
"Makoto Yamada",
"Hisashi Kashima"
],
"doi": "10.1137/1.9781611976700.38",
"ref_id": "b62",
"title": "Random Features Strengthen Graph Neural Networks",
"year": "2021"
},
{
"authors": [
"H Maron",
"H Ben-Hamu",
"N Shamir",
"Y Lipman"
],
"doi": "",
"ref_id": "b48",
"title": "Invariant and equivariant graph networks",
"year": "2018"
},
{
"authors": [
"B Zhang",
"S Luo",
"L Wang",
"H Di"
],
"doi": "",
"ref_id": "b72",
"title": "Rethinking the expressive power of gnns via graph biconnectivity",
"year": "2023"
},
{
"authors": [
"Ralph Abboud",
"İsmail İlkan Ceylan",
"Martin Grohe",
"Thomas Lukasiewicz"
],
"doi": "10.24963/ijcai.2021/291",
"ref_id": "b0",
"title": "The Surprising Power of Graph Neural Networks with Random Node Initialization",
"year": "2021"
},
{
"authors": [
"A Loukas"
],
"doi": "",
"ref_id": "b44",
"title": "What graph neural networks cannot learn: depth vs width",
"year": "2020"
},
{
"authors": [
"R Sato",
"M Yamada",
"H Kashima"
],
"doi": "",
"ref_id": "b61",
"title": "Approximation ratios of graph neural networks for combinatorial problems",
"year": "2019"
},
{
"authors": [
"E Thiede",
"W Zhou",
"R Kondor"
],
"doi": "",
"ref_id": "b65",
"title": "Autobahn: Automorphism-based graph neural nets",
"year": "2021"
},
{
"authors": [
"R Murphy",
"B Srinivasan",
"V Rao",
"B Ribeiro"
],
"doi": "",
"ref_id": "b55",
"title": "Relational pooling for graph representations",
"year": "2019"
},
{
"authors": [
"F Geerts",
"J L Reutter"
],
"doi": "",
"ref_id": "b34",
"title": "Expressiveness and approximation properties of graph neural networks",
"year": "2022"
},
{
"authors": [
"Jiaxuan You",
"Jonathan M Gomes-Selman",
"Rex Ying",
"Jure Leskovec"
],
"doi": "10.1609/aaai.v35i12.17283",
"ref_id": "b70",
"title": "Identity-aware Graph Neural Networks",
"year": "2021"
},
{
"authors": [
"M Grohe",
"G Rattan",
"T Seppelt"
],
"doi": "",
"ref_id": "b36",
"title": "Homomorphism tensors and linear equations",
"year": "2021"
},
{
"authors": [
"L Cotta",
"C Morris",
"B Ribeiro"
],
"doi": "",
"ref_id": "b20",
"title": "Reconstruction for powerful graph representations",
"year": "2021"
},
{
"authors": [
"V Arvind",
"Frank Fuhlbrück",
"Johannes Köbler",
"Oleg Verbitsky"
],
"doi": "10.1016/j.jcss.2020.04.003",
"ref_id": "b2",
"title": "On Weisfeiler-Leman invariance: Subgraph counts and related graph properties",
"year": "2020"
},
{
"authors": [
"K Xu",
"W Hu",
"J Leskovec",
"S Jegelka"
],
"doi": "",
"ref_id": "b69",
"title": "How powerful are graph neural networks?",
"year": "2019"
},
{
"authors": [
"Z Chen",
"L Chen",
"S Villar",
"J Bruna"
],
"doi": "",
"ref_id": "b18",
"title": "Can graph neural networks count substructures?",
"year": "2020"
},
{
"authors": [
"P Welke",
"M Thiessen",
"T Gärtner"
],
"doi": "",
"ref_id": "b68",
"title": "Expectation complete graph representations using graph homomorphisms",
"year": "2022"
},
{
"authors": [
"P De Haan",
"T S Cohen",
"M Welling"
],
"doi": "",
"ref_id": "b21",
"title": "Natural graph networks",
"year": "2020"
},
{
"authors": [
"M Balcilar",
"P Héroux",
"B Gauzere",
"P Vasseur",
"S Adam",
"P Honeine"
],
"doi": "",
"ref_id": "b4",
"title": "Breaking the limits of message passing graph neural networks",
"year": "2021"
},
{
"authors": [
"László Lovász"
],
"doi": "10.1090/coll/060",
"ref_id": "b45",
"title": "Large Networks and Graph Limits",
"year": "2012"
},
{
"authors": [
"Giorgos Bouritsas",
"Fabrizio Frasca",
"Stefanos Zafeiriou",
"Michael M Bronstein"
],
"doi": "10.1109/tpami.2022.3154319",
"ref_id": "b12",
"title": "Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting",
"year": "2022"
},
{
"authors": [
"P Li",
"Y Wang",
"H Wang",
"J Leskovec"
],
"doi": "",
"ref_id": "b42",
"title": "Distance encoding: Design provably more powerful neural networks for graph representation learning",
"year": "2020"
},
{
"authors": [
"L Mančinska",
"D E Roberson"
],
"doi": "",
"ref_id": "b47",
"title": "Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs",
"year": "2020. 2020"
},
{
"authors": [
"C Morris",
"Y Lipman",
"H Maron",
"B Rieck",
"N M Kriege",
"M Grohe",
"M Fey",
"K Borgwardt"
],
"doi": "",
"ref_id": "b53",
"title": "Weisfeiler and leman go machine learning: The story so far",
"year": "2021"
},
{
"authors": [
"O Puny",
"M Atzmon",
"E J Smith",
"I Misra",
"A Grover",
"H Ben-Hamu",
"Y Lipman"
],
"doi": "",
"ref_id": "b58",
"title": "Frame averaging for invariant and equivariant network design",
"year": "2022"
},
{
"authors": [
"Robert Brijder",
"Floris Geerts",
"Jan Van Den Bussche",
"Timmy Weerwag"
],
"doi": "10.1145/3331445",
"ref_id": "b14",
"title": "On the Expressive Power of Query Languages for Matrices",
"year": "2019"
},
{
"authors": [
"F Geerts"
],
"doi": "",
"ref_id": "b33",
"title": "On the expressive power of linear algebra on graphs",
"year": "2021"
},
{
"authors": [
"Nicolas M Thiéry"
],
"doi": "10.1145/377604.377612",
"ref_id": "b66",
"title": "Algebraic invariants of graphs; a study based on computer exploration",
"year": "2000"
},
{
"authors": [
"Patrick T Komiske",
"Eric M Metodiev",
"Jesse Thaler"
],
"doi": "10.1007/jhep04(2018)013",
"ref_id": "b41",
"title": "Energy flow polynomials: a complete linear basis for jet substructure",
"year": "2018. 2018"
},
{
"authors": [
"L Chen",
"Z Chen",
"J Bruna"
],
"doi": "",
"ref_id": "b16",
"title": "On graph neural networks versus graph-augmented mlps",
"year": "2021"
},
{
"authors": [
"T Maehara",
"H Nt"
],
"doi": "",
"ref_id": "b46",
"title": "A simple proof of the universality of invariant/equivariant graph neural networks",
"year": "2019"
},
{
"authors": [
"F Frasca",
"B Bevilacqua",
"M M Bronstein",
"H Maron"
],
"doi": "",
"ref_id": "b31",
"title": "Understanding and extending subgraph GNNs by rethinking their symmetries",
"year": "2022"
},
{
"authors": [
"B Bevilacqua",
"F Frasca",
"D Lim",
"B Srinivasan",
"C Cai",
"G Balamurugan",
"M M Bronstein",
"H Maron"
],
"doi": "",
"ref_id": "b7",
"title": "Equivariant subgraph aggregation networks",
"year": "2022"
},
{
"authors": [
"H Maron",
"H Ben-Hamu",
"H Serviansky",
"Y Lipman"
],
"doi": "",
"ref_id": "b49",
"title": "Provably powerful graph networks",
"year": "2019"
},
{
"authors": [
"C Qian",
"G Rattan",
"F Geerts",
"M Niepert",
"C Morris"
],
"doi": "",
"ref_id": "b59",
"title": "Ordered subgraph aggregation networks",
"year": "2022"
},
{
"authors": [
"V Garg",
"S Jegelka",
"T Jaakkola"
],
"doi": "",
"ref_id": "b32",
"title": "Generalization and representational limits of graph neural networks",
"year": "2020"
},
{
"authors": [
"D Lim",
"J Robinson",
"L Zhao",
"T Smidt",
"S Sra",
"H Maron",
"S Jegelka"
],
"doi": "",
"ref_id": "b43",
"title": "Sign and basis invariant networks for spectral graph representation learning",
"year": "2022"
},
{
"authors": [
"W Azizian",
"M Lelarge"
],
"doi": "",
"ref_id": "b3",
"title": "Expressive power of invariant and equivariant graph neural networks",
"year": "2021"
},
{
"authors": [
"B Tahmasebi",
"D Lim",
"S Jegelka"
],
"doi": "",
"ref_id": "b64",
"title": "Counting substructures with higher-order graph neural networks: Possibility and impossibility results",
"year": "2020"
}
] |
[
{
"authors": [
"Ralph Abboud",
"İsmail İlkan Ceylan",
"Martin Grohe",
"Thomas Lukasiewicz"
],
"doi": "10.24963/ijcai.2021/291",
"ref_id": "b0",
"title": "The Surprising Power of Graph Neural Networks with Random Node Initialization",
"year": "2021"
},
{
"authors": [
"Fernando Antoneli",
"Ana Paula S Dias",
"Paul C Matthews"
],
"doi": "10.1017/s0308210506001119",
"ref_id": "b1",
"title": "Invariants, equivariants and characters in symmetric bifurcation theory",
"year": "2008"
},
{
"authors": [
"V Arvind",
"Frank Fuhlbrück",
"Johannes Köbler",
"Oleg Verbitsky"
],
"doi": "10.1016/j.jcss.2020.04.003",
"ref_id": "b2",
"title": "On Weisfeiler-Leman invariance: Subgraph counts and related graph properties",
"year": "2020"
},
{
"authors": [
"W Azizian",
"M Lelarge"
],
"doi": "",
"ref_id": "b3",
"title": "Expressive power of invariant and equivariant graph neural networks",
"year": "2021"
},
{
"authors": [
"M Balcilar",
"P Héroux",
"B Gauzere",
"P Vasseur",
"S Adam",
"P Honeine"
],
"doi": "",
"ref_id": "b4",
"title": "Breaking the limits of message passing graph neural networks",
"year": "2021"
},
{
"authors": [
"Pablo Barceló",
"Egor V Kostylev",
"Mikaël Monet",
"Jorge Pérez",
"Juan L Reutter",
"Juan-Pablo Silva"
],
"doi": "10.1145/3442322.3442324",
"ref_id": "b5",
"title": "The Expressive Power of Graph Neural Networks as a Query Language",
"year": "2021"
},
{
"authors": [
"L Bedratyuk"
],
"doi": "",
"ref_id": "b6",
"title": "A new formula for the generating function of the numbers of simple graphs",
"year": "2015"
},
{
"authors": [
"B Bevilacqua",
"F Frasca",
"D Lim",
"B Srinivasan",
"C Cai",
"G Balamurugan",
"M M Bronstein",
"H Maron"
],
"doi": "",
"ref_id": "b7",
"title": "Equivariant subgraph aggregation networks",
"year": "2022"
},
{
"authors": [
"Jacob D Biamonte",
"Jason Morton",
"Jacob Turner"
],
"doi": "10.1007/s10955-015-1276-z",
"ref_id": "b8",
"title": "Tensor Network Contractions for #SAT",
"year": "jun 2015"
},
{
"authors": [
"Hans L Bodlaender"
],
"doi": "10.1016/s0304-3975(97)00228-4",
"ref_id": "b9",
"title": "A partial k-arboretum of graphs with bounded treewidth",
"year": "1998"
},
{
"authors": [
"C Bodnar",
"F Frasca",
"N Otter",
"Y G Wang",
"P Liò",
"G Montúfar",
"M Bronstein"
],
"doi": "",
"ref_id": "b10",
"title": "Weisfeiler and lehman go cellular: Cw networks",
"year": "2021"
},
{
"authors": [
"C Bodnar",
"F Frasca",
"Y G Wang",
"N Otter",
"G Montúfar",
"P Liò",
"M Bronstein"
],
"doi": "",
"ref_id": "b11",
"title": "Weisfeiler and lehman go topological: Message passing simplicial networks",
"year": "2021"
},
{
"authors": [
"Giorgos Bouritsas",
"Fabrizio Frasca",
"Stefanos Zafeiriou",
"Michael M Bronstein"
],
"doi": "10.1109/tpami.2022.3154319",
"ref_id": "b12",
"title": "Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting",
"year": "2022"
},
{
"authors": [
"Xavier Bresson",
"Thomas Laurent",
"James Von Brecht"
],
"doi": "10.1109/eusipco.2015.7362634",
"ref_id": "b13",
"title": "Enhanced lasso recovery on graph",
"year": "2017"
},
{
"authors": [
"Robert Brijder",
"Floris Geerts",
"Jan Van Den Bussche",
"Timmy Weerwag"
],
"doi": "10.1145/3331445",
"ref_id": "b14",
"title": "On the Expressive Power of Query Languages for Matrices",
"year": "2019"
},
{
"authors": [
"G Chen",
"P Chen",
"C.-Y Hsieh",
"C.-K Lee",
"B Liao",
"R Liao",
"W Liu",
"J Qiu",
"Q Sun",
"J Tang",
"R Zemel",
"S Zhang"
],
"doi": "",
"ref_id": "b15",
"title": "Alchemy: A quantum chemistry dataset for benchmarking ai models",
"year": "2019"
},
{
"authors": [
"L Chen",
"Z Chen",
"J Bruna"
],
"doi": "",
"ref_id": "b16",
"title": "On graph neural networks versus graph-augmented mlps",
"year": "2021"
},
{
"authors": [
"Jie Chen",
"Rong Ma",
"Jian Pu",
"Xiangyang Xue"
],
"doi": "10.52202/079017-2547",
"ref_id": "b17",
"title": "Automated Label Unification for Multi-Dataset Semantic Segmentation with GNNs",
"year": "2019"
},
{
"authors": [
"Z Chen",
"L Chen",
"S Villar",
"J Bruna"
],
"doi": "",
"ref_id": "b18",
"title": "Can graph neural networks count substructures?",
"year": "2020"
},
{
"authors": [
"G Corso",
"L Cavalleri",
"D Beaini",
"P Liò",
"P Veličković"
],
"doi": "",
"ref_id": "b19",
"title": "Principal neighbourhood aggregation for graph nets",
"year": "2020"
},
{
"authors": [
"L Cotta",
"C Morris",
"B Ribeiro"
],
"doi": "",
"ref_id": "b20",
"title": "Reconstruction for powerful graph representations",
"year": "2021"
},
{
"authors": [
"P De Haan",
"T S Cohen",
"M Welling"
],
"doi": "",
"ref_id": "b21",
"title": "Natural graph networks",
"year": "2020"
},
{
"authors": [
"H Dell",
"M Grohe",
"G Rattan"
],
"doi": "10.1016/0926-5805(93)90047-2",
"ref_id": "b22",
"title": "ICALP 94—21st International colloquium on automata, languages, and programming",
"year": ""
},
{
"authors": [
"Harm Derksen",
"Gregor Kemper"
],
"doi": "10.1007/978-3-662-48422-7_2",
"ref_id": "b23",
"title": "Invariant Theory",
"year": "2015"
},
{
"authors": [
"R Diestel"
],
"doi": "",
"ref_id": "b24",
"title": "Graph Theory",
"year": "August 2005"
},
{
"authors": [
"R J Duffin"
],
"doi": "10.1016/0022-247x(65)90125-3",
"ref_id": "b25",
"title": "Topology of series-parallel networks",
"year": "1965"
},
{
"authors": [
"M H Dupty",
"Y Dong",
"W S Lee",
"Pf-Gnn"
],
"doi": "",
"ref_id": "b26",
"title": "Differentiable particle filtering based approximation of universal graph representations",
"year": "2022"
},
{
"authors": [
"Zdeněk Dvořák"
],
"doi": "10.1002/jgt.20461",
"ref_id": "b27",
"title": "On recognizing graphs by numbers of homomorphisms",
"year": "2010"
},
{
"authors": [
"V P Dwivedi",
"C K Joshi",
"A T Luu",
"T Laurent",
"Y Bengio",
"X Bresson"
],
"doi": "10.48550/ARXIV.2003.00982",
"ref_id": "b28",
"title": "Benchmarking graph neural networks",
"year": "2020"
},
{
"authors": [
"Matthias Fey",
"Jan Eric Lenssen",
"Frank Weichert",
"Heinrich Muller"
],
"doi": "10.1109/cvpr.2018.00097",
"ref_id": "b29",
"title": "SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels",
"year": "2019"
},
{
"authors": [
"M Fey",
"J.-G Yuen",
"F Weichert"
],
"doi": "",
"ref_id": "b30",
"title": "Hierarchical intermessage passing for learning on molecular graphs",
"year": "2020"
},
{
"authors": [
"F Frasca",
"B Bevilacqua",
"M M Bronstein",
"H Maron"
],
"doi": "",
"ref_id": "b31",
"title": "Understanding and extending subgraph GNNs by rethinking their symmetries",
"year": "2022"
},
{
"authors": [
"V Garg",
"S Jegelka",
"T Jaakkola"
],
"doi": "",
"ref_id": "b32",
"title": "Generalization and representational limits of graph neural networks",
"year": "2020"
},
{
"authors": [
"F Geerts"
],
"doi": "",
"ref_id": "b33",
"title": "On the expressive power of linear algebra on graphs",
"year": "2021"
},
{
"authors": [
"F Geerts",
"J L Reutter"
],
"doi": "",
"ref_id": "b34",
"title": "Expressiveness and approximation properties of graph neural networks",
"year": "2022"
},
{
"authors": [
"Justin Gilmer",
"Samuel S Schoenholz",
"Patrick F Riley",
"Oriol Vinyals",
"George E Dahl"
],
"doi": "10.1007/978-3-030-40245-7_10",
"ref_id": "b35",
"title": "Message Passing Neural Networks",
"year": "2017"
},
{
"authors": [
"M Grohe",
"G Rattan",
"T Seppelt"
],
"doi": "",
"ref_id": "b36",
"title": "Homomorphism tensors and linear equations",
"year": "2021"
},
{
"authors": [
"Frank Harary",
"Edgar M Palmer"
],
"doi": "10.1016/b978-0-12-324245-7.50010-1",
"ref_id": "b37",
"title": "POWER GROUP ENUMERATION",
"year": "2014"
},
{
"authors": [
"G H Hardy",
"E M Wright"
],
"doi": "",
"ref_id": "b38",
"title": "An introduction to the theory of numbers",
"year": "1979"
},
{
"authors": [
"K Hornik"
],
"doi": "10.1016/0893-6080(91)90009-T",
"ref_id": "b39",
"title": "Approximation capabilities of multilayer feedforward networks",
"year": "1991"
},
{
"authors": [
"T N Kipf",
"M Welling"
],
"doi": "",
"ref_id": "b40",
"title": "Semi-supervised classification with graph convolutional networks",
"year": "2016"
},
{
"authors": [
"Patrick T Komiske",
"Eric M Metodiev",
"Jesse Thaler"
],
"doi": "10.1007/jhep04(2018)013",
"ref_id": "b41",
"title": "Energy flow polynomials: a complete linear basis for jet substructure",
"year": "2018. 2018"
},
{
"authors": [
"P Li",
"Y Wang",
"H Wang",
"J Leskovec"
],
"doi": "",
"ref_id": "b42",
"title": "Distance encoding: Design provably more powerful neural networks for graph representation learning",
"year": "2020"
},
{
"authors": [
"D Lim",
"J Robinson",
"L Zhao",
"T Smidt",
"S Sra",
"H Maron",
"S Jegelka"
],
"doi": "",
"ref_id": "b43",
"title": "Sign and basis invariant networks for spectral graph representation learning",
"year": "2022"
},
{
"authors": [
"A Loukas"
],
"doi": "",
"ref_id": "b44",
"title": "What graph neural networks cannot learn: depth vs width",
"year": "2020"
},
{
"authors": [
"László Lovász"
],
"doi": "10.1090/coll/060",
"ref_id": "b45",
"title": "Large Networks and Graph Limits",
"year": "2012"
},
{
"authors": [
"T Maehara",
"H Nt"
],
"doi": "",
"ref_id": "b46",
"title": "A simple proof of the universality of invariant/equivariant graph neural networks",
"year": "2019"
},
{
"authors": [
"L Mančinska",
"D E Roberson"
],
"doi": "",
"ref_id": "b47",
"title": "Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs",
"year": "2020. 2020"
},
{
"authors": [
"H Maron",
"H Ben-Hamu",
"N Shamir",
"Y Lipman"
],
"doi": "",
"ref_id": "b48",
"title": "Invariant and equivariant graph networks",
"year": "2018"
},
{
"authors": [
"H Maron",
"H Ben-Hamu",
"H Serviansky",
"Y Lipman"
],
"doi": "",
"ref_id": "b49",
"title": "Provably powerful graph networks",
"year": "2019"
},
{
"authors": [
"T Molien"
],
"doi": "",
"ref_id": "b50",
"title": "Uber die invarianten der linearen substitutionsgruppen",
"year": "1897"
},
{
"authors": [
"Christopher Morris",
"Martin Ritzert",
"Matthias Fey",
"William L Hamilton",
"Jan Eric Lenssen",
"Gaurav Rattan",
"Martin Grohe"
],
"doi": "10.1609/aaai.v33i01.33014602",
"ref_id": "b51",
"title": "Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks",
"year": "2019"
},
{
"authors": [
"C Morris",
"M Ritzert",
"M Fey",
"W L Hamilton",
"J E Lenssen",
"G Rattan",
"M Grohe"
],
"doi": "",
"ref_id": "b52",
"title": "Weisfeiler and leman go neural: Higher-order graph neural networks",
"year": "2019"
},
{
"authors": [
"C Morris",
"Y Lipman",
"H Maron",
"B Rieck",
"N M Kriege",
"M Grohe",
"M Fey",
"K Borgwardt"
],
"doi": "",
"ref_id": "b53",
"title": "Weisfeiler and leman go machine learning: The story so far",
"year": "2021"
},
{
"authors": [
"C Morris",
"G Rattan",
"S Kiefer",
"S Ravanbakhsh"
],
"doi": "",
"ref_id": "b54",
"title": "Speqnets: Sparsity-aware permutation-equivariant graph networks",
"year": "2022"
},
{
"authors": [
"R Murphy",
"B Srinivasan",
"V Rao",
"B Ribeiro"
],
"doi": "",
"ref_id": "b55",
"title": "Relational pooling for graph representations",
"year": "2019"
},
{
"authors": [
"A Paszke",
"S Gross",
"F Massa",
"A Lerer",
"J Bradbury",
"G Chanan",
"T Killeen",
"Z Lin",
"N Gimelshein",
"L Antiga",
"A Desmaison",
"A Köpf",
"E Yang",
"Z Devito",
"M Raison",
"A Tejani",
"S Chilamkurthy",
"B Steiner",
"L Fang",
"J Bai",
"S Chintala"
],
"doi": "",
"ref_id": "b56",
"title": "Pytorch: An imperative style, high-performance deep learning library",
"year": "2019"
},
{
"authors": [
"G Pólya"
],
"doi": "",
"ref_id": "b57",
"title": "Kombinatorische anzahlbestimmungen für gruppen, graphen und chemische verbindungen",
"year": "1937"
},
{
"authors": [
"O Puny",
"M Atzmon",
"E J Smith",
"I Misra",
"A Grover",
"H Ben-Hamu",
"Y Lipman"
],
"doi": "",
"ref_id": "b58",
"title": "Frame averaging for invariant and equivariant network design",
"year": "2022"
},
{
"authors": [
"C Qian",
"G Rattan",
"F Geerts",
"M Niepert",
"C Morris"
],
"doi": "",
"ref_id": "b59",
"title": "Ordered subgraph aggregation networks",
"year": "2022"
},
{
"authors": [
"L Rampášek",
"M Galkin",
"V P Dwivedi",
"A T Luu",
"G Wolf",
"D Beaini"
],
"doi": "",
"ref_id": "b60",
"title": "Recipe for a general, powerful, scalable graph transformer",
"year": "2023"
},
{
"authors": [
"R Sato",
"M Yamada",
"H Kashima"
],
"doi": "",
"ref_id": "b61",
"title": "Approximation ratios of graph neural networks for combinatorial problems",
"year": "2019"
},
{
"authors": [
"Ryoma Sato",
"Makoto Yamada",
"Hisashi Kashima"
],
"doi": "10.1137/1.9781611976700.38",
"ref_id": "b62",
"title": "Random Features Strengthen Graph Neural Networks",
"year": "2021"
},
{
"authors": [
"N Segol",
"Y Lipman"
],
"doi": "",
"ref_id": "b63",
"title": "On universal equivariant set networks",
"year": "2019"
},
{
"authors": [
"B Tahmasebi",
"D Lim",
"S Jegelka"
],
"doi": "",
"ref_id": "b64",
"title": "Counting substructures with higher-order graph neural networks: Possibility and impossibility results",
"year": "2020"
},
{
"authors": [
"E Thiede",
"W Zhou",
"R Kondor"
],
"doi": "",
"ref_id": "b65",
"title": "Autobahn: Automorphism-based graph neural nets",
"year": "2021"
},
{
"authors": [
"Nicolas M Thiéry"
],
"doi": "10.1145/377604.377612",
"ref_id": "b66",
"title": "Algebraic invariants of graphs; a study based on computer exploration",
"year": "2000"
},
{
"authors": [
"A Tucker"
],
"doi": "10.1002/tdm_license_1.1",
"ref_id": "b67",
"title": "Applied combinatorics",
"year": "1994"
},
{
"authors": [
"P Welke",
"M Thiessen",
"T Gärtner"
],
"doi": "",
"ref_id": "b68",
"title": "Expectation complete graph representations using graph homomorphisms",
"year": "2022"
},
{
"authors": [
"K Xu",
"W Hu",
"J Leskovec",
"S Jegelka"
],
"doi": "",
"ref_id": "b69",
"title": "How powerful are graph neural networks?",
"year": "2019"
},
{
"authors": [
"Jiaxuan You",
"Jonathan M Gomes-Selman",
"Rex Ying",
"Jure Leskovec"
],
"doi": "10.1609/aaai.v35i12.17283",
"ref_id": "b70",
"title": "Identity-aware Graph Neural Networks",
"year": "2021"
},
{
"authors": [
"Yang You",
"Jonathan Hseu",
"Chris Ying",
"James Demmel",
"Kurt Keutzer",
"Cho-Jui Hsieh"
],
"doi": "10.1145/3295500.3356137",
"ref_id": "b71",
"title": "Large-batch training for LSTM and beyond",
"year": "2019"
},
{
"authors": [
"B Zhang",
"S Luo",
"L Wang",
"H Di"
],
"doi": "",
"ref_id": "b72",
"title": "Rethinking the expressive power of gnns via graph biconnectivity",
"year": "2023"
}
] |
[
"9d729bb2ce1ff7d2",
"d2518c37ca011632",
"b761e1d9a3bed168",
"e7e0ada6608a2138",
"696237e295c3fef2",
"f783db39f1c5d18b",
"a1eb438601fd1fdc",
"94a61b6b7ed2d870",
"a1aab191feeda9cc",
"32071910aa0b5476",
"368cc0f7d4568baf",
"69df566cb0e60891",
"559038153d13eb6b",
"25f023955e83508d",
"e6a9162cca023942",
"02698e8fe5af05b8",
"ace621ba0e7dc076",
"aea03882cb196ae4",
"a97afa53915a65eb",
"e44e789b7a4e11ac",
"2b2b5645aaed93b1",
"d2a9b16fb37c10b0",
"645a26eb7cee3007",
"79d8a7995b60cce6",
"909812e5465d8c13",
"0214c46ceae506cd",
"7b27549888c7838f",
"8ab497029e389c8f",
"345dbbf9e5fdc82a",
"1aac1813e14895a0",
"6f0fccf0875a74dd",
"8a13e27c9da5df6f",
"2507ca4b4b6f61fb",
"ba7577e26edeafe2",
"06bd7d1de06892c2",
"df2b3a20d6b39e60",
"2f0a9d2fd6d9c60a",
"8fa6b2e1f7f8942d",
"8dc01c35b2a3a39d"
] |
[
"696237e295c3fef2",
"a1dbc971adeadd3a",
"25f023955e83508d",
"8fa6b2e1f7f8942d",
"a97afa53915a65eb",
"9d729bb2ce1ff7d2",
"dea29ec81d623cc0",
"2507ca4b4b6f61fb",
"9d5d833035003fcc",
"266832aa237d8d65",
"1ae6aa5de7899869",
"b6ea12fc0022d47f",
"2b2b5645aaed93b1",
"94dcb67cb8a67622",
"0214c46ceae506cd",
"2b624038a38e918a",
"1aac1813e14895a0",
"9623c64e9026d992",
"02698e8fe5af05b8",
"de63122eef038688",
"559038153d13eb6b",
"aea03882cb196ae4",
"22e14126e30e206a",
"ecf714789e084526",
"33928b0059ae020a",
"455433750b69c07c",
"80de246bca7a0b4b",
"d5b183c2d45c781f",
"60dc829e0962d591",
"1e98d22907200020",
"367021f438f6f1d8",
"8a13e27c9da5df6f",
"df2b3a20d6b39e60",
"7b27549888c7838f",
"32071910aa0b5476",
"5a1520f85d63f15f",
"69df566cb0e60891",
"7ff0a6d17751ca6d",
"f33d544cf9972b36",
"b1e957b10153190b",
"15fc84765d23a70e",
"345dbbf9e5fdc82a",
"d2a9b16fb37c10b0",
"2f0a9d2fd6d9c60a",
"f783db39f1c5d18b",
"e44e789b7a4e11ac",
"6f0fccf0875a74dd",
"645a26eb7cee3007",
"b761e1d9a3bed168",
"ba7577e26edeafe2",
"236ddd424c6bbeac",
"46da8635a749806c",
"f97efeb3f96cca57",
"79d8a7995b60cce6",
"e67d97376bb8e0fb",
"a1aab191feeda9cc",
"88cb0672bfe96e52",
"db282c808b9c7a70",
"909812e5465d8c13",
"06bd7d1de06892c2",
"0e2b12a3592233e5",
"a1eb438601fd1fdc",
"d2518c37ca011632",
"8c02ee86d86683ec",
"8dc01c35b2a3a39d",
"94a61b6b7ed2d870",
"8ab497029e389c8f",
"666ac86b4bea6654",
"ace621ba0e7dc076",
"e6a9162cca023942",
"368cc0f7d4568baf",
"aec81da343145173",
"e7e0ada6608a2138"
] |
450iImFM4U
|
Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains
|
data/openreview_paper/ICML_2023_oral/450iImFM4U//paper.pdf
| 55
| 0
|
[] |
[
{
"authors": [
"Marianne Akian",
"Stéphane Gaubert",
"Laure Ninove"
],
"doi": "10.1007/3-540-34774-7_31",
"ref_id": "b0",
"title": "The T-PageRank: A Model of Self-Validating Effects of Web Surfing",
"year": "2007"
},
{
"authors": [
"D Aldous",
"J A Fill"
],
"doi": "",
"ref_id": "b1",
"title": "Reversible markov chains and random walks on graphs",
"year": "2002"
},
{
"authors": [
"N Alon",
"I Benjamini",
"E Lubetzky",
"S Sodin"
],
"doi": "",
"ref_id": "b2",
"title": "Nonbacktracking random walks mix faster",
"year": "2007"
},
{
"authors": [
"Daniel J Amit",
"G Parisi",
"L Peliti"
],
"doi": "10.1103/physrevb.27.1635",
"ref_id": "b3",
"title": "Asymptotic behavior of the \"true\" self-avoiding walk",
"year": "Feb 1983"
},
{
"authors": [
"Christophe Andrieu",
"Samuel Livingstone"
],
"doi": "10.1214/20-aos2008",
"ref_id": "b4",
"title": "Peskun–Tierney ordering for Markovian Monte Carlo: Beyond the reversible scenario",
"year": "2021"
},
{
"authors": [
"C Andrieu",
"É Moulines",
"P Priouret"
],
"doi": "",
"ref_id": "b5",
"title": "Stability of stochastic approximation under verifiable conditions",
"year": "2005"
},
{
"authors": [
"Christophe Andrieu",
"Ajay Jasra",
"Arnaud Doucet",
"Pierre Del Moral"
],
"doi": "10.1051/proc:071911",
"ref_id": "b6",
"title": "Non-linear Markov Chain Monte Carlo",
"year": "01 2007"
},
{
"authors": [
"Christophe Andrieu",
"Ajay Jasra",
"Arnaud Doucet",
"Pierre Del Moral"
],
"doi": "10.1051/proc:071901",
"ref_id": "b7",
"title": "Convergence of the equi-energy sampler",
"year": "2007"
},
{
"authors": [
"Christophe Andrieu",
"Ajay Jasra",
"Arnaud Doucet",
"Pierre Del Moral"
],
"doi": "10.1080/07362990701857178",
"ref_id": "b8",
"title": "A Note on Convergence of the Equi-Energy Sampler",
"year": "2008"
},
{
"authors": [
"C Andrieu",
"A Jasra",
"A Doucet",
"P D Moral"
],
"doi": "",
"ref_id": "b9",
"title": "On nonlinear Markov chain Monte Carlo",
"year": "2011"
},
{
"authors": [
"Christophe Andrieu",
"Vladislav B Tadić",
"Matti Vihola"
],
"doi": "10.1214/13-aap953",
"ref_id": "b10",
"title": "On the stability of some controlled Markov chains and its applications to stochastic approximation with Markovian dynamic",
"year": "2015"
},
{
"authors": [
"Omer Angel",
"Nicholas Crawford",
"Gady Kozma"
],
"doi": "10.1215/00127094-2644357",
"ref_id": "b11",
"title": "Localization for linearly edge reinforced random walks",
"year": "2014"
},
{
"authors": [
"R B Ash",
"C A Doléans-Dade"
],
"doi": "",
"ref_id": "b12",
"title": "Probability and measure theory",
"year": "2000"
},
{
"authors": [
"Konstantin E Avrachenkov",
"Vivek S Borkar",
"Sharayu Moharir",
"Suhail Shah"
],
"doi": "10.1109/tcns.2021.3114377",
"ref_id": "b13",
"title": "Dynamic Social Learning Under Graph Constraints",
"year": "2021"
},
{
"authors": [
"J Ball",
"Semiflows"
],
"doi": "",
"ref_id": "b14",
"title": "Lyapunov functions and approach to equilibrium",
"year": "2016"
},
{
"authors": [
"M Benaïm"
],
"doi": "",
"ref_id": "b15",
"title": "Vertex-reinforced random walks and a conjecture of pemantle",
"year": "01 1997"
},
{
"authors": [
"Michel Benaïm"
],
"doi": "10.1007/bfb0096509",
"ref_id": "b16",
"title": "Dynamics of stochastic approximation algorithms",
"year": "1999"
},
{
"authors": [
"Michel Benaïm",
"Pierre Tarrès"
],
"doi": "10.1214/10-aop609",
"ref_id": "b17",
"title": "Dynamics of vertex-reinforced random walks",
"year": "2011"
},
{
"authors": [
"M Benaïm",
"O Raimond",
"B Schapira"
],
"doi": "",
"ref_id": "b18",
"title": "Strongly vertexreinforced-random-walk on the complete graph",
"year": "2012"
},
{
"authors": [
"Albert Benveniste",
"Michel Métivier",
"Pierre Priouret"
],
"doi": "10.1007/978-3-642-75894-2",
"ref_id": "b19",
"title": "Adaptive Algorithms and Stochastic Approximations",
"year": "2012"
},
{
"authors": [
"Vivek S Borkar"
],
"doi": "10.1007/978-981-99-8277-6",
"ref_id": "b20",
"title": "Stochastic Approximation: A Dynamical Systems Viewpoint",
"year": "2008"
},
{
"authors": [
"Pierre Brémaud"
],
"doi": "10.1007/978-3-030-45982-6_11",
"ref_id": "b21",
"title": "Monte Carlo Markov Chains",
"year": "2020"
},
{
"authors": [
"Jun Chen"
],
"doi": "10.1214/ejp.v19-2669",
"ref_id": "b22",
"title": "Two particles' repelling random walks on the complete graph",
"year": "2014"
},
{
"authors": [
"Ting-Li Chen",
"Chii-Ruey Hwang"
],
"doi": "10.1016/j.spl.2013.05.002",
"ref_id": "b23",
"title": "Accelerating reversible Markov chains",
"year": "2013"
},
{
"authors": [
"Pierre Del Moral",
"Laurent Miclo"
],
"doi": "10.1098/rspa.2003.1245",
"ref_id": "b24",
"title": "On convergence of chains with occupational self–interactions",
"year": "2041. 2004"
},
{
"authors": [
"P Del Moral",
"L Miclo"
],
"doi": "10.1080/07362990600632029",
"ref_id": "b25",
"title": "Self-Interacting Markov Chains",
"year": "07 2006"
},
{
"authors": [],
"doi": "10.26420/annhematoloncol.2022.1404",
"ref_id": "b26",
"title": "Disseminated Strongyloidiasis in a Patient Treated with Rituximab and Ibrutinib, a Case Report",
"year": "2000"
},
{
"authors": [
"P Diaconis",
"S Holmes",
"R M Neal"
],
"doi": "",
"ref_id": "b27",
"title": "Analysis of a nonreversible markov chain sampler",
"year": "2000"
},
{
"authors": [
"Gersende Fort"
],
"doi": "10.1051/ps/2014013",
"ref_id": "b28",
"title": "Central limit theorems for stochastic approximation with controlled Markov chain dynamics",
"year": "2015"
},
{
"authors": [
"G Fort",
"E Moulines",
"P Priouret"
],
"doi": "10.1214/11-aos938",
"ref_id": "b29",
"title": "Convergence of adaptive and interacting Markov chain Monte Carlo algorithms",
"year": "2011"
},
{
"authors": [
"G Fort",
"E Moulines",
"P Priouret",
"P Vandekerkhove"
],
"doi": "",
"ref_id": "b30",
"title": "A central limit theorem for adaptive and interacting markov chains",
"year": "2014"
},
{
"authors": [
"P Grassberger"
],
"doi": "",
"ref_id": "b31",
"title": "Self-trapping self-repelling random walks",
"year": "2017"
},
{
"authors": [
"Harold J Kushner",
"G G Y"
],
"doi": "",
"ref_id": "b32",
"title": "Stochastic Approximation Algorithms and Applications",
"year": "1997"
},
{
"authors": [
"J Hu",
"V Doshi",
"Eun",
"D Y"
],
"doi": "",
"ref_id": "b33",
"title": "Efficiency ordering of stochastic gradient descent",
"year": "2022"
},
{
"authors": [
"P Karmakar"
],
"doi": "",
"ref_id": "b34",
"title": "Stochastic approximation with markov noise: Analysis and applications in reinforcement learning",
"year": "2020"
},
{
"authors": [
"Chul-Ho Lee",
"Xin Xu",
"Do Young Eun"
],
"doi": "10.1145/2254756.2254795",
"ref_id": "b35",
"title": "Beyond random walk and metropolis-hastings samplers",
"year": "2012"
},
{
"authors": [
"J Leskovec",
"A Krevl"
],
"doi": "",
"ref_id": "b36",
"title": "SNAP Datasets: Stanford large network dataset collection",
"year": "June 2014"
},
{
"authors": [
"Rong-Hua Li",
"Jeffrey Xu Yu",
"Lu Qin",
"Rui Mao",
"Tan Jin"
],
"doi": "10.1109/icde.2015.7113345",
"ref_id": "b37",
"title": "On random walk based graph sampling",
"year": "2015. 2015"
},
{
"authors": [
"Y.-A Ma",
"T Chen",
"L Wu",
"E B Fox"
],
"doi": "",
"ref_id": "b38",
"title": "A unifying framework for devising efficient and irreversible mcmc samplers",
"year": "2016"
},
{
"authors": [
"P D Moral",
"A Doucet"
],
"doi": "",
"ref_id": "b39",
"title": "Interacting Markov chain Monte Carlo methods for solving nonlinear measurevalued equations",
"year": "2010"
},
{
"authors": [
"R M Neal"
],
"doi": "",
"ref_id": "b40",
"title": "Improving asymptotic variance of mcmc estimators: Non-reversible chains are better",
"year": "2004"
},
{
"authors": [
"R Pemantle"
],
"doi": "",
"ref_id": "b41",
"title": "Phase transition in reinforced random walk and rwre on trees",
"year": "1988"
},
{
"authors": [
"Robin Pemantle"
],
"doi": "10.1214/07-ps094",
"ref_id": "b42",
"title": "A survey of random processes with reinforcement",
"year": "2007"
},
{
"authors": [
"Rafael A Rosales",
"Fernando P A Prado",
"Benito Pires"
],
"doi": "10.1016/j.spa.2022.03.007",
"ref_id": "b43",
"title": "Vertex reinforced random walks with exponential interaction on complete graphs",
"year": "2022"
},
{
"authors": [
"J.-J E Slotine",
"W Li"
],
"doi": "",
"ref_id": "b44",
"title": "Applied Nonlinear Control",
"year": "1991"
},
{
"authors": [
"A Stevens",
"H G Othmer"
],
"doi": "",
"ref_id": "b45",
"title": "Aggregation, blowup, and collapse: the abc's of taxis in reinforced random walks",
"year": "1997"
},
{
"authors": [
"Tao Sun",
"Y Sun",
"W Yin"
],
"doi": "10.1109/tsp.2023.3297053/mm1",
"ref_id": "b46",
"title": "On the Decentralized Stochastic Gradient Descent with Markov Chain Sampling_supp1-3297053.pdf",
"year": "2018"
},
{
"authors": [
"Pierre Tarrès"
],
"doi": "10.1214/009117907000000694",
"ref_id": "b47",
"title": "Vertex-reinforced random walk on ℤ eventually gets stuck on five points",
"year": "2004"
},
{
"authors": [
"A Thin",
"N Kotelevskii",
"C Andrieu",
"A Durmus",
"E Moulines",
"M Panov"
],
"doi": "",
"ref_id": "b48",
"title": "Nonreversible mcmc from conditional invertible transforms: a complete recipe with convergence guarantees",
"year": "2020"
},
{
"authors": [
"Balint Toth",
"The"
],
"doi": "10.1214/aop/1176987793",
"ref_id": "b49",
"title": "The \"True\" Self-Avoiding Walk with Bond Repulsion on $\\mathbb{Z}$: Limit Theorems",
"year": "1995"
},
{
"authors": [
"Konstantin S Turitsyn",
"Michael Chertkov",
"Marija Vucelja"
],
"doi": "10.1016/j.physd.2010.10.003",
"ref_id": "b50",
"title": "Irreversible Monte Carlo algorithms for efficient sampling",
"year": "2011"
},
{
"authors": [
"A W Van Der Vaart"
],
"doi": "",
"ref_id": "b51",
"title": "Asymptotic statistics",
"year": "2000"
},
{
"authors": [
"Balint Veto",
"Balint Toth"
],
"doi": "10.1214/ejp.v13-570",
"ref_id": "b52",
"title": "Self-repelling random walk with directed edges on Z",
"year": "2008"
},
{
"authors": [
"M Vidyasagar"
],
"doi": "",
"ref_id": "b53",
"title": "Nonlinear Systems Analysis",
"year": "1993"
},
{
"authors": [
"Stanislav Volkov"
],
"doi": "10.1007/s10959-006-0033-2",
"ref_id": "b54",
"title": "Phase Transition in Vertex-Reinforced Random Walks on $${\\mathbb{Z}}$$ with Non-linear Reinforcement",
"year": "2006"
}
] |
[] |
[
"1320f570cdf0191a",
"b476145b2f679866",
"f98ffb0cfa6c4465",
"f28a907219e75962",
"121b8acd4786cae4",
"088d15114a1e2653",
"504559fdc3f43fd3",
"ba0144fa41da7c3c",
"fffb276f165f6900",
"3c00dbfbcb6b690d",
"e910c45ce89c6b91",
"5a3ad78c34073947",
"4fe268839541519c",
"ac21710f058d7b36",
"0cbf7e3ba2bc220a",
"5d588e340aa54183",
"5d61c12e91a4905f",
"5131772085390e0b",
"bb28b04b927e1e70",
"5b59213dac06b700",
"6c30dfcfdb41bd4e",
"5a480199abc5087e",
"606d90a26037902d",
"3bb4c3d8acbf29aa",
"8c7c0570f2e1a4b6",
"0c407eb49cef6ab3",
"30f72758e794af7b",
"20302bf8703fb4ff",
"643f5144b9c9cb2e",
"13e9e923cf89f876",
"647ddda8eb061b32",
"c2ce0484e2f0e62c",
"a44710bb2d294736",
"4fc2ea227d1766ab",
"2876455b4f220070",
"4bdb2362690a5b1c",
"b1ab01c9644d336a",
"b2f41777160ea4d9",
"33ecc6641dafcbe5",
"e2ca273514ccaeaa",
"10c8b42e1badbe41",
"fb8ccab39ebcbdf5",
"2293b8b70e6a5d19",
"6431e1967675846f",
"429871123e8f780f",
"8228b5d270a94d9a",
"c4704fa5de039929",
"91368acbb82fb7f1",
"d615a75c524d6a7d",
"fc8c17613644f2d1",
"782473a7f2ba2d2f",
"72c50f34bf6bf70d",
"6f0f62803e59a37d",
"eaa6308b404f18ba",
"6577c96b55e959f1"
] |
Wbquvk97t4
|
Adversarial Example Does Good: Preventing Painting Imitation from Diffusion Models via Adversarial Examples
|
data/openreview_paper/ICML_2023_oral/Wbquvk97t4//paper.pdf
| 60
| 12
|
[
{
"authors": [
"E Fetaya",
"J.-H Jacobsen",
"W Grathwohl",
"R Zemel"
],
"doi": "",
"ref_id": "b12",
"title": "Understanding the Limitations of Conditional Generative Models",
"year": "2019"
},
{
"authors": [
"P Pope",
"Y Balaji",
"S Feizi"
],
"doi": "",
"ref_id": "b41",
"title": "Adversarial Robustness of Flow-Based Generative Models",
"year": "2020"
},
{
"authors": [
"Yen-Chen Lin",
"Zhang-Wei Hong",
"Yuan-Hong Liao",
"Meng-Li Shih",
"Ming-Yu Liu",
"Min Sun"
],
"doi": "10.24963/ijcai.2017/525",
"ref_id": "b31",
"title": "Tactics of Adversarial Attack on Deep Reinforcement Learning Agents",
"year": "2017"
},
{
"authors": [
"L Dinh",
"D Krueger",
"Y Bengio",
"Nice"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b10",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"Daniel Zügner",
"Amir Akbarnejad",
"Stephan Günnemann"
],
"doi": "10.1145/3219819.3220078",
"ref_id": "b59",
"title": "Adversarial Attacks on Neural Networks for Graph Data",
"year": "2018"
},
{
"authors": [
"H Dai",
"H Li",
"T Tian",
"X Huang",
"L Wang",
"J Zhu",
"L Song"
],
"doi": "",
"ref_id": "b6",
"title": "Adversarial Attack on Graph Structured Data",
"year": "2018"
},
{
"authors": [
"Robin Jia",
"Percy Liang"
],
"doi": "10.18653/v1/d17-1215",
"ref_id": "b23",
"title": "Adversarial Examples for Evaluating Reading Comprehension Systems",
"year": "2017"
},
{
"authors": [
"N Carlini",
"D Wagner"
],
"doi": "",
"ref_id": "b4",
"title": "Towards Evaluating the Robustness of Neural Networks",
"year": "2017"
},
{
"authors": [
"Jernej Kos",
"Ian Fischer",
"Dawn Song"
],
"doi": "10.1109/spw.2018.00014",
"ref_id": "b29",
"title": "Adversarial Examples for Generative Models",
"year": "2018"
},
{
"authors": [
"K Nichol"
],
"doi": "10.4159/harvard.9780674430266.c13",
"ref_id": "b37",
"title": "266. The English painter",
"year": "2016"
},
{
"authors": [
"D P Kingma",
"P Dhariwal"
],
"doi": "",
"ref_id": "b27",
"title": "Glow: Generative Flow With Invertible 1x1 Convolutions",
"year": "2018"
},
{
"authors": [
"W Nie",
"B Guo",
"Y Huang",
"C Xiao",
"A Vahdat",
"A Anandkumar"
],
"doi": "",
"ref_id": "b38",
"title": "Diffusion Models for Adversarial Purification",
"year": "2022"
}
] |
[
{
"authors": [
"Patricia Aufderheide",
"Peter Jaszi"
],
"doi": "10.7208/chicago/9780226374222.001.0001",
"ref_id": "b0",
"title": "Reclaiming Fair Use",
"year": "2018"
},
{
"authors": [
"A Baio"
],
"doi": "10.12987/9780300268652-010",
"ref_id": "b1",
"title": "Conclusions: “Asia Finds Herself”",
"year": "2022"
},
{
"authors": [
"F Bao",
"C Li",
"J Zhu",
"B Zhang"
],
"doi": "",
"ref_id": "b2",
"title": "Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models",
"year": "2022"
},
{
"authors": [
"A Brock",
"J Donahue",
"K Simonyan"
],
"doi": "",
"ref_id": "b3",
"title": "Large Scale GAN Training for High Fidelity Natural Image Synthesis",
"year": "2018"
},
{
"authors": [
"N Carlini",
"D Wagner"
],
"doi": "",
"ref_id": "b4",
"title": "Towards Evaluating the Robustness of Neural Networks",
"year": "2017"
},
{
"authors": [
"S Carr",
"N Jeffrey"
],
"doi": "",
"ref_id": "b5",
"title": "Class Action Complaint",
"year": "2022"
},
{
"authors": [
"H Dai",
"H Li",
"T Tian",
"X Huang",
"L Wang",
"J Zhu",
"L Song"
],
"doi": "",
"ref_id": "b6",
"title": "Adversarial Attack on Graph Structured Data",
"year": "2018"
},
{
"authors": [
"Nilaksh Das",
"Madhuri Shanbhogue",
"Shang-Tse Chen",
"Fred Hohman",
"Siwei Li",
"Li Chen",
"Michael E Kounavis",
"Duen Horng Chau"
],
"doi": "10.1145/3219819.3219910",
"ref_id": "b7",
"title": "SHIELD",
"year": "2018"
},
{
"authors": [
"A Deck"
],
"doi": "",
"ref_id": "b8",
"title": "AI-Generated Art Sparks Furious Backlash from Japan's Anime Community",
"year": "2022"
},
{
"authors": [
"P Dhariwal",
"A Nichol"
],
"doi": "",
"ref_id": "b9",
"title": "Diffusion Models Beat GANs on Image Synthesis",
"year": "2021"
},
{
"authors": [
"L Dinh",
"D Krueger",
"Y Bengio",
"Nice"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b10",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"L Dinh",
"J Sohl-Dickstein",
"S Bengio"
],
"doi": "",
"ref_id": "b11",
"title": "Density Estimation Using Real NVP",
"year": "2016"
},
{
"authors": [
"E Fetaya",
"J.-H Jacobsen",
"W Grathwohl",
"R Zemel"
],
"doi": "",
"ref_id": "b12",
"title": "Understanding the Limitations of Conditional Generative Models",
"year": "2019"
},
{
"authors": [
"Iii Fisher",
"W W"
],
"doi": "",
"ref_id": "b13",
"title": "Reconstructing the Fair Use Doctrine",
"year": "1987"
},
{
"authors": [
"Giorgio Franceschelli",
"Mirco Musolesi"
],
"doi": "10.1017/dap.2022.10",
"ref_id": "b14",
"title": "Copyright in generative deep learning",
"year": "2022"
},
{
"authors": [
"R Gal",
"Y Alaluf",
"Y Atzmon",
"O Patashnik",
"A H Bermano",
"G Chechik",
"D Cohen-Or"
],
"doi": "",
"ref_id": "b15",
"title": "An Image Is Worth One Word: Personalizing Text-to-Image Generation Using Textual Inversion",
"year": "2022"
},
{
"authors": [
"Ian Goodfellow",
"Jean Pouget-Abadie",
"Mehdi Mirza",
"Bing Xu",
"David Warde-Farley",
"Sherjil Ozair",
"Aaron Courville",
"Yoshua Bengio"
],
"doi": "10.1145/3422622",
"ref_id": "b16",
"title": "Generative adversarial networks",
"year": "2014"
},
{
"authors": [
"I J Goodfellow",
"J Shlens",
"C Szegedy"
],
"doi": "",
"ref_id": "b17",
"title": "Explaining and Harnessing Adversarial Examples",
"year": "2014"
},
{
"authors": [
"K Gregor",
"F Besse",
"D Jimenez Rezende",
"I Danihelka",
"D Wierstra"
],
"doi": "",
"ref_id": "b18",
"title": "Towards Conceptual Compression",
"year": "2016"
},
{
"authors": [
"C Guo",
"M Rana",
"M Cisse",
"L Van Der Maaten"
],
"doi": "",
"ref_id": "b19",
"title": "Countering Adversarial Images Using Input Transformations",
"year": "2017"
},
{
"authors": [
"M Heusel",
"H Ramsauer",
"T Unterthiner",
"B Nessler",
"S Hochreiter",
"Gans"
],
"doi": "",
"ref_id": "b20",
"title": "Trained By a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium",
"year": "2017"
},
{
"authors": [
"I Higgins",
"L Matthey",
"A Pal",
"C Burgess",
"X Glorot",
"M Botvinick",
"S Mohamed",
"A Lerchner"
],
"doi": "10.7554/elife.88602.1.sa2",
"ref_id": "b21",
"title": "Reviewer #1 (Public Review): Disentangled multi-subject and social behavioral representations through a constrained subspace variational autoencoder (CS-VAE)",
"year": "2017"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b22",
"title": "Denoising Diffusion Probabilistic Models",
"year": "2020"
},
{
"authors": [
"Robin Jia",
"Percy Liang"
],
"doi": "10.18653/v1/d17-1215",
"ref_id": "b23",
"title": "Adversarial Examples for Evaluating Reading Comprehension Systems",
"year": "2017"
},
{
"authors": [
"Tero Karras",
"Samuli Laine",
"Timo Aila"
],
"doi": "10.1109/cvpr.2019.00453",
"ref_id": "b24",
"title": "A Style-Based Generator Architecture for Generative Adversarial Networks",
"year": "2019"
},
{
"authors": [
"Tero Karras",
"Samuli Laine",
"Miika Aittala",
"Janne Hellsten",
"Jaakko Lehtinen",
"Timo Aila"
],
"doi": "10.1109/cvpr42600.2020.00813",
"ref_id": "b25",
"title": "Analyzing and Improving the Image Quality of StyleGAN",
"year": "2020"
},
{
"authors": [
"Bahjat Kawar",
"Shiran Zada",
"Oran Lang",
"Omer Tov",
"Huiwen Chang",
"Tali Dekel",
"Inbar Mosseri",
"Michal Irani"
],
"doi": "10.1109/cvpr52729.2023.00582",
"ref_id": "b26",
"title": "Imagic: Text-Based Real Image Editing with Diffusion Models",
"year": "2022"
},
{
"authors": [
"D P Kingma",
"P Dhariwal"
],
"doi": "",
"ref_id": "b27",
"title": "Glow: Generative Flow With Invertible 1x1 Convolutions",
"year": "2018"
},
{
"authors": [
"Diederik P Kingma",
"Max Welling"
],
"doi": "10.1561/9781680836233",
"ref_id": "b28",
"title": "An Introduction to Variational Autoencoders",
"year": "2014"
},
{
"authors": [
"Jernej Kos",
"Ian Fischer",
"Dawn Song"
],
"doi": "10.1109/spw.2018.00014",
"ref_id": "b29",
"title": "Adversarial Examples for Generative Models",
"year": "2018"
},
{
"authors": [
"T Kynkäänniemi",
"T Karras",
"S Laine",
"J Lehtinen",
"Aila",
"T"
],
"doi": "",
"ref_id": "b30",
"title": "Improved Precision and Recall Metric for Assessing Generative Models",
"year": "2019"
},
{
"authors": [
"Yen-Chen Lin",
"Zhang-Wei Hong",
"Yuan-Hong Liao",
"Meng-Li Shih",
"Ming-Yu Liu",
"Min Sun"
],
"doi": "10.24963/ijcai.2017/525",
"ref_id": "b31",
"title": "Tactics of Adversarial Attack on Deep Reinforcement Learning Agents",
"year": "2017"
},
{
"authors": [
"C Lu",
"Y Zhou",
"F Bao",
"J Chen",
"C Li",
"J Zhu",
"Dpm-"
],
"doi": "",
"ref_id": "b32",
"title": "Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps",
"year": "2022"
},
{
"authors": [
"A Madry",
"A Makelov",
"L Schmidt",
"D Tsipras",
"A Vladu"
],
"doi": "",
"ref_id": "b33",
"title": "Towards Deep Learning Models Resistant to Adversarial Attacks",
"year": "2018"
},
{
"authors": [
"M Mirza",
"S Osindero"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b34",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"D Mt"
],
"doi": "",
"ref_id": "b35",
"title": "How AI Art Can Free Artists, Not Replace Them",
"year": ", 2022"
},
{
"authors": [
"Aamir Mustafa",
"Salman H Khan",
"Munawar Hayat",
"Jianbing Shen",
"Ling Shao"
],
"doi": "10.1109/tip.2019.2940533",
"ref_id": "b36",
"title": "Image Super-Resolution as a Defense Against Adversarial Attacks",
"year": "2019"
},
{
"authors": [
"K Nichol"
],
"doi": "10.4159/harvard.9780674430266.c13",
"ref_id": "b37",
"title": "266. The English painter",
"year": "2016"
},
{
"authors": [
"W Nie",
"B Guo",
"Y Huang",
"C Xiao",
"A Vahdat",
"A Anandkumar"
],
"doi": "",
"ref_id": "b38",
"title": "Diffusion Models for Adversarial Purification",
"year": "2022"
},
{
"authors": [
"Nicolas Papernot",
"Patrick Mcdaniel",
"Ian Goodfellow",
"Somesh Jha",
"Z Berkay Celik",
"Ananthram Swami"
],
"doi": "10.1145/3052973.3053009",
"ref_id": "b39",
"title": "Practical Black-Box Attacks against Machine Learning",
"year": "2016"
},
{
"authors": [
"B Poole",
"A Jain",
"J T Barron",
"B Mildenhall"
],
"doi": "",
"ref_id": "b40",
"title": "Dreamfusion: Text-to-3D Using 2D Diffusion",
"year": "2022"
},
{
"authors": [
"P Pope",
"Y Balaji",
"S Feizi"
],
"doi": "",
"ref_id": "b41",
"title": "Adversarial Robustness of Flow-Based Generative Models",
"year": "2020"
},
{
"authors": [
"A Radford",
"J W Kim",
"C Hallacy",
"A Ramesh",
"G Goh",
"S Agarwal",
"G Sastry",
"A Askell",
"P Mishkin",
"J Clark"
],
"doi": "",
"ref_id": "b42",
"title": "Learning Transferable Visual Models from Natural Language Supervision",
"year": "2021"
},
{
"authors": [
"A Razavi",
"A Van Den Oord",
"O Vinyals"
],
"doi": "",
"ref_id": "b43",
"title": "Generating Diverse High-Fidelity Images with VQ-VAE-2",
"year": "2019"
},
{
"authors": [
"Robin Rombach",
"Andreas Blattmann",
"Dominik Lorenz",
"Patrick Esser",
"Bjorn Ommer"
],
"doi": "10.1109/cvpr52688.2022.01042",
"ref_id": "b44",
"title": "High-Resolution Image Synthesis with Latent Diffusion Models",
"year": "2022"
},
{
"authors": [
"N Ruiz",
"Y Li",
"V Jampani",
"Y Pritch",
"M Rubinstein",
"K Aberman"
],
"doi": "",
"ref_id": "b45",
"title": "Dreambooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation",
"year": "2022"
},
{
"authors": [
"D E Rumelhart",
"G E Hinton",
"R J Williams"
],
"doi": "",
"ref_id": "b46",
"title": "Learning Internal Representations by Error Propagation",
"year": "1985"
},
{
"authors": [
"C Schuhmann",
"R Vencu",
"R Beaumont",
"R Kaczmarczyk",
"C Mullis",
"A Katta",
"T Coombes",
"J Jitsev",
"A Komatsuzaki"
],
"doi": "",
"ref_id": "b47",
"title": "Laion-400m: Open Dataset of Clip-Filtered 400 Million Image-Text Pairs",
"year": "2021"
},
{
"authors": [
"C Schuhmann",
"R Beaumont",
"R Vencu",
"C Gordon",
"R Wightman",
"M Cherti",
"T Coombes",
"A Katta",
"C Mullis",
"M Wortsman"
],
"doi": "",
"ref_id": "b48",
"title": "Laion-5b: An Open Large-Scale Dataset for Training Next Generation Image-Text Models",
"year": "2022"
},
{
"authors": [
"J Shlens"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b49",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"J Sohl-Dickstein",
"E Weiss",
"N Maheswaranathan",
"S Ganguli"
],
"doi": "",
"ref_id": "b50",
"title": "Deep Unsupervised Learning Using Nonequilibrium Thermodynamics",
"year": "2015"
},
{
"authors": [
"J Song",
"C Meng",
"S Ermon"
],
"doi": "",
"ref_id": "b51",
"title": "Denoising Diffusion Implicit Models",
"year": "2020"
},
{
"authors": [
"Y Song",
"J Sohl-Dickstein",
"D P Kingma",
"A Kumar",
"S Ermon",
"B Poole"
],
"doi": "",
"ref_id": "b52",
"title": "Score-Based Generative Modeling Through Stochastic Differential Equations",
"year": "2020"
},
{
"authors": [
"Jeanne E Sullivan"
],
"doi": "10.1080/10632921.1996.9942952",
"ref_id": "b53",
"title": "Copyright for Visual Art in the Digital Age: A Modern Adventure in Wonderland",
"year": "1996"
},
{
"authors": [
"J Vincent"
],
"doi": "",
"ref_id": "b54",
"title": "The Scary Truth About AI Copyright Is Nobody Knows What Will Happen Next",
"year": "2022"
},
{
"authors": [
"X Xia",
"C Xu",
"Nan",
"B"
],
"doi": "",
"ref_id": "b55",
"title": "Inception-V3 for Flower Classification",
"year": "2017"
},
{
"authors": [
"Ruihan Yang",
"Prakhar Srivastava",
"Stephan Mandt"
],
"doi": "10.3390/e25101469",
"ref_id": "b56",
"title": "Diffusion Probabilistic Modeling for Video Generation",
"year": "2022"
},
{
"authors": [
"F Yu",
"A Seff",
"Y Zhang",
"S Song",
"T Funkhouser",
"J Xiao",
"Lsun"
],
"doi": "",
"ref_id": "b57",
"title": "Construction of a Large-Scale Image Dataset using Deep Learning with Humans in the Loop",
"year": "2015"
},
{
"authors": [
"Jun-Yan Zhu",
"Taesung Park",
"Phillip Isola",
"Alexei A Efros"
],
"doi": "10.1109/iccv.2017.244",
"ref_id": "b58",
"title": "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks",
"year": "2017"
},
{
"authors": [
"Daniel Zügner",
"Amir Akbarnejad",
"Stephan Günnemann"
],
"doi": "10.1145/3219819.3220078",
"ref_id": "b59",
"title": "Adversarial Attacks on Neural Networks for Graph Data",
"year": "2018"
}
] |
[
"05a39a6f9757af40",
"a070d480a73ce379",
"35820f7b54a63729",
"67a9be248f82bb2b",
"a0f4d176cadb80fc",
"b17c676838808a7d",
"a08fe3204a6f1bfc",
"bf77632f2d0802e5",
"7dbd5ca698896b41",
"a2b91114241752c1",
"6a6f906ff753754a",
"8e9fd8a502ae5082"
] |
[
"50cdb6d946e5d0b3",
"16bbdf4fad2029c7",
"0f8a105df33e2d0c",
"64787147cc1dc795",
"bf77632f2d0802e5",
"aa62e770b22a4943",
"b17c676838808a7d",
"f0b24fb77a28dabf",
"ad3ac26a2881b584",
"3d663db2552f763a",
"67a9be248f82bb2b",
"b6c40e10dc7e21f0",
"05a39a6f9757af40",
"9b88f91631977fa8",
"933f2aaa30a36bdd",
"501feae3867b7fa2",
"3a117b95bc32c8c0",
"e15187bb89760ac8",
"b0ee5d5026314f1b",
"506cc12be5e97360",
"a3c624541c873025",
"bc1fbe46f173405c",
"7cb4584473814329",
"a08fe3204a6f1bfc",
"658a68685b742cc3",
"9c35e53f84ea3059",
"3ee5edbc1097b6e7",
"6a6f906ff753754a",
"17499a863294e8b1",
"7dbd5ca698896b41",
"b484386633ea340e",
"35820f7b54a63729",
"7b3546e43dcf1abd",
"a9fb8d929255c90d",
"a9af0642118e71a8",
"ff615900a27d11ac",
"3b25391a0a6f25bb",
"a2b91114241752c1",
"8e9fd8a502ae5082",
"2a3e86eb87f1b51a",
"747ca50c2689a0e5",
"a070d480a73ce379",
"d2cb36a6296098c3",
"f12fdc18aadd35a6",
"1e1f042b021f7da2",
"68b6ed51dc28a91e",
"2849c92b9a74ef35",
"85e202dc0053ccdc",
"63d1655d95c472f9",
"58b1e0e51e262741",
"26236d4d41c060e4",
"1f2c7f97f3068729",
"23fd87b86607c5d1",
"a73268b39be2cc8f",
"41930146b3fff54a",
"96166aa55f8b2575",
"7ab76985ae7fb884",
"6245c7e29411bba8",
"df878073ee80f088",
"a0f4d176cadb80fc"
] |
AT8Iw8KOeC
|
Pretraining Language Models with Human Preferences
|
data/openreview_paper/ICML_2023_oral/AT8Iw8KOeC//paper.pdf
| 93
| 17
|
[
{
"authors": [
"A Chen",
"J Scheurer",
"T Korbak",
"J A Campos",
"J S Chan",
"S R Bowman",
"K Cho",
"E Perez"
],
"doi": "",
"ref_id": "b12",
"title": "Improving code generation by training with natural language feedback",
"year": "2023"
},
{
"authors": [
"J Scheurer",
"J A Campos",
"J S Chan",
"A Chen",
"K Cho",
"E Perez"
],
"doi": "",
"ref_id": "b68",
"title": "Training language models with language feedback",
"year": "2022"
},
{
"authors": [
"H W Chung",
"L Hou",
"S Longpre",
"B Zoph",
"Y Tay",
"W Fedus",
"Y Li",
"X Wang",
"M Dehghani",
"S Brahma",
"A Webson",
"S S Gu",
"Z Dai",
"M Suzgun",
"X Chen",
"A Chowdhery",
"A Castro-Ros",
"M Pellat",
"K Robinson",
"D Valter",
"S Narang",
"G Mishra",
"A Yu",
"V Zhao",
"Y Huang",
"A Dai",
"H Yu",
"S Petrov",
"E H Chi",
"J Dean",
"J Devlin",
"A Roberts",
"D Zhou",
"Q V Le",
"J Wei"
],
"doi": "",
"ref_id": "b16",
"title": "Scaling instruction-finetuned language models",
"year": "2022"
},
{
"authors": [
"Natasha Jaques",
"Judy Hanwen Shen",
"Asma Ghandeharioun",
"Craig Ferguson",
"Agata Lapedriza",
"Noah Jones",
"Shixiang Gu",
"Rosalind Picard"
],
"doi": "10.18653/v1/2020.emnlp-main.327",
"ref_id": "b39",
"title": "Human-centric dialog training via offline reinforcement learning",
"year": "November 2020"
},
{
"authors": [
"Charlie Snell",
"Sherry Yang",
"Justin Fu",
"Yi Su",
"Sergey Levine"
],
"doi": "10.18653/v1/2022.findings-naacl.181",
"ref_id": "b71",
"title": "Context-Aware Language Modeling for Goal-Oriented Dialogue Systems",
"year": "2022"
},
{
"authors": [
"S Levine",
"A Kumar",
"G Tucker",
"J Fu"
],
"doi": "",
"ref_id": "b48",
"title": "Offline reinforcement learning: Tutorial, review, and perspectives on open problems",
"year": "2020"
},
{
"authors": [
"S Emmons",
"B Eysenbach",
"I Kostrikov",
"S Levine",
"Rvs"
],
"doi": "",
"ref_id": "b22",
"title": "What is essential for offline RL via supervised learning?",
"year": "2022"
},
{
"authors": [
"A Kumar",
"A Zhou",
"G Tucker",
"S Levine"
],
"doi": "",
"ref_id": "b45",
"title": "Conservative q-learning for offline reinforcement learning",
"year": "2020"
},
{
"authors": [
"Y Jang",
"J Lee",
"K.-E Kim"
],
"doi": "",
"ref_id": "b37",
"title": "GPT-critic: Offline reinforcement learning for end-to-end task-oriented dialogue systems",
"year": "2022"
},
{
"authors": [
"A Nair",
"A Gupta",
"M Dalal",
"S Levine",
"Awac"
],
"doi": "",
"ref_id": "b55",
"title": "Accelerating online reinforcement learning with offline datasets",
"year": "2020"
},
{
"authors": [
"M Janner",
"Q Li",
"S Levine"
],
"doi": "",
"ref_id": "b38",
"title": "Offline reinforcement learning as one big sequence modeling problem",
"year": "2021"
},
{
"authors": [
"D M Ziegler",
"N Stiennon",
"J Wu",
"T B Brown",
"A Radford",
"D Amodei",
"P Christiano",
"G Irving"
],
"doi": "",
"ref_id": "b92",
"title": "Fine-tuning language models from human preferences",
"year": "2019"
},
{
"authors": [
"V Sanh",
"A Webson",
"C Raffel",
"S Bach",
"L Sutawika",
"Z Alyafeai",
"A Chaffin",
"A Stiegler",
"A Raja",
"M Dey",
"M S Bari",
"C Xu",
"U Thakker",
"S S Sharma",
"E Szczechla",
"T Kim",
"G Chhablani",
"N Nayak",
"D Datta",
"J Chang",
"M T Jiang",
"-J Wang",
"H Manica",
"M Shen",
"S Yong",
"Z X Pandey",
"H Bawden",
"R Wang",
"T Neeraj",
"T Rozen",
"J Sharma",
"A Santilli",
"A Fevry",
"T Fries",
"J A Teehan",
"R Scao",
"T L Biderman",
"S Gao",
"L Wolf",
"T Rush",
"A M"
],
"doi": "",
"ref_id": "b66",
"title": "Multitask prompted training enables zero-shot task generalization",
"year": "2022"
},
{
"authors": [
"D Go",
"T Korbak",
"G Kruszewski",
"J Rozen",
"N Ryu",
"M Dymetman"
],
"doi": "",
"ref_id": "b28",
"title": "Aligning language models with preferences through f-divergence minimization",
"year": "2023"
},
{
"authors": [
"M Khalifa",
"H Elsahar",
"M Dymetman"
],
"doi": "",
"ref_id": "b41",
"title": "A distributional approach to controlled text generation",
"year": "May 3-7, 2021. 2021"
},
{
"authors": [
"A Kumar",
"X B Peng",
"S Levine"
],
"doi": "",
"ref_id": "b44",
"title": "Reward-conditioned policies",
"year": "2019"
},
{
"authors": [
"J Schmidhuber"
],
"doi": "",
"ref_id": "b70",
"title": "Reinforcement learning upside down: Don't predict rewards -just map them to actions",
"year": "2019"
}
] |
[
{
"authors": [
"Abubakar Abid",
"Maheen Farooqi",
"James Zou"
],
"doi": "10.1145/3461702.3462624",
"ref_id": "b0",
"title": "Persistent Anti-Muslim Bias in Large Language Models",
"year": "2021"
},
{
"authors": [
"A Askell",
"Y Bai",
"A Chen",
"D Drain",
"D Ganguli",
"T Henighan",
"A Jones",
"N Joseph",
"B Mann",
"N Das-Sarma",
"N Elhage",
"Z Hatfield-Dodds",
"D Hernandez",
"J Kernion",
"K Ndousse",
"C Olsson",
"D Amodei",
"T Brown",
"J Clark",
"S Mccandlish",
"C Olah",
"J Kaplan"
],
"doi": "",
"ref_id": "b1",
"title": "A general language assistant as a laboratory for alignment",
"year": "2021"
},
{
"authors": [
"Y Bai",
"A Jones",
"K Ndousse",
"A Askell",
"A Chen",
"N Das-Sarma",
"D Drain",
"S Fort",
"D Ganguli",
"T Henighan",
"N Joseph",
"S Kadavath",
"J Kernion",
"T Conerly",
"S El-Showk",
"N Elhage",
"Z Hatfield-Dodds",
"D Hernandez",
"T Hume",
"S Johnston",
"S Kravec",
"L Lovitt",
"N Nanda",
"C Olsson",
"D Amodei",
"T Brown",
"J Clark",
"S Mccandlish",
"C Olah",
"B Mann",
"J Kaplan"
],
"doi": "",
"ref_id": "b2",
"title": "Training a helpful and harmless assistant with reinforcement learning from human feedback",
"year": "2022"
},
{
"authors": [
"R Bar-Haim",
"I Dagan",
"B Dolan",
"L Ferro",
"D Giampiccolo"
],
"doi": "",
"ref_id": "b3",
"title": "The second pascal recognising textual entailment challenge",
"year": "01 2006"
},
{
"authors": [
"Y Bengio",
"R Ducharme",
"P Vincent",
"C Janvin"
],
"doi": "",
"ref_id": "b4",
"title": "A neural probabilistic language model",
"year": "mar 2003"
},
{
"authors": [
"L Bentivogli",
"B Magnini",
"I Dagan",
"H T Dang",
"D Giampiccolo"
],
"doi": "",
"ref_id": "b5",
"title": "The fifth PASCAL recognizing textual entailment challenge",
"year": "November 16-17, 2009. 2009"
},
{
"authors": [
"Daniel Borkan",
"Lucas Dixon",
"Jeffrey Sorensen",
"Nithum Thain",
"Lucy Vasserman"
],
"doi": "10.1145/3308560.3317593",
"ref_id": "b6",
"title": "Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification",
"year": "2019"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell",
"S Agarwal",
"A Herbert-Voss",
"G Krueger",
"T Henighan",
"R Child",
"A Ramesh",
"D Ziegler",
"J Wu",
"C Winter",
"C Hesse",
"M Chen",
"E Sigler",
"M Litwin",
"S Gray",
"B Chess",
"J Clark",
"C Berner",
"S Mccandlish",
"A Radford",
"I Sutskever",
"D Amodei"
],
"doi": "",
"ref_id": "b7",
"title": "Language models are few-shot learners",
"year": ""
},
{
"authors": [
"N Carlini",
"C Liu",
"U Erlingsson",
"J Kos",
"D Song"
],
"doi": "",
"ref_id": "b8",
"title": "The secret sharer: Evaluating and testing unintended memorization in neural networks",
"year": "2019"
},
{
"authors": [
"N Carlini",
"F Tramer",
"E Wallace",
"M Jagielski",
"A Herbert-Voss",
"K Lee",
"A Roberts",
"T Brown",
"D Song",
"U Erlingsson",
"A Oprea",
"C Raffel"
],
"doi": "",
"ref_id": "b9",
"title": "Extracting training data from large language models",
"year": "2020"
},
{
"authors": [
"N Carlini",
"D Ippolito",
"M Jagielski",
"K Lee",
"F Tramer",
"C Zhang"
],
"doi": "",
"ref_id": "b10",
"title": "Quantifying memorization across neural language models",
"year": "2022"
},
{
"authors": [
"Daniel Cer",
"Mona Diab",
"Eneko Agirre",
"Inigo Lopez-Gazpio",
"Lucia Specia"
],
"doi": "10.18653/v1/s17-2001",
"ref_id": "b11",
"title": "SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation",
"year": "August 2017"
},
{
"authors": [
"A Chen",
"J Scheurer",
"T Korbak",
"J A Campos",
"J S Chan",
"S R Bowman",
"K Cho",
"E Perez"
],
"doi": "",
"ref_id": "b12",
"title": "Improving code generation by training with natural language feedback",
"year": "2023"
},
{
"authors": [
"Hechang Chen",
"Jifeng Hu",
"Sili Huang",
"Tao Luo",
"Lichao Sun",
"Bo Yang",
"Liwei Yang",
"Zhejian Yang"
],
"doi": "10.52202/079017-2314",
"ref_id": "b13",
"title": "Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b14",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2021"
},
{
"authors": [
"M Chen",
"J Tworek",
"H Jun",
"Q Yuan",
"H P De Oliveira Pinto",
"J Kaplan",
"H Edwards",
"Y Burda",
"N Joseph",
"G Brockman",
"A Ray",
"R Puri",
"G Krueger",
"M Petrov",
"H Khlaaf",
"G Sastry",
"P Mishkin",
"B Chan",
"S Gray",
"N Ryder",
"M Pavlov",
"A Power",
"L Kaiser",
"M Bavarian",
"C Winter",
"P Tillet",
"F P Such",
"D Cummings",
"M Plappert",
"F Chantzis",
"E Barnes",
"A Herbert-Voss",
"W H Guss",
"A Nichol",
"A Paino",
"N Tezak",
"J Tang",
"I Babuschkin",
"S Balaji",
"S Jain",
"W Saunders",
"C Hesse",
"A N Carr",
"J Leike",
"J Achiam",
"V Misra",
"E Morikawa",
"A Radford",
"M Knight",
"M Brundage",
"M Murati",
"K Mayer",
"P Welinder",
"B Mcgrew",
"D Amodei",
"S Mccandlish",
"I Sutskever",
"W Zaremba"
],
"doi": "",
"ref_id": "b15",
"title": "Evaluating large language models trained on code",
"year": "2021"
},
{
"authors": [
"H W Chung",
"L Hou",
"S Longpre",
"B Zoph",
"Y Tay",
"W Fedus",
"Y Li",
"X Wang",
"M Dehghani",
"S Brahma",
"A Webson",
"S S Gu",
"Z Dai",
"M Suzgun",
"X Chen",
"A Chowdhery",
"A Castro-Ros",
"M Pellat",
"K Robinson",
"D Valter",
"S Narang",
"G Mishra",
"A Yu",
"V Zhao",
"Y Huang",
"A Dai",
"H Yu",
"S Petrov",
"E H Chi",
"J Dean",
"J Devlin",
"A Roberts",
"D Zhou",
"Q V Le",
"J Wei"
],
"doi": "",
"ref_id": "b16",
"title": "Scaling instruction-finetuned language models",
"year": "2022"
},
{
"authors": [
"Ido Dagan",
"Oren Glickman",
"Bernardo Magnini"
],
"doi": "10.1007/11736790_9",
"ref_id": "b17",
"title": "The PASCAL Recognising Textual Entailment Challenge",
"year": "2005"
},
{
"authors": [
"N Dai",
"J Liang",
"X Qiu",
"X Huang"
],
"doi": "10.18653/v1/P19-1601",
"ref_id": "b18",
"title": "Style transformer: Unpaired text style transfer without disentangled latent representation",
"year": "July 2019"
},
{
"authors": [
"T Dettmers",
"L Zettlemoyer"
],
"doi": "",
"ref_id": "b19",
"title": "The case for 4-bit precision: k-bit inference scaling laws",
"year": "2023"
},
{
"authors": [
"Jacob Devlin",
"Ming-Wei Chang",
"Kenton Lee",
"Kristina Toutanova"
],
"doi": "10.18653/v1/n19-1423",
"ref_id": "b20",
"title": "",
"year": "June 2019"
},
{
"authors": [
"W B Dolan",
"C Brockett"
],
"doi": "",
"ref_id": "b21",
"title": "Automatically constructing a corpus of sentential paraphrases",
"year": "2005"
},
{
"authors": [
"S Emmons",
"B Eysenbach",
"I Kostrikov",
"S Levine",
"Rvs"
],
"doi": "",
"ref_id": "b22",
"title": "What is essential for offline RL via supervised learning?",
"year": "2022"
},
{
"authors": [
"Angela Fan",
"Mike Lewis",
"Yann Dauphin"
],
"doi": "10.18653/v1/p18-1082",
"ref_id": "b23",
"title": "Hierarchical Neural Story Generation",
"year": "July 2018"
},
{
"authors": [
"Jessica Ficler",
"Yoav Goldberg"
],
"doi": "10.18653/v1/w17-4912",
"ref_id": "b24",
"title": "Controlling Linguistic Style Aspects in Neural Language Generation",
"year": "September 2017"
},
{
"authors": [
"L Gao",
"S Biderman",
"S Black",
"L Golding",
"T Hoppe",
"C Foster",
"J Phang",
"H He",
"A Thite",
"N Nabeshima",
"S Presser",
"C Leahy"
],
"doi": "",
"ref_id": "b25",
"title": "The Pile: An 800gb dataset of diverse text for language modeling",
"year": "2020"
},
{
"authors": [
"Samuel Gehman",
"Suchin Gururangan",
"Maarten Sap",
"Yejin Choi",
"Noah A Smith"
],
"doi": "10.18653/v1/2020.findings-emnlp.301",
"ref_id": "b26",
"title": "RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models",
"year": "November 2020"
},
{
"authors": [
"Danilo Giampiccolo",
"Bernardo Magnini",
"Ido Dagan",
"Bill Dolan"
],
"doi": "10.3115/1654536.1654538",
"ref_id": "b27",
"title": "The third PASCAL recognizing textual entailment challenge",
"year": "June 2007"
},
{
"authors": [
"D Go",
"T Korbak",
"G Kruszewski",
"J Rozen",
"N Ryu",
"M Dymetman"
],
"doi": "",
"ref_id": "b28",
"title": "Aligning language models with preferences through f-divergence minimization",
"year": "2023"
},
{
"authors": [
"L Hanu"
],
"doi": "",
"ref_id": "b29",
"title": "Detoxify. Github",
"year": "2020"
},
{
"authors": [
"Peter Henderson",
"Koustuv Sinha",
"Nicolas Angelard-Gontier",
"Nan Rosemary Ke",
"Genevieve Fried",
"Ryan Lowe",
"Joelle Pineau"
],
"doi": "10.1145/3278721.3278777",
"ref_id": "b30",
"title": "Ethical Challenges in Data-Driven Dialogue Systems",
"year": "2018"
},
{
"authors": [
"D Hendrycks",
"M Mazeika",
"S Kadavath",
"D Song"
],
"doi": "",
"ref_id": "b31",
"title": "Using self-supervised learning can improve model robustness and uncertainty",
"year": "2019"
},
{
"authors": [
"Dan Hendrycks",
"Xiaoyuan Liu",
"Eric Wallace",
"Adam Dziedzic",
"Rishabh Krishnan",
"Dawn Song"
],
"doi": "10.18653/v1/2020.acl-main.244",
"ref_id": "b32",
"title": "Pretrained Transformers Improve Out-of-Distribution Robustness",
"year": "July 2020"
},
{
"authors": [
"J Hewitt"
],
"doi": "",
"ref_id": "b33",
"title": "Initializing new word embeddings for pretrained language models",
"year": "2021"
},
{
"authors": [
"J Hoffmann",
"S Borgeaud",
"A Mensch",
"E Buchatskaya",
"T Cai",
"E Rutherford",
"D De Las Casas",
"L A Hendricks",
"J Welbl",
"A Clark",
"T Hennigan",
"E Noland",
"K Millican",
"G Van Den Driessche",
"B Damoc",
"A Guy",
"S Osindero",
"K Simonyan",
"E Elsen",
"O Vinyals",
"J W Rae",
"L Sifre"
],
"doi": "",
"ref_id": "b34",
"title": "An empirical analysis of compute-optimal large language model training",
"year": "2022"
},
{
"authors": [
"Ari Holtzman",
"Jan Buys",
"Maxwell Forbes",
"Antoine Bosselut",
"David Golub",
"Yejin Choi"
],
"doi": "10.18653/v1/p18-1152",
"ref_id": "b35",
"title": "Learning to Write with Cooperative Discriminators",
"year": "2020"
},
{
"authors": [
"M Honnibal",
"I Montani",
"S Van Landeghem",
"A Boyd"
],
"doi": "10.5281/zenodo.1212303",
"ref_id": "b36",
"title": "spaCy: Industrial-strength Natural Language Processing in Python",
"year": "2020"
},
{
"authors": [
"Y Jang",
"J Lee",
"K.-E Kim"
],
"doi": "",
"ref_id": "b37",
"title": "GPT-critic: Offline reinforcement learning for end-to-end task-oriented dialogue systems",
"year": "2022"
},
{
"authors": [
"M Janner",
"Q Li",
"S Levine"
],
"doi": "",
"ref_id": "b38",
"title": "Offline reinforcement learning as one big sequence modeling problem",
"year": "2021"
},
{
"authors": [
"Natasha Jaques",
"Judy Hanwen Shen",
"Asma Ghandeharioun",
"Craig Ferguson",
"Agata Lapedriza",
"Noah Jones",
"Shixiang Gu",
"Rosalind Picard"
],
"doi": "10.18653/v1/2020.emnlp-main.327",
"ref_id": "b39",
"title": "Human-centric dialog training via offline reinforcement learning",
"year": "November 2020"
},
{
"authors": [
"N S Keskar",
"B Mccann",
"L R Varshney",
"C Xiong",
"R Socher"
],
"doi": "",
"ref_id": "b40",
"title": "Ctrl: A conditional transformer language model for controllable generation",
"year": "2019"
},
{
"authors": [
"M Khalifa",
"H Elsahar",
"M Dymetman"
],
"doi": "",
"ref_id": "b41",
"title": "A distributional approach to controlled text generation",
"year": "May 3-7, 2021. 2021"
},
{
"authors": [
"T Korbak",
"H Elsahar",
"G Kruszewski",
"M Dymetman"
],
"doi": "",
"ref_id": "b42",
"title": "On reinforcement learning and distribution matching for fine-tuning language models with no catastrophic forgetting",
"year": "2022"
},
{
"authors": [
"Tomasz Korbak",
"Ethan Perez",
"Christopher Buckley"
],
"doi": "10.18653/v1/2022.findings-emnlp.77",
"ref_id": "b43",
"title": "RL with KL penalties is better viewed as Bayesian inference",
"year": "December 2022b"
},
{
"authors": [
"A Kumar",
"X B Peng",
"S Levine"
],
"doi": "",
"ref_id": "b44",
"title": "Reward-conditioned policies",
"year": "2019"
},
{
"authors": [
"A Kumar",
"A Zhou",
"G Tucker",
"S Levine"
],
"doi": "",
"ref_id": "b45",
"title": "Conservative q-learning for offline reinforcement learning",
"year": "2020"
},
{
"authors": [],
"doi": "",
"ref_id": "b46",
"title": "",
"year": ""
},
{
"authors": [
"H J Levesque"
],
"doi": "",
"ref_id": "b47",
"title": "The winograd schema challenge",
"year": "2011"
},
{
"authors": [
"S Levine",
"A Kumar",
"G Tucker",
"J Fu"
],
"doi": "",
"ref_id": "b48",
"title": "Offline reinforcement learning: Tutorial, review, and perspectives on open problems",
"year": "2020"
},
{
"authors": [
"Jiwei Li",
"Michel Galley",
"Chris Brockett",
"Jianfeng Gao",
"Bill Dolan"
],
"doi": "10.18653/v1/n16-1014",
"ref_id": "b49",
"title": "A Diversity-Promoting Objective Function for Neural Conversation Models",
"year": "June 2016"
},
{
"authors": [
"Stephanie Lin",
"Jacob Hilton",
"Owain Evans"
],
"doi": "10.18653/v1/2022.acl-long.229",
"ref_id": "b50",
"title": "TruthfulQA: Measuring How Models Mimic Human Falsehoods",
"year": "May 2022"
},
{
"authors": [
"Y Liu",
"M Ott",
"N Goyal",
"J Du",
"M Joshi",
"D Chen",
"O Levy",
"M Lewis",
"L Zettlemoyer",
"V Stoyanov",
"Roberta"
],
"doi": "",
"ref_id": "b51",
"title": "A robustly optimized bert pretraining approach",
"year": "2019"
},
{
"authors": [
"X Lu",
"S Welleck",
"J Hessel",
"L Jiang",
"L Qin",
"P West",
"P Ammanabrolu",
"Y Choi"
],
"doi": "",
"ref_id": "b52",
"title": "QUARK: Controllable text generation with reinforced unlearning",
"year": "2022"
},
{
"authors": [
"J Menick",
"M Trebacz",
"V Mikulik",
"J Aslanides",
"F Song",
"M Chadwick",
"M Glaese",
"S Young",
"L Campbell-Gillingham",
"G Irving",
"N Mcaleese"
],
"doi": "",
"ref_id": "b53",
"title": "Teaching language models to support answers with verified quotes",
"year": "2022"
},
{
"authors": [
"Tomas Mikolov",
"Geoffrey Zweig"
],
"doi": "10.1109/slt.2012.6424228",
"ref_id": "b54",
"title": "Context dependent recurrent neural network language model",
"year": "2012"
},
{
"authors": [
"A Nair",
"A Gupta",
"M Dalal",
"S Levine",
"Awac"
],
"doi": "",
"ref_id": "b55",
"title": "Accelerating online reinforcement learning with offline datasets",
"year": "2020"
},
{
"authors": [
"L Ouyang",
"J Wu",
"X Jiang",
"D Almeida",
"C Wainwright",
"P Mishkin",
"C Zhang",
"S Agarwal",
"K Slama",
"A Gray",
"J Schulman",
"J Hilton",
"F Kelton",
"L Miller",
"M Simens",
"A Askell",
"P Welinder",
"P Christiano",
"J Leike",
"R Lowe"
],
"doi": "",
"ref_id": "b56",
"title": "Training language models to follow instructions with human feedback",
"year": "2022"
},
{
"authors": [
"Denis Paperno",
"Germán Kruszewski",
"Angeliki Lazaridou",
"Ngoc Quan Pham",
"Raffaella Bernardi",
"Sandro Pezzelle",
"Marco Baroni",
"Gemma Boleda",
"Raquel Fernandez"
],
"doi": "10.18653/v1/p16-1144",
"ref_id": "b57",
"title": "The LAMBADA dataset: Word prediction requiring a broad discourse context",
"year": "August 2016"
},
{
"authors": [
"Nanyun Peng",
"Marjan Ghazvininejad",
"Jonathan May",
"Kevin Knight"
],
"doi": "10.18653/v1/w18-1505",
"ref_id": "b58",
"title": "Towards Controllable Story Generation",
"year": "June 2018"
},
{
"authors": [
"X B Peng",
"A Kumar",
"G Zhang",
"S Levine"
],
"doi": "",
"ref_id": "b59",
"title": "Advantage-weighted regression: Simple and scalable off-policy reinforcement learning",
"year": "2019"
},
{
"authors": [
"Ethan Perez",
"Saffron Huang",
"Francis Song",
"Trevor Cai",
"Roman Ring",
"John Aslanides",
"Amelia Glaese",
"Nat Mcaleese",
"Geoffrey Irving"
],
"doi": "10.18653/v1/2022.emnlp-main.225",
"ref_id": "b60",
"title": "Red Teaming Language Models with Language Models",
"year": "2022"
},
{
"authors": [
"Jan Peters",
"Stefan Schaal"
],
"doi": "10.1145/1273496.1273590",
"ref_id": "b61",
"title": "Reinforcement learning by reward-weighted regression for operational space control",
"year": "2007"
},
{
"authors": [
"A Radford",
"K Narasimhan"
],
"doi": "",
"ref_id": "b62",
"title": "Improving language understanding by generative pre-training",
"year": "2018"
},
{
"authors": [
"A Radford",
"J Wu",
"R Child",
"D Luan",
"D Amodei",
"I Sutskever"
],
"doi": "",
"ref_id": "b63",
"title": "Language models are unsupervised multitask learners",
"year": "2019"
},
{
"authors": [
"P Rajpurkar",
"J Zhang",
"K Lopyrev",
"P Liang"
],
"doi": "10.18653/v1/D16-1264",
"ref_id": "b64",
"title": "SQuAD: 100,000+ questions for machine comprehension of text",
"year": "November 2016"
},
{
"authors": [
"V V Ramasesh",
"A Lewkowycz",
"E Dyer"
],
"doi": "",
"ref_id": "b65",
"title": "Effect of scale on catastrophic forgetting in neural networks",
"year": "2022"
},
{
"authors": [
"V Sanh",
"A Webson",
"C Raffel",
"S Bach",
"L Sutawika",
"Z Alyafeai",
"A Chaffin",
"A Stiegler",
"A Raja",
"M Dey",
"M S Bari",
"C Xu",
"U Thakker",
"S S Sharma",
"E Szczechla",
"T Kim",
"G Chhablani",
"N Nayak",
"D Datta",
"J Chang",
"M T Jiang",
"-J Wang",
"H Manica",
"M Shen",
"S Yong",
"Z X Pandey",
"H Bawden",
"R Wang",
"T Neeraj",
"T Rozen",
"J Sharma",
"A Santilli",
"A Fevry",
"T Fries",
"J A Teehan",
"R Scao",
"T L Biderman",
"S Gao",
"L Wolf",
"T Rush",
"A M"
],
"doi": "",
"ref_id": "b66",
"title": "Multitask prompted training enables zero-shot task generalization",
"year": "2022"
},
{
"authors": [
"M Sap",
"D Card",
"S Gabriel",
"Y Choi",
"N A Smith"
],
"doi": "10.18653/v1/P19-1163",
"ref_id": "b67",
"title": "The risk of racial bias in hate speech detection",
"year": "July 2019"
},
{
"authors": [
"J Scheurer",
"J A Campos",
"J S Chan",
"A Chen",
"K Cho",
"E Perez"
],
"doi": "",
"ref_id": "b68",
"title": "Training language models with language feedback",
"year": "2022"
},
{
"authors": [
"J Scheurer",
"J A Campos",
"T Korbak",
"J S Chan",
"A Chen",
"K Cho",
"E Perez"
],
"doi": "",
"ref_id": "b69",
"title": "Training language models with language feedback at scale",
"year": "2023"
},
{
"authors": [
"J Schmidhuber"
],
"doi": "",
"ref_id": "b70",
"title": "Reinforcement learning upside down: Don't predict rewards -just map them to actions",
"year": "2019"
},
{
"authors": [
"Charlie Snell",
"Sherry Yang",
"Justin Fu",
"Yi Su",
"Sergey Levine"
],
"doi": "10.18653/v1/2022.findings-naacl.181",
"ref_id": "b71",
"title": "Context-Aware Language Modeling for Goal-Oriented Dialogue Systems",
"year": "2022"
},
{
"authors": [
"R Socher",
"A Perelygin",
"J Wu",
"J Chuang",
"C D Manning",
"A Ng",
"C Potts"
],
"doi": "",
"ref_id": "b72",
"title": "Recursive deep models for semantic compositionality over a sentiment treebank",
"year": "October 2013"
},
{
"authors": [
"I Solaiman",
"C Dennison"
],
"doi": "",
"ref_id": "b73",
"title": "Process for adapting language models to society (PALMS) with values-targeted datasets",
"year": ""
},
{
"authors": [
"Atish Agarwala",
"Yann Dauphin",
"Hossein Mobahi"
],
"doi": "10.52202/079017-4193",
"ref_id": "b74",
"title": "Neglected Hessian component explains mysteries in sharpness regularization",
"year": "2021"
},
{
"authors": [
"R Tang",
"Y Lu",
"L Liu",
"L Mou",
"O Vechtomova",
"J J Lin"
],
"doi": "",
"ref_id": "b75",
"title": "Distilling task-specific knowledge from bert into simple neural networks",
"year": "2019"
},
{
"authors": [
"Y Tay",
"J Wei",
"H W Chung",
"V Q Tran",
"D R So",
"S Shakeri",
"X Garcia",
"H S Zheng",
"J Rao",
"A Chowdhery",
"D Zhou",
"D Metzler",
"S Petrov",
"N Houlsby",
"Q V Le",
"M Dehghani"
],
"doi": "",
"ref_id": "b76",
"title": "Transcending scaling laws with 0",
"year": ""
},
{
"authors": [
"L Tunstall",
"L Von Werra",
"T Wolf"
],
"doi": "10.1017/9781009026222.014",
"ref_id": "b77",
"title": "Using Transformers with the Hugging Face Library",
"year": "2022"
},
{
"authors": [
"Guido Van Rossum",
"Barry Warsaw"
],
"doi": "10.1007/978-1-4302-2758-8_12",
"ref_id": "b78",
"title": "Style Guide for Python",
"year": "2001"
},
{
"authors": [
"P Villalobos",
"J Sevilla",
"L Heim",
"T Besiroglu",
"M Hobbhahn",
"A Ho"
],
"doi": "",
"ref_id": "b79",
"title": "Will we run out of data? an analysis of the limits of scaling datasets in machine learning",
"year": "2022"
},
{
"authors": [
"Tu Vu",
"Aditya Barua",
"Brian Lester",
"Daniel Cer",
"Mohit Iyyer",
"Noah Constant"
],
"doi": "10.18653/v1/2022.emnlp-main.630",
"ref_id": "b80",
"title": "Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation",
"year": "December 2022"
},
{
"authors": [
"Alex Wang",
"Amanpreet Singh",
"Julian Michael",
"Felix Hill",
"Omer Levy",
"Samuel Bowman"
],
"doi": "10.18653/v1/w18-5446",
"ref_id": "b81",
"title": "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding",
"year": "November 2018"
},
{
"authors": [
"B Wang",
"W Ping",
"C Xiao",
"P Xu",
"M Patwary",
"M Shoeybi",
"B Li",
"A Anandkumar",
"B Catanzaro"
],
"doi": "",
"ref_id": "b82",
"title": "Exploring the limits of domain-adaptive training for detoxifying large-scale language models",
"year": "2022"
},
{
"authors": [
"Alex Warstadt",
"Amanpreet Singh",
"Samuel R Bowman"
],
"doi": "10.1162/tacl_a_00290",
"ref_id": "b83",
"title": "Neural Network Acceptability Judgments",
"year": "2018"
},
{
"authors": [
"Johannes Welbl",
"Amelia Glaese",
"Jonathan Uesato",
"Sumanth Dathathri",
"John Mellor",
"Lisa Anne Hendricks",
"Kirsty Anderson",
"Pushmeet Kohli",
"Ben Coppin",
"Po-Sen Huang"
],
"doi": "10.18653/v1/2021.findings-emnlp.210",
"ref_id": "b84",
"title": "Challenges in Detoxifying Language Models",
"year": "November 2021"
},
{
"authors": [
"S Welleck",
"I Kulikov",
"S Roller",
"E Dinan",
"K Cho",
"J Weston"
],
"doi": "",
"ref_id": "b85",
"title": "Neural text generation with unlikelihood training",
"year": "2020"
},
{
"authors": [
"Adina Williams",
"Nikita Nangia",
"Samuel Bowman"
],
"doi": "10.18653/v1/n18-1101",
"ref_id": "b86",
"title": "A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference",
"year": "June 2018"
},
{
"authors": [
"Thomas Wolf",
"Lysandre Debut",
"Victor Sanh",
"Julien Chaumond",
"Clement Delangue",
"Anthony Moi",
"Pierric Cistac",
"Tim Rault",
"Remi Louf",
"Morgan Funtowicz",
"Joe Davison",
"Sam Shleifer",
"Patrick Von Platen",
"Clara Ma",
"Yacine Jernite",
"Julien Plu",
"Canwen Xu",
"Teven Le Scao",
"Sylvain Gugger",
"Mariama Drame",
"Quentin Lhoest",
"Alexander Rush"
],
"doi": "10.18653/v1/2020.emnlp-demos.6",
"ref_id": "b87",
"title": "Transformers: State-of-the-Art Natural Language Processing",
"year": "October 2020"
},
{
"authors": [
"Albert Xu",
"Eshaan Pathak",
"Eric Wallace",
"Suchin Gururangan",
"Maarten Sap",
"Dan Klein"
],
"doi": "10.18653/v1/2021.naacl-main.190",
"ref_id": "b88",
"title": "Detoxifying Language Models Risks Marginalizing Minority Voices",
"year": "June 2021"
},
{
"authors": [
"J Xu",
"D Ju",
"M Li",
"Y.-L Boureau",
"J Weston",
"E Dinan"
],
"doi": "",
"ref_id": "b89",
"title": "Recipes for safety in open-domain chatbots",
"year": "2020"
},
{
"authors": [
"Yaoming Zhu",
"Sidi Lu",
"Lei Zheng",
"Jiaxian Guo",
"Weinan Zhang",
"Jun Wang",
"Yong Yu"
],
"doi": "10.1145/3209978.3210080",
"ref_id": "b90",
"title": "Texygen",
"year": "2018"
},
{
"authors": [
"D Ziegler",
"S Nix",
"L Chan",
"T Bauman",
"P Schmidt-Nielsen",
"T Lin",
"A Scherlis",
"N Nabeshima",
"B Weinstein-Raun",
"D De Haas",
"B Shlegeris",
"N Thomas"
],
"doi": "",
"ref_id": "b91",
"title": "Adversarial training for high-stakes reliability",
"year": "2022"
},
{
"authors": [
"D M Ziegler",
"N Stiennon",
"J Wu",
"T B Brown",
"A Radford",
"D Amodei",
"P Christiano",
"G Irving"
],
"doi": "",
"ref_id": "b92",
"title": "Fine-tuning language models from human preferences",
"year": "2019"
}
] |
[
"aa59d24153f84e3b",
"2549457be74fccd6",
"7cba1e157ade6f0d",
"67f627f090ff9bd4",
"ae9712da32103179",
"e23816731c83f5fb",
"8d0a3b1c2ecc13b1",
"e8142325d4b65a9d",
"36b50d91f8fe37cb",
"9bb68bd4d11243e9",
"804d307068aed9b9",
"b9fd45dadd208c59",
"8935f84b49d00204",
"336c5be2ab883875",
"fd511e2068e49bc3",
"581380e19a7409ae",
"041a8d1b21ae99af"
] |
[
"1c302c77673252e3",
"b3e186193cc7f660",
"24f72b80773e47f4",
"577a1aaf62e27a13",
"e4cc93cdc706fb5f",
"aef00f6948dd03c7",
"5c9618da164f24e9",
"51ad6b41d45a1eb0",
"b3f26fc328d5f635",
"6d5dbf6b4fe0df3b",
"a6a8bdbb87fe2197",
"a52cd0a21c59c690",
"aa59d24153f84e3b",
"a4228e207437492e",
"94fb8b430948c350",
"3f90bbfa88119c03",
"7cba1e157ade6f0d",
"4feac229e94e58cc",
"ac7197399ab13051",
"82e6ab173b8da99a",
"e4723ee037bc0cdb",
"a8b6e08e2b41b879",
"8d0a3b1c2ecc13b1",
"d0eb38b7d39078a1",
"68eb1c6aa57f122a",
"f752f72a467398aa",
"5d34b2d9ceff502b",
"90785a0ebcaf4466",
"336c5be2ab883875",
"f20f57729ffb7387",
"42f4f24589fc6109",
"20d861729c1ac5c5",
"d30989a65d8638bb",
"8cb2f0b4bc263298",
"9bfe94839cee86d9",
"e006592f096a4bdd",
"7594d310e6d2c5db",
"36b50d91f8fe37cb",
"804d307068aed9b9",
"67f627f090ff9bd4",
"081f28607b113084",
"fd511e2068e49bc3",
"ce679e12bb2b75bd",
"51de218d66e5475f",
"581380e19a7409ae",
"e8142325d4b65a9d",
"34bd729596bd134e",
"bcf5bce5e7bd343c",
"e23816731c83f5fb",
"52886d7a756f78b8",
"09566fcd6eeb0abb",
"01c6be98904efd23",
"d34108e41f299766",
"9bae63150dc43686",
"7767c4f2e82087db",
"9bb68bd4d11243e9",
"bdc8b5b12ceb73a3",
"304a1f4ee1a5f72e",
"9deed35f9bcb1037",
"8deafb8ba40597a2",
"a2c62b51b67da37c",
"e2a62ccc13932aaa",
"1437cf73a45e57f9",
"c8beab030d8be9cb",
"17b53e451666a9de",
"718c2e3cfb225f92",
"8935f84b49d00204",
"d42862fa74967a53",
"2549457be74fccd6",
"c09bf494663da48d",
"041a8d1b21ae99af",
"ae9712da32103179",
"bd93c93457d3ff40",
"58ca200da4497f3f",
"b1f36c0c132d3e62",
"d4871c1c1fdfb02e",
"be9607f0b27cf374",
"707cb0dd386ebfde",
"27fb5675dc5294f4",
"87a039ee812a830d",
"0a6ab012b071654d",
"ec0a8476d72556c2",
"b1cb0261a4fa396e",
"c6d4d7db20f1dc01",
"ad6c699fcd08465c",
"c1ae10640ed2ab70",
"910a68dcf9f13606",
"c305a335b6a87996",
"e4a7a1e3567da35c",
"23dd9a5bbe10b820",
"4e257435dffbbe37",
"ee1277048ee3909e",
"b9fd45dadd208c59"
] |
2C8Y6iao2I
|
Cross-Modal Fine-Tuning: Align then Refine
|
data/openreview_paper/ICML_2023_oral/2C8Y6iao2I//paper.pdf
| 76
| 25
|
[
{
"authors": [
"W Kim",
"B Son",
"I Kim"
],
"doi": "",
"ref_id": "b35",
"title": "Vilt: Vision-and-language transformer without convolution or region supervision",
"year": "2021"
},
{
"authors": [
"Y Yao",
"Y Zhang",
"X Li",
"Y Ye"
],
"doi": "",
"ref_id": "b71",
"title": "Heterogeneous domain adaptation via soft transfer network",
"year": "2019"
},
{
"authors": [
"D Kiela",
"S Bhooshan",
"H Firooz",
"D Testuggine"
],
"doi": "",
"ref_id": "b34",
"title": "Supervised multimodal bitransformers for classifying images and text",
"year": "2019"
},
{
"authors": [
"M Ahn",
"A Brohan",
"N Brown",
"Y Chebotar",
"O Cortes",
"B David",
"C Finn",
"K Gopalakrishnan",
"K Hausman",
"A Herzog",
"D Ho",
"J Hsu",
"J Ibarz",
"B Ichter",
"A Irpan",
"E Jang",
"R J Ruano",
"K Jeffrey",
"S Jesmonth",
"N J Joshi",
"R C Julian",
"D Kalashnikov",
"Y Kuang",
"K.-H Lee",
"S Levine",
"Y Lu",
"L Luu",
"C Parada",
"P Pastor",
"J Quiambao",
"K Rao",
"J Rettinghouse",
"D M Reyes",
"P Sermanet",
"N Sievers",
"C Tan",
"A Toshev",
"V Vanhoucke",
"F Xia",
"T Xiao",
"P Xu",
"S Xu",
"M Yan"
],
"doi": "",
"ref_id": "b2",
"title": "Do as i can, not as i say: Grounding language in robotic affordances",
"year": "2022"
},
{
"authors": [
"S Reed",
"K Zolna",
"E Parisotto",
"S G Colmenarejo",
"A Novikov",
"G Barth-Maron",
"M Gimenez",
"Y Sulsky",
"J Kay",
"J T Springenberg",
"T Eccles",
"J Bruce",
"A Razavi",
"A D Edwards",
"N M O Heess",
"Y Chen",
"R Hadsell",
"O Vinyals",
"M Bordbar",
"N Freitas"
],
"doi": "",
"ref_id": "b58",
"title": "A generalist agent",
"year": "2023"
},
{
"authors": [
"Sinno Jialin Pan",
"Qiang Yang"
],
"doi": "10.1109/tkde.2009.191",
"ref_id": "b51",
"title": "A Survey on Transfer Learning",
"year": "2009"
},
{
"authors": [
"J.-B Alayrac",
"J Donahue",
"P Luc",
"A Miech",
"I Barr",
"Y Hasson",
"K Lenc",
"A Mensch",
"K Millican",
"M Reynolds",
"R Ring",
"E Rutherford",
"S Cabi",
"T Han",
"Z Gong",
"S Samangooei",
"M Monteiro",
"J Menick",
"S Borgeaud",
"A Brock",
"A Nematzadeh",
"S Sharifzadeh",
"M Binkowski",
"R Barreira",
"O Vinyals",
"A Zisserman",
"K Simonyan"
],
"doi": "",
"ref_id": "b3",
"title": "Flamingo: a visual language model for few-shot learning",
"year": "2022"
},
{
"authors": [
"K Lu",
"A Grover",
"P Abbeel",
"I Mordatch"
],
"doi": "",
"ref_id": "b49",
"title": "Frozen pretrained transformers as universal computation engines",
"year": "Jun. 2022"
},
{
"authors": [
"A Aghajanyan",
"A Shrivastava",
"A Gupta",
"N Goyal",
"L Zettlemoyer",
"S Gupta"
],
"doi": "",
"ref_id": "b1",
"title": "Better fine-tuning by reducing representational collapse",
"year": "2021"
},
{
"authors": [
"Tuan Dinh",
"Jy-Yong Sohn",
"Shashank Rajput",
"Timothy Ossowski",
"Yifei Ming",
"Junjie Hu",
"Dimitris Papailiopoulos",
"Kangwook Lee"
],
"doi": "10.18653/v1/2022.findings-emnlp.12",
"ref_id": "b14",
"title": "Utilizing Language-Image Pretraining for Efficient and Robust Bilingual Word Alignment",
"year": "2022"
},
{
"authors": [
"M Reid",
"Y Yamada",
"S S Gu"
],
"doi": "",
"ref_id": "b59",
"title": "Can wikipedia help offline reinforcement learning?",
"year": "2022"
},
{
"authors": [
"Ria Vinod",
"Pin-Yu Chen",
"Payel Das"
],
"doi": "10.1039/d4dd00195h",
"ref_id": "b67",
"title": "Reprogramming pretrained language models for protein sequence representation learning",
"year": "2023"
},
{
"authors": [
"R Hu",
"A Singh"
],
"doi": "",
"ref_id": "b24",
"title": "Unit: Multimodal multitask learning with a unified transformer",
"year": "2021. 2021"
},
{
"authors": [
"N C Roberts",
"M Khodak",
"T Dao",
"L Li",
"C Re",
"A Talwalkar"
],
"doi": "",
"ref_id": "b60",
"title": "Rethinking neural operations for diverse tasks",
"year": "2021"
},
{
"authors": [
"J He",
"C Zhou",
"X Ma",
"T Berg-Kirkpatrick",
"G Neubig"
],
"doi": "",
"ref_id": "b21",
"title": "Towards a unified view of parameter-efficient transfer learning",
"year": "2022"
},
{
"authors": [
"A Jaegle",
"F Gimeno",
"A Brock",
"A Zisserman",
"O Vinyals",
"J Carreira"
],
"doi": "",
"ref_id": "b26",
"title": "Perceiver: General perception with iterative attention",
"year": "2021"
},
{
"authors": [
"E Real",
"C Liang",
"D R So",
"Q V Le"
],
"doi": "",
"ref_id": "b57",
"title": "Automl-zero: Evolving machine learning algorithms from scratch",
"year": "2020"
},
{
"authors": [
"Yixuan Wei",
"Han Hu",
"Zhenda Xie",
"Ze Liu",
"Zheng Zhang",
"Yue Cao",
"Jianmin Bao",
"Dong Chen",
"Baining Guo"
],
"doi": "10.1109/iccv51070.2023.00501",
"ref_id": "b69",
"title": "Improving CLIP Fine-tuning Performance",
"year": "2022"
},
{
"authors": [
"Sanyuan Chen",
"Chengyi Wang",
"Zhengyang Chen",
"Yu Wu",
"Shujie Liu",
"Zhuo Chen",
"Jinyu Li",
"Naoyuki Kanda",
"Takuya Yoshioka",
"Xiong Xiao",
"Jian Wu",
"Long Zhou",
"Shuo Ren",
"Yanmin Qian",
"Yao Qian",
"Jian Wu",
"Michael Zeng",
"Xiangzhan Yu",
"Furu Wei"
],
"doi": "10.1109/jstsp.2022.3188113",
"ref_id": "b8",
"title": "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing",
"year": "2022"
},
{
"authors": [
"Dongwei Jiang",
"Wubo Li",
"Ruixiong Zhang",
"Miao Cao",
"Ne Luo",
"Yang Han",
"Wei Zou",
"Kun Han",
"Xiangang Li"
],
"doi": "10.1109/icassp39728.2021.9414539",
"ref_id": "b29",
"title": "A Further Study of Unsupervised Pretraining for Transformer Based Speech Recognition",
"year": "2021"
},
{
"authors": [
"J Shen",
"M Khodak",
"A Talwalkar"
],
"doi": "",
"ref_id": "b63",
"title": "Efficient architecture search for diverse tasks",
"year": "2022"
},
{
"authors": [
"A Radford",
"J W Kim",
"C Hallacy",
"A Ramesh",
"G Goh",
"S Agarwal",
"G Sastry",
"A Askell",
"P Mishkin",
"J Clark",
"G Krueger",
"I Sutskever"
],
"doi": "",
"ref_id": "b55",
"title": "Learning transferable visual models from natural language supervision",
"year": "2021"
},
{
"authors": [
"H Jiang",
"P He",
"W Chen",
"X Liu",
"J Gao",
"T Zhao"
],
"doi": "",
"ref_id": "b30",
"title": "Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled regularized optimization",
"year": "2020"
},
{
"authors": [
"John Jumper",
"Richard Evans",
"Alexander Pritzel",
"Tim Green",
"Michael Figurnov",
"Olaf Ronneberger",
"Kathryn Tunyasuvunakool",
"Russ Bates",
"Augustin Žídek",
"Anna Potapenko",
"Alex Bridgland",
"Clemens Meyer",
"Simon A A Kohl",
"Andrew J Ballard",
"Andrew Cowie",
"Bernardino Romera-Paredes",
"Stanislav Nikolov",
"Rishub Jain",
"Jonas Adler",
"Trevor Back",
"Stig Petersen",
"David Reiman",
"Ellen Clancy",
"Michal Zielinski",
"Martin Steinegger",
"Michalina Pacholska",
"Tamas Berghammer",
"Sebastian Bodenstein",
"David Silver",
"Oriol Vinyals",
"Andrew W Senior",
"Koray Kavukcuoglu",
"Pushmeet Kohli",
"Demis Hassabis"
],
"doi": "10.1038/s41586-021-03819-2",
"ref_id": "b32",
"title": "Highly accurate protein structure prediction with AlphaFold",
"year": "2021"
},
{
"authors": [
"Mei Wang",
"Weihong Deng"
],
"doi": "10.1016/j.neucom.2018.05.083",
"ref_id": "b68",
"title": "Deep visual domain adaptation: A survey",
"year": "2018"
}
] |
[
{
"authors": [
"B Adhikari"
],
"doi": "",
"ref_id": "b0",
"title": "DEEPCON: protein contact prediction using dilated convolutional neural networks with dropout",
"year": "07 2019"
},
{
"authors": [
"A Aghajanyan",
"A Shrivastava",
"A Gupta",
"N Goyal",
"L Zettlemoyer",
"S Gupta"
],
"doi": "",
"ref_id": "b1",
"title": "Better fine-tuning by reducing representational collapse",
"year": "2021"
},
{
"authors": [
"M Ahn",
"A Brohan",
"N Brown",
"Y Chebotar",
"O Cortes",
"B David",
"C Finn",
"K Gopalakrishnan",
"K Hausman",
"A Herzog",
"D Ho",
"J Hsu",
"J Ibarz",
"B Ichter",
"A Irpan",
"E Jang",
"R J Ruano",
"K Jeffrey",
"S Jesmonth",
"N J Joshi",
"R C Julian",
"D Kalashnikov",
"Y Kuang",
"K.-H Lee",
"S Levine",
"Y Lu",
"L Luu",
"C Parada",
"P Pastor",
"J Quiambao",
"K Rao",
"J Rettinghouse",
"D M Reyes",
"P Sermanet",
"N Sievers",
"C Tan",
"A Toshev",
"V Vanhoucke",
"F Xia",
"T Xiao",
"P Xu",
"S Xu",
"M Yan"
],
"doi": "",
"ref_id": "b2",
"title": "Do as i can, not as i say: Grounding language in robotic affordances",
"year": "2022"
},
{
"authors": [
"J.-B Alayrac",
"J Donahue",
"P Luc",
"A Miech",
"I Barr",
"Y Hasson",
"K Lenc",
"A Mensch",
"K Millican",
"M Reynolds",
"R Ring",
"E Rutherford",
"S Cabi",
"T Han",
"Z Gong",
"S Samangooei",
"M Monteiro",
"J Menick",
"S Borgeaud",
"A Brock",
"A Nematzadeh",
"S Sharifzadeh",
"M Binkowski",
"R Barreira",
"O Vinyals",
"A Zisserman",
"K Simonyan"
],
"doi": "",
"ref_id": "b3",
"title": "Flamingo: a visual language model for few-shot learning",
"year": "2022"
},
{
"authors": [
"D Alvarez-Melis",
"N Fusi"
],
"doi": "",
"ref_id": "b4",
"title": "Geometric dataset distances via optimal transport",
"year": "2020"
},
{
"authors": [
"A Baevski",
"H Zhou",
"A Rahman Mohamed",
"M Auli"
],
"doi": "",
"ref_id": "b5",
"title": "wav2vec 2.0: A framework for self-supervised learning of speech representations",
"year": "2020"
},
{
"authors": [
"H Bahng",
"A Jahanian",
"S Sankaranarayanan",
"P Isola"
],
"doi": "",
"ref_id": "b6",
"title": "Exploring visual prompts for adapting large-scale models",
"year": "2022"
},
{
"authors": [
"Nicolas Carion",
"Francisco Massa",
"Gabriel Synnaeve",
"Nicolas Usunier",
"Alexander Kirillov",
"Sergey Zagoruyko"
],
"doi": "10.1007/978-3-030-58452-8_13",
"ref_id": "b7",
"title": "End-to-End Object Detection with Transformers",
"year": "2020"
},
{
"authors": [
"Sanyuan Chen",
"Chengyi Wang",
"Zhengyang Chen",
"Yu Wu",
"Shujie Liu",
"Zhuo Chen",
"Jinyu Li",
"Naoyuki Kanda",
"Takuya Yoshioka",
"Xiong Xiao",
"Jian Wu",
"Long Zhou",
"Shuo Ren",
"Yanmin Qian",
"Yao Qian",
"Jian Wu",
"Michael Zeng",
"Xiangzhan Yu",
"Furu Wei"
],
"doi": "10.1109/jstsp.2022.3188113",
"ref_id": "b8",
"title": "WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing",
"year": "2022"
},
{
"authors": [
"Tianqi Chen",
"Carlos Guestrin"
],
"doi": "10.1145/2939672.2939785",
"ref_id": "b9",
"title": "XGBoost",
"year": "2016"
},
{
"authors": [
"T Cohen",
"M Geiger",
"J Köhler",
"M Welling"
],
"doi": "",
"ref_id": "b10",
"title": "Spherical cnns",
"year": "2018"
},
{
"authors": [
"Marco Cuturi",
"Parnian Kassraie",
"Michal Klein",
"Jonathan Niles-Weed",
"Aram-Alexandre Pooladian",
"James Thornton"
],
"doi": "10.52202/079017-0618",
"ref_id": "b11",
"title": "Progressive Entropic Optimal Transport Solvers",
"year": "2013"
},
{
"authors": [
"A Dempster",
"F Petitjean",
"G I Webb"
],
"doi": "",
"ref_id": "b12",
"title": "Rocket: exceptionally fast and accurate time series classification using random convolutional kernels",
"year": "2020"
},
{
"authors": [
"J Devlin",
"M.-W Chang",
"K Lee",
"K Toutanova",
"Bert"
],
"doi": "",
"ref_id": "b13",
"title": "Pre-training of deep bidirectional transformers for language understanding",
"year": "2019"
},
{
"authors": [
"Tuan Dinh",
"Jy-Yong Sohn",
"Shashank Rajput",
"Timothy Ossowski",
"Yifei Ming",
"Junjie Hu",
"Dimitris Papailiopoulos",
"Kangwook Lee"
],
"doi": "10.18653/v1/2022.findings-emnlp.12",
"ref_id": "b14",
"title": "Utilizing Language-Image Pretraining for Efficient and Robust Bilingual Word Alignment",
"year": "2022"
},
{
"authors": [
"Elizabeth D Dolan",
"Jorge J Moré"
],
"doi": "10.1007/s101070100263",
"ref_id": "b15",
"title": "Benchmarking optimization software with performance profiles",
"year": "2002"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly",
"J Uszkoreit",
"N Houlsby"
],
"doi": "",
"ref_id": "b16",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2021"
},
{
"authors": [
"Nick Erickson",
"Xingjian Shi",
"James Sharpnack",
"Alexander Smola"
],
"doi": "10.1145/3534678.3542616",
"ref_id": "b17",
"title": "Multimodal AutoML for Image, Text and Tabular Data",
"year": "2020"
},
{
"authors": [
"Jiemin Fang",
"Yuzhu Sun",
"Qian Zhang",
"Yuan Li",
"Wenyu Liu",
"Xinggang Wang"
],
"doi": "10.1109/cvpr42600.2020.01064",
"ref_id": "b18",
"title": "Densely Connected Search Space for More Flexible Neural Architecture Search",
"year": "2020. 2020"
},
{
"authors": [
"Eduardo Fonseca",
"Xavier Favory",
"Jordi Pons",
"Frederic Font",
"Xavier Serra"
],
"doi": "10.1109/taslp.2021.3133208",
"ref_id": "b19",
"title": "FSD50K: An Open Dataset of Human-Labeled Sound Events",
"year": "2021"
},
{
"authors": [
"Arthur Gretton",
"Karsten M Borgwardt",
"Malte Rasch",
"Bernhard Schölkopf",
"Alexander J Smola"
],
"doi": "10.7551/mitpress/7503.003.0069",
"ref_id": "b20",
"title": "A Kernel Method for the Two-Sample-Problem",
"year": "2012"
},
{
"authors": [
"J He",
"C Zhou",
"X Ma",
"T Berg-Kirkpatrick",
"G Neubig"
],
"doi": "",
"ref_id": "b21",
"title": "Towards a unified view of parameter-efficient transfer learning",
"year": "2022"
},
{
"authors": [
"N Hollmann",
"S Muller",
"K Eggensperger",
"F Hutter"
],
"doi": "",
"ref_id": "b22",
"title": "Tabpfn: A transformer that solves small tabular classification problems in a second",
"year": "2022"
},
{
"authors": [
"S Hong",
"Y Xu",
"A Khare",
"S Priambada",
"K O Maher",
"A Aljiffry",
"J Sun",
"A Tumanov",
"Holmes"
],
"doi": "",
"ref_id": "b23",
"title": "Health online model ensemble serving for deep learning models in intensive care units",
"year": "2020"
},
{
"authors": [
"R Hu",
"A Singh"
],
"doi": "",
"ref_id": "b24",
"title": "Unit: Multimodal multitask learning with a unified transformer",
"year": "2021. 2021"
},
{
"authors": [
"Gao Huang",
"Zhuang Liu",
"Laurens Van Der Maaten",
"Kilian Q Weinberger"
],
"doi": "10.1109/cvpr.2017.243",
"ref_id": "b25",
"title": "Densely Connected Convolutional Networks",
"year": "2017. 2017"
},
{
"authors": [
"A Jaegle",
"F Gimeno",
"A Brock",
"A Zisserman",
"O Vinyals",
"J Carreira"
],
"doi": "",
"ref_id": "b26",
"title": "Perceiver: General perception with iterative attention",
"year": "2021"
},
{
"authors": [
"A Jaegle",
"S Borgeaud",
"J.-B Alayrac",
"C Doersch",
"C Ionescu",
"D Ding",
"S Koppula",
"D Zoran",
"A Brock",
"E Shelhamer",
"O J Henaff",
"M Botvinick",
"A Zisserman",
"O Vinyals",
"J Carreira"
],
"doi": "",
"ref_id": "b27",
"title": "Perceiver IO: A general architecture for structured inputs & outputs",
"year": "2022"
},
{
"authors": [
"Menglin Jia",
"Luming Tang",
"Bor-Chun Chen",
"Claire Cardie",
"Serge Belongie",
"Bharath Hariharan",
"Ser-Nam Lim"
],
"doi": "10.1007/978-3-031-19827-4_41",
"ref_id": "b28",
"title": "Visual Prompt Tuning",
"year": "2022"
},
{
"authors": [
"Dongwei Jiang",
"Wubo Li",
"Ruixiong Zhang",
"Miao Cao",
"Ne Luo",
"Yang Han",
"Wei Zou",
"Kun Han",
"Xiangang Li"
],
"doi": "10.1109/icassp39728.2021.9414539",
"ref_id": "b29",
"title": "A Further Study of Unsupervised Pretraining for Transformer Based Speech Recognition",
"year": "2021"
},
{
"authors": [
"H Jiang",
"P He",
"W Chen",
"X Liu",
"J Gao",
"T Zhao"
],
"doi": "",
"ref_id": "b30",
"title": "Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled regularized optimization",
"year": "2020"
},
{
"authors": [
"D Josephs",
"C Drake",
"A M Heroy",
"J Santerre"
],
"doi": "",
"ref_id": "b31",
"title": "semg gesture recognition with a simple model of attention",
"year": "2020"
},
{
"authors": [
"John Jumper",
"Richard Evans",
"Alexander Pritzel",
"Tim Green",
"Michael Figurnov",
"Olaf Ronneberger",
"Kathryn Tunyasuvunakool",
"Russ Bates",
"Augustin Žídek",
"Anna Potapenko",
"Alex Bridgland",
"Clemens Meyer",
"Simon A A Kohl",
"Andrew J Ballard",
"Andrew Cowie",
"Bernardino Romera-Paredes",
"Stanislav Nikolov",
"Rishub Jain",
"Jonas Adler",
"Trevor Back",
"Stig Petersen",
"David Reiman",
"Ellen Clancy",
"Michal Zielinski",
"Martin Steinegger",
"Michalina Pacholska",
"Tamas Berghammer",
"Sebastian Bodenstein",
"David Silver",
"Oriol Vinyals",
"Andrew W Senior",
"Koray Kavukcuoglu",
"Pushmeet Kohli",
"Demis Hassabis"
],
"doi": "10.1038/s41586-021-03819-2",
"ref_id": "b32",
"title": "Highly accurate protein structure prediction with AlphaFold",
"year": "2021"
},
{
"authors": [
"G Ke",
"Q Meng",
"T Finley",
"T Wang",
"W Chen",
"W Ma",
"Q Ye",
"T.-Y Liu"
],
"doi": "",
"ref_id": "b33",
"title": "Lightgbm: A highly efficient gradient boosting decision tree",
"year": "2017"
},
{
"authors": [
"D Kiela",
"S Bhooshan",
"H Firooz",
"D Testuggine"
],
"doi": "",
"ref_id": "b34",
"title": "Supervised multimodal bitransformers for classifying images and text",
"year": "2019"
},
{
"authors": [
"W Kim",
"B Son",
"I Kim"
],
"doi": "",
"ref_id": "b35",
"title": "Vilt: Vision-and-language transformer without convolution or region supervision",
"year": "2021"
},
{
"authors": [
"A Kumar",
"A Raghunathan",
"R Jones",
"T Ma",
"P Liang"
],
"doi": "",
"ref_id": "b36",
"title": "Fine-tuning can distort pretrained features and underperform out-of-distribution",
"year": "2022"
},
{
"authors": [
"Y Lee",
"A S Chen",
"F Tajwar",
"A Kumar",
"H Yao",
"P Liang",
"C Finn"
],
"doi": "",
"ref_id": "b37",
"title": "Surgical fine-tuning improves adaptation to distribution shifts",
"year": "2022"
},
{
"authors": [
"F Li",
"H Zhang",
"H.-S Xu",
"S Liu",
"L Zhang",
"L M Ni",
"H Shum"
],
"doi": "",
"ref_id": "b38",
"title": "Mask dino: Towards a unified transformer-based framework for object detection and segmentation",
"year": "2022"
},
{
"authors": [
"L Li",
"K Jamieson",
"A Rostamizadeh",
"E Gonina",
"J Ben-Tzur",
"M Hardt",
"B Recht",
"A Talwalkar"
],
"doi": "10.7717/peerj-cs.2590/table-5",
"ref_id": "b39",
"title": "Table 5: Hyperparameter tuning in machine learning models.",
"year": "2020"
},
{
"authors": [
"Shuang Li",
"Binhui Xie",
"Jiashu Wu",
"Ying Zhao",
"Chi Harold Liu",
"Zhengming Ding"
],
"doi": "10.1145/3394171.3413995",
"ref_id": "b40",
"title": "Simultaneous Semantic Alignment Network for Heterogeneous Domain Adaptation",
"year": "2020"
},
{
"authors": [
"Yaoyiran Li",
"Edoardo Maria Ponti",
"Ivan Vulić",
"Anna Korhonen"
],
"doi": "10.18653/v1/2020.coling-main.416",
"ref_id": "b41",
"title": "Emergent Communication Pretraining for Few-Shot Machine Translation",
"year": "2020"
},
{
"authors": [
"Zongyi Li",
"Hongkai Zheng",
"Nikola Kovachki",
"David Jin",
"Haoxuan Chen",
"Burigede Liu",
"Kamyar Azizzadenesheli",
"Anima Anandkumar"
],
"doi": "10.1145/3648506",
"ref_id": "b42",
"title": "Physics-Informed Neural Operator for Learning Partial Differential Equations",
"year": "2021"
},
{
"authors": [
"Chenxi Liu",
"Liang-Chieh Chen",
"Florian Schroff",
"Hartwig Adam",
"Wei Hua",
"Alan L Yuille",
"Li Fei-Fei"
],
"doi": "10.1109/cvpr.2019.00017",
"ref_id": "b43",
"title": "Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation",
"year": "2019. 2019"
},
{
"authors": [
"H Liu",
"K Simonyan",
"Y Yang"
],
"doi": "",
"ref_id": "b44",
"title": "DARTS: Differentiable architecture search",
"year": "2019"
},
{
"authors": [
"P Liu",
"W Yuan",
"J Fu",
"Z Jiang",
"H Hayashi",
"G Neubig"
],
"doi": "",
"ref_id": "b45",
"title": "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing",
"year": "2021"
},
{
"authors": [
"Pengfei Liu",
"Weizhe Yuan",
"Jinlan Fu",
"Zhengbao Jiang",
"Hiroaki Hayashi",
"Graham Neubig"
],
"doi": "10.1145/3560815",
"ref_id": "b46",
"title": "Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing",
"year": "2022"
},
{
"authors": [
"Y Liu",
"M Ott",
"N Goyal",
"J Du",
"M Joshi",
"D Chen",
"O Levy",
"M Lewis",
"L Zettlemoyer",
"V Stoyanov",
"Roberta"
],
"doi": "",
"ref_id": "b47",
"title": "A robustly optimized bert pretraining approach",
"year": "2019"
},
{
"authors": [
"Ze Liu",
"Yutong Lin",
"Yue Cao",
"Han Hu",
"Yixuan Wei",
"Zheng Zhang",
"Stephen Lin",
"Baining Guo"
],
"doi": "10.1109/iccv48922.2021.00986",
"ref_id": "b48",
"title": "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows",
"year": "2021. 2021"
},
{
"authors": [
"K Lu",
"A Grover",
"P Abbeel",
"I Mordatch"
],
"doi": "",
"ref_id": "b49",
"title": "Frozen pretrained transformers as universal computation engines",
"year": "Jun. 2022"
},
{
"authors": [
"L Ostroumova",
"G Gusev",
"A Vorobev",
"A V Dorogush",
"A Gulin"
],
"doi": "",
"ref_id": "b50",
"title": "Catboost: unbiased boosting with categorical features",
"year": "2017"
},
{
"authors": [
"Sinno Jialin Pan",
"Qiang Yang"
],
"doi": "10.1109/tkde.2009.191",
"ref_id": "b51",
"title": "A Survey on Transfer Learning",
"year": "2009"
},
{
"authors": [
"Ofir Pele",
"Michael Werman"
],
"doi": "10.1109/iccv.2009.5459199",
"ref_id": "b52",
"title": "Fast and robust Earth Mover's Distances",
"year": "2009. 2009"
},
{
"authors": [
"Xingchao Peng",
"Qinxun Bai",
"Xide Xia",
"Zijun Huang",
"Kate Saenko",
"Bo Wang"
],
"doi": "10.1109/iccv.2019.00149",
"ref_id": "b53",
"title": "Moment Matching for Multi-Source Domain Adaptation",
"year": "2019"
},
{
"authors": [
"A Radford",
"K Narasimhan"
],
"doi": "",
"ref_id": "b54",
"title": "Improving language understanding by generative pre-training",
"year": "2018"
},
{
"authors": [
"A Radford",
"J W Kim",
"C Hallacy",
"A Ramesh",
"G Goh",
"S Agarwal",
"G Sastry",
"A Askell",
"P Mishkin",
"J Clark",
"G Krueger",
"I Sutskever"
],
"doi": "",
"ref_id": "b55",
"title": "Learning transferable visual models from natural language supervision",
"year": "2021"
},
{
"authors": [
"M Raissi",
"P Perdikaris",
"G E Karniadakis"
],
"doi": "10.1016/j.jcp.2018.10.045",
"ref_id": "b56",
"title": "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations",
"year": "2019"
},
{
"authors": [
"E Real",
"C Liang",
"D R So",
"Q V Le"
],
"doi": "",
"ref_id": "b57",
"title": "Automl-zero: Evolving machine learning algorithms from scratch",
"year": "2020"
},
{
"authors": [
"S Reed",
"K Zolna",
"E Parisotto",
"S G Colmenarejo",
"A Novikov",
"G Barth-Maron",
"M Gimenez",
"Y Sulsky",
"J Kay",
"J T Springenberg",
"T Eccles",
"J Bruce",
"A Razavi",
"A D Edwards",
"N M O Heess",
"Y Chen",
"R Hadsell",
"O Vinyals",
"M Bordbar",
"N Freitas"
],
"doi": "",
"ref_id": "b58",
"title": "A generalist agent",
"year": "2023"
},
{
"authors": [
"M Reid",
"Y Yamada",
"S S Gu"
],
"doi": "",
"ref_id": "b59",
"title": "Can wikipedia help offline reinforcement learning?",
"year": "2022"
},
{
"authors": [
"N C Roberts",
"M Khodak",
"T Dao",
"L Li",
"C Re",
"A Talwalkar"
],
"doi": "",
"ref_id": "b60",
"title": "Rethinking neural operations for diverse tasks",
"year": "2021"
},
{
"authors": [
"Olaf Ronneberger",
"Philipp Fischer",
"Thomas Brox"
],
"doi": "10.1007/978-3-319-24574-4_28",
"ref_id": "b61",
"title": "U-Net: Convolutional Networks for Biomedical Image Segmentation",
"year": "2015"
},
{
"authors": [
"D Rothermel",
"M Li",
"T Rocktaschel",
"J N Foerster",
"Don"
],
"doi": "",
"ref_id": "b62",
"title": "t sweep your learning rate under the rug: A closer look at cross-modal transfer of pretrained transformers",
"year": "2021"
},
{
"authors": [
"J Shen",
"M Khodak",
"A Talwalkar"
],
"doi": "",
"ref_id": "b63",
"title": "Efficient architecture search for diverse tasks",
"year": "2022"
},
{
"authors": [
"Wenzhe Shi",
"Jose Caballero",
"Ferenc Huszar",
"Johannes Totz",
"Andrew P Aitken",
"Rob Bishop",
"Daniel Rueckert",
"Zehan Wang"
],
"doi": "10.1109/cvpr.2016.207",
"ref_id": "b64",
"title": "Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network",
"year": "2016"
},
{
"authors": [
"M Takamoto",
"T Praditia",
"R Leiteritz",
"D Mackinlay",
"F Alesiani",
"D Pflüger",
"M Niepert",
"Pdebench"
],
"doi": "",
"ref_id": "b65",
"title": "An extensive benchmark for scientific machine learning",
"year": ""
},
{
"authors": [
"Joaquin Vanschoren",
"Jan N Van Rijn",
"Bernd Bischl",
"Luis Torgo"
],
"doi": "10.1145/2641190.2641198",
"ref_id": "b66",
"title": "OpenML",
"year": "2014"
},
{
"authors": [
"Ria Vinod",
"Pin-Yu Chen",
"Payel Das"
],
"doi": "10.1039/d4dd00195h",
"ref_id": "b67",
"title": "Reprogramming pretrained language models for protein sequence representation learning",
"year": "2023"
},
{
"authors": [
"Mei Wang",
"Weihong Deng"
],
"doi": "10.1016/j.neucom.2018.05.083",
"ref_id": "b68",
"title": "Deep visual domain adaptation: A survey",
"year": "2018"
},
{
"authors": [
"Yixuan Wei",
"Han Hu",
"Zhenda Xie",
"Ze Liu",
"Zheng Zhang",
"Yue Cao",
"Jianmin Bao",
"Dong Chen",
"Baining Guo"
],
"doi": "10.1109/iccv51070.2023.00501",
"ref_id": "b69",
"title": "Improving CLIP Fine-tuning Performance",
"year": "2022"
},
{
"authors": [
"Thomas Wolf",
"Lysandre Debut",
"Victor Sanh",
"Julien Chaumond",
"Clement Delangue",
"Anthony Moi",
"Pierric Cistac",
"Tim Rault",
"Remi Louf",
"Morgan Funtowicz",
"Joe Davison",
"Sam Shleifer",
"Patrick Von Platen",
"Clara Ma",
"Yacine Jernite",
"Julien Plu",
"Canwen Xu",
"Teven Le Scao",
"Sylvain Gugger",
"Mariama Drame",
"Quentin Lhoest",
"Alexander Rush"
],
"doi": "10.18653/v1/2020.emnlp-demos.6",
"ref_id": "b70",
"title": "Transformers: State-of-the-Art Natural Language Processing",
"year": "2019"
},
{
"authors": [
"Y Yao",
"Y Zhang",
"X Li",
"Y Ye"
],
"doi": "",
"ref_id": "b71",
"title": "Heterogeneous domain adaptation via soft transfer network",
"year": "2019"
},
{
"authors": [
"K Zhang",
"J S Bloom",
"Deepcr"
],
"doi": "",
"ref_id": "b72",
"title": "Cosmic ray rejection with deep learning",
"year": "2020"
},
{
"authors": [
"Zijun Zhang",
"Christopher Y Park",
"Chandra L Theesfeld",
"Olga G Troyanskaya"
],
"doi": "10.1101/2020.08.18.251561",
"ref_id": "b73",
"title": "An automated framework for efficiently designing deep convolutional neural networks in genomics",
"year": "2020"
},
{
"authors": [
"Jian Zhou",
"Olga G Troyanskaya"
],
"doi": "10.1038/nmeth.3547",
"ref_id": "b74",
"title": "Predicting effects of noncoding variants with deep learning–based sequence model",
"year": "2015"
},
{
"authors": [
"Y Zhu",
"T S Brettin",
"F Xia",
"A Partin",
"M Shukla",
"H S Yoo",
"Y A Evrard",
"J H Doroshow",
"R L Stevens"
],
"doi": "",
"ref_id": "b75",
"title": "Converting tabular data into images for deep learning with convolutional neural networks",
"year": "2021. 1511"
}
] |
[
"478b3eef37cc193f",
"757d41ddb9665699",
"d634b55c51c2943d",
"7ea593f6b9140dfb",
"cd8aedc751ba3dd1",
"bb678011e3c561fa",
"bb50760b5002f78b",
"2c82b745e3d58138",
"b2b9e957e133921b",
"73c5d65a4dcc5b76",
"5fa73ad82c08d4a7",
"78ffa3d86a0068c3",
"f0a58f0106a16be4",
"3227b1d4788cf72a",
"baba67f0abded6a2",
"95012abc78db418f",
"f79fd4a18336f636",
"8f61e44dd0366120",
"c9771c51884963c2",
"023a3a3331719a67",
"0e3be8e504e3abe6",
"1aff0c58a293af2f",
"053363f3fd1dcf1a",
"7852ecae2e08eaff",
"f28f7a582f13c456"
] |
[
"bd6449c22fc26fd3",
"b2b9e957e133921b",
"7ea593f6b9140dfb",
"bb50760b5002f78b",
"34c4b7572a532f86",
"00060de2d06dcb7f",
"a0e25ee347f1b6dd",
"9c99a0082932256a",
"c9771c51884963c2",
"8c36bb94f32fc582",
"03dc4b9b5dad6abc",
"a135962cc413bb5f",
"8526bce875573db6",
"734ea409cd1ff1af",
"73c5d65a4dcc5b76",
"de7d26825449eba5",
"0b1cb47ac4ba5a71",
"fba52b05397b8081",
"18a635bbf16dc9e9",
"2da9c881ac648fb9",
"eced5d1244d1c947",
"baba67f0abded6a2",
"5041c98d7e719af4",
"998f19d140c06a71",
"f0a58f0106a16be4",
"3c405eb04dd15e7a",
"95012abc78db418f",
"626c5087c5c0322d",
"0b6e50c132281719",
"023a3a3331719a67",
"053363f3fd1dcf1a",
"0f2eb26fc1e3e435",
"7852ecae2e08eaff",
"f0e85339063d4a5b",
"d634b55c51c2943d",
"478b3eef37cc193f",
"c54b0e9dfd0cdb7b",
"2032a858667ff099",
"38167cf3b6ca129d",
"c501996ca9fd5d94",
"8843bb2f4650351b",
"71f528e57b420abb",
"9384ad97652ef738",
"a1440e3e88d12f22",
"2010b19e1e14b2f6",
"d936f1eafa592aec",
"23af948bc2b6d234",
"01c6be98904efd23",
"d982862197cca817",
"2c82b745e3d58138",
"99898e8e846ebc9c",
"bb678011e3c561fa",
"cd546be4539e128f",
"4b686c092d0a43df",
"1437cf73a45e57f9",
"1aff0c58a293af2f",
"40cdb443176df33c",
"f79fd4a18336f636",
"cd8aedc751ba3dd1",
"5fa73ad82c08d4a7",
"3227b1d4788cf72a",
"4feda749d4e343ea",
"6dd2e6a541a7cf04",
"0e3be8e504e3abe6",
"dabfbe0e22e069a8",
"3ed4a781a1290b05",
"1af27d1475db1bef",
"78ffa3d86a0068c3",
"f28f7a582f13c456",
"8f61e44dd0366120",
"d6459461596f77a7",
"757d41ddb9665699",
"fd720b64b6e3c442",
"546200db3e42baee",
"26248d9deda965f5",
"c9384111c8ad508b"
] |
LJ9iKElXpl
|
Exponential Smoothing for Off-Policy Learning
|
data/openreview_paper/ICML_2023_oral/LJ9iKElXpl//paper.pdf
| 60
| 22
|
[
{
"authors": [
"I Aouali",
"B Kveton",
"S Katariya"
],
"doi": "",
"ref_id": "b4",
"title": "Mixed-effect thompson sampling",
"year": "2023"
},
{
"authors": [
"Y Zhu",
"D J Foster",
"J Langford",
"P Mineiro"
],
"doi": "",
"ref_id": "b58",
"title": "Contextual bandits with large action spaces: Made practical",
"year": "2022"
},
{
"authors": [
"B London",
"T Sandler"
],
"doi": "",
"ref_id": "b34",
"title": "Bayesian counterfactual risk minimization",
"year": "2019"
},
{
"authors": [
"Olivier Jeunen",
"Bart Goethals"
],
"doi": "10.1145/3460231.3474247",
"ref_id": "b23",
"title": "Pessimistic Reward Models for Off-Policy Learning in Recommendation",
"year": "2021"
},
{
"authors": [
"Miroslav Dudík",
"Dumitru Erhan",
"John Langford",
"Lihong Li"
],
"doi": "10.1214/14-sts500",
"ref_id": "b13",
"title": "Doubly Robust Policy Evaluation and Optimization",
"year": "2014"
},
{
"authors": [
"A Swaminathan",
"A Krishnamurthy",
"A Agarwal",
"M Dudik",
"J Langford",
"D Jose",
"I Zitouni"
],
"doi": "",
"ref_id": "b52",
"title": "Off-policy evaluation for slate recommendation",
"year": "2017"
},
{
"authors": [
"O Sakhi",
"N Chopin",
"P Alquier"
],
"doi": "",
"ref_id": "b47",
"title": "Pac-bayesian offline contextual bandits with guarantees",
"year": "2022"
},
{
"authors": [
"J Hong",
"B Kveton",
"S Katariya",
"M Zaheer",
"M Ghavamzadeh"
],
"doi": "",
"ref_id": "b20",
"title": "Deep hierarchy in bandits",
"year": "2022"
},
{
"authors": [
"W R Thompson"
],
"doi": "10.1093/biomet/25.3-4.285",
"ref_id": "b53",
"title": "ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES",
"year": "1933"
},
{
"authors": [
"Miroslav Dudík",
"Dumitru Erhan",
"John Langford",
"Lihong Li"
],
"doi": "10.1214/14-sts500",
"ref_id": "b12",
"title": "Doubly Robust Policy Evaluation and Optimization",
"year": "2012"
},
{
"authors": [
"S Zong",
"H Ni",
"K Sung",
"N R Ke",
"Z Wen",
"B Kveton"
],
"doi": "",
"ref_id": "b59",
"title": "Cascading bandits for large-scale recommendation problems",
"year": "2016"
},
{
"authors": [
"M Farajtabar",
"Y Chow",
"M Ghavamzadeh"
],
"doi": "",
"ref_id": "b14",
"title": "More robust doubly robust off-policy evaluation",
"year": "2018"
},
{
"authors": [
"Y.-X Wang",
"A Agarwal",
"M Dudık"
],
"doi": "",
"ref_id": "b55",
"title": "Optimal and adaptive off-policy evaluation in contextual bandits",
"year": "2017"
},
{
"authors": [
"R D Luce"
],
"doi": "10.1037/14396-000",
"ref_id": "b35",
"title": "Individual choice behavior: A theoretical analysis.",
"year": "2012"
},
{
"authors": [
"M Dudík",
"J Langford",
"L Li"
],
"doi": "",
"ref_id": "b11",
"title": "Doubly robust policy evaluation and learning",
"year": "2011"
},
{
"authors": [
"Daniel J Russo",
"Benjamin Van Roy",
"Abbas Kazerouni",
"Ian Osband",
"Zheng Wen"
],
"doi": "10.1561/9781680834710",
"ref_id": "b43",
"title": "A Tutorial on Thompson Sampling",
"year": "2018"
},
{
"authors": [
"Tor Lattimore",
"Csaba Szepesvári"
],
"doi": "10.1017/9781108571401",
"ref_id": "b31",
"title": "Bandit Algorithms",
"year": "2019"
},
{
"authors": [
"L Li",
"W Chu",
"J Langford",
"R Schapire"
],
"doi": "",
"ref_id": "b33",
"title": "A contextualbandit approach to personalized news article recommendation",
"year": "2010"
},
{
"authors": [
"Alberto Maria Metelli",
"Alessio Russo",
"Marcello Restelli"
],
"doi": "10.1016/j.artint.2025.104419",
"ref_id": "b39",
"title": "Minimax off-policy evaluation and learning with subgaussian and differentiable importance weighting",
"year": "2021"
},
{
"authors": [
"W Chu",
"L Li",
"L Reyzin",
"R Schapire"
],
"doi": "",
"ref_id": "b9",
"title": "Contextual bandits with linear payoff functions",
"year": "2011"
},
{
"authors": [
"D G Horvitz",
"D J Thompson"
],
"doi": "10.1080/01621459.1952.10483446",
"ref_id": "b21",
"title": "A Generalization of Sampling Without Replacement from a Finite Universe",
"year": "1952"
},
{
"authors": [
"Peter Auer",
"Nicolò Cesa-Bianchi",
"Paul Fischer"
],
"doi": "10.1023/a:1013689704352",
"ref_id": "b5",
"title": "Finite-time Analysis of the Multiarmed Bandit Problem",
"year": "2002"
}
] |
[
{
"authors": [
"Amit Agarwal",
"Elad Hazan",
"Satyen Kale",
"Robert E Schapire"
],
"doi": "10.1145/1143844.1143846",
"ref_id": "b0",
"title": "Algorithms for portfolio management based on the Newton method",
"year": "2014"
},
{
"authors": [
"Pierre Alquier"
],
"doi": "10.1561/9781638283270",
"ref_id": "b1",
"title": "User-friendly Introduction to PAC-Bayes Bounds",
"year": "2021"
},
{
"authors": [
"I Aouali",
"S Ivanov",
"M Gartrell",
"D Rohde",
"F Vasile",
"V Zaytsev",
"D Legrand"
],
"doi": "",
"ref_id": "b2",
"title": "Combining reward and rank signals for slate recommendation",
"year": "2021"
},
{
"authors": [
"Imad Aouali",
"Amine Benhalloum",
"Martin Bompaire",
"Achraf Ait Sidi Hammou",
"Sergey Ivanov",
"Benjamin Heymann",
"David Rohde",
"Otmane Sakhi",
"Flavian Vasile",
"Maxime Vono"
],
"doi": "10.1145/3534678.3542622",
"ref_id": "b3",
"title": "Reward Optimizing Recommendation using Deep Learning and Fast Maximum Inner Product Search",
"year": "2022"
},
{
"authors": [
"I Aouali",
"B Kveton",
"S Katariya"
],
"doi": "",
"ref_id": "b4",
"title": "Mixed-effect thompson sampling",
"year": "2023"
},
{
"authors": [
"Peter Auer",
"Nicolò Cesa-Bianchi",
"Paul Fischer"
],
"doi": "10.1023/a:1013689704352",
"ref_id": "b5",
"title": "Finite-time Analysis of the Multiarmed Bandit Problem",
"year": "2002"
},
{
"authors": [
"H Bang",
"J M Robins"
],
"doi": "",
"ref_id": "b6",
"title": "Doubly robust estimation in missing data and causal inference models",
"year": "2005"
},
{
"authors": [
"Bernard Bercu",
"Abderrahmen Touati"
],
"doi": "10.1214/07-aap506",
"ref_id": "b7",
"title": "Exponential inequalities for self-normalized martingales with applications",
"year": "2008"
},
{
"authors": [
"Léon Bottou",
"J Peters",
"J Quiñonero-Candela",
"D X Charles",
"D M Chickering",
"E Portugaly",
"D Ray",
"P Simard",
"E Snelson"
],
"doi": "10.1007/s10994-013-5335-x",
"ref_id": "b8",
"title": "From machine learning to machine reasoning",
"year": "2013"
},
{
"authors": [
"W Chu",
"L Li",
"L Reyzin",
"R Schapire"
],
"doi": "",
"ref_id": "b9",
"title": "Contextual bandits with linear payoff functions",
"year": "2011"
},
{
"authors": [
"G Cohen",
"S Afshar",
"J Tapson",
"A Van Schaik"
],
"doi": "",
"ref_id": "b10",
"title": "Emnist: Extending mnist to handwritten letters",
"year": "2017"
},
{
"authors": [
"M Dudík",
"J Langford",
"L Li"
],
"doi": "",
"ref_id": "b11",
"title": "Doubly robust policy evaluation and learning",
"year": "2011"
},
{
"authors": [
"Miroslav Dudík",
"Dumitru Erhan",
"John Langford",
"Lihong Li"
],
"doi": "10.1214/14-sts500",
"ref_id": "b12",
"title": "Doubly Robust Policy Evaluation and Optimization",
"year": "2012"
},
{
"authors": [
"Miroslav Dudík",
"Dumitru Erhan",
"John Langford",
"Lihong Li"
],
"doi": "10.1214/14-sts500",
"ref_id": "b13",
"title": "Doubly Robust Policy Evaluation and Optimization",
"year": "2014"
},
{
"authors": [
"M Farajtabar",
"Y Chow",
"M Ghavamzadeh"
],
"doi": "",
"ref_id": "b14",
"title": "More robust doubly robust off-policy evaluation",
"year": "2018"
},
{
"authors": [
"A Farid",
"A Majumdar"
],
"doi": "",
"ref_id": "b15",
"title": "Generalization bounds for metalearning via pac-bayes and uniform stability",
"year": "2021"
},
{
"authors": [
"L Faury",
"U Tanielian",
"E Dohmatob",
"E Smirnova",
"F Vasile"
],
"doi": "",
"ref_id": "b16",
"title": "Distributionally robust counterfactual risk minimization",
"year": "2020"
},
{
"authors": [
"A Gilotte",
"C Calauzènes",
"T Nedelec",
"A Abraham",
"S Dollé"
],
"doi": "",
"ref_id": "b17",
"title": "Offline a/b testing for recommender systems",
"year": "2018"
},
{
"authors": [
"B Guedj"
],
"doi": "",
"ref_id": "b18",
"title": "A primer on pac-bayesian learning",
"year": "2019"
},
{
"authors": [
"Maxime Haddouche",
"Benjamin Guedj",
"Omar Rivasplata",
"John Shawe-Taylor"
],
"doi": "10.3390/e23101330",
"ref_id": "b19",
"title": "PAC-Bayes Unleashed: Generalisation Bounds with Unbounded Losses",
"year": "2022"
},
{
"authors": [
"J Hong",
"B Kveton",
"S Katariya",
"M Zaheer",
"M Ghavamzadeh"
],
"doi": "",
"ref_id": "b20",
"title": "Deep hierarchy in bandits",
"year": "2022"
},
{
"authors": [
"D G Horvitz",
"D J Thompson"
],
"doi": "10.1080/01621459.1952.10483446",
"ref_id": "b21",
"title": "A Generalization of Sampling Without Replacement from a Finite Universe",
"year": "1952"
},
{
"authors": [
"Edward L Ionides"
],
"doi": "10.1198/106186008x320456",
"ref_id": "b22",
"title": "Truncated Importance Sampling",
"year": "2008"
},
{
"authors": [
"Olivier Jeunen",
"Bart Goethals"
],
"doi": "10.1145/3460231.3474247",
"ref_id": "b23",
"title": "Pessimistic Reward Models for Off-Policy Learning in Recommendation",
"year": "2021"
},
{
"authors": [
"N Kallus",
"Y Saito",
"M Uehara"
],
"doi": "",
"ref_id": "b24",
"title": "Optimal off-policy evaluation from multiple logging policies",
"year": "2021"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b25",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"D P Kingma",
"T Salimans",
"M Welling"
],
"doi": "",
"ref_id": "b26",
"title": "Variational dropout and the local reparameterization trick",
"year": "2015"
},
{
"authors": [
"A Korba",
"F Portier"
],
"doi": "",
"ref_id": "b27",
"title": "Adaptive importance sampling meets mirror descent: a bias-variance tradeoff",
"year": "2022"
},
{
"authors": [
"A Krizhevsky",
"G Hinton"
],
"doi": "10.7717/peerjcs.633/fig-5",
"ref_id": "b28",
"title": "Figure 5: Initial cross entropy values of samples from CIFAR-100 (Krizhevsky, 2009) on SqueezeNet (Iandola et al., 2016) when learning 10 classes at a time using the same learning settings as shown in Table 1.",
"year": "2009"
},
{
"authors": [
"I Kuzborskij",
"C Szepesvári"
],
"doi": "",
"ref_id": "b29",
"title": "Efron-stein pac-bayesian inequalities",
"year": "2019"
},
{
"authors": [
"I Kuzborskij",
"C Vernade",
"A Gyorgy",
"C Szepesvári"
],
"doi": "",
"ref_id": "b30",
"title": "Confident off-policy evaluation and selection through self-normalized importance weighting",
"year": "2021"
},
{
"authors": [
"Tor Lattimore",
"Csaba Szepesvári"
],
"doi": "10.1017/9781108571401",
"ref_id": "b31",
"title": "Bandit Algorithms",
"year": "2019"
},
{
"authors": [
"Y Lecun",
"L Bottou",
"Y Bengio",
"P Haffner"
],
"doi": "10.1109/5.726791",
"ref_id": "b32",
"title": "Gradient-based learning applied to document recognition",
"year": "1998"
},
{
"authors": [
"L Li",
"W Chu",
"J Langford",
"R Schapire"
],
"doi": "",
"ref_id": "b33",
"title": "A contextualbandit approach to personalized news article recommendation",
"year": "2010"
},
{
"authors": [
"B London",
"T Sandler"
],
"doi": "",
"ref_id": "b34",
"title": "Bayesian counterfactual risk minimization",
"year": "2019"
},
{
"authors": [
"R D Luce"
],
"doi": "10.1037/14396-000",
"ref_id": "b35",
"title": "Individual choice behavior: A theoretical analysis.",
"year": "2012"
},
{
"authors": [
"C J Maddison",
"D Tarlow",
"T Minka"
],
"doi": "",
"ref_id": "b36",
"title": "A* sampling",
"year": "2014"
},
{
"authors": [
"A Maurer",
"M Pontil"
],
"doi": "",
"ref_id": "b37",
"title": "Empirical bernstein bounds and sample variance penalization",
"year": "2009"
},
{
"authors": [
"David A Mcallester"
],
"doi": "10.1145/279943.279989",
"ref_id": "b38",
"title": "Some PAC-Bayesian theorems",
"year": "1998"
},
{
"authors": [
"Alberto Maria Metelli",
"Alessio Russo",
"Marcello Restelli"
],
"doi": "10.1016/j.artint.2025.104419",
"ref_id": "b39",
"title": "Minimax off-policy evaluation and learning with subgaussian and differentiable importance weighting",
"year": "2021"
},
{
"authors": [
"M Papini",
"A M Metelli",
"L Lupo",
"M Restelli"
],
"doi": "",
"ref_id": "b40",
"title": "Optimistic policy optimization via multiple importance sampling",
"year": "2019"
},
{
"authors": [
"Herbert Robbins",
"Sutton Monro"
],
"doi": "10.1214/aoms/1177729586",
"ref_id": "b41",
"title": "A Stochastic Approximation Method",
"year": "1951"
},
{
"authors": [
"James M Robins",
"Andrea Rotnitzky"
],
"doi": "10.1080/01621459.1995.10476494",
"ref_id": "b42",
"title": "Semiparametric Efficiency in Multivariate Regression Models with Missing Data",
"year": "1995"
},
{
"authors": [
"Daniel J Russo",
"Benjamin Van Roy",
"Abbas Kazerouni",
"Ian Osband",
"Zheng Wen"
],
"doi": "10.1561/9781680834710",
"ref_id": "b43",
"title": "A Tutorial on Thompson Sampling",
"year": "2018"
},
{
"authors": [
"Noveen Sachdeva",
"Yi Su",
"Thorsten Joachims"
],
"doi": "10.1145/3394486.3403139",
"ref_id": "b44",
"title": "Off-policy Bandits with Deficient Support",
"year": "2020"
},
{
"authors": [
"Y Saito",
"T Joachims"
],
"doi": "",
"ref_id": "b45",
"title": "Off-policy evaluation for large action spaces via embeddings",
"year": "2022"
},
{
"authors": [
"Otmane Sakhi",
"Stephen Bonner",
"David Rohde",
"Flavian Vasile"
],
"doi": "10.1145/3394486.3403121",
"ref_id": "b46",
"title": "BLOB: A Probabilistic Model for Recommendation that Combines Organic and Bandit Signals",
"year": "2020"
},
{
"authors": [
"O Sakhi",
"N Chopin",
"P Alquier"
],
"doi": "",
"ref_id": "b47",
"title": "Pac-bayesian offline contextual bandits with guarantees",
"year": "2022"
},
{
"authors": [
"Y Su",
"L Wang",
"M Santacatterina",
"T Joachims"
],
"doi": "",
"ref_id": "b48",
"title": "Cab: Continuous adaptive blending for policy evaluation and learning",
"year": "2019"
},
{
"authors": [
"Y Su",
"M Dimakopoulou",
"A Krishnamurthy",
"M Dudík"
],
"doi": "",
"ref_id": "b49",
"title": "Doubly robust off-policy evaluation with shrinkage",
"year": "2020"
},
{
"authors": [
"A Swaminathan",
"T Joachims"
],
"doi": "",
"ref_id": "b50",
"title": "Batch learning from logged bandit feedback through counterfactual risk minimization",
"year": "2015"
},
{
"authors": [
"A Swaminathan",
"T Joachims"
],
"doi": "",
"ref_id": "b51",
"title": "The self-normalized estimator for counterfactual learning",
"year": "2015"
},
{
"authors": [
"A Swaminathan",
"A Krishnamurthy",
"A Agarwal",
"M Dudik",
"J Langford",
"D Jose",
"I Zitouni"
],
"doi": "",
"ref_id": "b52",
"title": "Off-policy evaluation for slate recommendation",
"year": "2017"
},
{
"authors": [
"W R Thompson"
],
"doi": "10.1093/biomet/25.3-4.285",
"ref_id": "b53",
"title": "ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES",
"year": "1933"
},
{
"authors": [
"T Van Erven",
"P Harremos"
],
"doi": "",
"ref_id": "b54",
"title": "Rényi divergence and kullback-leibler divergence",
"year": "2014"
},
{
"authors": [
"Y.-X Wang",
"A Agarwal",
"M Dudık"
],
"doi": "",
"ref_id": "b55",
"title": "Optimal and adaptive off-policy evaluation in contextual bandits",
"year": "2017"
},
{
"authors": [
"H Xiao",
"K Rasul",
"R Vollgraf"
],
"doi": "",
"ref_id": "b56",
"title": "Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms",
"year": "2017"
},
{
"authors": [
"H Zenati",
"A Bietti",
"M Martin",
"E Diemert",
"J Mairal"
],
"doi": "",
"ref_id": "b57",
"title": "Counterfactual learning of continuous stochastic policies",
"year": "2020"
},
{
"authors": [
"Y Zhu",
"D J Foster",
"J Langford",
"P Mineiro"
],
"doi": "",
"ref_id": "b58",
"title": "Contextual bandits with large action spaces: Made practical",
"year": "2022"
},
{
"authors": [
"S Zong",
"H Ni",
"K Sung",
"N R Ke",
"Z Wen",
"B Kveton"
],
"doi": "",
"ref_id": "b59",
"title": "Cascading bandits for large-scale recommendation problems",
"year": "2016"
}
] |
[
"77a68c84ebe4b66e",
"44d4717ac8e23254",
"5497ada08334d15e",
"d58a5ebb0d1d4889",
"5a0a2944297ac86b",
"2c858c3cab2368f4",
"54046b55541da316",
"8e407e77dbd59fcb",
"b0cccdf011b89cf8",
"bfc4035836947ec0",
"f756ca760eefc2de",
"ae023e3842dd6263",
"1b7ac78771621a6e",
"cdcaf2b491b0ff5c",
"7e985e4332c08350",
"58078934d79e3bed",
"571f73bf410568a8",
"45a39e9664793c79",
"37d9884921a5f45d",
"c57a9e6a5fd1e07f",
"d2fe66fff281a16a",
"1a012ce7834ce227"
] |
[
"13d020061e692f3b",
"f6ff7ec67920b767",
"62a4c753fd77a8ae",
"9b6a79c85be2216f",
"77a68c84ebe4b66e",
"1a012ce7834ce227",
"7f4cf7ef067dbae2",
"c03df0d33f64e218",
"d1af32d1b6dad24e",
"c57a9e6a5fd1e07f",
"aeb210fd0e7f5702",
"7e985e4332c08350",
"bfc4035836947ec0",
"5a0a2944297ac86b",
"ae023e3842dd6263",
"b480aebd39254188",
"239dd9259ca15289",
"3578e3b42460061e",
"1cf3b0237b468854",
"88d3f26c511b155c",
"8e407e77dbd59fcb",
"d2fe66fff281a16a",
"c6f016c68e8e56d3",
"d58a5ebb0d1d4889",
"4ad848dabcd7502b",
"46c9e9a41e8bc923",
"b9fcbd184eb32878",
"7fada5840f4b28d2",
"ed10b7a0d3a6750e",
"bc7e80e7e88f449a",
"2565c737169b420c",
"571f73bf410568a8",
"4e25b6918986c5c9",
"45a39e9664793c79",
"5497ada08334d15e",
"cdcaf2b491b0ff5c",
"0d7f0a1e8c815b36",
"f8f1cae3e01e1ea8",
"c018e4b0ef1c6502",
"37d9884921a5f45d",
"798102c0087f01a8",
"d895cb9da3839f29",
"59aa7da0c6adce4e",
"58078934d79e3bed",
"68137a9adffcab87",
"a10ba1b0c1a28662",
"6f7e77a7bea46c6f",
"54046b55541da316",
"3f539c677e008975",
"1a5ebfea67e45783",
"f861d1feb5387d3d",
"29969551221cd888",
"2c858c3cab2368f4",
"b0cccdf011b89cf8",
"31ee746b0b4c8193",
"1b7ac78771621a6e",
"7ebc2647ddfb397f",
"ff48788d9f6c731f",
"44d4717ac8e23254",
"f756ca760eefc2de"
] |
eIQIcUKs0T
|
Mu$^2$SLAM: Multitask, Multilingual Speech and Language Models
|
data/openreview_paper/ICML_2023_oral/eIQIcUKs0T//paper.pdf
| 60
| 25
|
[
{
"authors": [
"A Radford",
"J W Kim",
"T Xu",
"G Brockman",
"C Mcleavey",
"I Sutskever"
],
"doi": "",
"ref_id": "b44",
"title": "Robust speech recognition via largescale weak supervision",
"year": "2022"
},
{
"authors": [
"Zhehuai Chen",
"Ankur Bapna",
"Andrew Rosenberg",
"Yu Zhang",
"Bhuvana Ramabhadran",
"Pedro Moreno",
"Nanxin Chen"
],
"doi": "10.1109/slt54892.2023.10022791",
"ref_id": "b15",
"title": "Maestro-U: Leveraging Joint Speech-Text Representation Learning for Zero Supervised Speech ASR",
"year": "2022"
},
{
"authors": [
"X Zhou",
"J Wang",
"Z Cui",
"S Zhang",
"Z Yan",
"J Zhou",
"C Zhou"
],
"doi": "",
"ref_id": "b59",
"title": "Mmspeech: Multi-modal multi-task encoderdecoder pre-training for speech recognition",
"year": "2022"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P J Liu"
],
"doi": "",
"ref_id": "b45",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "2020"
},
{
"authors": [
"J Devlin",
"Bert"
],
"doi": "",
"ref_id": "b24",
"title": "",
"year": "2018"
},
{
"authors": [
"Ron J Weiss",
"Jan Chorowski",
"Navdeep Jaitly",
"Yonghui Wu",
"Zhifeng Chen"
],
"doi": "10.21437/interspeech.2017-503",
"ref_id": "b53",
"title": "Sequence-to-Sequence Models Can Directly Translate Foreign Speech",
"year": "2017"
},
{
"authors": [
"Sravya Popuri",
"Peng-Jen Chen",
"Changhan Wang",
"Juan Pino",
"Yossi Adi",
"Jiatao Gu",
"Wei-Ning Hsu",
"Ann Lee"
],
"doi": "10.21437/interspeech.2022-11032",
"ref_id": "b39",
"title": "Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation",
"year": "2022"
},
{
"authors": [
"A Bapna",
"C Cherry",
"Y Zhang",
"Y Jia",
"M Johnson",
"Y Cheng",
"S Khanuja",
"J Riesa",
"A Conneau",
"Mslam"
],
"doi": "",
"ref_id": "b6",
"title": "Massively multilingual joint pre-training for speech and text",
"year": "2022"
},
{
"authors": [
"A Bapna",
"Y.-A Chung",
"N Wu",
"A Gulati",
"Y Jia",
"J H Clark",
"M Johnson",
"J Riesa",
"A Conneau",
"Y Zhang"
],
"doi": "",
"ref_id": "b5",
"title": "Slam: A unified encoder for speech and language modeling via speech-text joint pre-training",
"year": "2021"
},
{
"authors": [
"K Song",
"X Tan",
"T Qin",
"J Lu",
"T.-Y Liu"
],
"doi": "",
"ref_id": "b47",
"title": "Mass: Masked sequence to sequence pre-training for language generation",
"year": "2019"
},
{
"authors": [
"A Baevski",
"Y Zhou",
"A Mohamed",
"M Auli"
],
"doi": "",
"ref_id": "b4",
"title": "wav2vec 2.0: A framework for self-supervised learning of speech representations",
"year": "2020"
},
{
"authors": [
"Arun Babu",
"Changhan Wang",
"Andros Tjandra",
"Kushal Lakhotia",
"Qiantong Xu",
"Naman Goyal",
"Kritika Singh",
"Patrick Von Platen",
"Yatharth Saraf",
"Juan Pino",
"Alexei Baevski",
"Alexis Conneau",
"Michael Auli"
],
"doi": "10.21437/interspeech.2022-143",
"ref_id": "b3",
"title": "XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale",
"year": "2021"
},
{
"authors": [
"Tara N Sainath",
"Rohit Prabhavalkar",
"Ankur Bapna",
"Yu Zhang",
"Zhouyuan Huo",
"Zhehuai Chen",
"Bo Li",
"Weiran Wang",
"Trevor Strohman"
],
"doi": "10.1109/slt54892.2023.10022774",
"ref_id": "b46",
"title": "JOIST: A Joint Speech and Text Streaming Model for ASR",
"year": "2022"
},
{
"authors": [
"J Hu",
"S Ruder",
"A Siddhant",
"G Neubig",
"O Firat",
"M Johnson"
],
"doi": "",
"ref_id": "b32",
"title": "Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalisation",
"year": "2020"
},
{
"authors": [
"Y Tang",
"H Gong",
"N Dong",
"C Wang",
"W.-N Hsu",
"J Gu",
"A Baevski",
"X Li",
"A Mohamed",
"M Auli"
],
"doi": "",
"ref_id": "b49",
"title": "Unified speech-text pre-training for speech translation and recognition",
"year": "2022"
},
{
"authors": [
"Y Tang",
"J Pino",
"C Wang",
"X Ma",
"D Genzel"
],
"doi": "",
"ref_id": "b48",
"title": "A general multi-task learning framework to leverage text data for speech to text tasks",
"year": "2021"
},
{
"authors": [
"W.-N Hsu",
"B Bolte",
"Y.-H H Tsai",
"K Lakhotia",
"R Salakhutdinov",
"Mohamed",
"A Hubert"
],
"doi": "",
"ref_id": "b31",
"title": "Selfsupervised speech representation learning by masked prediction of hidden units",
"year": "2021"
},
{
"authors": [
"Linting Xue",
"Noah Constant",
"Adam Roberts",
"Mihir Kale",
"Rami Al-Rfou",
"Aditya Siddhant",
"Aditya Barua",
"Colin Raffel"
],
"doi": "10.18653/v1/2021.naacl-main.41",
"ref_id": "b54",
"title": "mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer",
"year": "2020"
},
{
"authors": [
"K Lakhotia",
"E Kharitonov",
"W.-N Hsu",
"Y Adi",
"A Polyak",
"B Bolte",
"T.-A Nguyen",
"J Copet",
"A Baevski",
"A Mohamed"
],
"doi": "",
"ref_id": "b35",
"title": "On generative spoken language modeling from raw audio",
"year": "2021"
},
{
"authors": [
"J Devlin",
"M.-W Chang",
"K Lee",
"K Toutanova",
"Bert"
],
"doi": "",
"ref_id": "b25",
"title": "Pre-training of deep bidirectional transformers for language understanding",
"year": "2019"
},
{
"authors": [
"Z Yang",
"Z Dai",
"Y Yang",
"J Carbonell",
"R R Salakhutdinov",
"Q V Le"
],
"doi": "",
"ref_id": "b55",
"title": "Xlnet: Generalized autoregressive pretraining for language understanding",
"year": "2019"
},
{
"authors": [
"Junyi Ao",
"Rui Wang",
"Long Zhou",
"Chengyi Wang",
"Shuo Ren",
"Yu Wu",
"Shujie Liu",
"Tom Ko",
"Qing Li",
"Yu Zhang",
"Zhihua Wei",
"Yao Qian",
"Jinyu Li",
"Furu Wei"
],
"doi": "10.18653/v1/2022.acl-long.393",
"ref_id": "b1",
"title": "SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing",
"year": "2021"
},
{
"authors": [
"Rich Caruana"
],
"doi": "10.1023/a:1007379606734",
"ref_id": "b14",
"title": "Multitask Learning",
"year": "Jul 1997"
},
{
"authors": [
"Alexis Conneau",
"Alexei Baevski",
"Ronan Collobert",
"Abdelrahman Mohamed",
"Michael Auli"
],
"doi": "10.21437/interspeech.2021-329",
"ref_id": "b22",
"title": "Unsupervised Cross-Lingual Representation Learning for Speech Recognition",
"year": "2020"
},
{
"authors": [
"Alexis Conneau",
"Ruty Rinott",
"Guillaume Lample",
"Adina Williams",
"Samuel Bowman",
"Holger Schwenk",
"Veselin Stoyanov"
],
"doi": "10.18653/v1/d18-1269",
"ref_id": "b20",
"title": "XNLI: Evaluating Cross-lingual Sentence Representations",
"year": "2019"
}
] |
[
{
"authors": [
"R Anil",
"A M Dai",
"O Firat",
"M Johnson",
"D Lepikhin",
"A Passos",
"S Shakeri",
"E Taropa",
"P Bailey",
"Z Chen"
],
"doi": "",
"ref_id": "b0",
"title": "",
"year": "2023"
},
{
"authors": [
"Junyi Ao",
"Rui Wang",
"Long Zhou",
"Chengyi Wang",
"Shuo Ren",
"Yu Wu",
"Shujie Liu",
"Tom Ko",
"Qing Li",
"Yu Zhang",
"Zhihua Wei",
"Yao Qian",
"Jinyu Li",
"Furu Wei"
],
"doi": "10.18653/v1/2022.acl-long.393",
"ref_id": "b1",
"title": "SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing",
"year": "2021"
},
{
"authors": [
"R Ardila",
"M Branson",
"K Davis",
"M Henretty",
"M Kohler",
"J Meyer",
"R Morais",
"L Saunders",
"F M Tyers",
"G Weber"
],
"doi": "",
"ref_id": "b2",
"title": "Common voice: A massively-multilingual speech corpus",
"year": "2019"
},
{
"authors": [
"Arun Babu",
"Changhan Wang",
"Andros Tjandra",
"Kushal Lakhotia",
"Qiantong Xu",
"Naman Goyal",
"Kritika Singh",
"Patrick Von Platen",
"Yatharth Saraf",
"Juan Pino",
"Alexei Baevski",
"Alexis Conneau",
"Michael Auli"
],
"doi": "10.21437/interspeech.2022-143",
"ref_id": "b3",
"title": "XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale",
"year": "2021"
},
{
"authors": [
"A Baevski",
"Y Zhou",
"A Mohamed",
"M Auli"
],
"doi": "",
"ref_id": "b4",
"title": "wav2vec 2.0: A framework for self-supervised learning of speech representations",
"year": "2020"
},
{
"authors": [
"A Bapna",
"Y.-A Chung",
"N Wu",
"A Gulati",
"Y Jia",
"J H Clark",
"M Johnson",
"J Riesa",
"A Conneau",
"Y Zhang"
],
"doi": "",
"ref_id": "b5",
"title": "Slam: A unified encoder for speech and language modeling via speech-text joint pre-training",
"year": "2021"
},
{
"authors": [
"A Bapna",
"C Cherry",
"Y Zhang",
"Y Jia",
"M Johnson",
"Y Cheng",
"S Khanuja",
"J Riesa",
"A Conneau",
"Mslam"
],
"doi": "",
"ref_id": "b6",
"title": "Massively multilingual joint pre-training for speech and text",
"year": "2022"
},
{
"authors": [
"Loïc Barrault",
"Ondřej Bojar",
"Marta R Costa-Jussà",
"Christian Federmann",
"Mark Fishel",
"Yvette Graham",
"Barry Haddow",
"Matthias Huck",
"Philipp Koehn",
"Shervin Malmasi",
"Christof Monz",
"Mathias Müller",
"Santanu Pal",
"Matt Post",
"Marcos Zampieri"
],
"doi": "10.18653/v1/w19-5301",
"ref_id": "b7",
"title": "Findings of the 2019 Conference on Machine Translation (WMT19)",
"year": "August 2019"
},
{
"authors": [
"Loïc Barrault",
"Magdalena Biesialska",
"Ondřej Bojar",
"Marta R Costa-Jussà",
"Christian Federmann",
"Yvette Graham",
"Roman Grundkiewicz",
"Barry Haddow",
"Matthias Huck",
"Eric Joanis",
"Tom Kocmi",
"Philipp Koehn",
"Chi-Kiu Lo",
"Nikola Ljubešić",
"Christof Monz",
"Makoto Morishita",
"Masaaki Nagata",
"Toshiaki Nakazawa",
"Santanu Pal",
"Matt Post",
"Marcos Zampieri"
],
"doi": "10.18653/v1/2020.wmt-1.1",
"ref_id": "b8",
"title": "Findings of the 2020 Conference on Machine Translation (WMT20)",
"year": "November 2020"
},
{
"authors": [
"Ondrej Bojar",
"Christian Buck",
"Christian Federmann",
"Barry Haddow",
"Philipp Koehn",
"Johannes Leveling",
"Christof Monz",
"Pavel Pecina",
"Matt Post",
"Herve Saint-Amand",
"Radu Soricut",
"Lucia Specia",
"Aleš Tamchyna"
],
"doi": "10.3115/v1/w14-3302",
"ref_id": "b9",
"title": "Findings of the 2014 Workshop on Statistical Machine Translation",
"year": "August 2013"
},
{
"authors": [
"Ondřej Bojar",
"Rajen Chatterjee",
"Christian Federmann",
"Barry Haddow",
"Matthias Huck",
"Chris Hokamp",
"Philipp Koehn",
"Varvara Logacheva",
"Christof Monz",
"Matteo Negri",
"Matt Post",
"Carolina Scarton",
"Lucia Specia",
"Marco Turchi"
],
"doi": "10.18653/v1/w15-3001",
"ref_id": "b10",
"title": "Findings of the 2015 Workshop on Statistical Machine Translation",
"year": "September 2015"
},
{
"authors": [
"Ondřej Bojar",
"Rajen Chatterjee",
"Christian Federmann",
"Yvette Graham",
"Barry Haddow",
"Shujian Huang",
"Matthias Huck",
"Philipp Koehn",
"Qun Liu",
"Varvara Logacheva",
"Christof Monz",
"Matteo Negri",
"Matt Post",
"Raphael Rubino",
"Lucia Specia",
"Marco Turchi"
],
"doi": "10.18653/v1/w17-4717",
"ref_id": "b11",
"title": "Findings of the 2017 Conference on Machine Translation (WMT17)",
"year": "September 2017"
},
{
"authors": [
"Ondřej Bojar",
"Christian Federmann",
"Mark Fishel",
"Yvette Graham",
"Barry Haddow",
"Philipp Koehn",
"Christof Monz"
],
"doi": "10.18653/v1/w18-6401",
"ref_id": "b12",
"title": "Findings of the 2018 Conference on Machine Translation (WMT18)",
"year": "October 2018"
},
{
"authors": [
"Zalán Borsos",
"Raphaël Marinier",
"Damien Vincent",
"Eugene Kharitonov",
"Olivier Pietquin",
"Matt Sharifi",
"Dominik Roblek",
"Olivier Teboul",
"David Grangier",
"Marco Tagliasacchi",
"Neil Zeghidour"
],
"doi": "10.1109/taslp.2023.3288409",
"ref_id": "b13",
"title": "AudioLM: A Language Modeling Approach to Audio Generation",
"year": "2022"
},
{
"authors": [
"Rich Caruana"
],
"doi": "10.1023/a:1007379606734",
"ref_id": "b14",
"title": "Multitask Learning",
"year": "Jul 1997"
},
{
"authors": [
"Zhehuai Chen",
"Ankur Bapna",
"Andrew Rosenberg",
"Yu Zhang",
"Bhuvana Ramabhadran",
"Pedro Moreno",
"Nanxin Chen"
],
"doi": "10.1109/slt54892.2023.10022791",
"ref_id": "b15",
"title": "Maestro-U: Leveraging Joint Speech-Text Representation Learning for Zero Supervised Speech ASR",
"year": "2022"
},
{
"authors": [
"Yong Cheng",
"Lu Jiang",
"Wolfgang Macherey"
],
"doi": "10.18653/v1/p19-1425",
"ref_id": "b16",
"title": "Robust Neural Machine Translation with Doubly Adversarial Inputs",
"year": "2019"
},
{
"authors": [
"Yong Cheng",
"Ankur Bapna",
"Orhan Firat",
"Yuan Cao",
"Pidong Wang",
"Wolfgang Macherey"
],
"doi": "10.18653/v1/2022.acl-long.282",
"ref_id": "b17",
"title": "Multilingual Mix: Example Interpolation Improves Multilingual Neural Machine Translation",
"year": "2022"
},
{
"authors": [
"A Chowdhery",
"S Narang",
"J Devlin",
"M Bosma",
"G Mishra",
"A Roberts",
"P Barham",
"H W Chung",
"C Sutton",
"S Gehrmann"
],
"doi": "",
"ref_id": "b18",
"title": "Palm: Scaling language modeling with pathways",
"year": "2022"
},
{
"authors": [
"Yu-An Chung",
"Yu Zhang",
"Wei Han",
"Chung-Cheng Chiu",
"James Qin",
"Ruoming Pang",
"Yonghui Wu"
],
"doi": "10.1109/asru51503.2021.9688253",
"ref_id": "b19",
"title": "w2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training",
"year": "2021"
},
{
"authors": [
"Alexis Conneau",
"Ruty Rinott",
"Guillaume Lample",
"Adina Williams",
"Samuel Bowman",
"Holger Schwenk",
"Veselin Stoyanov"
],
"doi": "10.18653/v1/d18-1269",
"ref_id": "b20",
"title": "XNLI: Evaluating Cross-lingual Sentence Representations",
"year": "2019"
},
{
"authors": [
"A Conneau",
"K Khandelwal",
"N Goyal",
"V Chaudhary",
"G Wenzek",
"F Guzmán",
"E Grave",
"M Ott",
"L Zettlemoyer",
"V Stoyanov"
],
"doi": "",
"ref_id": "b21",
"title": "Unsupervised cross-lingual representation learning at scale",
"year": "2019"
},
{
"authors": [
"Alexis Conneau",
"Alexei Baevski",
"Ronan Collobert",
"Abdelrahman Mohamed",
"Michael Auli"
],
"doi": "10.21437/interspeech.2021-329",
"ref_id": "b22",
"title": "Unsupervised Cross-Lingual Representation Learning for Speech Recognition",
"year": "2020"
},
{
"authors": [
"A Conneau",
"M Ma",
"S Khanuja",
"Y Zhang",
"V Axelrod",
"S Dalmia",
"J Riesa",
"C Rivera",
"A Bapna",
"Fleurs"
],
"doi": "",
"ref_id": "b23",
"title": "Few-shot learning evaluation of universal representations of speech",
"year": "2022"
},
{
"authors": [
"J Devlin",
"Bert"
],
"doi": "",
"ref_id": "b24",
"title": "",
"year": "2018"
},
{
"authors": [
"J Devlin",
"M.-W Chang",
"K Lee",
"K Toutanova",
"Bert"
],
"doi": "",
"ref_id": "b25",
"title": "Pre-training of deep bidirectional transformers for language understanding",
"year": "2019"
},
{
"authors": [
"M J F Gales",
"K Knill",
"A Ragni",
"S P Rath"
],
"doi": "",
"ref_id": "b26",
"title": "Speech recognition and keyword spotting for low-resource languages: Babel project research at cued",
"year": "2014"
},
{
"authors": [
"A Graves"
],
"doi": "",
"ref_id": "b27",
"title": "Sequence transduction with recurrent neural networks",
"year": "2012"
},
{
"authors": [
"A Graves",
"N Jaitly"
],
"doi": "",
"ref_id": "b28",
"title": "Towards end-to-end speech recognition with recurrent neural networks",
"year": "2014"
},
{
"authors": [
"Alex Graves",
"Santiago Fernández",
"Faustino Gomez",
"Jürgen Schmidhuber"
],
"doi": "10.1145/1143844.1143891",
"ref_id": "b29",
"title": "Connectionist temporal classification",
"year": "2006"
},
{
"authors": [
"Anmol Gulati",
"James Qin",
"Chung-Cheng Chiu",
"Niki Parmar",
"Yu Zhang",
"Jiahui Yu",
"Wei Han",
"Shibo Wang",
"Zhengdong Zhang",
"Yonghui Wu",
"Ruoming Pang"
],
"doi": "10.21437/interspeech.2020-3015",
"ref_id": "b30",
"title": "Conformer: Convolution-augmented Transformer for Speech Recognition",
"year": "2020"
},
{
"authors": [
"W.-N Hsu",
"B Bolte",
"Y.-H H Tsai",
"K Lakhotia",
"R Salakhutdinov",
"Mohamed",
"A Hubert"
],
"doi": "",
"ref_id": "b31",
"title": "Selfsupervised speech representation learning by masked prediction of hidden units",
"year": "2021"
},
{
"authors": [
"J Hu",
"S Ruder",
"A Siddhant",
"G Neubig",
"O Firat",
"M Johnson"
],
"doi": "",
"ref_id": "b32",
"title": "Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalisation",
"year": "2020"
},
{
"authors": [
"J Kasai",
"N Pappas",
"H Peng",
"J Cross",
"N A Smith"
],
"doi": "",
"ref_id": "b33",
"title": "Deep encoder, shallow decoder: Reevaluating non-autoregressive machine translation",
"year": "2020"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b34",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"K Lakhotia",
"E Kharitonov",
"W.-N Hsu",
"Y Adi",
"A Polyak",
"B Bolte",
"T.-A Nguyen",
"J Copet",
"A Baevski",
"A Mohamed"
],
"doi": "",
"ref_id": "b35",
"title": "On generative spoken language modeling from raw audio",
"year": "2021"
},
{
"authors": [
"Mike Lewis",
"Yinhan Liu",
"Naman Goyal",
"Marjan Ghazvininejad",
"Abdelrahman Mohamed",
"Omer Levy",
"Veselin Stoyanov",
"Luke Zettlemoyer"
],
"doi": "10.18653/v1/2020.acl-main.703",
"ref_id": "b36",
"title": "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension",
"year": "2019"
},
{
"authors": [
"I Loshchilov",
"F Hutter"
],
"doi": "",
"ref_id": "b37",
"title": "Decoupled weight decay regularization",
"year": "2017"
},
{
"authors": [
"Daniel S Park",
"William Chan",
"Yu Zhang",
"Chung-Cheng Chiu",
"Barret Zoph",
"Ekin D Cubuk",
"Quoc V Le"
],
"doi": "10.21437/interspeech.2019-2680",
"ref_id": "b38",
"title": "SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition",
"year": "2019"
},
{
"authors": [
"Sravya Popuri",
"Peng-Jen Chen",
"Changhan Wang",
"Juan Pino",
"Yossi Adi",
"Jiatao Gu",
"Wei-Ning Hsu",
"Ann Lee"
],
"doi": "10.21437/interspeech.2022-11032",
"ref_id": "b39",
"title": "Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation",
"year": "2022"
},
{
"authors": [
"Matt Post"
],
"doi": "10.18653/v1/w18-6319",
"ref_id": "b40",
"title": "A Call for Clarity in Reporting BLEU Scores",
"year": "2018"
},
{
"authors": [
"Vineel Pratap",
"Qiantong Xu",
"Anuroop Sriram",
"Gabriel Synnaeve",
"Ronan Collobert"
],
"doi": "10.21437/interspeech.2020-2826",
"ref_id": "b41",
"title": "MLS: A Large-Scale Multilingual Dataset for Speech Research",
"year": "2020"
},
{
"authors": [
"Y Qi",
"D Sachan",
"M Felix",
"S Padmanabhan",
"G Neubig"
],
"doi": "10.18653/v1/N18-2084",
"ref_id": "b42",
"title": "When and why are pre-trained word embeddings useful for neural machine translation",
"year": "June 2018"
},
{
"authors": [
"A Radford",
"K Narasimhan",
"T Salimans",
"I Sutskever"
],
"doi": "",
"ref_id": "b43",
"title": "Improving language understanding by generative pretraining",
"year": "2018"
},
{
"authors": [
"A Radford",
"J W Kim",
"T Xu",
"G Brockman",
"C Mcleavey",
"I Sutskever"
],
"doi": "",
"ref_id": "b44",
"title": "Robust speech recognition via largescale weak supervision",
"year": "2022"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P J Liu"
],
"doi": "",
"ref_id": "b45",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "2020"
},
{
"authors": [
"Tara N Sainath",
"Rohit Prabhavalkar",
"Ankur Bapna",
"Yu Zhang",
"Zhouyuan Huo",
"Zhehuai Chen",
"Bo Li",
"Weiran Wang",
"Trevor Strohman"
],
"doi": "10.1109/slt54892.2023.10022774",
"ref_id": "b46",
"title": "JOIST: A Joint Speech and Text Streaming Model for ASR",
"year": "2022"
},
{
"authors": [
"K Song",
"X Tan",
"T Qin",
"J Lu",
"T.-Y Liu"
],
"doi": "",
"ref_id": "b47",
"title": "Mass: Masked sequence to sequence pre-training for language generation",
"year": "2019"
},
{
"authors": [
"Y Tang",
"J Pino",
"C Wang",
"X Ma",
"D Genzel"
],
"doi": "",
"ref_id": "b48",
"title": "A general multi-task learning framework to leverage text data for speech to text tasks",
"year": "2021"
},
{
"authors": [
"Y Tang",
"H Gong",
"N Dong",
"C Wang",
"W.-N Hsu",
"J Gu",
"A Baevski",
"X Li",
"A Mohamed",
"M Auli"
],
"doi": "",
"ref_id": "b49",
"title": "Unified speech-text pre-training for speech translation and recognition",
"year": "2022"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b50",
"title": "Attention Is All You Need",
"year": "2017"
},
{
"authors": [
"Changhan Wang",
"Morgane Riviere",
"Ann Lee",
"Anne Wu",
"Chaitanya Talnikar",
"Daniel Haziza",
"Mary Williamson",
"Juan Pino",
"Emmanuel Dupoux"
],
"doi": "10.18653/v1/2021.acl-long.80",
"ref_id": "b51",
"title": "VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation",
"year": "2021"
},
{
"authors": [
"C Wang",
"A Wu",
"J Pino"
],
"doi": "",
"ref_id": "b52",
"title": "Covost 2 and massively multilingual speech-to-text translation",
"year": "2021"
},
{
"authors": [
"Ron J Weiss",
"Jan Chorowski",
"Navdeep Jaitly",
"Yonghui Wu",
"Zhifeng Chen"
],
"doi": "10.21437/interspeech.2017-503",
"ref_id": "b53",
"title": "Sequence-to-Sequence Models Can Directly Translate Foreign Speech",
"year": "2017"
},
{
"authors": [
"Linting Xue",
"Noah Constant",
"Adam Roberts",
"Mihir Kale",
"Rami Al-Rfou",
"Aditya Siddhant",
"Aditya Barua",
"Colin Raffel"
],
"doi": "10.18653/v1/2021.naacl-main.41",
"ref_id": "b54",
"title": "mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer",
"year": "2020"
},
{
"authors": [
"Z Yang",
"Z Dai",
"Y Yang",
"J Carbonell",
"R R Salakhutdinov",
"Q V Le"
],
"doi": "",
"ref_id": "b55",
"title": "Xlnet: Generalized autoregressive pretraining for language understanding",
"year": "2019"
},
{
"authors": [
"Y Zhang",
"W Han",
"J Qin",
"Y Wang",
"A Bapna",
"Z Chen",
"N Chen",
"B Li",
"V Axelrod",
"G Wang"
],
"doi": "",
"ref_id": "b56",
"title": "Google usm: Scaling automatic speech recognition beyond 100 languages",
"year": "2023"
},
{
"authors": [
"Ziqiang Zhang",
"Sanyuan Chen",
"Long Zhou",
"Yu Wu",
"Shuo Ren",
"Shujie Liu",
"Zhuoyuan Yao",
"Xun Gong",
"Lirong Dai",
"Jinyu Li",
"Furu Wei"
],
"doi": "10.1109/taslp.2024.3379877",
"ref_id": "b57",
"title": "SpeechLM: Enhanced Speech Pre-Training With Unpaired Textual Data",
"year": "2022"
},
{
"authors": [
"Ziqiang Zhang",
"Long Zhou",
"Junyi Ao",
"Shujie Liu",
"Lirong Dai",
"Jinyu Li",
"Furu Wei"
],
"doi": "10.18653/v1/2022.emnlp-main.108",
"ref_id": "b58",
"title": "SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder Based Speech-Text Pre-training",
"year": "2022"
},
{
"authors": [
"X Zhou",
"J Wang",
"Z Cui",
"S Zhang",
"Z Yan",
"J Zhou",
"C Zhou"
],
"doi": "",
"ref_id": "b59",
"title": "Mmspeech: Multi-modal multi-task encoderdecoder pre-training for speech recognition",
"year": "2022"
}
] |
[
"b7474ff726fb5edf",
"894ed4f52015ae63",
"f4cd07f65dfccdb9",
"270adc2f5b048c8a",
"202c194849be5278",
"1852c57f0e702d82",
"b7e0905dc0d2a7ab",
"f1c7c59e835af1ba",
"a8f3d7e06e9e6ada",
"d3a2a9b037b8b906",
"8ca76f7758338763",
"0d3db41eea1692ed",
"286326f1617419ca",
"1e9c3846a5dd9cbf",
"f52e0253763e7878",
"701f798ee658955f",
"da60336f8aa0f128",
"657b5be903cb2186",
"12b2297037770984",
"734ea409cd1ff1af",
"a3bc4bb84cd30957",
"355d24b3586631dc",
"c02f95b5310730ca",
"77bc74b4b7f026e1",
"fc10179bb453c751"
] |
[
"c1ec36f3640ea6d0",
"355d24b3586631dc",
"5cb5f878f3d3749d",
"0d3db41eea1692ed",
"8ca76f7758338763",
"a8f3d7e06e9e6ada",
"f1c7c59e835af1ba",
"1637a47654f2ecf1",
"5edd30f012db9e0c",
"000ad08d98fc104f",
"147de9140647afdb",
"97f74970c559423a",
"52bc4c83f8ba793b",
"dedd8e821bc65077",
"c02f95b5310730ca",
"894ed4f52015ae63",
"aef1a9467cb4620b",
"693043e1a45ce406",
"c1ab7263afa04255",
"d25d832f09ba381b",
"fc10179bb453c751",
"c14e1305b16d2d3d",
"77bc74b4b7f026e1",
"6a3faaf94fadbda7",
"202c194849be5278",
"734ea409cd1ff1af",
"80a33504c161dcda",
"73c6f92711b968eb",
"512d549126082265",
"3c1eb6fdabc96a43",
"183e55139440e5e4",
"da60336f8aa0f128",
"1e9c3846a5dd9cbf",
"681ab9dbe482a096",
"46c9e9a41e8bc923",
"12b2297037770984",
"a4f5110a5c265cf9",
"226900f0f371bacb",
"cf26f245d681ccf4",
"b7e0905dc0d2a7ab",
"26547201238cbfc6",
"2ad820e36a0e0f7e",
"ae3a545099335850",
"e94dc62310971364",
"b7474ff726fb5edf",
"270adc2f5b048c8a",
"286326f1617419ca",
"d3a2a9b037b8b906",
"701f798ee658955f",
"f52e0253763e7878",
"2c0dc3d0f1ec41b0",
"b60c3495d23a0a95",
"9010a7301fe36c3b",
"1852c57f0e702d82",
"657b5be903cb2186",
"a3bc4bb84cd30957",
"de8660425244641e",
"f25cdb53ca36fda9",
"047236e17ebb215c",
"f4cd07f65dfccdb9"
] |
Rw8OOwatgy
|
Semi Bandit dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees.
|
data/openreview_paper/ICML_2023_oral/Rw8OOwatgy//paper.pdf
| 48
| 10
|
[
{
"authors": [
"D Monderer",
"L S Shapley"
],
"doi": "",
"ref_id": "b37",
"title": "Potential games",
"year": "1996"
},
{
"authors": [
"B De Keijzer",
"G Schäfer",
"O A Telelis"
],
"doi": "10.1007/978-3-642-16170-4_29",
"ref_id": "b20",
"title": "On the inefficiency of equilibria in linear bottleneck congestion games",
"year": "2010"
},
{
"authors": [
"Alex Fabrikant",
"Christos Papadimitriou",
"Kunal Talwar"
],
"doi": "10.1145/1007352.1007445",
"ref_id": "b23",
"title": "The complexity of pure Nash equilibria",
"year": "2004"
},
{
"authors": [
"Tim Roughgarden",
"Éva Tardos"
],
"doi": "10.1145/506147.506153",
"ref_id": "b43",
"title": "How bad is selfish routing?",
"year": "2002"
},
{
"authors": [
"Dimitris Fotakis",
"Spyros Kontogiannis",
"Paul Spirakis"
],
"doi": "10.1016/j.tcs.2005.09.024",
"ref_id": "b24",
"title": "Selfish unsplittable flows",
"year": "2005. 2004"
},
{
"authors": [
"Y Babichenko",
"A Rubinstein"
],
"doi": "",
"ref_id": "b6",
"title": "Settling the complexity of nash equilibrium in congestion games",
"year": "2021"
},
{
"authors": [
"George Christodoulou",
"Elias Koutsoupias"
],
"doi": "10.1145/1060590.1060600",
"ref_id": "b13",
"title": "The price of anarchy of finite congestion games",
"year": "2005"
},
{
"authors": [
"Tim Roughgarden"
],
"doi": "10.1145/1536414.1536485",
"ref_id": "b42",
"title": "Intrinsic robustness of the price of anarchy",
"year": "2009"
},
{
"authors": [
"Elias Koutsoupias",
"Christos Papadimitriou"
],
"doi": "10.1007/3-540-49116-3_38",
"ref_id": "b32",
"title": "Worst-Case Equilibria",
"year": "1999"
},
{
"authors": [
"Robert W Rosenthal"
],
"doi": "10.1007/bf01737559",
"ref_id": "b41",
"title": "A class of games possessing pure-strategy Nash equilibria",
"year": "1973"
}
] |
[
{
"authors": [
"A Agarwal",
"S M Kakade",
"J D Lee",
"G Mahajan"
],
"doi": "10.1017/cbo9781139171502.025",
"ref_id": "b0",
"title": "Optimal interpolation",
"year": "2019"
},
{
"authors": [
"I Anagnostides",
"I Panageas",
"G Farina",
"T Sandholm"
],
"doi": "",
"ref_id": "b1",
"title": "On last-iterate convergence beyond zero-sum games",
"year": "17-23 July 2022. 2022"
},
{
"authors": [
"J.-Y Audibert",
"S Bubeck",
"G Lugosi"
],
"doi": "",
"ref_id": "b2",
"title": "Regret in online combinatorial optimization",
"year": "feb 2014"
},
{
"authors": [
"P Auer",
"N Cesa-Bianchi",
"Y Freund",
"R E Schapire"
],
"doi": "",
"ref_id": "b3",
"title": "The nonstochastic multiarmed bandit problem",
"year": "2002"
},
{
"authors": [
"B Awerbuch",
"R D Kleinberg"
],
"doi": "",
"ref_id": "b4",
"title": "Adaptive routing with end-to-end feedback: Distributed learning and geometric approaches",
"year": "2004"
},
{
"authors": [
"Y Babichenko",
"A Rubinstein"
],
"doi": "",
"ref_id": "b5",
"title": "Communication complexity of nash equilibrium in potential games",
"year": "November 16-19, 2020. 2020"
},
{
"authors": [
"Y Babichenko",
"A Rubinstein"
],
"doi": "",
"ref_id": "b6",
"title": "Settling the complexity of nash equilibrium in congestion games",
"year": "2021"
},
{
"authors": [
"M Bravo",
"D S Leslie",
"P Mertikopoulos"
],
"doi": "",
"ref_id": "b7",
"title": "Bandit learning in concave n-person games",
"year": "2018. December 3-8, 2018. 2018"
},
{
"authors": [
"S Bubeck",
"N Cesa-Bianchi",
"S M Kakade"
],
"doi": "",
"ref_id": "b8",
"title": "Towards minimax policies for online linear optimization with bandit feedback",
"year": "June 25-27, 2012"
},
{
"authors": [],
"doi": "",
"ref_id": "b9",
"title": "",
"year": "2012"
},
{
"authors": [
"Nicolò Cesa-Bianchi",
"Gábor Lugosi"
],
"doi": "10.1016/j.jcss.2012.01.001",
"ref_id": "b10",
"title": "Combinatorial bandits",
"year": "2012"
},
{
"authors": [
"Yang Chen",
"Dechang Pi",
"Yue Xu"
],
"doi": "10.1016/j.eswa.2020.114505",
"ref_id": "b11",
"title": "Neighborhood global learning based flower pollination algorithm and its application to unmanned aerial vehicle path planning",
"year": "2021"
},
{
"authors": [
"S Chien",
"A Sinclair"
],
"doi": "10.1137/1.9780898716245",
"ref_id": "b12",
"title": "Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)",
"year": "January 7-9, 2007. 2007"
},
{
"authors": [
"George Christodoulou",
"Elias Koutsoupias"
],
"doi": "10.1145/1060590.1060600",
"ref_id": "b13",
"title": "The price of anarchy of finite congestion games",
"year": "2005"
},
{
"authors": [
"Johanne Cohen",
"Amélie Héliou",
"Panayotis Mertikopoulos"
],
"doi": "10.1007/978-3-319-66700-3_20",
"ref_id": "b14",
"title": "Hedging Under Uncertainty: Regret Minimization Meets Exponentially Fast Convergence",
"year": "2017. September 12-14, 2017. 2017"
},
{
"authors": [
"Roberto Cominetti",
"Emerson Melo",
"Sylvain Sorin"
],
"doi": "10.1016/j.geb.2008.11.012",
"ref_id": "b15",
"title": "A payoff-based learning procedure and its application to traffic games",
"year": "2010"
},
{
"authors": [
"Qiwen Cui",
"Simon Du",
"Maryam Fazel"
],
"doi": "10.52202/079017-3955",
"ref_id": "b16",
"title": "Learning Optimal Tax Design in Nonatomic Congestion Games",
"year": "2022"
},
{
"authors": [
"V Dani",
"T P Hayes",
"S M Kakade"
],
"doi": "10.7551/mitpress/1120.003.0002",
"ref_id": "b17",
"title": "NIPS Committees",
"year": ""
},
{
"authors": [
"Hook"
],
"doi": "10.1093/ww/9780199540884.013.u233530",
"ref_id": "b18",
"title": "Willkie, Wendell Lewis, (18 Feb. 1892–8 Oct. 1944), Lawyer, Willkie, Owen, Otis, Farr and Gallagher, 15 Broad Street, NY, NY, USA",
"year": "2007"
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b19",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": ""
},
{
"authors": [
"B De Keijzer",
"G Schäfer",
"O A Telelis"
],
"doi": "10.1007/978-3-642-16170-4_29",
"ref_id": "b20",
"title": "On the inefficiency of equilibria in linear bottleneck congestion games",
"year": "2010"
},
{
"authors": [
"D Ding",
"C Wei",
"K Zhang",
"M R Jovanovic"
],
"doi": "",
"ref_id": "b21",
"title": "Independent policy gradient for large-scale markov potential games: Sharper rates, function approximation, and gameagnostic convergence",
"year": "17-23 July 2022. 2022"
},
{
"authors": [
"Eyal Even-Dar",
"Yishay Mansour",
"Uri Nadav"
],
"doi": "10.1145/1536414.1536486",
"ref_id": "b22",
"title": "On the convergence of regret minimization dynamics in concave games",
"year": "May 31 -June 2, 2009. 2009"
},
{
"authors": [
"Alex Fabrikant",
"Christos Papadimitriou",
"Kunal Talwar"
],
"doi": "10.1145/1007352.1007445",
"ref_id": "b23",
"title": "The complexity of pure Nash equilibria",
"year": "2004"
},
{
"authors": [
"Dimitris Fotakis",
"Spyros Kontogiannis",
"Paul Spirakis"
],
"doi": "10.1016/j.tcs.2005.09.024",
"ref_id": "b24",
"title": "Selfish unsplittable flows",
"year": "2005. 2004"
},
{
"authors": [
"Saeed Ghadimi",
"Guanghui Lan"
],
"doi": "10.1007/s10107-015-0871-8",
"ref_id": "b25",
"title": "Accelerated gradient methods for nonconvex nonlinear and stochastic programming",
"year": "2016"
},
{
"authors": [
"A Giannou",
"E Vlatakis-Gkaragkounis",
"P Mertikopoulos"
],
"doi": "",
"ref_id": "b26",
"title": "On the rate of convergence of regularized learning in games: From bandits and uncertainty to optimism and beyond",
"year": "2021. December 6-14, 2021. 2021"
},
{
"authors": [
"Martin Grötschel",
"László Lovász",
"Alexander Schrijver"
],
"doi": "10.1007/978-3-642-97881-4",
"ref_id": "b27",
"title": "Geometric Algorithms and Combinatorial Optimization",
"year": "1988"
},
{
"authors": [
"András György",
"Tamás Linder",
"György Ottucsák"
],
"doi": "10.1007/11776420_35",
"ref_id": "b28",
"title": "The Shortest Path Problem Under Partial Monitoring",
"year": "2007"
},
{
"authors": [
"A Héliou",
"J Cohen",
"P Mertikopoulos"
],
"doi": "",
"ref_id": "b29",
"title": "Learning with bandit feedback in potential games",
"year": "December 4-9, 2017. 2017"
},
{
"authors": [
"A Kalai",
"S Vempala"
],
"doi": "10.1016/j.jcss.2004.10.016",
"ref_id": "b30",
"title": "Efficient algorithms for online decision problems",
"year": "2005"
},
{
"authors": [
"Pieter Kleer",
"Guido Schäfer"
],
"doi": "10.1007/s10107-020-01546-6",
"ref_id": "b31",
"title": "Computation and efficiency of potential function minimizers of combinatorial congestion games",
"year": "2021"
},
{
"authors": [
"Elias Koutsoupias",
"Christos Papadimitriou"
],
"doi": "10.1007/3-540-49116-3_38",
"ref_id": "b32",
"title": "Worst-Case Equilibria",
"year": "1999"
},
{
"authors": [
"Stefanos Leonardos",
"Georgios Piliouras"
],
"doi": "10.1016/j.artint.2021.103653",
"ref_id": "b33",
"title": "Exploration-exploitation in multi-agent learning: Catastrophe theory meets game theory",
"year": "2022"
},
{
"authors": [
"Panayotis Mertikopoulos",
"Mathias Staudigl"
],
"doi": "10.1109/cdc.2017.8264505",
"ref_id": "b34",
"title": "Convergence to nash equilibrium in continuous games with noisy first-order feedback",
"year": "December 12-15, 2017. 2017"
},
{
"authors": [
"Panayotis Mertikopoulos",
"Zhengyuan Zhou"
],
"doi": "10.1007/s10107-018-1254-8",
"ref_id": "b35",
"title": "Learning in games with continuous action sets and unknown payoff functions",
"year": "2019"
},
{
"authors": [
"P Mertikopoulos",
"C H Papadimitriou",
"G Piliouras"
],
"doi": "",
"ref_id": "b36",
"title": "Cycles in adversarial regularized learning",
"year": "January 7-10, 2018. 2018"
},
{
"authors": [
"D Monderer",
"L S Shapley"
],
"doi": "",
"ref_id": "b37",
"title": "Potential games",
"year": "1996"
},
{
"authors": [
"G Neu",
"G Bartók"
],
"doi": "",
"ref_id": "b38",
"title": "An efficient algorithm for learning with semi-bandit feedback",
"year": "October 6-9, 2013. 2013"
},
{
"authors": [
"G Palaiopanos",
"I Panageas",
"G Piliouras"
],
"doi": "",
"ref_id": "b39",
"title": "Multiplicative weights update with constant step-size in congestion games: Convergence, limit cycles and chaos",
"year": "December 4-9, 2017. 2017"
},
{
"authors": [
"Georgios Piliouras",
"Jeff S Shamma"
],
"doi": "10.1137/1.9781611973402.64",
"ref_id": "b40",
"title": "Optimization Despite Chaos: Convex Relaxations to Complex Limit Sets via Poincaré Recurrence",
"year": "January 5-7, 2014. 2014"
},
{
"authors": [
"Robert W Rosenthal"
],
"doi": "10.1007/bf01737559",
"ref_id": "b41",
"title": "A class of games possessing pure-strategy Nash equilibria",
"year": "1973"
},
{
"authors": [
"Tim Roughgarden"
],
"doi": "10.1145/1536414.1536485",
"ref_id": "b42",
"title": "Intrinsic robustness of the price of anarchy",
"year": "2009"
},
{
"authors": [
"Tim Roughgarden",
"Éva Tardos"
],
"doi": "10.1145/506147.506153",
"ref_id": "b43",
"title": "How bad is selfish routing?",
"year": "2002"
},
{
"authors": [
"Yannick Viossat",
"Andriy Zapechelnyuk"
],
"doi": "10.1016/j.jet.2012.07.003",
"ref_id": "b44",
"title": "No-regret dynamics and fictitious play",
"year": "2013"
},
{
"authors": [
"E Vlatakis-Gkaragkounis",
"L Flokas",
"T Lianeas",
"P Mertikopoulos",
"G Piliouras"
],
"doi": "",
"ref_id": "b45",
"title": "No-regret learning and mixed nash equilibria: They do not mix",
"year": "2020. December 6-12, 2020. 2020"
},
{
"authors": [
"D Q Vu",
"K Antonakopoulos",
"P Mertikopoulos"
],
"doi": "10.52591/lxai202112070",
"ref_id": "b46",
"title": "LatinX in AI at Neural Information Processing Systems Conference 2021",
"year": "2021. December 6-14, 2021. 2021"
},
{
"authors": [
"M Zinkevich"
],
"doi": "10.1007/b12006",
"ref_id": "b47",
"title": "Learning Theory and Kernel Machines",
"year": "August 21-24, 2003. 2003"
}
] |
[
"41e5b9740d3dcf23",
"8a39274cce4495a2",
"fdb2e4674bb31ba2",
"8d3762e83b1e18d8",
"ad3720610fcab98a",
"215a3e8ccf19e4b9",
"75d88cb47501c538",
"a051bf01a3acdceb",
"4431a2475550864d",
"0325fbcb0f9ae891"
] |
[
"cb1953b309eb4777",
"913f3bf6add0361e",
"cfeaeae9240dc8a5",
"e2ca77f010d39284",
"252823f8502f0e4f",
"7855eb4e3c81c502",
"215a3e8ccf19e4b9",
"792d8c0b20b482b8",
"d0887324369e4941",
"4cbcc95fa43da150",
"e622714479c256f3",
"dac55fa05aae3a1f",
"60cedaadb4645e24",
"75d88cb47501c538",
"8921850d6ac8d869",
"a605295d56eee007",
"bf3a83e239a65c21",
"90a407e2c3466245",
"86f991f4c050150d",
"279b2cc040950a3c",
"8a39274cce4495a2",
"285af47395fe4b76",
"27fe5a3a07c7dbff",
"fdb2e4674bb31ba2",
"ad3720610fcab98a",
"32af1072a47c64a5",
"56b460659d969033",
"9cb4ce611c332a9f",
"08c327cf9336022c",
"c50989b5c88055a8",
"4351b69350de038f",
"d6a86cf1e32f3610",
"4431a2475550864d",
"5fc5ac745b632924",
"6a5d0100478ab486",
"4f56f730fa3e4599",
"2fff13fecad4daf4",
"41e5b9740d3dcf23",
"9387b15d4e4b1b26",
"57b330ff7f21c51d",
"83f2d2ad715c0dad",
"0325fbcb0f9ae891",
"a051bf01a3acdceb",
"8d3762e83b1e18d8",
"2d4569bb2b258d2e",
"54b8837c15ef7264",
"c355d03a22bd891d",
"5ad21c629b1267e9"
] |
fZFNPf1QiF
|
Beyond the Universal Law of Robustness: Sharper Laws for Random Features and Neural Tangent Kernels
|
data/openreview_paper/ICML_2023_oral/fZFNPf1QiF//paper.pdf
| 45
| 24
|
[
{
"authors": [
"Andrea Montanari",
"Yiqiao Zhong"
],
"doi": "10.1214/22-aos2211",
"ref_id": "b24",
"title": "The interpolation phase transition in neural networks: Memorization and generalization under lazy training",
"year": "2022"
},
{
"authors": [
"Song Mei",
"Andrea Montanari"
],
"doi": "10.1002/cpa.22008",
"ref_id": "b22",
"title": "The Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve",
"year": "2022"
},
{
"authors": [
"S Arora",
"S Du",
"W Hu",
"Z Li",
"R Wang"
],
"doi": "10.1016/bs.hna.2024.05.007",
"ref_id": "b4",
"title": "Two-layer neural networks for partial differential equations: optimization and generalization theory",
"year": "2019"
},
{
"authors": [
"Q Nguyen",
"M Mondelli",
"G Montufar"
],
"doi": "",
"ref_id": "b26",
"title": "Tight bounds on the smallest eigenvalue of the neural tangent kernel for deep ReLU networks",
"year": "2021"
},
{
"authors": [
"Hossein Taheri",
"Ramtin Pedarsani",
"Christos Thrampoulidis"
],
"doi": "10.1109/isit50566.2022.9834717",
"ref_id": "b34",
"title": "Asymptotic Behavior of Adversarial Training in Binary Linear Classification",
"year": "2020"
},
{
"authors": [
"N Loo",
"R Hasani",
"A Amini",
"D Rus"
],
"doi": "",
"ref_id": "b20",
"title": "Evolution of neural tangent kernels under benign and adversarial training",
"year": "2022"
},
{
"authors": [
"Hanxun Huang",
"Xingjun Ma",
"Sarah M Erfani",
"James Bailey"
],
"doi": "10.1109/ijcnn52387.2021.9533655",
"ref_id": "b14",
"title": "Neural Architecture Search via Combinatorial Multi-Armed Bandit",
"year": "2021"
},
{
"authors": [
"A Javanmard",
"M Soltanolkotabi",
"H Hassani"
],
"doi": "",
"ref_id": "b17",
"title": "Precise tradeoffs in adversarial training for linear regression",
"year": "2020"
},
{
"authors": [
"Zhichao Wang",
"Yizhe Zhu"
],
"doi": "10.1214/23-aap2010",
"ref_id": "b40",
"title": "Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks",
"year": "2021"
},
{
"authors": [
"Z Zhu",
"F Liu",
"G Chrysos",
"V Cevher"
],
"doi": "",
"ref_id": "b44",
"title": "Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)",
"year": "2022"
},
{
"authors": [
"A Jacot",
"F Gabriel",
"C Hongler"
],
"doi": "",
"ref_id": "b15",
"title": "Neural tangent kernel: Convergence and generalization in neural networks",
"year": "2018"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li",
"Z Song"
],
"doi": "",
"ref_id": "b3",
"title": "A convergence theory for deep learning via over-parameterization",
"year": "2019"
},
{
"authors": [
"M Soltanolkotabi",
"A Javanmard",
"J D Lee"
],
"doi": "",
"ref_id": "b32",
"title": "Theoretical insights into the optimization landscape of overparameterized shallow neural networks",
"year": "2018"
},
{
"authors": [
"S Bubeck",
"M Sellke"
],
"doi": "",
"ref_id": "b8",
"title": "A universal law of robustness via isoperimetry",
"year": "2021"
},
{
"authors": [
"N Tsilivis",
"J Kempe"
],
"doi": "",
"ref_id": "b36",
"title": "What can the neural tangent kernel tell us about adversarial robustness",
"year": "2022"
},
{
"authors": [
"B Adlam",
"J Pennington"
],
"doi": "",
"ref_id": "b2",
"title": "The neural tangent kernel in high dimensions: Triple descent and a multi-scale theory of generalization",
"year": "2020"
},
{
"authors": [
"B Wu",
"J Chen",
"D Cai",
"X He",
"Q Gu"
],
"doi": "",
"ref_id": "b42",
"title": "Do wider neural networks really help adversarial robustness",
"year": "2021"
},
{
"authors": [
"T Hastie",
"A Montanari",
"S Rosset",
"R J Tibshirani"
],
"doi": "",
"ref_id": "b13",
"title": "Surprises in high-dimensional ridgeless least squares interpolation",
"year": "2022"
},
{
"authors": [
"S Bombari",
"M H Amani",
"M Mondelli"
],
"doi": "",
"ref_id": "b7",
"title": "Memorization and optimization in deep neural networks with minimum over-parameterization",
"year": "2022"
},
{
"authors": [
"Zhenyu Liao",
"Romain Couillet"
],
"doi": "10.1109/icassp.2017.7952586",
"ref_id": "b19",
"title": "Random matrices meet machine learning: A large dimensional analysis of LS-SVM",
"year": "2018"
},
{
"authors": [
"Hamed Hassani",
"Adel Javanmard"
],
"doi": "10.1214/24-aos2353",
"ref_id": "b12",
"title": "The curse of overparametrization in adversarial training: Precise analysis of robust generalization for random features regression",
"year": "2022"
},
{
"authors": [
"A Rahimi",
"B Recht"
],
"doi": "",
"ref_id": "b29",
"title": "Random features for large-scale kernel machines",
"year": "2007"
},
{
"authors": [
"D Tsipras",
"S Santurkar",
"L Engstrom",
"A Turner",
"A Madry"
],
"doi": "",
"ref_id": "b37",
"title": "Robustness may be at odds with accuracy",
"year": "2019"
},
{
"authors": [
"Adel Javanmard",
"Mahdi Soltanolkotabi"
],
"doi": "10.1214/22-aos2180",
"ref_id": "b16",
"title": "Precise statistical analysis of classification accuracies for adversarial training",
"year": "2022"
}
] |
[
{
"authors": [
"R Adamczak"
],
"doi": "",
"ref_id": "b0",
"title": "A note on the Hanson-Wright inequality for random vectors with dependencies",
"year": "2015"
},
{
"authors": [
"R Adamczak",
"A E Litvak",
"A Pajor",
"N Tomczak-Jaegermann"
],
"doi": "",
"ref_id": "b1",
"title": "Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling",
"year": "2011"
},
{
"authors": [
"B Adlam",
"J Pennington"
],
"doi": "",
"ref_id": "b2",
"title": "The neural tangent kernel in high dimensions: Triple descent and a multi-scale theory of generalization",
"year": "2020"
},
{
"authors": [
"Z Allen-Zhu",
"Y Li",
"Z Song"
],
"doi": "",
"ref_id": "b3",
"title": "A convergence theory for deep learning via over-parameterization",
"year": "2019"
},
{
"authors": [
"S Arora",
"S Du",
"W Hu",
"Z Li",
"R Wang"
],
"doi": "10.1016/bs.hna.2024.05.007",
"ref_id": "b4",
"title": "Two-layer neural networks for partial differential equations: optimization and generalization theory",
"year": "2019"
},
{
"authors": [
"P L Bartlett",
"A Montanari",
"A Rakhlin"
],
"doi": "",
"ref_id": "b5",
"title": "Deep learning: a statistical viewpoint",
"year": "2021"
},
{
"authors": [
"Battista Biggio",
"Igino Corona",
"Davide Maiorca",
"Blaine Nelson",
"Nedim Šrndić",
"Pavel Laskov",
"Giorgio Giacinto",
"Fabio Roli"
],
"doi": "10.1007/978-3-642-40994-3_25",
"ref_id": "b6",
"title": "Evasion Attacks against Machine Learning at Test Time",
"year": "2013"
},
{
"authors": [
"S Bombari",
"M H Amani",
"M Mondelli"
],
"doi": "",
"ref_id": "b7",
"title": "Memorization and optimization in deep neural networks with minimum over-parameterization",
"year": "2022"
},
{
"authors": [
"S Bubeck",
"M Sellke"
],
"doi": "",
"ref_id": "b8",
"title": "A universal law of robustness via isoperimetry",
"year": "2021"
},
{
"authors": [
"S Bubeck",
"Y Li",
"D M Nagaraj"
],
"doi": "",
"ref_id": "b9",
"title": "A law of robustness for two-layers neural networks",
"year": "2021"
},
{
"authors": [
"Yair Carmon",
"Jenia Jitsev",
"Tomer Porian",
"Ludwig Schmidt",
"Mitchell Wortsman"
],
"doi": "10.52202/079017-3189",
"ref_id": "b10",
"title": "Resolving Discrepancies in Compute-Optimal Scaling of Language Models",
"year": "2019"
},
{
"authors": [
"Suriya Gunasekar",
"Blake Woodworth",
"Srinadh Bhojanapalli",
"Behnam Neyshabur",
"Nathan Srebro"
],
"doi": "10.1109/ita.2018.8503198",
"ref_id": "b11",
"title": "Implicit Regularization in Matrix Factorization",
"year": "2017"
},
{
"authors": [
"Hamed Hassani",
"Adel Javanmard"
],
"doi": "10.1214/24-aos2353",
"ref_id": "b12",
"title": "The curse of overparametrization in adversarial training: Precise analysis of robust generalization for random features regression",
"year": "2022"
},
{
"authors": [
"T Hastie",
"A Montanari",
"S Rosset",
"R J Tibshirani"
],
"doi": "",
"ref_id": "b13",
"title": "Surprises in high-dimensional ridgeless least squares interpolation",
"year": "2022"
},
{
"authors": [
"Hanxun Huang",
"Xingjun Ma",
"Sarah M Erfani",
"James Bailey"
],
"doi": "10.1109/ijcnn52387.2021.9533655",
"ref_id": "b14",
"title": "Neural Architecture Search via Combinatorial Multi-Armed Bandit",
"year": "2021"
},
{
"authors": [
"A Jacot",
"F Gabriel",
"C Hongler"
],
"doi": "",
"ref_id": "b15",
"title": "Neural tangent kernel: Convergence and generalization in neural networks",
"year": "2018"
},
{
"authors": [
"Adel Javanmard",
"Mahdi Soltanolkotabi"
],
"doi": "10.1214/22-aos2180",
"ref_id": "b16",
"title": "Precise statistical analysis of classification accuracies for adversarial training",
"year": "2022"
},
{
"authors": [
"A Javanmard",
"M Soltanolkotabi",
"H Hassani"
],
"doi": "",
"ref_id": "b17",
"title": "Precise tradeoffs in adversarial training for linear regression",
"year": "2020"
},
{
"authors": [
"Alexey Kurakin",
"Ian J Goodfellow",
"Samy Bengio"
],
"doi": "10.1201/9781351251389-8",
"ref_id": "b18",
"title": "Adversarial Examples in the Physical World",
"year": "2017"
},
{
"authors": [
"Zhenyu Liao",
"Romain Couillet"
],
"doi": "10.1109/icassp.2017.7952586",
"ref_id": "b19",
"title": "Random matrices meet machine learning: A large dimensional analysis of LS-SVM",
"year": "2018"
},
{
"authors": [
"N Loo",
"R Hasani",
"A Amini",
"D Rus"
],
"doi": "",
"ref_id": "b20",
"title": "Evolution of neural tangent kernels under benign and adversarial training",
"year": "2022"
},
{
"authors": [
"A Madry",
"A Makelov",
"L Schmidt",
"D Tsipras",
"A Vladu"
],
"doi": "",
"ref_id": "b21",
"title": "Towards deep learning models resistant to adversarial attacks",
"year": "2018"
},
{
"authors": [
"Song Mei",
"Andrea Montanari"
],
"doi": "10.1002/cpa.22008",
"ref_id": "b22",
"title": "The Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve",
"year": "2022"
},
{
"authors": [
"Y Min",
"L Chen",
"A Karbasi"
],
"doi": "",
"ref_id": "b23",
"title": "The curious case of adversarially robust models: More data can help, double descend, or hurt generalization",
"year": "2021"
},
{
"authors": [
"Andrea Montanari",
"Yiqiao Zhong"
],
"doi": "10.1214/22-aos2211",
"ref_id": "b24",
"title": "The interpolation phase transition in neural networks: Memorization and generalization under lazy training",
"year": "2022"
},
{
"authors": [
"Preetum Nakkiran",
"Gal Kaplun",
"Yamini Bansal",
"Tristan Yang",
"Boaz Barak",
"Ilya Sutskever"
],
"doi": "10.1088/1742-5468/ac3a74",
"ref_id": "b25",
"title": "Deep double descent: where bigger models and more data hurt*",
"year": "2020"
},
{
"authors": [
"Q Nguyen",
"M Mondelli",
"G Montufar"
],
"doi": "",
"ref_id": "b26",
"title": "Tight bounds on the smallest eigenvalue of the neural tangent kernel for deep ReLU networks",
"year": "2021"
},
{
"authors": [
"A Raghunathan",
"J Steinhardt",
"P Liang"
],
"doi": "",
"ref_id": "b27",
"title": "Certified defenses against adversarial examples",
"year": "2018"
},
{
"authors": [
"A Raghunathan",
"S M Xie",
"F Yang",
"J C Duchi",
"P Liang"
],
"doi": "",
"ref_id": "b28",
"title": "Adversarial training can hurt generalization",
"year": "2019"
},
{
"authors": [
"A Rahimi",
"B Recht"
],
"doi": "",
"ref_id": "b29",
"title": "Random features for large-scale kernel machines",
"year": "2007"
},
{
"authors": [
"Holger Sambale"
],
"doi": "10.1007/978-3-031-26979-0_7",
"ref_id": "b30",
"title": "Some Notes on Concentration for α-Subexponential Random Variables",
"year": "2020"
},
{
"authors": [
"M E A Seddik",
"C Louart",
"M Tamaazousti",
"R Couillet"
],
"doi": "",
"ref_id": "b31",
"title": "Random matrix theory proves that deep learning representations of GAN-data behave as gaussian mixtures",
"year": "2020"
},
{
"authors": [
"M Soltanolkotabi",
"A Javanmard",
"J D Lee"
],
"doi": "",
"ref_id": "b32",
"title": "Theoretical insights into the optimization landscape of overparameterized shallow neural networks",
"year": "2018"
},
{
"authors": [
"C Szegedy",
"W Zaremba",
"I Sutskever",
"J Bruna",
"D Erhan",
"I J Goodfellow",
"R Fergus"
],
"doi": "",
"ref_id": "b33",
"title": "Intriguing properties of neural networks",
"year": "2014"
},
{
"authors": [
"Hossein Taheri",
"Ramtin Pedarsani",
"Christos Thrampoulidis"
],
"doi": "10.1109/isit50566.2022.9834717",
"ref_id": "b34",
"title": "Asymptotic Behavior of Adversarial Training in Binary Linear Classification",
"year": "2020"
},
{
"authors": [
"Joel A Tropp"
],
"doi": "10.1007/s10208-011-9099-z",
"ref_id": "b35",
"title": "User-Friendly Tail Bounds for Sums of Random Matrices",
"year": "2012"
},
{
"authors": [
"N Tsilivis",
"J Kempe"
],
"doi": "",
"ref_id": "b36",
"title": "What can the neural tangent kernel tell us about adversarial robustness",
"year": "2022"
},
{
"authors": [
"D Tsipras",
"S Santurkar",
"L Engstrom",
"A Turner",
"A Madry"
],
"doi": "",
"ref_id": "b37",
"title": "Robustness may be at odds with accuracy",
"year": "2019"
},
{
"authors": [
"R Vershynin"
],
"doi": "",
"ref_id": "b38",
"title": "High-dimensional probability: An introduction with applications in data science",
"year": "2018"
},
{
"authors": [
"Y Wang",
"E Ullah",
"P Mianjy",
"R Arora"
],
"doi": "",
"ref_id": "b39",
"title": "Adversarial robustness is at odds with lazy training",
"year": "2022"
},
{
"authors": [
"Zhichao Wang",
"Yizhe Zhu"
],
"doi": "10.1214/23-aap2010",
"ref_id": "b40",
"title": "Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks",
"year": "2021"
},
{
"authors": [
"E Wong",
"Z Kolter"
],
"doi": "10.4135/9781529602258",
"ref_id": "b41",
"title": "Adversarial Examples Against Machine Learning Models",
"year": "2018"
},
{
"authors": [
"B Wu",
"J Chen",
"D Cai",
"X He",
"Q Gu"
],
"doi": "",
"ref_id": "b42",
"title": "Do wider neural networks really help adversarial robustness",
"year": "2021"
},
{
"authors": [
"H Zhang",
"Y Yu",
"J Jiao",
"E Xing",
"L El Ghaoui",
"M Jordan"
],
"doi": "",
"ref_id": "b43",
"title": "Theoretically principled trade-off between robustness and accuracy",
"year": "2019"
},
{
"authors": [
"Z Zhu",
"F Liu",
"G Chrysos",
"V Cevher"
],
"doi": "",
"ref_id": "b44",
"title": "Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)",
"year": "2022"
}
] |
[
"5710aa07defd14fb",
"bb8ff6fd3e08a133",
"1a975813306f8409",
"dc3b9086964838fb",
"bb228e53af5363ce",
"dfa0a678239006f9",
"1dbf406163b28bc6",
"c9245defe3ebe8d8",
"63bacd01a95e550f",
"927cbedbcf4d31f1",
"62ce261592dc3524",
"7647151bccf7e671",
"337eb879866aca36",
"8ddfce34d70ac7fb",
"8572a800e9dedd8a",
"ba7530f24c11db0c",
"a64bea93461d6610",
"77d2fa61daa2caba",
"4bc30f6cdd42456d",
"a74634da2e9213be",
"e90a7c7d1db62935",
"28e2d3138ce3b9b5",
"16efcd157d7896e3",
"ae4f7da09d712a44"
] |
[
"4388f9b95efa3829",
"15d7a8359f55cac4",
"ba7530f24c11db0c",
"7647151bccf7e671",
"1a975813306f8409",
"979d9b8d6f3f8e89",
"17770e24dedcddc9",
"4bc30f6cdd42456d",
"8ddfce34d70ac7fb",
"f5c5bea9e1a3db55",
"5f90b26528b7fd13",
"aaee0153bf36377e",
"e90a7c7d1db62935",
"77d2fa61daa2caba",
"1dbf406163b28bc6",
"62ce261592dc3524",
"ae4f7da09d712a44",
"c9245defe3ebe8d8",
"b3d5ff85cbcc0d17",
"a74634da2e9213be",
"dfa0a678239006f9",
"a9fb8d929255c90d",
"bb8ff6fd3e08a133",
"1b69af82e9ba71a0",
"5710aa07defd14fb",
"46755970ca41bdbf",
"dc3b9086964838fb",
"2642299aaa17011b",
"c1555a1a8aa03834",
"28e2d3138ce3b9b5",
"7a075679d2da9335",
"97563aa99f1f4610",
"337eb879866aca36",
"41307ffa76001ad5",
"bb228e53af5363ce",
"c38df2e5ad01dff8",
"8572a800e9dedd8a",
"16efcd157d7896e3",
"2c21378ecb4fdc39",
"1332767a2b18cb44",
"63bacd01a95e550f",
"8dfca5d79a3bd02a",
"a64bea93461d6610",
"5ffd6ddc10cc18d5",
"927cbedbcf4d31f1"
] |
gsP05g8IeK
|
SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot
|
data/openreview_paper/ICML_2023_oral/gsP05g8IeK//paper.pdf
| 52
| 9
|
[
{
"authors": [
"W Kwon",
"S Kim",
"M W Mahoney",
"J Hassoun",
"K Keutzer",
"A Gholami"
],
"doi": "",
"ref_id": "b26",
"title": "A fast post-training pruning framework for transformers",
"year": "2022"
},
{
"authors": [
"S Han",
"H Mao",
"W J Dally"
],
"doi": "",
"ref_id": "b15",
"title": "Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding",
"year": "2016"
},
{
"authors": [
"Y Li",
"R Gong",
"X Tan",
"Y Yang",
"P Hu",
"Q Zhang",
"F Yu",
"W Wang",
"S Gu",
"Brecq"
],
"doi": "",
"ref_id": "b28",
"title": "Pushing the limit of post-training quantization by block reconstruction",
"year": "2021"
},
{
"authors": [
"Z Yao",
"R Y Aminabadi",
"M Zhang",
"X Wu",
"C Li",
"Y He",
"Zeroquant"
],
"doi": "",
"ref_id": "b48",
"title": "Efficient and affordable post-training quantization for large-scale transformers",
"year": "2022"
},
{
"authors": [
"T Gale",
"E Elsen",
"S Hooker"
],
"doi": "",
"ref_id": "b11",
"title": "The state of sparsity in deep neural networks",
"year": "2019"
},
{
"authors": [
"T L Scao",
"A Fan",
"C Akiki",
"E Pavlick",
"S Ilić",
"D Hesslow",
"R Castagné",
"A S Luccioni",
"F Yvon",
"M Gallé"
],
"doi": "",
"ref_id": "b43",
"title": "A 176b-parameter open-access multilingual language model",
"year": "2022"
},
{
"authors": [
"M Nagel",
"R A Amjad",
"M Van Baalen",
"C Louizos",
"T Blankevoort"
],
"doi": "",
"ref_id": "b34",
"title": "Up or down? Adaptive rounding for post-training quantization",
"year": "2020"
},
{
"authors": [
"S Zhang",
"S Roller",
"N Goyal",
"M Artetxe",
"M Chen",
"S Chen",
"C Dewan",
"M Diab",
"X Li",
"X V Lin"
],
"doi": "",
"ref_id": "b49",
"title": "Open pre-trained transformer language models",
"year": "2022"
},
{
"authors": [
"G Xiao",
"J Lin",
"M Seznec",
"J Demouth",
"S Han"
],
"doi": "",
"ref_id": "b47",
"title": "Smoothquant: Accurate and efficient post-training quantization for large language models",
"year": "2022"
}
] |
[
{
"authors": [
"Thomas Blumensath",
"Mike E Davies"
],
"doi": "10.1007/s00041-008-9035-z",
"ref_id": "b0",
"title": "Iterative Thresholding for Sparse Approximations",
"year": "2008"
},
{
"authors": [
"Michael Boratko",
"Harshit Padigela",
"Divyendra Mikkilineni",
"Pritish Yuvraj",
"Rajarshi Das",
"Andrew Mccallum",
"Maria Chang",
"Achille Fokoue-Nkoutche",
"Pavan Kapanipathi",
"Nicholas Mattei",
"Ryan Musa",
"Kartik Talamadupula",
"Michael Witbrock"
],
"doi": "10.18653/v1/w18-2607",
"ref_id": "b1",
"title": "A Systematic Classification of Knowledge, Reasoning, and Context within the ARC Dataset",
"year": "2018"
},
{
"authors": [
"T Dettmers",
"L Zettlemoyer"
],
"doi": "",
"ref_id": "b2",
"title": "The case for 4-bit precision: k-bit inference scaling laws",
"year": "2022"
},
{
"authors": [
"T Dettmers",
"M Lewis",
"Y Belkada",
"L Zettlemoyer",
"Llm"
],
"doi": "",
"ref_id": "b3",
"title": "int8(): 8-bit matrix multiplication for transformers at scale",
"year": "2022"
},
{
"authors": [
"Eleutherai"
],
"doi": "",
"ref_id": "b4",
"title": "EleutherAI LM Evaluation Harness",
"year": "2022"
},
{
"authors": [
"Erich Elsen",
"Marat Dukhan",
"Trevor Gale",
"Karen Simonyan"
],
"doi": "10.1109/cvpr42600.2020.01464",
"ref_id": "b5",
"title": "Fast Sparse ConvNets",
"year": "2020"
},
{
"authors": [
"U Evci",
"T Gale",
"J Menick",
"P S Castro",
"E Elsen"
],
"doi": "",
"ref_id": "b6",
"title": "Rigging the lottery: Making all tickets winners",
"year": "2020"
},
{
"authors": [
"E Frantar",
"D Alistarh",
"Spdy"
],
"doi": "",
"ref_id": "b7",
"title": "Accurate pruning with speedup guarantees",
"year": "2022"
},
{
"authors": [
"E Frantar",
"E Kurtic",
"D Alistarh",
"M-Fac"
],
"doi": "",
"ref_id": "b8",
"title": "Efficient matrix-free approximations of second-order information",
"year": "2021"
},
{
"authors": [
"E Frantar",
"S Ashkboos",
"T Hoefler",
"D Alistarh",
"Gptq"
],
"doi": "",
"ref_id": "b9",
"title": "Accurate post-training compression for generative pretrained transformers",
"year": "2022"
},
{
"authors": [
"E Frantar",
"S P Singh",
"D Alistarh"
],
"doi": "",
"ref_id": "b10",
"title": "Optimal Brain Compression: A framework for accurate posttraining quantization and pruning",
"year": "2022"
},
{
"authors": [
"T Gale",
"E Elsen",
"S Hooker"
],
"doi": "",
"ref_id": "b11",
"title": "The state of sparsity in deep neural networks",
"year": "2019"
},
{
"authors": [
"Masafumi Hagiwara"
],
"doi": "10.1016/0925-2312(94)90055-8",
"ref_id": "b12",
"title": "A simple and effective method for removal of hidden units and weights",
"year": "1994"
},
{
"authors": [],
"doi": "10.1016/0925-2312(94)90050-7",
"ref_id": "b13",
"title": "Scanning the special issue on backpropagation (part IV)",
"year": ""
},
{
"authors": [
"S Han",
"J Pool",
"J Tran",
"W J Dally"
],
"doi": "",
"ref_id": "b14",
"title": "Learning both weights and connections for efficient neural networks",
"year": "2015"
},
{
"authors": [
"S Han",
"H Mao",
"W J Dally"
],
"doi": "",
"ref_id": "b15",
"title": "Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding",
"year": "2016"
},
{
"authors": [
"B Hassibi",
"D G Stork",
"G J Wolff"
],
"doi": "10.1109/icnn.1993.298572",
"ref_id": "b16",
"title": "Optimal Brain Surgeon and general network pruning",
"year": "1993"
},
{
"authors": [
"Y He",
"J Lin",
"Z Liu",
"H Wang",
"L.-J Li",
"S Han",
"Amc"
],
"doi": "",
"ref_id": "b17",
"title": "AutoML for model compression and acceleration on mobile devices",
"year": "2018"
},
{
"authors": [
"T Hoefler",
"D Alistarh",
"T Ben-Nun",
"N Dryden",
"A Peste"
],
"doi": "",
"ref_id": "b18",
"title": "Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks",
"year": "2021"
},
{
"authors": [
"I Hubara",
"B Chmiel",
"M Island",
"R Banner",
"S Naor",
"D Soudry"
],
"doi": "",
"ref_id": "b19",
"title": "Accelerated sparse neural training: A provable and efficient method to find N:M transposable masks",
"year": "2021"
},
{
"authors": [
"I Hubara",
"Y Nahshan",
"Y Hanani",
"R Banner",
"D Soudry"
],
"doi": "",
"ref_id": "b20",
"title": "Accurate post training quantization with small calibration sets",
"year": "2021"
},
{
"authors": [
"Huggingface"
],
"doi": "",
"ref_id": "b21",
"title": "HuggingFace Perplexity Calculation",
"year": "2022"
},
{
"authors": [
"Jason Kingdon"
],
"doi": "10.1007/978-1-4471-0949-5",
"ref_id": "b22",
"title": "Intelligent Systems and Financial Forecasting",
"year": "1997"
},
{
"authors": [
"Eldar Kurtic",
"Daniel Campos",
"Tuan Nguyen",
"Elias Frantar",
"Mark Kurtz",
"Benjamin Fineran",
"Michael Goin",
"Dan Alistarh"
],
"doi": "10.18653/v1/2022.emnlp-main.279",
"ref_id": "b23",
"title": "The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models",
"year": "2022"
},
{
"authors": [
"Eldar Kurtic",
"Daniel Campos",
"Tuan Nguyen",
"Elias Frantar",
"Mark Kurtz",
"Benjamin Fineran",
"Michael Goin",
"Dan Alistarh"
],
"doi": "10.18653/v1/2022.emnlp-main.279",
"ref_id": "b24",
"title": "The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models",
"year": "2022"
},
{
"authors": [
"M Kurtz",
"J Kopinsky",
"R Gelashvili",
"A Matveev",
"J Carr",
"M Goin",
"W Leiserson",
"S Moore",
"B Nell",
"N Shavit",
"D Alistarh"
],
"doi": "",
"ref_id": "b25",
"title": "Inducing and exploiting activation sparsity for fast inference on deep neural networks",
"year": "2020"
},
{
"authors": [
"W Kwon",
"S Kim",
"M W Mahoney",
"J Hassoun",
"K Keutzer",
"A Gholami"
],
"doi": "",
"ref_id": "b26",
"title": "A fast post-training pruning framework for transformers",
"year": "2022"
},
{
"authors": [
"Y Lecun",
"B Boser",
"J S Denker",
"D Henderson",
"R E Howard",
"W Hubbard",
"L D Jackel"
],
"doi": "10.1162/neco.1989.1.4.541",
"ref_id": "b27",
"title": "Backpropagation Applied to Handwritten Zip Code Recognition",
"year": "1989"
},
{
"authors": [
"Y Li",
"R Gong",
"X Tan",
"Y Yang",
"P Hu",
"Q Zhang",
"F Yu",
"W Wang",
"S Gu",
"Brecq"
],
"doi": "",
"ref_id": "b28",
"title": "Pushing the limit of post-training quantization by block reconstruction",
"year": "2021"
},
{
"authors": [
"L Liu",
"S Zhang",
"Z Kuang",
"A Zhou",
"J.-H Xue",
"X Wang",
"Y Chen",
"W Yang",
"Q Liao",
"W Zhang"
],
"doi": "",
"ref_id": "b29",
"title": "Group fisher pruning for practical network compression",
"year": "2021"
},
{
"authors": [
"Mitchell Marcus",
"Grace Kim",
"Mary Ann Marcinkiewicz",
"Robert Macintyre",
"Ann Bies",
"Mark Ferguson",
"Karen Katz",
"Britta Schasberger"
],
"doi": "10.3115/1075812.1075835",
"ref_id": "b30",
"title": "The Penn Treebank",
"year": "March 8-11, 1994, 1994"
},
{
"authors": [
"S Merity",
"C Xiong",
"J Bradbury",
"R Socher"
],
"doi": "",
"ref_id": "b31",
"title": "Pointer sentinel mixture models",
"year": "2016"
},
{
"authors": [
"A Mishra",
"J A Latorre",
"J Pool",
"D Stosic",
"D Stosic",
"G Venkatesh",
"C Yu",
"P Micikevicius"
],
"doi": "",
"ref_id": "b32",
"title": "Accelerating sparse deep neural networks",
"year": "2021"
},
{
"authors": [
"Nasrin Mostafazadeh",
"Michael Roth",
"Annie Louis",
"Nathanael Chambers",
"James Allen"
],
"doi": "10.18653/v1/w17-0906",
"ref_id": "b33",
"title": "LSDSem 2017 Shared Task: The Story Cloze Test",
"year": "2017"
},
{
"authors": [
"M Nagel",
"R A Amjad",
"M Van Baalen",
"C Louizos",
"T Blankevoort"
],
"doi": "",
"ref_id": "b34",
"title": "Up or down? Adaptive rounding for post-training quantization",
"year": "2020"
},
{
"authors": [
"Neuralmagic",
"Deepsparse"
],
"doi": "10.17816/eid677915-4363932",
"ref_id": "b35",
"title": "Fig. 5. Married couple Riki and Hachiro Ohara. Borrowed from URL: https://habane8.com/y/193/f.htm.",
"year": "2022"
},
{
"authors": [
"Denis Paperno",
"Germán Kruszewski",
"Angeliki Lazaridou",
"Ngoc Quan Pham",
"Raffaella Bernardi",
"Sandro Pezzelle",
"Marco Baroni",
"Gemma Boleda",
"Raquel Fernandez"
],
"doi": "10.18653/v1/p16-1144",
"ref_id": "b36",
"title": "The LAMBADA dataset: Word prediction requiring a broad discourse context",
"year": "2016"
},
{
"authors": [
"G Park",
"B Park",
"S J Kwon",
"B Kim",
"Y Lee",
"D Lee",
"Nuqmm"
],
"doi": "",
"ref_id": "b37",
"title": "Quantized matmul for efficient inference of large-scale generative language models",
"year": "2022"
},
{
"authors": [
"M Park",
"J You",
"M Nagel",
"S Chang"
],
"doi": "",
"ref_id": "b38",
"title": "Quadapter: Adapter for gpt-2 quantization",
"year": "2022"
},
{
"authors": [
"A Paszke",
"S Gross",
"F Massa",
"A Lerer",
"J Bradbury",
"G Chanan",
"T Killeen",
"Z Lin",
"N Gimelshein",
"L Antiga"
],
"doi": "",
"ref_id": "b39",
"title": "Pytorch: An imperative style, high-performance deep learning library",
"year": "2019"
},
{
"authors": [
"A Peste",
"E Iofinova",
"A Vladu",
"D Alistarh",
"Ac/Dc"
],
"doi": "",
"ref_id": "b40",
"title": "Alternating compressed/decompressed training of deep neural networks",
"year": "2021"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P Liu"
],
"doi": "",
"ref_id": "b41",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "2020"
},
{
"authors": [
"V Sanh",
"T Wolf",
"A M Rush"
],
"doi": "",
"ref_id": "b42",
"title": "Movement pruning: Adaptive sparsity by fine-tuning",
"year": "2020"
},
{
"authors": [
"T L Scao",
"A Fan",
"C Akiki",
"E Pavlick",
"S Ilić",
"D Hesslow",
"R Castagné",
"A S Luccioni",
"F Yvon",
"M Gallé"
],
"doi": "",
"ref_id": "b43",
"title": "A 176b-parameter open-access multilingual language model",
"year": "2022"
},
{
"authors": [
"S P Singh",
"D Alistarh",
"Woodfisher"
],
"doi": "",
"ref_id": "b44",
"title": "Efficient secondorder approximation for neural network compression",
"year": "2020"
},
{
"authors": [
"S Tata",
"J M Patel",
"Piqa"
],
"doi": "",
"ref_id": "b45",
"title": "An algebra for querying protein data sets",
"year": "2003"
},
{
"authors": [
"Thomas Wolf",
"Lysandre Debut",
"Victor Sanh",
"Julien Chaumond",
"Clement Delangue",
"Anthony Moi",
"Pierric Cistac",
"Tim Rault",
"Remi Louf",
"Morgan Funtowicz",
"Joe Davison",
"Sam Shleifer",
"Patrick Von Platen",
"Clara Ma",
"Yacine Jernite",
"Julien Plu",
"Canwen Xu",
"Teven Le Scao",
"Sylvain Gugger",
"Mariama Drame",
"Quentin Lhoest",
"Alexander Rush"
],
"doi": "10.18653/v1/2020.emnlp-demos.6",
"ref_id": "b46",
"title": "Transformers: State-of-the-Art Natural Language Processing",
"year": "2019"
},
{
"authors": [
"G Xiao",
"J Lin",
"M Seznec",
"J Demouth",
"S Han"
],
"doi": "",
"ref_id": "b47",
"title": "Smoothquant: Accurate and efficient post-training quantization for large language models",
"year": "2022"
},
{
"authors": [
"Z Yao",
"R Y Aminabadi",
"M Zhang",
"X Wu",
"C Li",
"Y He",
"Zeroquant"
],
"doi": "",
"ref_id": "b48",
"title": "Efficient and affordable post-training quantization for large-scale transformers",
"year": "2022"
},
{
"authors": [
"S Zhang",
"S Roller",
"N Goyal",
"M Artetxe",
"M Chen",
"S Chen",
"C Dewan",
"M Diab",
"X Li",
"X V Lin"
],
"doi": "",
"ref_id": "b49",
"title": "Open pre-trained transformer language models",
"year": "2022"
},
{
"authors": [
"A Zhou",
"Y Ma",
"J Zhu",
"J Liu",
"Z Zhang",
"K Yuan",
"W Sun",
"H Li"
],
"doi": "",
"ref_id": "b50",
"title": "Learning N:M fine-grained structured sparse neural networks from scratch",
"year": "2021"
},
{
"authors": [
"M Zhu",
"S Gupta"
],
"doi": "",
"ref_id": "b51",
"title": "To prune, or not to prune: exploring the efficacy of pruning for model compression",
"year": "2017"
}
] |
[
"1a2a6babe2fe128f",
"548b98d22f39389b",
"02bac838d8422a93",
"a7422d112b2c151e",
"fe237c5cb1e68ccf",
"34515888a8e2c334",
"dbaa7aa9b6b0842c",
"ca9e6f71bd89b8e0",
"07a8b8765c366508"
] |
[
"f74bca640dc32795",
"629aa6a31f528a90",
"d4da97e8dd0afa92",
"27f2fb80b0b69caf",
"83466d4d0045721d",
"2d6aacdc0e9098f3",
"a86741247f067e81",
"f6f53ddf3a62c567",
"d794f07cdd290452",
"729ec4dcb27acfe8",
"0188f8d402d9310e",
"fe237c5cb1e68ccf",
"ec374d2d7070932e",
"0638e90d4c2d6418",
"24a52759fa15519b",
"548b98d22f39389b",
"b880f8919225596b",
"dbfd2127395b57fd",
"c2e76f5d1265f6a6",
"40536f3e02b8a079",
"38a139ac50a8890f",
"ddbeefc601fb5291",
"584b0135d11c4a67",
"c2241b24fc5ae119",
"c2241b24fc5ae119",
"7a6840b33f1d9a9a",
"1a2a6babe2fe128f",
"3d4aee23e475ce17",
"02bac838d8422a93",
"2f9a4ff3f78c964d",
"effc14503a970760",
"247b652a102dd72b",
"1b424cfb53b07ca2",
"47fe71b8f129685f",
"dbaa7aa9b6b0842c",
"aa0ed01695db2a88",
"c825e60ad84f1c9a",
"fe8a99845199b4a3",
"b18d2bde41ae9cd8",
"8874921fdd4c2237",
"92fe33ca95ecd755",
"f7a85badef9a1442",
"bfbe40afde6966f3",
"34515888a8e2c334",
"d133d65c7f1d8e7b",
"a53f8dfd452495be",
"d6459461596f77a7",
"07a8b8765c366508",
"a7422d112b2c151e",
"ca9e6f71bd89b8e0",
"c0a2daafa2c275ee",
"f84a2f8a641076b4"
] |
bUFUaawOTk
|
Best of Both Worlds Policy Optimization
|
data/openreview_paper/ICML_2023_oral/bUFUaawOTk//paper.pdf
| 38
| 19
|
[
{
"authors": [
"Y Seldin",
"A Slivkins"
],
"doi": "",
"ref_id": "b27",
"title": "One practical algorithm for both stochastic and adversarial bandits",
"year": "2014"
},
{
"authors": [
"J Zimmert",
"Y Seldin"
],
"doi": "",
"ref_id": "b36",
"title": "An optimal algorithm for stochastic and adversarial bandits",
"year": "2019"
},
{
"authors": [
"I Amir",
"G Azov",
"T Koren",
"R Livni"
],
"doi": "",
"ref_id": "b3",
"title": "Better best of both worlds bounds for bandits with switching costs",
"year": "2022"
},
{
"authors": [
"A Zanette",
"C.-A Cheng",
"A Agarwal"
],
"doi": "",
"ref_id": "b35",
"title": "Cautiously optimistic policy optimization and exploration with linear function approximation",
"year": "2021"
},
{
"authors": [
"L Shani",
"Y Efroni",
"A Rosenberg",
"S Mannor"
],
"doi": "",
"ref_id": "b28",
"title": "Optimistic policy optimization with bandit feedback",
"year": "2020"
},
{
"authors": [
"T Jin",
"L Huang",
"H Luo"
],
"doi": "",
"ref_id": "b15",
"title": "The best of both worlds: stochastic and adversarial episodic mdps with unknown transition",
"year": "2021"
},
{
"authors": [
"S Bubeck",
"A Slivkins"
],
"doi": "",
"ref_id": "b5",
"title": "The best of both worlds: Stochastic and adversarial bandits",
"year": "2012"
},
{
"authors": [
"L Erez",
"T Koren"
],
"doi": "",
"ref_id": "b9",
"title": "Best-of-all-worlds bounds for online learning with feedback graphs",
"year": "2021"
},
{
"authors": [
"C.-W Lee",
"H Luo",
"C.-Y Wei",
"M Zhang"
],
"doi": "",
"ref_id": "b19",
"title": "Bias no more: high-probability data-dependent regret bounds for adversarial bandits and mdps",
"year": "2020"
},
{
"authors": [
"H Luo",
"C.-Y Wei",
"C.-W Lee"
],
"doi": "",
"ref_id": "b22",
"title": "Policy optimization in adversarial mdps: Improved exploration via dilated bonuses",
"year": "2021"
},
{
"authors": [
"J He",
"D Zhou",
"Q Gu"
],
"doi": "",
"ref_id": "b10",
"title": "Near-optimal policy optimization algorithms for learning adversarial linear mixture mdps",
"year": "2022"
},
{
"authors": [
"C.-Y Wei",
"H Luo"
],
"doi": "",
"ref_id": "b30",
"title": "More adaptive algorithms for adversarial bandits",
"year": "2018"
},
{
"authors": [
"S Ito",
"T Tsuchiya",
"J Honda"
],
"doi": "",
"ref_id": "b12",
"title": "Nearly optimal best-ofboth-worlds algorithms for online learning with feedback graphs",
"year": "2022"
},
{
"authors": [
"P Auer",
"C.-K Chiang"
],
"doi": "",
"ref_id": "b4",
"title": "An algorithm with nearly optimal pseudo-regret for both stochastic and adversarial bandits",
"year": "2016"
},
{
"authors": [
"T Tsuchiya",
"S Ito",
"J Honda"
],
"doi": "",
"ref_id": "b29",
"title": "Best-of-bothworlds algorithms for partial monitoring",
"year": "2022"
},
{
"authors": [
"Q Cai",
"Z Yang",
"C Jin",
"Z Wang"
],
"doi": "",
"ref_id": "b6",
"title": "Provably efficient exploration in policy optimization",
"year": "2020"
},
{
"authors": [
"S Ito"
],
"doi": "",
"ref_id": "b11",
"title": "Parameter-free multi-armed bandit algorithms with hybrid data-dependent regret bounds",
"year": "2021"
},
{
"authors": [
"C Rouyer",
"Y Seldin",
"N Cesa-Bianchi"
],
"doi": "",
"ref_id": "b24",
"title": "An algorithm for stochastic and adversarial bandits with switching costs",
"year": "2021"
},
{
"authors": [
"Y Seldin",
"G Lugosi"
],
"doi": "",
"ref_id": "b26",
"title": "An improved parametrization and analysis of the exp3++ algorithm for stochastic and adversarial bandits",
"year": "2017"
}
] |
[
{
"authors": [
"Yasin Abbasi-Yadkori",
"Joseph Modayil",
"Csaba Szepesvari"
],
"doi": "10.1109/iros.2010.5650614",
"ref_id": "b0",
"title": "Extending rapidly-exploring random trees for asymptotically optimal anytime motion planning",
"year": "2019"
},
{
"authors": [
"A Agarwal",
"M Henaff",
"S Kakade",
"W Sun"
],
"doi": "",
"ref_id": "b1",
"title": "Pc-pg: Policy cover directed exploration for provable policy gradient learning",
"year": "2020"
},
{
"authors": [
"A Agarwal",
"S M Kakade",
"J D Lee",
"G Mahajan"
],
"doi": "",
"ref_id": "b2",
"title": "Optimality and approximation with policy gradient methods in markov decision processes",
"year": "2020"
},
{
"authors": [
"I Amir",
"G Azov",
"T Koren",
"R Livni"
],
"doi": "",
"ref_id": "b3",
"title": "Better best of both worlds bounds for bandits with switching costs",
"year": "2022"
},
{
"authors": [
"P Auer",
"C.-K Chiang"
],
"doi": "",
"ref_id": "b4",
"title": "An algorithm with nearly optimal pseudo-regret for both stochastic and adversarial bandits",
"year": "2016"
},
{
"authors": [
"S Bubeck",
"A Slivkins"
],
"doi": "",
"ref_id": "b5",
"title": "The best of both worlds: Stochastic and adversarial bandits",
"year": "2012"
},
{
"authors": [
"Q Cai",
"Z Yang",
"C Jin",
"Z Wang"
],
"doi": "",
"ref_id": "b6",
"title": "Provably efficient exploration in policy optimization",
"year": "2020"
},
{
"authors": [
"Yang Chen",
"Dechang Pi",
"Yue Xu"
],
"doi": "10.1016/j.eswa.2020.114505",
"ref_id": "b7",
"title": "Neighborhood global learning based flower pollination algorithm and its application to unmanned aerial vehicle path planning",
"year": "2021"
},
{
"authors": [
"L Chen",
"H Luo",
"A Rosenberg"
],
"doi": "",
"ref_id": "b8",
"title": "Policy optimization for stochastic shortest path",
"year": "2022"
},
{
"authors": [
"L Erez",
"T Koren"
],
"doi": "",
"ref_id": "b9",
"title": "Best-of-all-worlds bounds for online learning with feedback graphs",
"year": "2021"
},
{
"authors": [
"J He",
"D Zhou",
"Q Gu"
],
"doi": "",
"ref_id": "b10",
"title": "Near-optimal policy optimization algorithms for learning adversarial linear mixture mdps",
"year": "2022"
},
{
"authors": [
"S Ito"
],
"doi": "",
"ref_id": "b11",
"title": "Parameter-free multi-armed bandit algorithms with hybrid data-dependent regret bounds",
"year": "2021"
},
{
"authors": [
"S Ito",
"T Tsuchiya",
"J Honda"
],
"doi": "",
"ref_id": "b12",
"title": "Nearly optimal best-ofboth-worlds algorithms for online learning with feedback graphs",
"year": "2022"
},
{
"authors": [
"C Jin",
"T Jin",
"H Luo",
"S Sra",
"T Yu"
],
"doi": "",
"ref_id": "b13",
"title": "Learning adversarial markov decision processes with bandit feedback and unknown transition",
"year": "2020"
},
{
"authors": [
"Jin",
"T Luo",
"H"
],
"doi": "",
"ref_id": "b14",
"title": "Simultaneously learning stochastic and adversarial episodic mdps with known transition",
"year": "2020"
},
{
"authors": [
"T Jin",
"L Huang",
"H Luo"
],
"doi": "",
"ref_id": "b15",
"title": "The best of both worlds: stochastic and adversarial episodic mdps with unknown transition",
"year": "2021"
},
{
"authors": [
"S Kakade",
"J Langford"
],
"doi": "",
"ref_id": "b16",
"title": "Approximately optimal approximate reinforcement learning",
"year": "2002"
},
{
"authors": [
"T L Lai",
"Herbert Robbins"
],
"doi": "10.1016/0196-8858(85)90002-8",
"ref_id": "b17",
"title": "Asymptotically efficient adaptive allocation rules",
"year": "1985"
},
{
"authors": [
"Tor Lattimore",
"Csaba Szepesvári"
],
"doi": "10.1017/9781108571401",
"ref_id": "b18",
"title": "Bandit Algorithms",
"year": "2018"
},
{
"authors": [
"C.-W Lee",
"H Luo",
"C.-Y Wei",
"M Zhang"
],
"doi": "",
"ref_id": "b19",
"title": "Bias no more: high-probability data-dependent regret bounds for adversarial bandits and mdps",
"year": "2020"
},
{
"authors": [
"Sergey Levine",
"Nolan Wagener",
"Pieter Abbeel"
],
"doi": "10.1109/icra.2015.7138994",
"ref_id": "b20",
"title": "Learning contact-rich manipulation skills with guided policy search",
"year": "2013"
},
{
"authors": [
"H Luo"
],
"doi": "",
"ref_id": "b21",
"title": "Homework 3 solution, introduction to online optimization/learning",
"year": "November 2022"
},
{
"authors": [
"H Luo",
"C.-Y Wei",
"C.-W Lee"
],
"doi": "",
"ref_id": "b22",
"title": "Policy optimization in adversarial mdps: Improved exploration via dilated bonuses",
"year": "2021"
},
{
"authors": [
"G Neu",
"J Olkhovskaya"
],
"doi": "",
"ref_id": "b23",
"title": "Online learning in mdps with linear function approximation and bandit feedback",
"year": "2021"
},
{
"authors": [
"C Rouyer",
"Y Seldin",
"N Cesa-Bianchi"
],
"doi": "",
"ref_id": "b24",
"title": "An algorithm for stochastic and adversarial bandits with switching costs",
"year": "2021"
},
{
"authors": [
"J Schulman",
"F Wolski",
"P Dhariwal",
"A Radford",
"O Klimov"
],
"doi": "",
"ref_id": "b25",
"title": "Proximal policy optimization algorithms",
"year": "2017"
},
{
"authors": [
"Y Seldin",
"G Lugosi"
],
"doi": "",
"ref_id": "b26",
"title": "An improved parametrization and analysis of the exp3++ algorithm for stochastic and adversarial bandits",
"year": "2017"
},
{
"authors": [
"Y Seldin",
"A Slivkins"
],
"doi": "",
"ref_id": "b27",
"title": "One practical algorithm for both stochastic and adversarial bandits",
"year": "2014"
},
{
"authors": [
"L Shani",
"Y Efroni",
"A Rosenberg",
"S Mannor"
],
"doi": "",
"ref_id": "b28",
"title": "Optimistic policy optimization with bandit feedback",
"year": "2020"
},
{
"authors": [
"T Tsuchiya",
"S Ito",
"J Honda"
],
"doi": "",
"ref_id": "b29",
"title": "Best-of-bothworlds algorithms for partial monitoring",
"year": "2022"
},
{
"authors": [
"C.-Y Wei",
"H Luo"
],
"doi": "",
"ref_id": "b30",
"title": "More adaptive algorithms for adversarial bandits",
"year": "2018"
},
{
"authors": [
"Honghao Wei",
"Xin Liu",
"Lei Ying"
],
"doi": "10.1609/aaai.v36i4.20302",
"ref_id": "b31",
"title": "A Provably-Efficient Model-Free Algorithm for Infinite-Horizon Average-Reward Constrained Markov Decision Processes",
"year": "2020"
},
{
"authors": [
"C.-Y Wei",
"M J Jahromi",
"H Luo",
"R Jain"
],
"doi": "",
"ref_id": "b32",
"title": "Learning infinite-horizon average-reward mdps with linear function approximation",
"year": "2021"
},
{
"authors": [
"H Xu",
"T Ma",
"S Du"
],
"doi": "",
"ref_id": "b33",
"title": "Fine-grained gap-dependent bounds for tabular mdps via adaptive multi-step bootstrap",
"year": "2021"
},
{
"authors": [
"A Zanette",
"A Lazaric",
"M Kochenderfer",
"E Brunskill"
],
"doi": "",
"ref_id": "b34",
"title": "Learning near optimal policies with low inherent bellman error",
"year": "2020"
},
{
"authors": [
"A Zanette",
"C.-A Cheng",
"A Agarwal"
],
"doi": "",
"ref_id": "b35",
"title": "Cautiously optimistic policy optimization and exploration with linear function approximation",
"year": "2021"
},
{
"authors": [
"J Zimmert",
"Y Seldin"
],
"doi": "",
"ref_id": "b36",
"title": "An optimal algorithm for stochastic and adversarial bandits",
"year": "2019"
},
{
"authors": [
"J Zimmert",
"H Luo",
"C.-Y Wei"
],
"doi": "",
"ref_id": "b37",
"title": "Beating stochastic and adversarial semi-bandits optimally and simultaneously",
"year": "2019"
}
] |
[
"ce0068bcd4106ece",
"88bfc6ce20e7128d",
"197ea26aac561d77",
"042e10d4307dfd8b",
"fe5bd2fb2413a49d",
"e5eb3dd21551e875",
"a76306914bd6fda3",
"a8b37d58e53ac950",
"1bc9d15f23ad10fb",
"ad1d2ca5e31af304",
"b2091c7ef1e8a3bb",
"93d2a3dcca95488b",
"0b303f46a4000252",
"8669be5b7d52cefa",
"7f8e87680ad15c95",
"9b3c9b186d8e965a",
"9ff5fe10fa5fcb5a",
"928a95f061346968",
"7f5884276ffa937a"
] |
[
"95ea988c30e4d6c5",
"b661b568df2617dc",
"d460703cc0ec3498",
"197ea26aac561d77",
"8669be5b7d52cefa",
"a76306914bd6fda3",
"9b3c9b186d8e965a",
"dac55fa05aae3a1f",
"8a661b3d773ab05c",
"a8b37d58e53ac950",
"b2091c7ef1e8a3bb",
"9ff5fe10fa5fcb5a",
"0b303f46a4000252",
"0d8b4e70a41c40e9",
"a32a9e08018aa2d8",
"e5eb3dd21551e875",
"00fe81d9416ee148",
"728d876e608dcc56",
"c71e08d705ed226f",
"1bc9d15f23ad10fb",
"63715ed388574a14",
"415c8f3276e36f87",
"ad1d2ca5e31af304",
"d44dc4738d0c1df0",
"928a95f061346968",
"8801c585dbbd10ea",
"7f5884276ffa937a",
"ce0068bcd4106ece",
"fe5bd2fb2413a49d",
"7f8e87680ad15c95",
"93d2a3dcca95488b",
"8f798f0afd5bd049",
"d72e292f366bf95e",
"1783e17ee6b6a5fe",
"f3a5ef177c7bd1ac",
"042e10d4307dfd8b",
"88bfc6ce20e7128d",
"b4676206631f12d4"
] |
EfhmBBrXY2
|
Arithmetic Sampling: Parallel Diverse Decoding for Large Language Models
|
data/openreview_paper/ICML_2023_oral/EfhmBBrXY2//paper.pdf
| 28
| 13
|
[
{
"authors": [
"A Holtzman",
"J Buys",
"L Du",
"M Forbes",
"Y Choi"
],
"doi": "",
"ref_id": "b9",
"title": "The curious case of neural text degeneration",
"year": "2019"
},
{
"authors": [
"Y Lecun"
],
"doi": "",
"ref_id": "b12",
"title": "Modeles connexionnistes de l'apprentissage (connectionist learning models",
"year": "1987"
},
{
"authors": [
"J Yang",
"V Sindhwani",
"H Avron",
"M Mahoney"
],
"doi": "",
"ref_id": "b27",
"title": "Quasi-monte carlo feature maps for shift-invariant kernels",
"year": "2014"
},
{
"authors": [
"S Basu",
"G S Ramachandran",
"N S Keskar",
"L R Varshney",
"Mirostat"
],
"doi": "",
"ref_id": "b1",
"title": "A neural text decoding algorithm that directly controls perplexity",
"year": "2020"
},
{
"authors": [
"Angela Fan",
"Mike Lewis",
"Yann Dauphin"
],
"doi": "10.18653/v1/p18-1082",
"ref_id": "b8",
"title": "Hierarchical Neural Story Generation",
"year": "2018"
},
{
"authors": [
"S Welleck",
"I Kulikov",
"S Roller",
"E Dinan",
"K Cho",
"J Weston"
],
"doi": "",
"ref_id": "b25",
"title": "Neural text generation with unlikelihood training",
"year": "2019"
},
{
"authors": [
"W Kool",
"H Van Hoof",
"M Welling"
],
"doi": "",
"ref_id": "b10",
"title": "Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement",
"year": "2019"
},
{
"authors": [
"Clara Meister",
"Tiago Pimentel",
"Gian Wiher",
"Ryan Cotterell"
],
"doi": "10.1162/tacl_a_00536",
"ref_id": "b18",
"title": "Locally Typical Sampling",
"year": "2022"
},
{
"authors": [
"T M Cover",
"J A Thomas"
],
"doi": "",
"ref_id": "b6",
"title": "Elements of Information Theory",
"year": "2006"
},
{
"authors": [
"M Aharon",
"M Elad",
"A Bruckstein"
],
"doi": "10.1109/tsp.2006.881199",
"ref_id": "b0",
"title": "$rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation",
"year": "2006"
},
{
"authors": [
"A Buchholz",
"F Wenzel",
"S Mandt"
],
"doi": "",
"ref_id": "b3",
"title": "Quasi-monte carlo variational inference",
"year": "2018"
},
{
"authors": [
"Evgeny Lagutin",
"Daniil Gavrilov",
"Pavel Kalaidin"
],
"doi": "10.18653/v1/2021.eacl-main.123",
"ref_id": "b11",
"title": "Implicit Unlikelihood Training: Improving Neural Text Generation with Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"K Cho"
],
"doi": "",
"ref_id": "b4",
"title": "Noisy parallel approximate decoding for conditional recurrent language model",
"year": "2016"
}
] |
[
{
"authors": [
"M Aharon",
"M Elad",
"A Bruckstein"
],
"doi": "10.1109/tsp.2006.881199",
"ref_id": "b0",
"title": "$rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation",
"year": "2006"
},
{
"authors": [
"S Basu",
"G S Ramachandran",
"N S Keskar",
"L R Varshney",
"Mirostat"
],
"doi": "",
"ref_id": "b1",
"title": "A neural text decoding algorithm that directly controls perplexity",
"year": "2020"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell"
],
"doi": "",
"ref_id": "b2",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"A Buchholz",
"F Wenzel",
"S Mandt"
],
"doi": "",
"ref_id": "b3",
"title": "Quasi-monte carlo variational inference",
"year": "2018"
},
{
"authors": [
"K Cho"
],
"doi": "",
"ref_id": "b4",
"title": "Noisy parallel approximate decoding for conditional recurrent language model",
"year": "2016"
},
{
"authors": [
"P F Christiano",
"J Leike",
"T Brown",
"M Martic",
"S Legg",
"D Amodei"
],
"doi": "",
"ref_id": "b5",
"title": "Deep reinforcement learning from human preferences",
"year": "2017"
},
{
"authors": [
"T M Cover",
"J A Thomas"
],
"doi": "",
"ref_id": "b6",
"title": "Elements of Information Theory",
"year": "2006"
},
{
"authors": [
"Jacob Devlin",
"Hao Cheng",
"Hao Fang",
"Saurabh Gupta",
"Li Deng",
"Xiaodong He",
"Geoffrey Zweig",
"Margaret Mitchell"
],
"doi": "10.3115/v1/p15-2017",
"ref_id": "b7",
"title": "Language Models for Image Captioning: The Quirks and What Works",
"year": "2015"
},
{
"authors": [
"Angela Fan",
"Mike Lewis",
"Yann Dauphin"
],
"doi": "10.18653/v1/p18-1082",
"ref_id": "b8",
"title": "Hierarchical Neural Story Generation",
"year": "2018"
},
{
"authors": [
"A Holtzman",
"J Buys",
"L Du",
"M Forbes",
"Y Choi"
],
"doi": "",
"ref_id": "b9",
"title": "The curious case of neural text degeneration",
"year": "2019"
},
{
"authors": [
"W Kool",
"H Van Hoof",
"M Welling"
],
"doi": "",
"ref_id": "b10",
"title": "Stochastic beams and where to find them: The gumbel-top-k trick for sampling sequences without replacement",
"year": "2019"
},
{
"authors": [
"Evgeny Lagutin",
"Daniil Gavrilov",
"Pavel Kalaidin"
],
"doi": "10.18653/v1/2021.eacl-main.123",
"ref_id": "b11",
"title": "Implicit Unlikelihood Training: Improving Neural Text Generation with Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"Y Lecun"
],
"doi": "",
"ref_id": "b12",
"title": "Modeles connexionnistes de l'apprentissage (connectionist learning models",
"year": "1987"
},
{
"authors": [
"Pierre L'ecuyer",
"Christiane Lemieux"
],
"doi": "10.1287/mnsc.46.9.1214.12231",
"ref_id": "b13",
"title": "Variance Reduction via Lattice Rules",
"year": "2000"
},
{
"authors": [
"P Ecuyer"
],
"doi": "10.1007/978-3-319-91436-7_2",
"ref_id": "b14",
"title": "Randomized Quasi-Monte Carlo: An Introduction for Practitioners",
"year": "2016"
},
{
"authors": [
"R D Martinez",
"S Novotney",
"I Bulyko",
"A Rastrow",
"A Stolcke",
"A Gandhe"
],
"doi": "",
"ref_id": "b15",
"title": "Attention-based contextual language model adaptation for speech recognition",
"year": "2021"
},
{
"authors": [
"Clara Meister",
"Afra Amini",
"Tim Vieira",
"Ryan Cotterell"
],
"doi": "10.18653/v1/2021.emnlp-main.52",
"ref_id": "b16",
"title": "Conditional Poisson Stochastic Beams",
"year": "November 2021"
},
{
"authors": [
"C Meister",
"M Forster",
"R Cotterell"
],
"doi": "",
"ref_id": "b17",
"title": "Determinantal beam search",
"year": "2021"
},
{
"authors": [
"Clara Meister",
"Tiago Pimentel",
"Gian Wiher",
"Ryan Cotterell"
],
"doi": "10.1162/tacl_a_00536",
"ref_id": "b18",
"title": "Locally Typical Sampling",
"year": "2022"
},
{
"authors": [
"L Ouyang",
"J Wu",
"X Jiang",
"D Almeida",
"C L Wainwright",
"P Mishkin",
"C Zhang",
"S Agarwal",
"K Slama",
"A Ray",
"J Schulman",
"J Hilton",
"F Kelton",
"L Miller",
"M Simens",
"A Askell",
"P Welinder",
"P Christiano",
"J Leike",
"R Lowe"
],
"doi": "",
"ref_id": "b19",
"title": "Training language models to follow instructions with human feedback",
"year": "2022"
},
{
"authors": [
"A Radford",
"J Wu",
"R Child",
"D Luan",
"D Amodei",
"I Sutskever"
],
"doi": "",
"ref_id": "b20",
"title": "Language models are unsupervised multitask learners",
"year": "2019"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P J Liu"
],
"doi": "",
"ref_id": "b21",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "2020"
},
{
"authors": [
"Marc'aurelio Ranzato",
"Christopher Poultney",
"Sumit Chopra",
"Yann Lecun"
],
"doi": "10.7551/mitpress/7503.003.0147",
"ref_id": "b22",
"title": "Efficient Learning of Sparse Representations with an Energy-Based Model",
"year": "May 2-4, 2016. 2016"
},
{
"authors": [
"A Roberts",
"H W Chung",
"A Levskaya",
"G Mishra",
"J Bradbury",
"D Andor",
"S Narang",
"B Lester",
"C Gaffney",
"A Mohiuddin",
"C Hawthorne",
"A Lewkowycz",
"A Salcianu",
"M Van Zee",
"J Austin",
"S Goodman",
"L B Soares",
"H Hu",
"S Tsvyashchenko",
"A Chowdhery",
"J Bastings",
"J Bulian",
"X Garcia",
"J Ni",
"A Chen",
"K Kenealy",
"J H Clark",
"S Lee",
"D Garrette",
"J Lee-Thorp",
"C Raffel",
"N Shazeer",
"M Ritter",
"M Bosma",
"A Passos",
"J Maitin-Shepard",
"N Fiedel",
"M Omernick",
"B Saeta",
"R Sepassi",
"A Spiridonov",
"J Newlan",
"A Gesmundo"
],
"doi": "",
"ref_id": "b23",
"title": "Scaling up models and data with t5x and seqio",
"year": "2022"
},
{
"authors": [
"N Stiennon",
"L Ouyang",
"J Wu",
"D M Ziegler",
"R Lowe",
"C Voss",
"A Radford",
"D Amodei",
"Christiano",
"P"
],
"doi": "",
"ref_id": "b24",
"title": "Learning to summarize from human feedback",
"year": "2020"
},
{
"authors": [
"S Welleck",
"I Kulikov",
"S Roller",
"E Dinan",
"K Cho",
"J Weston"
],
"doi": "",
"ref_id": "b25",
"title": "Neural text generation with unlikelihood training",
"year": "2019"
},
{
"authors": [
"Y Wu",
"M Schuster",
"Z Chen",
"Q V Le",
"M Norouzi",
"W Macherey",
"M Krikun",
"Y Cao",
"Q Gao",
"K Macherey",
"J Klingner",
"A Shah",
"M Johnson",
"X Liu",
"Łukasz Kaiser",
"S Gouws",
"Y Kato",
"T Kudo",
"H Kazawa",
"K Stevens",
"G Kurian",
"N Patil",
"W Wang",
"C Young",
"J Smith",
"J Riesa",
"A Rudnick",
"O Vinyals",
"G Corrado",
"M Hughes",
"J Dean"
],
"doi": "",
"ref_id": "b26",
"title": "Google's neural machine translation system: Bridging the gap between human and machine translation",
"year": "2016"
},
{
"authors": [
"J Yang",
"V Sindhwani",
"H Avron",
"M Mahoney"
],
"doi": "",
"ref_id": "b27",
"title": "Quasi-monte carlo feature maps for shift-invariant kernels",
"year": "2014"
}
] |
[
"87764708b781abfa",
"f455cd79bf589c42",
"0a4ece4b30ded951",
"6de071056a326978",
"f0bb721e13843100",
"3a8e9235d26e9ba4",
"6fb6704f48e6b8d8",
"b9700c3820304123",
"f748d9b11b47a058",
"6e2701b9ec53bf48",
"cde91f4845487c9a",
"7a621b039827178d",
"af6db690ba284d21"
] |
[
"6e2701b9ec53bf48",
"6de071056a326978",
"294464a6d95efbcb",
"cde91f4845487c9a",
"af6db690ba284d21",
"cbc49b338daa25de",
"f748d9b11b47a058",
"9ed117cfba54bbee",
"f0bb721e13843100",
"87764708b781abfa",
"6fb6704f48e6b8d8",
"7a621b039827178d",
"f455cd79bf589c42",
"2e24d6d741546eeb",
"9acc39b2976c9b77",
"4e1d6147b679cad2",
"1567f3373f028ef9",
"87ff264cc2cd19cd",
"b9700c3820304123",
"be041541d71ac609",
"c8beab030d8be9cb",
"270adc2f5b048c8a",
"ca7ace63ff806299",
"12ab44902d17feec",
"8701f03607786ddb",
"3a8e9235d26e9ba4",
"ee9c4a1354f3c01a",
"0a4ece4b30ded951"
] |
JPMT9kjeJi
|
Self-Interpretable Time Series Prediction with Counterfactual Explanations
|
data/openreview_paper/ICML_2023_oral/JPMT9kjeJi//paper.pdf
| 45
| 11
|
[
{
"authors": [
"Avanti Shrikumar",
"Peyton Greenside",
"Anshul Kundaje"
],
"doi": "10.1101/103663",
"ref_id": "b30",
"title": "Reverse-complement parameter sharing improves deep learning models for genomics",
"year": "2017"
},
{
"authors": [
"M Sundararajan",
"A Taly",
"Q Yan"
],
"doi": "",
"ref_id": "b32",
"title": "Axiomatic attribution for deep networks",
"year": "2017"
},
{
"authors": [
"Ramprasaath R Selvaraju",
"Michael Cogswell",
"Abhishek Das",
"Ramakrishna Vedantam",
"Devi Parikh",
"Dhruv Batra"
],
"doi": "10.1109/iccv.2017.74",
"ref_id": "b29",
"title": "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization",
"year": "2017"
},
{
"authors": [
"J Chen",
"L Song",
"M Wainwright",
"M Jordan"
],
"doi": "",
"ref_id": "b0",
"title": "Learning to explain: An information-theoretic perspective on model interpretation",
"year": "2018"
},
{
"authors": [
"A Ghorbani",
"J Wexler",
"J Y Zou",
"B"
],
"doi": "",
"ref_id": "b5",
"title": "Towards automatic concept-based explanations",
"year": "2019"
},
{
"authors": [
"S Wang",
"T Zhou",
"J Bilmes"
],
"doi": "",
"ref_id": "b41",
"title": "Bias also matters: Bias attribution for deep neural network explanation",
"year": "2019"
},
{
"authors": [
"G Plumb",
"D Molitor",
"A S Talwalkar"
],
"doi": "",
"ref_id": "b23",
"title": "Model agnostic supervised local explanations",
"year": "2018"
},
{
"authors": [
"Marco Tulio Ribeiro",
"Sameer Singh",
"Carlos Guestrin"
],
"doi": "10.1145/2939672.2939778",
"ref_id": "b28",
"title": "\"Why Should I Trust You?\"",
"year": "2016"
},
{
"authors": [
"Bryan Lim",
"Sercan Ö Arık",
"Nicolas Loeff",
"Tomas Pfister"
],
"doi": "10.1016/j.ijforecast.2021.03.012",
"ref_id": "b10",
"title": "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting",
"year": "2021"
},
{
"authors": [
"Q Pan",
"W Hu",
"N Chen"
],
"doi": "",
"ref_id": "b18",
"title": "Two birds with one stone: Series saliency for accurate and interpretable multivariate time series forecasting",
"year": "2021"
},
{
"authors": [
"K Natesan Ramamurthy",
"B Vinzamuri",
"Y Zhang",
"A Dhurandhar"
],
"doi": "",
"ref_id": "b16",
"title": "Model agnostic multilevel explanations",
"year": "2020"
}
] |
[
{
"authors": [
"J Chen",
"L Song",
"M Wainwright",
"M Jordan"
],
"doi": "",
"ref_id": "b0",
"title": "Learning to explain: An information-theoretic perspective on model interpretation",
"year": "2018"
},
{
"authors": [
"Xiaoli Chen",
"Rui Wang",
"Phyllis Zee",
"Pamela L Lutsey",
"Sogol Javaheri",
"Carmela Alcántara",
"Chandra L Jackson",
"Michelle A Williams",
"Susan Redline"
],
"doi": "10.5665/sleep.4732",
"ref_id": "b1",
"title": "Racial/Ethnic Differences in Sleep Disturbances: The Multi-Ethnic Study of Atherosclerosis (MESA)",
"year": "2014"
},
{
"authors": [
"Steven R Cummings",
"D M Black",
"M C Nevitt",
"W S Browner",
"J A Cauley",
"H K Genant",
"S R Mascioli",
"J C Scott",
"D G Seeley",
"P Steiger"
],
"doi": "10.1001/jama.1990.03440050059033",
"ref_id": "b2",
"title": "Appendicular Bone Density and Age Predict Hip Fracture in Women",
"year": "1990"
},
{
"authors": [
"A Dhaou",
"A Bertoncello",
"S Gourvénec",
"J Garnier",
"Le Pennec",
"E"
],
"doi": "",
"ref_id": "b3",
"title": "Causal and interpretable rules for time series analysis",
"year": "2021"
},
{
"authors": [
"H Ding",
"Y Ma",
"A Deoras",
"Y Wang",
"H Wang"
],
"doi": "",
"ref_id": "b4",
"title": "Zero-shot recommender systems",
"year": "2021"
},
{
"authors": [
"A Ghorbani",
"J Wexler",
"J Y Zou",
"B"
],
"doi": "",
"ref_id": "b5",
"title": "Towards automatic concept-based explanations",
"year": "2019"
},
{
"authors": [
"Y Goyal",
"Z Wu",
"J Ernst",
"D Batra",
"D Parikh",
"S Lee"
],
"doi": "",
"ref_id": "b6",
"title": "Counterfactual visual explanations",
"year": "2019"
},
{
"authors": [
"J Heo",
"H B Lee",
"S Kim",
"J Lee",
"K J Kim",
"E Yang",
"S J Hwang"
],
"doi": "",
"ref_id": "b7",
"title": "Uncertainty-aware attention for reliable interpretation and prediction",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b8",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2018"
},
{
"authors": [
"D P Kingma",
"M Welling"
],
"doi": "",
"ref_id": "b9",
"title": "Auto-encoding variational bayes",
"year": "2013"
},
{
"authors": [
"Bryan Lim",
"Sercan Ö Arık",
"Nicolas Loeff",
"Tomas Pfister"
],
"doi": "10.1016/j.ijforecast.2021.03.012",
"ref_id": "b10",
"title": "Temporal Fusion Transformers for interpretable multi-horizon time series forecasting",
"year": "2021"
},
{
"authors": [
"Wanyu Lin",
"Hao Lan",
"Hao Wang",
"Baochun Li"
],
"doi": "10.1109/cvpr52688.2022.01336",
"ref_id": "b11",
"title": "OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks",
"year": "2022"
},
{
"authors": [
"C Louizos",
"U Shalit",
"J M Mooij",
"D Sontag",
"R Zemel",
"M Welling"
],
"doi": "",
"ref_id": "b12",
"title": "Causal effect inference with deep latent-variable models",
"year": "2017"
},
{
"authors": [
"S M Lundberg",
"S.-I Lee"
],
"doi": "",
"ref_id": "b13",
"title": "A unified approach to interpreting model predictions",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b14",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2017"
},
{
"authors": [
"S M Lundberg",
"S.-I Lee"
],
"doi": "",
"ref_id": "b15",
"title": "A unified approach to interpreting model predictions",
"year": "2017"
},
{
"authors": [
"K Natesan Ramamurthy",
"B Vinzamuri",
"Y Zhang",
"A Dhurandhar"
],
"doi": "",
"ref_id": "b16",
"title": "Model agnostic multilevel explanations",
"year": "2020"
},
{
"authors": [
"D Nemirovsky",
"N Thiebaut",
"Y Xu",
"A Gupta"
],
"doi": "",
"ref_id": "b17",
"title": "Countergan: Generating counterfactuals for real-time recourse and interpretability using residual gans",
"year": "01-05 Aug 2022"
},
{
"authors": [
"Q Pan",
"W Hu",
"N Chen"
],
"doi": "",
"ref_id": "b18",
"title": "Two birds with one stone: Series saliency for accurate and interpretable multivariate time series forecasting",
"year": "2021"
},
{
"authors": [
"A Paszke",
"S Gross",
"F Massa",
"A Lerer",
"J Bradbury",
"G Chanan",
"T Killeen",
"Z Lin",
"N Gimelshein",
"L Antiga",
"A Desmaison",
"A Kopf",
"E Yang",
"Z Devito",
"M Raison",
"A Tejani",
"S Chilamkurthy",
"B Steiner",
"L Fang",
"J Bai",
"S Chintala"
],
"doi": "",
"ref_id": "b19",
"title": "Pytorch: An imperative style, high-performance deep learning library",
"year": ""
},
{
"authors": [],
"doi": "10.2172/5766688",
"ref_id": "b20",
"title": "Feasibility study for low-head hydropower on the Mill River, Northampton, Massachusetts",
"year": "2019"
},
{
"authors": [
"N Pawlowski",
"D Coelho De Castro",
"B Glocker"
],
"doi": "",
"ref_id": "b21",
"title": "Deep structural causal models for tractable counterfactual inference",
"year": "2020"
},
{
"authors": [
"J Pearl",
"Causality"
],
"doi": "",
"ref_id": "b22",
"title": "",
"year": "2009"
},
{
"authors": [
"G Plumb",
"D Molitor",
"A S Talwalkar"
],
"doi": "",
"ref_id": "b23",
"title": "Model agnostic supervised local explanations",
"year": "2018"
},
{
"authors": [
"G Plumb",
"M Al-Shedivat",
"Á A Cabrera",
"A Perer",
"E Xing",
"A Talwalkar"
],
"doi": "",
"ref_id": "b24",
"title": "Regularizing black-box models for improved interpretability",
"year": "2020"
},
{
"authors": [
"S Quan",
"B Howard",
"C Iber",
"J Kiley",
"F Nieto",
"G O'connor",
"D Rapoport",
"S Redline",
"J Robbins",
"J Samet",
"Wahl"
],
"doi": "10.1093/sleep/20.12.1077",
"ref_id": "b25",
"title": "The Sleep Heart Health Study: Design, Rationale, and Methods",
"year": "01 1998"
},
{
"authors": [
"Stuart F Quan",
"Michael E Griswold",
"Conrad Iber",
"F Javier Nieto",
"David M Rapoport",
"Susan Redline",
"Mark Sanders",
"Terry Young"
],
"doi": "10.1093/sleep/25.8.8",
"ref_id": "b26",
"title": "Short-Term Variability of Respiration and Sleep During Unattended Nonlaboratory Polysomnography—The Sleep Heart Health Study",
"year": "1997"
},
{
"authors": [
"Dilini Rajapaksha",
"Christoph Bergmeir"
],
"doi": "10.1609/aaai.v36i11.21469",
"ref_id": "b27",
"title": "LIMREF: Local Interpretable Model Agnostic Rule-Based Explanations for Forecasting, with an Application to Electricity Smart Meter Data",
"year": "2022"
},
{
"authors": [
"Marco Tulio Ribeiro",
"Sameer Singh",
"Carlos Guestrin"
],
"doi": "10.1145/2939672.2939778",
"ref_id": "b28",
"title": "\"Why Should I Trust You?\"",
"year": "2016"
},
{
"authors": [
"Ramprasaath R Selvaraju",
"Michael Cogswell",
"Abhishek Das",
"Ramakrishna Vedantam",
"Devi Parikh",
"Dhruv Batra"
],
"doi": "10.1109/iccv.2017.74",
"ref_id": "b29",
"title": "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization",
"year": "2017"
},
{
"authors": [
"Avanti Shrikumar",
"Peyton Greenside",
"Anshul Kundaje"
],
"doi": "10.1101/103663",
"ref_id": "b30",
"title": "Reverse-complement parameter sharing improves deep learning models for genomics",
"year": "2017"
},
{
"authors": [
"Adam P Spira",
"Terri Blackwell",
"Katie L Stone",
"Susan Redline",
"Jane A Cauley",
"Sonia Ancoli‐israel",
"Kristine Yaffe"
],
"doi": "10.1111/j.1532-5415.2007.01506.x",
"ref_id": "b31",
"title": "Sleep‐Disordered Breathing and Cognition in Older Women",
"year": "2008"
},
{
"authors": [
"M Sundararajan",
"A Taly",
"Q Yan"
],
"doi": "",
"ref_id": "b32",
"title": "Axiomatic attribution for deep networks",
"year": "2017"
},
{
"authors": [
"S Tonekaboni",
"S Joshi",
"K Campbell",
"D K Duvenaud",
"A Goldenberg"
],
"doi": "",
"ref_id": "b33",
"title": "What went wrong and when? instance-wise feature importance for time-series blackbox models",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b34",
"title": "",
"year": "2020"
},
{
"authors": [
"Sandra Wachter",
"Brent Mittelstadt",
"Chris Russell"
],
"doi": "10.2139/ssrn.3063289",
"ref_id": "b35",
"title": "Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR",
"year": "2017"
},
{
"authors": [
"Sandra Wachter",
"Brent Mittelstadt",
"Chris Russell"
],
"doi": "10.2139/ssrn.3063289",
"ref_id": "b36",
"title": "Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR",
"year": "2017"
},
{
"authors": [
"Hao Wang"
],
"doi": "10.14711/thesis-991012554564003412",
"ref_id": "b37",
"title": "Bayesian deep learning for integrated intelligence : bridging the gap between perception and inference",
"year": "2017"
},
{
"authors": [
"H Wang",
"D.-Y Yeung"
],
"doi": "",
"ref_id": "b38",
"title": "Towards bayesian deep learning: A framework and some existing methods",
"year": "2016"
},
{
"authors": [
"H Wang",
"D.-Y Yeung"
],
"doi": "",
"ref_id": "b39",
"title": "A survey on bayesian deep learning",
"year": "2020"
},
{
"authors": [
"H Wang",
"N Wang",
"D Yeung"
],
"doi": "",
"ref_id": "b40",
"title": "Collaborative deep learning for recommender systems",
"year": "2015"
},
{
"authors": [
"S Wang",
"T Zhou",
"J Bilmes"
],
"doi": "",
"ref_id": "b41",
"title": "Bias also matters: Bias attribution for deep neural network explanation",
"year": "2019"
},
{
"authors": [
"E Weinberger",
"J Janizek",
"S.-I Lee"
],
"doi": "",
"ref_id": "b42",
"title": "Learning deep attribution priors based on prior knowledge",
"year": "2020"
},
{
"authors": [
"Guo-Qiang Zhang",
"Licong Cui",
"Remo Mueller",
"Shiqiang Tao",
"Matthew Kim",
"Michael Rueschman",
"Sara Mariani",
"Daniel Mobley",
"Susan Redline"
],
"doi": "10.1093/jamia/ocy064",
"ref_id": "b43",
"title": "The National Sleep Research Resource: towards a sleep data commons",
"year": "2018"
},
{
"authors": [
"Guo-Qiang Zhang",
"Licong Cui",
"Remo Mueller",
"Shiqiang Tao",
"Matthew Kim",
"Michael Rueschman",
"Sara Mariani",
"Daniel Mobley",
"Susan Redline"
],
"doi": "10.1145/3233547.3233725",
"ref_id": "b44",
"title": "The National Sleep Research Resource",
"year": "08 2018"
}
] |
[
"4f544cfc9f7d0962",
"71baa4bfc33b0622",
"279c722f8ae2b8ab",
"3ae23fd41fe3a3e2",
"689b802cad6b6776",
"1aa62a541b9e70c3",
"dbee0f06a50f8483",
"2631c9cec04e7c9d",
"27cc826786adaab7",
"59f43c9ae5b0a85f",
"9c81a5bdfe1844bc"
] |
[
"3ae23fd41fe3a3e2",
"1b6b5d23070f4566",
"a70e0a335c286a27",
"c49e75b633966cbc",
"d469a75f04b922b1",
"689b802cad6b6776",
"f5aed100d1732226",
"637fe2912325c90f",
"a6625968b7060b53",
"a3efbf49e88067f4",
"27cc826786adaab7",
"522b5a24c3198352",
"f9024d26bba8ff3d",
"1380c37e8e8573ac",
"1a7cf40d6eca41d8",
"87e777e9c2ab333a",
"9c81a5bdfe1844bc",
"cc4706df5743b5de",
"59f43c9ae5b0a85f",
"35d84b69b8fa6935",
"9a6bcfe42d66b790",
"c1e8c1a08680fa55",
"a83f991dd8f50040",
"dbee0f06a50f8483",
"a6af99547cb80fc6",
"7019e13b4f4b60c5",
"f4392e1da5f9ff32",
"73271aa3c6816544",
"2631c9cec04e7c9d",
"279c722f8ae2b8ab",
"4f544cfc9f7d0962",
"3f1ac44ccced53d5",
"71baa4bfc33b0622",
"2f6baed4465926e8",
"c27b3e365f55765e",
"99cce6392a46774b",
"99cce6392a46774b",
"c948604491fb5ffc",
"2c6dd03b119fc5ef",
"5c3ca7463c50f0c9",
"4c6ea0c106ced5ed",
"1aa62a541b9e70c3",
"6723e974ed013d07",
"ed78f673d5f3cc80",
"e6d40d9cdfc13993"
] |
MXuLl38AEm
|
Specializing Smaller Language Models towards Multi-Step Reasoning
|
data/openreview_paper/ICML_2023_oral/MXuLl38AEm//paper.pdf
| 34
| 6
|
[
{
"authors": [
"H W Chung",
"L Hou",
"S Longpre",
"B Zoph",
"Y Tay",
"W Fedus",
"E Li",
"X Wang",
"M Dehghani",
"S Brahma"
],
"doi": "",
"ref_id": "b4",
"title": "Scaling instruction-finetuned language models",
"year": "2022"
},
{
"authors": [
"Y Tay",
"M Dehghani",
"V Q Tran",
"X Garcia",
"D Bahri",
"T Schuster",
"H S Zheng",
"N Houlsby",
"D Metzler"
],
"doi": "",
"ref_id": "b28",
"title": "Unifying language learning paradigms",
"year": "2022"
},
{
"authors": [
"J Hoffmann",
"S Borgeaud",
"A Mensch",
"E Buchatskaya",
"T Cai",
"E Rutherford",
"D D L Casas",
"L A Hendricks",
"J Welbl",
"A Clark"
],
"doi": "",
"ref_id": "b8",
"title": "Training compute-optimal large language models",
"year": "2022"
},
{
"authors": [
"Jiaxin Huang",
"Shixiang Gu",
"Le Hou",
"Yuexin Wu",
"Xuezhi Wang",
"Hongkun Yu",
"Jiawei Han"
],
"doi": "10.18653/v1/2023.emnlp-main.67",
"ref_id": "b9",
"title": "Large Language Models Can Self-Improve",
"year": "2022"
},
{
"authors": [
"A Chowdhery",
"S Narang",
"J Devlin",
"M Bosma",
"G Mishra",
"A Roberts",
"P Barham",
"H W Chung",
"C Sutton",
"S Gehrmann"
],
"doi": "",
"ref_id": "b3",
"title": "Palm: Scaling language modeling with pathways",
"year": "2022"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell"
],
"doi": "",
"ref_id": "b1",
"title": "Language models are few-shot learners",
"year": "2020"
}
] |
[
{
"authors": [
"Josef Christl"
],
"doi": "10.1007/978-3-642-50304-7_4",
"ref_id": "b0",
"title": "The Foundation of the U/V Curve by a Matching Model",
"year": ""
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell"
],
"doi": "",
"ref_id": "b1",
"title": "Language models are few-shot learners",
"year": "2020"
},
{
"authors": [
"M Chen",
"J Tworek",
"H Jun",
"Q Yuan",
"H P D O Pinto",
"J Kaplan",
"H Edwards",
"Y Burda",
"N Joseph",
"G Brockman"
],
"doi": "",
"ref_id": "b2",
"title": "Evaluating large language models trained on code",
"year": "2021"
},
{
"authors": [
"A Chowdhery",
"S Narang",
"J Devlin",
"M Bosma",
"G Mishra",
"A Roberts",
"P Barham",
"H W Chung",
"C Sutton",
"S Gehrmann"
],
"doi": "",
"ref_id": "b3",
"title": "Palm: Scaling language modeling with pathways",
"year": "2022"
},
{
"authors": [
"H W Chung",
"L Hou",
"S Longpre",
"B Zoph",
"Y Tay",
"W Fedus",
"E Li",
"X Wang",
"M Dehghani",
"S Brahma"
],
"doi": "",
"ref_id": "b4",
"title": "Scaling instruction-finetuned language models",
"year": "2022"
},
{
"authors": [
"K Cobbe",
"V Kosaraju",
"M Bavarian",
"M Chen",
"H Jun",
"L Kaiser",
"M Plappert",
"J Tworek",
"J Hilton",
"R Nakano"
],
"doi": "",
"ref_id": "b5",
"title": "Training verifiers to solve math word problems",
"year": "2021"
},
{
"authors": [
"Y Fu",
"H Peng",
"T Khot"
],
"doi": "",
"ref_id": "b6",
"title": "How does GPT obtain its ability? tracing emergent abilities of language models to their sources. Yao Fu's Notion",
"year": "Dec 2022. e3e36fa1dc1"
},
{
"authors": [
"N Ho",
"L Schmid",
"S.-Y Yun"
],
"doi": "",
"ref_id": "b7",
"title": "Large language models are reasoning teachers",
"year": "2022"
},
{
"authors": [
"J Hoffmann",
"S Borgeaud",
"A Mensch",
"E Buchatskaya",
"T Cai",
"E Rutherford",
"D D L Casas",
"L A Hendricks",
"J Welbl",
"A Clark"
],
"doi": "",
"ref_id": "b8",
"title": "Training compute-optimal large language models",
"year": "2022"
},
{
"authors": [
"Jiaxin Huang",
"Shixiang Gu",
"Le Hou",
"Yuexin Wu",
"Xuezhi Wang",
"Hongkun Yu",
"Jiawei Han"
],
"doi": "10.18653/v1/2023.emnlp-main.67",
"ref_id": "b9",
"title": "Large Language Models Can Self-Improve",
"year": "2022"
},
{
"authors": [
"S Iyer",
"X V Lin",
"R Pasunuru",
"T Mihaylov",
"D Simig",
"P Yu",
"K Shuster",
"T Wang",
"Q Liu",
"P S Koura"
],
"doi": "",
"ref_id": "b10",
"title": "Opt-iml: Scaling language model instruction meta learning through the lens of generalization",
"year": "2022"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T B Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "",
"ref_id": "b11",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"P Langley"
],
"doi": "",
"ref_id": "b12",
"title": "Crafting papers on machine learning",
"year": "2000"
},
{
"authors": [
"Morgan Kaufmann"
],
"doi": "",
"ref_id": "b13",
"title": "",
"year": ""
},
{
"authors": [
"S Li",
"J Chen",
"Y Shen",
"Z Chen",
"X Zhang",
"Z Li",
"H Wang",
"J Qian",
"B Peng",
"Y Mao"
],
"doi": "",
"ref_id": "b14",
"title": "Explanations from large language models make small reasoners better",
"year": "2022"
},
{
"authors": [
"L Liu",
"P Lewis",
"S Riedel",
"P Stenetorp"
],
"doi": "10.18653/v1/2022.findings-naacl.155",
"ref_id": "b15",
"title": "Challenges in generalization in open domain question answering",
"year": "July 2022"
},
{
"authors": [
"S Longpre",
"L Hou",
"T Vu",
"A Webson",
"H W Chung",
"Y Tay",
"D Zhou",
"Q V Le",
"B Zoph",
"J Wei"
],
"doi": "",
"ref_id": "b16",
"title": "The flan collection: Designing data and methods for effective instruction tuning",
"year": "2023"
},
{
"authors": [
"Lucie Charlotte Magister",
"Jonathan Mallinson",
"Jakub Adamek",
"Eric Malmi",
"Aliaksei Severyn"
],
"doi": "10.18653/v1/2023.acl-short.151",
"ref_id": "b17",
"title": "Teaching Small Language Models to Reason",
"year": "2022"
},
{
"authors": [
"Sewon Min",
"Mike Lewis",
"Luke Zettlemoyer",
"Hannaneh Hajishirzi"
],
"doi": "10.18653/v1/2022.naacl-main.201",
"ref_id": "b18",
"title": "MetaICL: Learning to Learn In Context",
"year": "July 2022"
},
{
"authors": [
"S B Needleman",
"C D Wunsch"
],
"doi": "",
"ref_id": "b19",
"title": "A general method applicable to the search for similarities in the amino acid sequence of two proteins",
"year": "1970"
},
{
"authors": [
"L Ouyang",
"J Wu",
"X Jiang",
"D Almeida",
"C L Wainwright",
"P Mishkin",
"C Zhang",
"S Agarwal",
"K Slama",
"A Ray"
],
"doi": "",
"ref_id": "b20",
"title": "Training language models to follow instructions with human feedback",
"year": "2022"
},
{
"authors": [
"C Raffel",
"N Shazeer",
"A Roberts",
"K Lee",
"S Narang",
"M Matena",
"Y Zhou",
"W Li",
"P J Liu"
],
"doi": "",
"ref_id": "b21",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"year": "2020"
},
{
"authors": [
"P Senin"
],
"doi": "",
"ref_id": "b22",
"title": "Dynamic time warping algorithm review",
"year": "2008"
},
{
"authors": [
"S Shen",
"L Hou",
"Y Zhou",
"N Du",
"S Longpre",
"J Wei",
"H W Chung",
"B Zoph",
"W Fedus",
"X Chen"
],
"doi": "",
"ref_id": "b23",
"title": "Flan-moe: Scaling instruction-finetuned language models with sparse mixture of experts",
"year": "2023"
},
{
"authors": [
"Kumar Shridhar",
"Alessandro Stolfo",
"Mrinmaya Sachan"
],
"doi": "10.18653/v1/2023.findings-acl.441",
"ref_id": "b24",
"title": "Distilling Reasoning Capabilities into Smaller Language Models",
"year": "2022"
},
{
"authors": [
"C Si",
"Z Gan",
"Z Yang",
"S Wang",
"J Wang",
"J Boyd-Graber",
"L Wang"
],
"doi": "",
"ref_id": "b25",
"title": "Prompting gpt-3 to be reliable",
"year": "2022"
},
{
"authors": [
"Mirac Suzgun",
"Nathan Scales",
"Nathanael Schärli",
"Sebastian Gehrmann",
"Yi Tay",
"Hyung Won Chung",
"Aakanksha Chowdhery",
"Quoc Le",
"Ed Chi",
"Denny Zhou",
"Jason Wei"
],
"doi": "10.18653/v1/2023.findings-acl.824",
"ref_id": "b26",
"title": "Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them",
"year": "2022"
},
{
"authors": [
"Xu Tan",
"Jiale Chen",
"Di He",
"Yingce Xia",
"Tao Qin",
"Tie-Yan Liu"
],
"doi": "10.18653/v1/d19-1089",
"ref_id": "b27",
"title": "Multilingual Neural Machine Translation with Language Clustering",
"year": "2019"
},
{
"authors": [
"Y Tay",
"M Dehghani",
"V Q Tran",
"X Garcia",
"D Bahri",
"T Schuster",
"H S Zheng",
"N Houlsby",
"D Metzler"
],
"doi": "",
"ref_id": "b28",
"title": "Unifying language learning paradigms",
"year": "2022"
},
{
"authors": [
"P Thakkar"
],
"doi": "",
"ref_id": "b29",
"title": "Copilot explorer. thakkarparth007",
"year": "2022"
},
{
"authors": [
"R Thoppilan",
"D De Freitas",
"J Hall",
"N Shazeer",
"A Kulshreshtha",
"H.-T Cheng",
"A Jin",
"T Bos",
"L Baker",
"Y Du"
],
"doi": "",
"ref_id": "b30",
"title": "Lamda: Language models for dialog applications",
"year": "2022"
},
{
"authors": [
"X Wang",
"J Wei",
"D Schuurmans",
"Q Le",
"E Chi",
"D Zhou"
],
"doi": "",
"ref_id": "b31",
"title": "Self-consistency improves chain of thought reasoning in language models",
"year": "2022"
},
{
"authors": [
"J Wei",
"Y Tay",
"R Bommasani",
"C Raffel",
"B Zoph",
"S Borgeaud",
"D Yogatama",
"M Bosma",
"D Zhou",
"D Metzler",
"E H Chi",
"T Hashimoto",
"O Vinyals",
"P Liang",
"J Dean",
"W Fedus"
],
"doi": "",
"ref_id": "b32",
"title": "Emergent abilities of large language models",
"year": "2022"
},
{
"authors": [
"J Wei",
"X Wang",
"D Schuurmans",
"M Bosma",
"E Chi",
"Q Le",
"D Zhou"
],
"doi": "",
"ref_id": "b33",
"title": "Chain of thought prompting elicits reasoning in large language models",
"year": "2022"
}
] |
[
"1a24dc8003b4b7ee",
"a77ba16b950c9cf5",
"49462dbc692e254a",
"d19a8ade31c15c41",
"c1ab7263afa04255",
"294464a6d95efbcb"
] |
[
"8a2d36c6999377a4",
"294464a6d95efbcb",
"19a3cb53a44c1a35",
"c1ab7263afa04255",
"1a24dc8003b4b7ee",
"82335ea23f48378b",
"ae91c19f0f7f3fe8",
"1bf4447ed6dd53ef",
"49462dbc692e254a",
"d19a8ade31c15c41",
"88b362fedf1c172a",
"e9b17f06b8676f55",
"fc704f2f50850bd9",
"a1c0205f02c398d3",
"b4ea4dd6beb9fb46",
"18659387fdde7bcf",
"0c0c377ffc310498",
"54a8fea7473abe62",
"3fed7d5a72aa5539",
"2dae01cd93713411",
"5925751896f18337",
"270adc2f5b048c8a",
"858430d5f42b6ecb",
"bc6d4f0726a72ba5",
"e2a275c579918f01",
"ee22185274e908bf",
"5327d5ba4acf6dea",
"9aaf116399f3602c",
"a77ba16b950c9cf5",
"da0c05618e06dbdf",
"b757aeb8becc245e",
"27441d096feec6f2",
"46fb3998f4bc9fa3",
"1f815e7b4522315b"
] |
MtopPVk3Ll
|
H-Likelihood Approach to Deep Neural Networks with Temporal-Spatial Random Effects for High-Cardinality Categorical Features
|
data/openreview_paper/ICML_2023_oral/MtopPVk3Ll//paper.pdf
| 19
| 0
|
[] |
[
{
"authors": [
"M Abadi",
"A Agarwal",
"P Barham",
"E Brevdo",
"Z Chen",
"C Citro",
"G S Corrado",
"A Davis",
"J Dean",
"M Devin",
"S Ghemawat",
"I Goodfellow",
"A Harp",
"G Irving",
"M Isard",
"Y Jia",
"R Jozefowicz",
"L Kaiser",
"M Kudlur",
"J Levenberg",
"D Mané",
"R Monga",
"S Moore",
"D Murray",
"C Olah",
"M Schuster",
"J Shlens",
"B Steiner",
"I Sutskever",
"K Talwar",
"P Tucker",
"V Vanhoucke",
"V Vasudevan",
"F Viégas",
"O Vinyals",
"P Warden",
"M Wattenberg",
"M Wicke",
"Y Yu",
"X Zheng"
],
"doi": "",
"ref_id": "b0",
"title": "TensorFlow: Largescale machine learning on heterogeneous systems",
"year": "2015. , 2020. 4-ngxx"
},
{
"authors": [
"F Chollet"
],
"doi": "",
"ref_id": "b1",
"title": "",
"year": "2015"
},
{
"authors": [
"D R Cox",
"N Reid"
],
"doi": "10.1111/j.2517-6161.1987.tb01422.x",
"ref_id": "b2",
"title": "Parameter Orthogonality and Approximate Conditional Inference",
"year": "1987"
},
{
"authors": [
"I Goodfellow",
"Y Bengio",
"A Courville"
],
"doi": "",
"ref_id": "b3",
"title": "Deep learning",
"year": "2016"
},
{
"authors": [
"C Guo",
"F Berkhahn"
],
"doi": "",
"ref_id": "b4",
"title": "Entity embeddings of categorical variables",
"year": "2016"
},
{
"authors": [
"C R Henderson",
"Oscar Kempthorne",
"S R Searle",
"C M Von Krosigk"
],
"doi": "10.2307/2527669",
"ref_id": "b5",
"title": "The Estimation of Environmental and Genetic Trends from Records Subject to Culling",
"year": "1959"
},
{
"authors": [
"Y Lecun",
"L Bottou",
"Y Bengio",
"P Haffner"
],
"doi": "",
"ref_id": "b6",
"title": "Gradientbased learning applied to document recognition",
"year": "1998"
},
{
"authors": [
"Yann Lecun",
"Yoshua Bengio",
"Geoffrey Hinton"
],
"doi": "10.1038/nature14539",
"ref_id": "b7",
"title": "Deep learning",
"year": "2015"
},
{
"authors": [
"Y Lee",
"J A Nelder"
],
"doi": "10.1111/j.2517-6161.1996.tb02105.x",
"ref_id": "b8",
"title": "Hierarchical Generalized Linear Models",
"year": "1996"
},
{
"authors": [
"Y Lee",
"J A Nelder",
"Y Pawitan"
],
"doi": "",
"ref_id": "b9",
"title": "Generalized linear models with random effects: unified analysis via Hlikelihood",
"year": "2017"
},
{
"authors": [
"F Mandel",
"R P Ghosh",
"I Barnett"
],
"doi": "",
"ref_id": "b10",
"title": "Neural networks for clustered and longitudinal data using mixed effects models",
"year": "2021"
},
{
"authors": [
"Katie Genadek",
"Joshua Sanders",
"Amanda Stevenson"
],
"doi": "10.4054/demres.2022.47.2",
"ref_id": "b11",
"title": "Measuring US fertility using administrative data from the Census Bureau",
"year": "2019"
},
{
"authors": [
"H D Patterson",
"R Thompson"
],
"doi": "10.1093/biomet/58.3.545",
"ref_id": "b12",
"title": "Recovery of inter-block information when block sizes are unequal",
"year": "1971"
},
{
"authors": [
"A Reese"
],
"doi": "",
"ref_id": "b13",
"title": "Used cars dataset -vehicles listings from craigslist",
"year": "2020"
},
{
"authors": [
"G Simchoni",
"S Rosset"
],
"doi": "",
"ref_id": "b14",
"title": "Using random effects to account for high-cardinality categorical features and repeated measures in deep neural networks",
"year": "2021"
},
{
"authors": [
"G Simchoni",
"S Rosset"
],
"doi": "",
"ref_id": "b15",
"title": "Integrating random effects in deep neural networks",
"year": "2022"
},
{
"authors": [
"M-N Tran",
"N Nguyen",
"D Nott",
"R Kohn"
],
"doi": "10.1080/10618600.2019.1637747",
"ref_id": "b16",
"title": "Bayesian Deep Net GLM and GLMM",
"year": "2020"
},
{
"authors": [
"A G Wilson",
"Z Hu",
"R Salakhutdinov",
"E P Xing"
],
"doi": "10.31525/ct1-nct03877614",
"ref_id": "b17",
"title": "Artificial Intelligence With Deep Learning and Genes on Cardiovascular Disease",
"year": "2016"
},
{
"authors": [
"A G Wilson",
"Z Hu",
"R R Salakhutdinov",
"E P Xing"
],
"doi": "",
"ref_id": "b18",
"title": "Stochastic variational deep kernel learning",
"year": "2016"
}
] |
[] |
[
"8b5c20807096fb57",
"968e4da3828037eb",
"f64a8771df9a8351",
"9c7101bb335b968d",
"2fa52607a4c55c00",
"f6b1ee113403c15f",
"f0707d1c25e90585",
"70d61dae2110df8c",
"aecb616c9877dbad",
"9730d4e5139fdb30",
"023120a9411790bb",
"abf21427e64ec343",
"0a7b43f56d59545b",
"b96ca4d8d0c0be81",
"318cfa2299c4c403",
"a617718c27dbba0c",
"528b9a4f5c47cb62",
"fdc0139aac0da039",
"41849fa82f43b218"
] |
4weSHLFgtZ
|
GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration
|
data/openreview_paper/ICML_2023_oral/4weSHLFgtZ//paper.pdf
| 63
| 9
|
[
{
"authors": [
"C.-H Lai",
"Y Takida",
"N Murata",
"T Uesaka",
"Y Mitsufuji",
"S Ermon"
],
"doi": "",
"ref_id": "b29",
"title": "Improving score-based diffusion models by enforcing the underlying score Fokker-Planck equation",
"year": "2022"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b16",
"title": "Denoising diffusion probabilistic models",
"year": "2020"
},
{
"authors": [
"J Sohl-Dickstein",
"E Weiss",
"N Maheswaranathan",
"S Ganguli"
],
"doi": "",
"ref_id": "b50",
"title": "Deep unsupervised learning using nonequilibrium thermodynamics",
"year": "2015"
},
{
"authors": [
"D A Van Dyk",
"T Park"
],
"doi": "",
"ref_id": "b56",
"title": "Partially collapsed Gibbs samplers: Theory and methods",
"year": "2008"
},
{
"authors": [
"B Kawar",
"M Elad",
"S Ermon",
"J Song"
],
"doi": "",
"ref_id": "b23",
"title": "Denoising diffusion restoration models",
"year": "2022"
},
{
"authors": [
"G Kail",
"J.-Y Tourneret",
"F Hlawatsch",
"N Dobigeon"
],
"doi": "",
"ref_id": "b19",
"title": "Blind deconvolution of sparse pulse sequences under a minimum distance constraint: A partially collapsed Gibbs sampler method",
"year": "2012"
},
{
"authors": [
"G Casella",
"E I George"
],
"doi": "",
"ref_id": "b3",
"title": "Explaining the Gibbs sampler",
"year": "1992"
},
{
"authors": [
"J S Liu",
"W H Wong",
"A Kong"
],
"doi": "10.1093/biomet/81.1.27",
"ref_id": "b33",
"title": "Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes",
"year": "1994"
},
{
"authors": [
"Y Song",
"S Ermon"
],
"doi": "",
"ref_id": "b51",
"title": "Generative modeling by estimating gradients of the data distribution",
"year": "2019"
}
] |
[
{
"authors": [
"R Anirudh",
"J J Thiagarajan",
"B Kailkhura",
"T Bremer"
],
"doi": "",
"ref_id": "b0",
"title": "An unsupervised approach to solving inverse problems using generative adversarial networks",
"year": "2018"
},
{
"authors": [
"E J Candès",
"M B Wakin"
],
"doi": "",
"ref_id": "b1",
"title": "An introduction to compressive sampling",
"year": "2008"
},
{
"authors": [
"E J Candes",
"J Romberg",
"T Tao"
],
"doi": "10.1109/tit.2005.862083",
"ref_id": "b2",
"title": "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information",
"year": "2006"
},
{
"authors": [
"G Casella",
"E I George"
],
"doi": "",
"ref_id": "b3",
"title": "Explaining the Gibbs sampler",
"year": "1992"
},
{
"authors": [
"T F Chan",
"Chiu-Kwong Wong"
],
"doi": "10.1109/83.661187",
"ref_id": "b4",
"title": "Total variation blind deconvolution",
"year": "1998"
},
{
"authors": [
"J Choi",
"S Kim",
"Y Jeong",
"Y Gwon",
"S Yoon",
"Ilvr"
],
"doi": "",
"ref_id": "b5",
"title": "Conditioning method for denoising diffusion probabilistic models",
"year": "2021"
},
{
"authors": [
"W Choi",
"M Kim",
"J Chung",
"D Lee",
"S Jung"
],
"doi": "",
"ref_id": "b6",
"title": "Investigating U-Nets with various intermediate blocks for spectrogram-based singing voice separation",
"year": "2020"
},
{
"authors": [
"Yunjey Choi",
"Youngjung Uh",
"Jaejun Yoo",
"Jung-Woo Ha"
],
"doi": "10.1109/cvpr42600.2020.00821",
"ref_id": "b7",
"title": "StarGAN v2: Diverse Image Synthesis for Multiple Domains",
"year": "2020"
},
{
"authors": [
"Hyungjin Chung",
"Jeongsol Kim",
"Sehui Kim",
"Jong Chul Ye"
],
"doi": "10.1109/cvpr52729.2023.00587",
"ref_id": "b8",
"title": "Parallel Diffusion Models of Operator and Image for Blind Inverse Problems",
"year": "2023"
},
{
"authors": [
"H Chung",
"J Kim",
"M T Mccann",
"M L Klasky",
"J C Ye"
],
"doi": "",
"ref_id": "b9",
"title": "Diffusion posterior sampling for general noisy inverse problems",
"year": "2023"
},
{
"authors": [
"P Dhariwal",
"A Nichol"
],
"doi": "",
"ref_id": "b10",
"title": "Diffusion models beat GANs on image synthesis",
"year": "2021"
},
{
"authors": [
"J Eaton",
"N D Gaubitch",
"A H Moore",
"P A Naylor"
],
"doi": "10.1109/waspaa.2015.7336912",
"ref_id": "b11",
"title": "The ACE challenge — Corpus description and performance evaluation",
"year": "2015. 2015"
},
{
"authors": [
"M Fazel",
"E Candes",
"B Recht",
"P Parrilo"
],
"doi": "",
"ref_id": "b12",
"title": "Compressed sensing and robust recovery of low rank matrices",
"year": "2008"
},
{
"authors": [
"X Gao",
"M Sitharam",
"A E Roitberg"
],
"doi": "",
"ref_id": "b13",
"title": "Bounds on the Jensen gap, and implications for mean-concentrated distributions",
"year": "2017"
},
{
"authors": [
"Shawn Hershey",
"Sourish Chaudhuri",
"Daniel P W Ellis",
"Jort F Gemmeke",
"Aren Jansen",
"R Channing Moore",
"Manoj Plakal",
"Devin Platt",
"Rif A Saurous",
"Bryan Seybold",
"Malcolm Slaney",
"Ron J Weiss",
"Kevin Wilson"
],
"doi": "10.1109/icassp.2017.7952132",
"ref_id": "b14",
"title": "CNN architectures for large-scale audio classification",
"year": "2017"
},
{
"authors": [
"M Heusel",
"H Ramsauer",
"T Unterthiner",
"B Nessler",
"S Hochreiter"
],
"doi": "",
"ref_id": "b15",
"title": "GANs trained by a two time-scale update rule converge to a local Nash equilibrium",
"year": "2017"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b16",
"title": "Denoising diffusion probabilistic models",
"year": "2020"
},
{
"authors": [
"Chandan K A Reddy",
"Harishchandra Dubey",
"Kazuhito Koishida",
"Arun Nair",
"Vishak Gopal",
"Ross Cutler",
"Sebastian Braun",
"Hannes Gamper",
"Robert Aichner",
"Sriram Srinivasan"
],
"doi": "10.21437/interspeech.2021-1609",
"ref_id": "b17",
"title": "INTERSPEECH 2021 Deep Noise Suppression Challenge",
"year": "2021"
},
{
"authors": [
"Z Kadkhodaie",
"E P Simoncelli"
],
"doi": "",
"ref_id": "b18",
"title": "Solving linear inverse problems using the prior implicit in a denoiser",
"year": "2020"
},
{
"authors": [
"G Kail",
"J.-Y Tourneret",
"F Hlawatsch",
"N Dobigeon"
],
"doi": "",
"ref_id": "b19",
"title": "Blind deconvolution of sparse pulse sequences under a minimum distance constraint: A partially collapsed Gibbs sampler method",
"year": "2012"
},
{
"authors": [
"Nikhil Kandpal",
"Oriol Nieto",
"Zeyu Jin"
],
"doi": "10.1109/icassp43922.2022.9747454",
"ref_id": "b20",
"title": "Music Enhancement via Image Translation and Vocoding",
"year": "2022"
},
{
"authors": [
"Tero Karras",
"Samuli Laine",
"Timo Aila"
],
"doi": "10.1109/cvpr.2019.00453",
"ref_id": "b21",
"title": "A Style-Based Generator Architecture for Generative Adversarial Networks",
"year": "2019"
},
{
"authors": [
"B Kawar",
"G Vaksman",
"M Elad",
"Snips"
],
"doi": "",
"ref_id": "b22",
"title": "Solving noisy inverse problems stochastically",
"year": "2021"
},
{
"authors": [
"B Kawar",
"M Elad",
"S Ermon",
"J Song"
],
"doi": "",
"ref_id": "b23",
"title": "Denoising diffusion restoration models",
"year": "2022"
},
{
"authors": [
"Kevin Kilgour",
"Mauricio Zuluaga",
"Dominik Roblek",
"Matthew Sharifi"
],
"doi": "10.21437/interspeech.2019-2219",
"ref_id": "b24",
"title": "Fréchet Audio Distance: A Reference-Free Metric for Evaluating Music Enhancement Algorithms",
"year": "2018"
},
{
"authors": [
"Junghyun Koo",
"Seungryeol Paik",
"Kyogu Lee"
],
"doi": "10.1109/icassp39728.2021.9414038",
"ref_id": "b25",
"title": "Reverb Conversion Of Mixed Vocal Tracks Using An End-To-End Convolutional Deep Neural Network",
"year": "2021"
},
{
"authors": [
"D Krishnan",
"R Fergus"
],
"doi": "",
"ref_id": "b26",
"title": "Fast image deconvolution using hyper-Laplacian priors",
"year": "2009"
},
{
"authors": [
"Jakob Kruse",
"Carsten Rother",
"Uwe Schmidt"
],
"doi": "10.1109/iccv.2017.491",
"ref_id": "b27",
"title": "Learning to Push the Limits of Efficient FFT-Based Image Deconvolution",
"year": "2017"
},
{
"authors": [
"O Kupyn",
"T Martyniuk",
"J Wu",
"Z Wang"
],
"doi": "",
"ref_id": "b28",
"title": "Deblurganv2: Deblurring (orders-of-magnitude) faster and better",
"year": "2019"
},
{
"authors": [
"C.-H Lai",
"Y Takida",
"N Murata",
"T Uesaka",
"Y Mitsufuji",
"S Ermon"
],
"doi": "",
"ref_id": "b29",
"title": "Improving score-based diffusion models by enforcing the underlying score Fokker-Planck equation",
"year": "2022"
},
{
"authors": [
"P Langevin"
],
"doi": "",
"ref_id": "b30",
"title": "On the theory of Brownian motion",
"year": "1908"
},
{
"authors": [
"Erik Larsen",
"Ronald M Aarts"
],
"doi": "10.1002/0470858710",
"ref_id": "b31",
"title": "Audio Bandwidth Extension",
"year": "2005"
},
{
"authors": [
"Gustav Larsson",
"Michael Maire",
"Gregory Shakhnarovich"
],
"doi": "10.1007/978-3-319-46493-0_35",
"ref_id": "b32",
"title": "Learning Representations for Automatic Colorization",
"year": "2016"
},
{
"authors": [
"J S Liu",
"W H Wong",
"A Kong"
],
"doi": "10.1093/biomet/81.1.27",
"ref_id": "b33",
"title": "Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes",
"year": "1994"
},
{
"authors": [
"I Loshchilov",
"F Hutter"
],
"doi": "",
"ref_id": "b34",
"title": "Decoupled weight decay regularization",
"year": "2019"
},
{
"authors": [
"P Micikevicius",
"S Narang",
"J Alben",
"G Diamos",
"E Elsen",
"D Garcia",
"B Ginsburg",
"M Houston",
"O Kuchaiev",
"G Venkatesh",
"H Wu"
],
"doi": "",
"ref_id": "b35",
"title": "Mixed precision training",
"year": "2018"
},
{
"authors": [
"Takeru Miyato",
"Masanori Koyama"
],
"doi": "10.1007/978-3-030-03243-2_860-1",
"ref_id": "b36",
"title": "Generative Adversarial Network (GAN)",
"year": "2018"
},
{
"authors": [
"T Nakatani",
"T Yoshioka",
"K Kinoshita",
"M Miyoshi",
"B.-H Juang"
],
"doi": "",
"ref_id": "b37",
"title": "Speech dereverberation based on variancenormalized delayed linear prediction",
"year": "2010"
},
{
"authors": [
"A Nichol",
"P Dhariwal"
],
"doi": "",
"ref_id": "b38",
"title": "Improved denoising diffusion probabilistic models",
"year": "2021"
},
{
"authors": [
"Jinshan Pan",
"Deqing Sun",
"Hanspeter Pfister",
"Ming-Hsuan Yang"
],
"doi": "10.1109/cvpr.2016.180",
"ref_id": "b39",
"title": "Blind Image Deblurring Using Dark Channel Prior",
"year": "2016"
},
{
"authors": [
"Jinshan Pan",
"Deqing Sun",
"Hanspeter Pfister",
"Ming-Hsuan Yang"
],
"doi": "10.1109/tpami.2017.2753804",
"ref_id": "b40",
"title": "Deblurring Images via Dark Channel Prior",
"year": "2017"
},
{
"authors": [
"Gaurav Parmar",
"Richard Zhang",
"Jun-Yan Zhu"
],
"doi": "10.1109/cvpr52688.2022.01112",
"ref_id": "b41",
"title": "On Aliased Resizing and Surprising Subtleties in GAN Evaluation",
"year": "2022"
},
{
"authors": [
"Dongwei Ren",
"Kai Zhang",
"Qilong Wang",
"Qinghua Hu",
"Wangmeng Zuo"
],
"doi": "10.1109/cvpr42600.2020.00340",
"ref_id": "b42",
"title": "Neural Blind Deconvolution Using Deep Priors",
"year": "2020"
},
{
"authors": [
"J H Rick Chang",
"Chun-Liang Li",
"Barnabas Poczos",
"B V K Vijaya Kumar",
"Aswin C Sankaranarayanan"
],
"doi": "10.1109/iccv.2017.627",
"ref_id": "b43",
"title": "One Network to Solve Them All — Solving Linear Inverse Problems Using Deep Projection Models",
"year": "2017"
},
{
"authors": [
"O Ronneberger",
"P Fischer",
"T Brox"
],
"doi": "",
"ref_id": "b44",
"title": "U-net: Convolutional networks for biomedical image segmentation",
"year": "2015"
},
{
"authors": [
"J L Roux",
"S Wisdom",
"H Erdogan",
"J R Hershey"
],
"doi": "10.1109/ICASSP.2019.8683855",
"ref_id": "b45",
"title": "SDR -Half-baked or well done?",
"year": "2019"
},
{
"authors": [
"Koichi Saito",
"Naoki Murata",
"Toshimitsu Uesaka",
"Chieh-Hsin Lai",
"Yuhta Takida",
"Takao Fukui",
"Yuki Mitsufuji"
],
"doi": "10.1109/icassp49357.2023.10095761",
"ref_id": "b46",
"title": "Unsupervised Vocal Dereverberation with Diffusion-Based Generative Models",
"year": "2023"
},
{
"authors": [
"Joao F Santos",
"Mohammed Senoussaoui",
"Tiago H Falk"
],
"doi": "10.1109/iwaenc.2014.6953337",
"ref_id": "b47",
"title": "An improved non-intrusive intelligibility metric for noisy and reverberant speech",
"year": "2014"
},
{
"authors": [
"H Sedghi",
"V Gupta",
"P M Long"
],
"doi": "10.36684/28",
"ref_id": "b48",
"title": "Second International Confer-ence on Integrable Systems and Nonlinear Dynamics - 2020",
"year": "2019"
},
{
"authors": [
"Bidisha Sharma",
"Xiaoxue Gao",
"Karthika Vijayan",
"Xiaohai Tian",
"Haizhou Li"
],
"doi": "10.1016/j.specom.2021.07.002",
"ref_id": "b49",
"title": "NHSS: A speech and singing parallel database",
"year": "2021"
},
{
"authors": [
"J Sohl-Dickstein",
"E Weiss",
"N Maheswaranathan",
"S Ganguli"
],
"doi": "",
"ref_id": "b50",
"title": "Deep unsupervised learning using nonequilibrium thermodynamics",
"year": "2015"
},
{
"authors": [
"Y Song",
"S Ermon"
],
"doi": "",
"ref_id": "b51",
"title": "Generative modeling by estimating gradients of the data distribution",
"year": "2019"
},
{
"authors": [
"Y Song",
"S Ermon"
],
"doi": "",
"ref_id": "b52",
"title": "Improved techniques for training score-based generative models",
"year": "2020"
},
{
"authors": [
"Y Song",
"L Shen",
"L Xing",
"S Ermon"
],
"doi": "",
"ref_id": "b53",
"title": "Solving inverse problems in medical imaging with score-based generative models",
"year": "2021"
},
{
"authors": [
"Y Song",
"J Sohl-Dickstein",
"D P Kingma",
"A Kumar",
"S Ermon",
"B Poole"
],
"doi": "",
"ref_id": "b54",
"title": "Score-based generative modeling through stochastic differential equations",
"year": "2021"
},
{
"authors": [
"Zhengzhong Tu",
"Hossein Talebi",
"Han Zhang",
"Feng Yang",
"Peyman Milanfar",
"Alan Bovik",
"Yinxiao Li"
],
"doi": "10.1109/cvpr52688.2022.00568",
"ref_id": "b55",
"title": "MAXIM: Multi-Axis MLP for Image Processing",
"year": "2022"
},
{
"authors": [
"D A Van Dyk",
"T Park"
],
"doi": "",
"ref_id": "b56",
"title": "Partially collapsed Gibbs samplers: Theory and methods",
"year": "2008"
},
{
"authors": [
"J Whang",
"Q Lei",
"A Dimakis"
],
"doi": "",
"ref_id": "b57",
"title": "Solving inverse problems with a flow-based noise model",
"year": "2021"
},
{
"authors": [
"Li Xu",
"Shicheng Zheng",
"Jiaya Jia"
],
"doi": "10.1109/cvpr.2013.147",
"ref_id": "b58",
"title": "Unnatural L0 Sparse Representation for Natural Image Deblurring",
"year": "2013"
},
{
"authors": [
"Raymond A Yeh",
"Chen Chen",
"Teck Yian Lim",
"Alexander G Schwing",
"Mark Hasegawa-Johnson",
"Minh N Do"
],
"doi": "10.1109/cvpr.2017.728",
"ref_id": "b59",
"title": "Semantic Image Inpainting with Deep Generative Models",
"year": "2017"
},
{
"authors": [
"Syed Waqas Zamir",
"Aditya Arora",
"Salman Khan",
"Munawar Hayat",
"Fahad Shahbaz Khan",
"Ming-Hsuan Yang",
"Ling Shao"
],
"doi": "10.1109/cvpr46437.2021.01458",
"ref_id": "b60",
"title": "Multi-Stage Progressive Image Restoration",
"year": "2021"
},
{
"authors": [
"Richard Zhang",
"Phillip Isola",
"Alexei A Efros",
"Eli Shechtman",
"Oliver Wang"
],
"doi": "10.1109/cvpr.2018.00068",
"ref_id": "b61",
"title": "The Unreasonable Effectiveness of Deep Features as a Perceptual Metric",
"year": "2018"
},
{
"authors": [
"B Zhu",
"J Z Liu",
"S F Cauley",
"B R Rosen",
"M S Rosen"
],
"doi": "",
"ref_id": "b62",
"title": "Image reconstruction by domain-transform manifold learning",
"year": "2018"
}
] |
[
"dcd88c5074ee3308",
"7cb4584473814329",
"26236d4d41c060e4",
"5264eb0a8fcc8dec",
"58ebab7c08b04341",
"7eabdc42e5e65455",
"d058f6e6e1884bd5",
"14abf7a9f7c5fd17",
"d3a70afe342f62b3"
] |
[
"86602a126816b982",
"30acb6598629a492",
"43e689065fe36b00",
"d058f6e6e1884bd5",
"8acc6d2e77f7baf0",
"6d47c019db1622d6",
"ec7c85949fd4cf92",
"7e38f1e6d210f000",
"cc06ec4a9adc3b44",
"cf58923d87963d18",
"3d663db2552f763a",
"84bdbc438ec88486",
"6b2eb020387cd542",
"058527e766e2615b",
"c9540bf7e8af127e",
"c7599b8fa9638336",
"7cb4584473814329",
"c457a181a6f25ead",
"751fec945eea8a4e",
"7eabdc42e5e65455",
"55d376ddcff50f9b",
"658a68685b742cc3",
"a5ca15befa188a72",
"58ebab7c08b04341",
"2d84d2a313affae8",
"07657e1df595fba0",
"0e8bf528422dd97e",
"f5dfb18f9a50ef21",
"bf52d485e087ac9e",
"dcd88c5074ee3308",
"427ba4f8d31e7635",
"d1b14b27b423d120",
"51b1e935c6995f8c",
"14abf7a9f7c5fd17",
"04fd250792d5996b",
"bbe202e098f0d5f4",
"9ca4e7b59d570c54",
"d05f54dac4550d13",
"75d0fa8769a50bfb",
"6bf174f150f9986e",
"1635b85b9eb6df53",
"910778eb2a3a03d4",
"31a741b86e12d778",
"624401d9cd05c0ee",
"8f4346b1fff4eec8",
"50064292489298d5",
"188e0089a6ea4e93",
"f3e05cd91dc1f52f",
"4dd524c4e496a7d6",
"ad23821f34f316b5",
"26236d4d41c060e4",
"d3a70afe342f62b3",
"49a1fbca5dfbefad",
"4fc1fff2a077c4d5",
"ff22ea63a3da7748",
"282725fab2cf066d",
"5264eb0a8fcc8dec",
"9d16aeb588220756",
"eab3c19773e76b48",
"3d0e26567e13c5cc",
"8f496c19813a59e6",
"f114f3d407034fcb",
"9296f857d6331efe"
] |
s58a6Pxw7V
|
Spherical Inducing Features for Orthogonally-Decoupled Gaussian Processes
|
data/openreview_paper/ICML_2023_oral/s58a6Pxw7V//paper.pdf
| 39
| 0
|
[] |
[
{
"authors": [
"D R Burt",
"C E Rasmussen",
"M Van Der Wilk"
],
"doi": "",
"ref_id": "b0",
"title": "Variational orthogonal features",
"year": "2020"
},
{
"authors": [
"R H Byrd",
"P Lu",
"J Nocedal",
"C Zhu"
],
"doi": "",
"ref_id": "b1",
"title": "A limited memory algorithm for bound constrained optimization",
"year": "1995"
},
{
"authors": [
"Roberto Calandra",
"Jan Peters",
"Carl Edward Rasmussen",
"Marc Peter Deisenroth"
],
"doi": "10.1109/ijcnn.2016.7727626",
"ref_id": "b2",
"title": "Manifold Gaussian Processes for regression",
"year": "2016"
},
{
"authors": [
"C.-A Cheng",
"B Boots"
],
"doi": "",
"ref_id": "b3",
"title": "Variational inference for Gaussian process models with linear complexity",
"year": "2017"
},
{
"authors": [
"Lehel Csató",
"Manfred Opper"
],
"doi": "10.1162/089976602317250933",
"ref_id": "b4",
"title": "Sparse On-Line Gaussian Processes",
"year": "2002"
},
{
"authors": [
"A Damianou",
"N D Lawrence"
],
"doi": "",
"ref_id": "b5",
"title": "Deep Gaussian processes",
"year": "2013"
},
{
"authors": [
"M Deisenroth",
"C E Rasmussen"
],
"doi": "",
"ref_id": "b6",
"title": "Pilco: A model-based and data-efficient approach to policy search",
"year": "2011"
},
{
"authors": [
"D Dua",
"C Graff"
],
"doi": "10.7717/peerj-cs.1806/table-3",
"ref_id": "b7",
"title": "Table 3: Health datasets from UCI machine learning repository.",
"year": "2017"
},
{
"authors": [
"V Dutordoir",
"N Durrande",
"J Hensman"
],
"doi": "",
"ref_id": "b8",
"title": "Sparse Gaussian processes with spherical harmonic features",
"year": "2020"
},
{
"authors": [
"V Dutordoir",
"J Hensman",
"M Van Der Wilk",
"C H Ek",
"Z Ghahramani",
"N Durrande"
],
"doi": "",
"ref_id": "b9",
"title": "Deep neural networks as point estimates for deep Gaussian processes",
"year": "2021"
},
{
"authors": [
"R Garnett"
],
"doi": "",
"ref_id": "b10",
"title": "Bayesian Optimization",
"year": "2023"
},
{
"authors": [
"P Hennig",
"M A Osborne",
"H P Kersting"
],
"doi": "",
"ref_id": "b11",
"title": "Probabilistic Numerics",
"year": "2022"
},
{
"authors": [
"J Hensman",
"N Fusi",
"N D Lawrence"
],
"doi": "",
"ref_id": "b12",
"title": "Gaussian processes for big data",
"year": "2013"
},
{
"authors": [
"J Hensman",
"A Matthews",
"Z Ghahramani"
],
"doi": "",
"ref_id": "b13",
"title": "Scalable variational Gaussian process classification",
"year": ""
},
{
"authors": [
"Pmlr"
],
"doi": "10.1163/1873-5363_fgrh.2015a.bnjo-1-comm1-eng",
"ref_id": "b14",
"title": "Diogenianos (2015a)",
"year": "2015"
},
{
"authors": [
"J Hensman",
"A G Matthews",
"M Filippone",
"Z Ghahramani"
],
"doi": "",
"ref_id": "b15",
"title": "MCMC for variationally sparse Gaussian processes",
"year": "2015"
},
{
"authors": [
"J Hensman",
"N Durrande",
"A Solin"
],
"doi": "",
"ref_id": "b16",
"title": "Variational Fourier features for Gaussian processes",
"year": "2018"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b17",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"M Lázaro-Gredilla",
"A Figueiras-Vidal"
],
"doi": "",
"ref_id": "b18",
"title": "Inter-domain Gaussian processes for sparse inference using inducing features",
"year": "2009"
},
{
"authors": [
"D J Mackay"
],
"doi": "10.1007/978-3-662-03729-4",
"ref_id": "b19",
"title": "Computational Methods in Mechanical Systems",
"year": "1998"
},
{
"authors": [
"A G D G Matthews",
"M Van Der Wilk",
"T Nickson",
"K Fujii",
"A Boukouvalas",
"P León-Villagrá",
"Z Ghahramani",
"J Hensman"
],
"doi": "",
"ref_id": "b20",
"title": "GPflow: A Gaussian process library using TensorFlow",
"year": "apr 2017"
},
{
"authors": [
"I Murray",
"R P Adams"
],
"doi": "",
"ref_id": "b21",
"title": "Slice sampling covariance hyperparameters of latent Gaussian models",
"year": "2010"
},
{
"authors": [
"R M Neal"
],
"doi": "",
"ref_id": "b22",
"title": "Bayesian learning for neural networks",
"year": "1996"
},
{
"authors": [
"S W Ober",
"C E Rasmussen",
"M Van Der Wilk"
],
"doi": "",
"ref_id": "b23",
"title": "The promises and pitfalls of deep kernel learning",
"year": "2021"
},
{
"authors": [
"J Quinonero-Candela",
"C E Rasmussen"
],
"doi": "",
"ref_id": "b24",
"title": "A unifying view of sparse approximate Gaussian process regression",
"year": "2005"
},
{
"authors": [
"Carl Edward Rasmussen",
"Christopher K I Williams"
],
"doi": "10.7551/mitpress/3206.001.0001",
"ref_id": "b25",
"title": "Gaussian Processes for Machine Learning",
"year": "2006"
},
{
"authors": [
"Joseph Lee Rodgers",
"W Alan Nicewander",
"Larry Toothaker"
],
"doi": "10.1080/00031305.1984.10483183",
"ref_id": "b26",
"title": "Linearly Independent, Orthogonal, and Uncorrelated Variables",
"year": "1984"
},
{
"authors": [
"H Salimbeni",
"C.-A Cheng",
"B Boots",
"M Deisenroth"
],
"doi": "",
"ref_id": "b27",
"title": "Orthogonally decoupled variational Gaussian processes",
"year": "2018"
},
{
"authors": [
"M W Seeger",
"C K Williams",
"N D Lawrence"
],
"doi": "",
"ref_id": "b28",
"title": "Fast forward selection to speed up sparse Gaussian process regression",
"year": "2003"
},
{
"authors": [
"J Shi",
"M Titsias",
"A Mnih"
],
"doi": "",
"ref_id": "b29",
"title": "Sparse orthogonal variational inference for Gaussian processes",
"year": "2020"
},
{
"authors": [
"E Snelson",
"Z Ghahramani"
],
"doi": "",
"ref_id": "b30",
"title": "Sparse Gaussian processes using pseudo-inputs",
"year": "2005"
},
{
"authors": [
"E Snelson",
"Z Ghahramani"
],
"doi": "",
"ref_id": "b31",
"title": "Local and global sparse Gaussian process approximations",
"year": "2007"
},
{
"authors": [
"S Sun",
"J Shi",
"R B Grosse"
],
"doi": "",
"ref_id": "b32",
"title": "Neural networks as inter-domain inducing points",
"year": "2020"
},
{
"authors": [
"S Sun",
"J Shi",
"A G G Wilson",
"R B Grosse"
],
"doi": "",
"ref_id": "b33",
"title": "Scalable variational Gaussian processes via harmonic kernel decomposition",
"year": "2021"
},
{
"authors": [
"M Titsias"
],
"doi": "",
"ref_id": "b34",
"title": "Variational learning of inducing variables in sparse Gaussian processes",
"year": "2009"
},
{
"authors": [
"M Van Der Wilk",
"V Dutordoir",
"S John",
"A Artemev",
"V Adam",
"J Hensman"
],
"doi": "",
"ref_id": "b35",
"title": "A framework for interdomain and multioutput Gaussian processes",
"year": "2020"
},
{
"authors": [
"Pauli Virtanen",
"Ralf Gommers",
"Travis E Oliphant",
"Matt Haberland",
"Tyler Reddy",
"David Cournapeau",
"Evgeni Burovski",
"Pearu Peterson",
"Warren Weckesser",
"Jonathan Bright",
"Stéfan J Van Der Walt",
"Matthew Brett",
"Joshua Wilson",
"K Jarrod Millman",
"Nikolay Mayorov",
"Andrew R J Nelson",
"Eric Jones",
"Robert Kern",
"Eric Larson",
"C J Carey",
"İlhan Polat",
"Yu Feng",
"Eric W Moore",
"Jake Vanderplas",
"Denis Laxalde",
"Josef Perktold",
"Robert Cimrman",
"Ian Henriksen",
"E A Quintero",
"Charles R Harris",
"Anne M Archibald",
"Antônio H Ribeiro",
"Fabian Pedregosa",
"Paul Van Mulbregt",
"Aditya Vijaykumar",
"Alessandro Pietro Bardelli",
"Alex Rothberg",
"Andreas Hilboll",
"Andreas Kloeckner",
"Anthony Scopatz",
"Antony Lee",
"Ariel Rokem",
"C Nathan Woods",
"Chad Fulton",
"Charles Masson",
"Christian Häggström",
"Clark Fitzgerald",
"David A Nicholson",
"David R Hagen",
"Dmitrii V Pasechnik",
"Emanuele Olivetti",
"Eric Martin",
"Eric Wieser",
"Fabrice Silva",
"Felix Lenders",
"Florian Wilhelm",
"G Young",
"Gavin A Price",
"Gert-Ludwig Ingold",
"Gregory E Allen",
"Gregory R Lee",
"Hervé Audren",
"Irvin Probst",
"Jörg P Dietrich",
"Jacob Silterra",
"James T Webber",
"Janko Slavič",
"Joel Nothman",
"Johannes Buchner",
"Johannes Kulick",
"Johannes L Schönberger",
"José Vinícius De Miranda Cardoso",
"Joscha Reimer",
"Joseph Harrington",
"Juan Luis Cano Rodríguez",
"Juan Nunez-Iglesias",
"Justin Kuczynski",
"Kevin Tritz",
"Martin Thoma",
"Matthew Newville",
"Matthias Kümmerer",
"Maximilian Bolingbroke",
"Michael Tartre",
"Mikhail Pak",
"Nathaniel J Smith",
"Nikolai Nowaczyk",
"Nikolay Shebanov",
"Oleksandr Pavlyk",
"Per A Brodtkorb",
"Perry Lee",
"Robert T Mcgibbon",
"Roman Feldbauer",
"Sam Lewis",
"Sam Tygier",
"Scott Sievert",
"Sebastiano Vigna",
"Stefan Peterson",
"Surhud More",
"Tadeusz Pudlik",
"Takuya Oshima",
"Thomas J Pingel",
"Thomas P Robitaille",
"Thomas Spura",
"Thouis R Jones",
"Tim Cera",
"Tim Leslie",
"Tiziano Zito",
"Tom Krauss",
"Utkarsh Upadhyay",
"Yaroslav O Halchenko",
"Yoshiki Vázquez-Baeza"
],
"doi": "10.1038/s41592-019-0686-2",
"ref_id": "b36",
"title": "SciPy 1.0: fundamental algorithms for scientific computing in Python",
"year": "2020"
},
{
"authors": [
"A G Wilson",
"Z Hu",
"R Salakhutdinov",
"E P Xing"
],
"doi": "",
"ref_id": "b37",
"title": "Deep kernel learning",
"year": "2016"
},
{
"authors": [
"Ciyou Zhu",
"Richard H Byrd",
"Peihuang Lu",
"Jorge Nocedal"
],
"doi": "10.1145/279232.279236",
"ref_id": "b38",
"title": "Algorithm 778: L-BFGS-B",
"year": "1997"
}
] |
[] |
[
"b3868b76f596524c",
"7b382909056582b8",
"e6c2a7e3fcab2e4a",
"da92836af982bf5e",
"2eaa42e621fa1573",
"e8f8315a40cf882d",
"cc1293a3077f0e04",
"2eaa1a40b2b73c51",
"4539157bedd458f4",
"0a3cf4621c66d348",
"9dfdeb1826714116",
"d32789dc7364af2e",
"464363d32952b9d2",
"ae13cd0a89801eeb",
"3aeae177826c2ec4",
"b0e5f55c422b96b1",
"dfb0b906f426eac5",
"46c9e9a41e8bc923",
"24f975742c826b16",
"6289090f9537ff37",
"84b7e78fb4190357",
"215d16e65de1e3ca",
"aad54ca360c691df",
"82ce10953fb18f1a",
"f1b26cce9d8a1cc5",
"d24daabfee50909f",
"2bd177abaf97cbf5",
"74941e056f9abb15",
"24fc93520e4eb696",
"7a59c6f50e0cc54c",
"18830da91903eaf4",
"98c523a54797b049",
"3896dde0d5e1f95c",
"146d6e6a2487f4f6",
"d9f635257faf60ae",
"a556b196efd10cd1",
"d9c1c976a9df439f",
"13d303051a3757b2",
"6debb77b5e20da69"
] |
pRQOVucM8e
|
Dynamics-inspired Neuromorphic Visual Representation Learning
|
data/openreview_paper/ICML_2023_oral/pRQOVucM8e//paper.pdf
| 38
| 0
|
[] |
[
{
"authors": [
"H D Abarbanel",
"A Rouhi"
],
"doi": "",
"ref_id": "b0",
"title": "Phase space density representation of inviscid fluid dynamics",
"year": "1987"
},
{
"authors": [
"M Akrout",
"C Wilson",
"P Humphreys",
"T Lillicrap",
"D B Tweed"
],
"doi": "",
"ref_id": "b1",
"title": "Deep learning without weight transport",
"year": "2019"
},
{
"authors": [
"F Assunc ¸ão",
"N Lourenc ¸o",
"P Machado",
"B Ribeiro"
],
"doi": "",
"ref_id": "b2",
"title": "Evolving the topology of large scale deep neural networks",
"year": "2018"
},
{
"authors": [
"E Basegmez"
],
"doi": "",
"ref_id": "b3",
"title": "The next generation neural networks: Deep learning and spiking neural networks",
"year": "2014"
},
{
"authors": [
"Mark Braverman",
"Jonathan Schneider",
"Cristóbal Rojas"
],
"doi": "10.1103/physrevlett.115.098701",
"ref_id": "b4",
"title": "Space-Bounded Church-Turing Thesis and Computational Tractability of Closed Systems",
"year": "2015"
},
{
"authors": [
"D B Chklovskii",
"B W Mel",
"K Svoboda"
],
"doi": "10.1038/nature03012",
"ref_id": "b5",
"title": "Cortical rewiring and information storage",
"year": "2004"
},
{
"authors": [
"Richard W Cho",
"Lauren K Buhl",
"Dina Volfson",
"Adrienne Tran",
"Feng Li",
"Yulia Akbergenova",
"J Troy Littleton"
],
"doi": "10.1016/j.neuron.2015.10.011",
"ref_id": "b6",
"title": "Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity",
"year": "2015"
},
{
"authors": [
"Steven J Cooper",
"Donald O"
],
"doi": "10.1016/j.neubiorev.2004.09.009",
"ref_id": "b7",
"title": "Donald O. Hebb's synapse and learning rule: a history and commentary",
"year": "2005"
},
{
"authors": [
"G Cybenko"
],
"doi": "10.1007/bf02551274",
"ref_id": "b8",
"title": "Approximation by superpositions of a sigmoidal function",
"year": "1989"
},
{
"authors": [
"J Deng",
"W Dong",
"R Socher",
"L.-J Li",
"K Li",
"L Fei-Fei"
],
"doi": "",
"ref_id": "b9",
"title": "Imagenet: A large-scale hierarchical image database",
"year": "2009. 2009"
},
{
"authors": [
"L Deng"
],
"doi": "",
"ref_id": "b10",
"title": "The mnist database of handwritten digit images for machine learning research [best of the web",
"year": "2012"
},
{
"authors": [
"A Dosovitskiy",
"L Beyer",
"A Kolesnikov",
"D Weissenborn",
"X Zhai",
"T Unterthiner",
"M Dehghani",
"M Minderer",
"G Heigold",
"S Gelly"
],
"doi": "",
"ref_id": "b11",
"title": "An image is worth 16x16 words: Transformers for image recognition at scale",
"year": "2020"
},
{
"authors": [
"T Elsken",
"J H Metzen",
"F Hutter"
],
"doi": "",
"ref_id": "b12",
"title": "Neural architecture search: A survey",
"year": "2019"
},
{
"authors": [
"A Gaier",
"D Ha"
],
"doi": "",
"ref_id": "b13",
"title": "Weight agnostic neural networks",
"year": "2019"
},
{
"authors": [
"A Golubeva",
"B Neyshabur",
"G Gur-Ari"
],
"doi": "",
"ref_id": "b14",
"title": "Are wider nets better given the same number of parameters?",
"year": "2020"
},
{
"authors": [
"Yizeng Han",
"Gao Huang",
"Shiji Song",
"Le Yang",
"Honghui Wang",
"Yulin Wang"
],
"doi": "10.1109/tpami.2021.3117837",
"ref_id": "b15",
"title": "Dynamic Neural Networks: A Survey",
"year": "2021"
},
{
"authors": [
"Kaiming He",
"Xiangyu Zhang",
"Shaoqing Ren",
"Jian Sun"
],
"doi": "10.1109/cvpr.2016.90",
"ref_id": "b16",
"title": "Deep Residual Learning for Image Recognition",
"year": "2016"
},
{
"authors": [
"G E Hinton",
"S Osindero",
"Y W Teh"
],
"doi": "",
"ref_id": "b17",
"title": "A fast learning algorithm for deep belief nets",
"year": "2006"
},
{
"authors": [
"Gao Huang",
"Zhuang Liu",
"Laurens Van Der Maaten",
"Kilian Q Weinberger"
],
"doi": "10.1109/cvpr.2017.243",
"ref_id": "b18",
"title": "Densely Connected Convolutional Networks",
"year": "2017"
},
{
"authors": [
"P K Huynh",
"M L Varshika",
"A Paul",
"M Isik",
"A Balaji",
"A Das"
],
"doi": "",
"ref_id": "b19",
"title": "Implementing spiking neural networks on neuromorphic architectures: A review",
"year": "2022"
},
{
"authors": [
"P Indyk",
"S Silwal"
],
"doi": "",
"ref_id": "b20",
"title": "Faster linear algebra for distance matrices",
"year": "2022"
},
{
"authors": [
"Alex Krizhevsky",
"Ilya Sutskever",
"Geoffrey E Hinton"
],
"doi": "10.1145/3065386",
"ref_id": "b21",
"title": "ImageNet classification with deep convolutional neural networks",
"year": "2017"
},
{
"authors": [
"P Langley"
],
"doi": "",
"ref_id": "b22",
"title": "Crafting papers on machine learning",
"year": "2000"
},
{
"authors": [
"Morgan Kaufmann"
],
"doi": "",
"ref_id": "b23",
"title": "",
"year": ""
},
{
"authors": [
"Y Lecun"
],
"doi": "",
"ref_id": "b24",
"title": "Lenet-5, convolutional neural networks",
"year": "14, 2015"
},
{
"authors": [
"W Li",
"L Wang",
"W Li",
"E Agustsson",
"L Van Gool"
],
"doi": "",
"ref_id": "b25",
"title": "Webvision database: Visual learning and understanding from web data",
"year": "2017"
},
{
"authors": [
"Ze Liu",
"Yutong Lin",
"Yue Cao",
"Han Hu",
"Yixuan Wei",
"Zheng Zhang",
"Stephen Lin",
"Baining Guo"
],
"doi": "10.1109/iccv48922.2021.00986",
"ref_id": "b26",
"title": "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows",
"year": "2021"
},
{
"authors": [
"R Pascanu",
"T Mikolov",
"Y Bengio"
],
"doi": "",
"ref_id": "b27",
"title": "On the difficulty of training recurrent neural networks",
"year": "2013"
},
{
"authors": [
"Priyanka A Patil",
"Charudatta Kulkarni"
],
"doi": "10.1109/iccubea.2018.8697705",
"ref_id": "b28",
"title": "A Survey on Multiply Accumulate Unit",
"year": "2018. 2018"
},
{
"authors": [
"P Ren",
"Y Xiao",
"X Chang",
"P.-Y Huang",
"Z Li",
"X Chen",
"X Wang"
],
"doi": "",
"ref_id": "b29",
"title": "A comprehensive survey of neural architecture search: Challenges and solutions",
"year": "2021"
},
{
"authors": [
"A Roychowdhury",
"P Sharma",
"E G Learned-Miller"
],
"doi": "",
"ref_id": "b30",
"title": "Reducing duplicate filters in deep neural networks",
"year": "2018"
},
{
"authors": [
"Franco Scarselli",
"Ah Chung Tsoi"
],
"doi": "10.1016/s0893-6080(97)00097-x",
"ref_id": "b31",
"title": "Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results",
"year": "1998"
},
{
"authors": [
"J A Sethian",
"D Chopp"
],
"doi": "",
"ref_id": "b32",
"title": "Motion by intrinsic laplacian of curvature",
"year": "1999"
},
{
"authors": [
"Kenneth O Stanley",
"Risto Miikkulainen"
],
"doi": "10.1162/106365602320169811",
"ref_id": "b33",
"title": "Evolving Neural Networks through Augmenting Topologies",
"year": "2002"
},
{
"authors": [
"Jörg Stork",
"Martin Zaefferer",
"Thomas Bartz-Beielstein"
],
"doi": "10.1007/978-3-030-16692-2_34",
"ref_id": "b34",
"title": "Improving NeuroEvolution Efficiency by Surrogate Model-Based Optimization with Phenotypic Distance Kernels",
"year": "2019"
},
{
"authors": [
"Christian Szegedy",
"Vincent Vanhoucke",
"Sergey Ioffe",
"Jon Shlens",
"Zbigniew Wojna"
],
"doi": "10.1109/cvpr.2016.308",
"ref_id": "b35",
"title": "Rethinking the Inception Architecture for Computer Vision",
"year": "2016"
},
{
"authors": [
"S Weinberg"
],
"doi": "",
"ref_id": "b36",
"title": "The quantum theory of fields",
"year": "1995"
},
{
"authors": [
"Rui Zhang",
"Steven A Redford",
"Paul V Ruijgrok",
"Nitin Kumar",
"Ali Mozaffari",
"Sasha Zemsky",
"Aaron R Dinner",
"Vincenzo Vitelli",
"Zev Bryant",
"Margaret L Gardel",
"Juan J De Pablo"
],
"doi": "10.1038/s41563-020-00901-4",
"ref_id": "b37",
"title": "Spatiotemporal control of liquid crystal structure and dynamics through activity patterning",
"year": "2021"
}
] |
[] |
[
"0c351bacef37e439",
"bf094dc30b15c2db",
"93b7b029256b9288",
"de9b8910f2a21507",
"4ee4b6b060ccf38c",
"8bd3c1ab5db00586",
"b4f8a3351694206b",
"7b044cd6bd39dfe7",
"1e4ad9349bd7f7e1",
"7232aa340e5593fa",
"700a8ddd19aa82e5",
"e01b048243ab4004",
"d3a4bfe0ea4aae03",
"3b2e891d1d484b33",
"cc0bbb3edf3beaec",
"11c67975996f2ddb",
"39ea51c87cdfdcfb",
"824f7aa940efcb7d",
"8991303664d29366",
"7fc21fab116ac6d6",
"abd4ef1d95deaada",
"0d6372375e407947",
"fc704f2f50850bd9",
"a1c0205f02c398d3",
"c337202ee8bca084",
"721152a69477036a",
"869fde11660485db",
"13728e4d01c0ffe5",
"44902e5cb5a29f3e",
"8610441cbd24b13a",
"f3751268bc2e496c",
"d963ccce3ad53bac",
"7ea4529ca24c285c",
"b3637e7f4e0ed9db",
"defecd7c055d624a",
"dd773355e1f66d93",
"3247d175b755a6e4",
"da6fece118c5ff7b"
] |
rVtdWHPFxX
|
Representation Learning with Multi-Step Inverse Kinematics: An Efficient and Optimal Approach to Rich-Observation RL
|
data/openreview_paper/ICML_2023_oral/rVtdWHPFxX//paper.pdf
| 20
| 7
|
[
{
"authors": [
"Yaonan Jin",
"Daogao Liu",
"Zhao Song"
],
"doi": "10.1137/1.9781611977554.ch176",
"ref_id": "b15",
"title": "Super-resolution and Robust Sparse Continuous Fourier Transform in Any Constant Dimension: Nearly Linear Time and Sample Complexity",
"year": "2021"
},
{
"authors": [
"Simon S Du",
"M Sham",
"Jason D Kakade",
"Shachar Lee",
"Gaurav Lovett",
"Wen Mahajan",
"Ruosong Sun",
"Wang"
],
"doi": "",
"ref_id": "b9",
"title": "Bilinear classes: A structural framework for provable generalization in RL",
"year": "2021"
},
{
"authors": [
"Christoph Dann",
"Nan Jiang",
"Akshay Krishnamurthy",
"Alekh Agarwal",
"John Langford",
"Robert E Schapire"
],
"doi": "",
"ref_id": "b6",
"title": "On oracle-efficient PAC RL with rich observations",
"year": "2018"
},
{
"authors": [
"Chi Jin",
"Zeyuan Allen-Zhu",
"Sebastien Bubeck",
"Michael I Jordan"
],
"doi": "",
"ref_id": "b13",
"title": "Is q-learning provably efficient? Advances in neural information processing systems",
"year": "2018"
},
{
"authors": [
"Nan Jiang",
"Akshay Krishnamurthy",
"Alekh Agarwal",
"John Langford",
"Robert E Schapire"
],
"doi": "",
"ref_id": "b12",
"title": "Contextual decision processes with low Bellman rank are PAC-learnable",
"year": "2017"
},
{
"authors": [
"Dipendra Misra",
"Mikael Henaff",
"Akshay Krishnamurthy",
"John Langford"
],
"doi": "",
"ref_id": "b19",
"title": "Kinematic state abstraction and provably efficient rich-observation reinforcement learning",
"year": "2020"
},
{
"authors": [
"Mohammad Gheshlaghi Azar",
"Rémi Munos",
"Hilbert J Kappen"
],
"doi": "10.1007/s10994-013-5368-1",
"ref_id": "b0",
"title": "Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model",
"year": "2017"
}
] |
[
{
"authors": [
"Mohammad Gheshlaghi Azar",
"Rémi Munos",
"Hilbert J Kappen"
],
"doi": "10.1007/s10994-013-5368-1",
"ref_id": "b0",
"title": "Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model",
"year": "2017"
},
{
"authors": [
"Adrià Puigdomènech Badia",
"Bilal Piot",
"Steven Kapturowski",
"Pablo Sprechmann",
"Alex Vitvitskyi",
"Zhaohan Daniel Guo",
"Charles Blundell"
],
"doi": "",
"ref_id": "b1",
"title": "Agent57: Outperforming the atari human benchmark",
"year": "2020"
},
{
"authors": [
"James Bagnell",
"M Sham",
"Jeff Kakade",
"Andrew Schneider",
"Ng"
],
"doi": "",
"ref_id": "b2",
"title": "Policy search by dynamic programming",
"year": "2003"
},
{
"authors": [
"Bowen Baker",
"Ilge Akkaya",
"Peter Zhokhov",
"Joost Huizinga",
"Jie Tang",
"Adrien Ecoffet",
"Brandon Houghton",
"Raul Sampedro",
"Jeff Clune"
],
"doi": "",
"ref_id": "b3",
"title": "Video pretraining (vpt): Learning to act by watching unlabeled online videos",
"year": "2022"
},
{
"authors": [
"Homanga Bharadhwaj",
"Mohammad Babaeizadeh",
"Dumitru Erhan",
"Sergey Levine"
],
"doi": "",
"ref_id": "b4",
"title": "Information prioritization through empowerment in visual model-based rl",
"year": "2022"
},
{
"authors": [
"Fan Chen",
"Yu Bai",
"Song Mei"
],
"doi": "",
"ref_id": "b5",
"title": "Partially observable rl with b-stability: Unified structural condition and sharp sample-efficient algorithms",
"year": "2022"
},
{
"authors": [
"Christoph Dann",
"Nan Jiang",
"Akshay Krishnamurthy",
"Alekh Agarwal",
"John Langford",
"Robert E Schapire"
],
"doi": "",
"ref_id": "b6",
"title": "On oracle-efficient PAC RL with rich observations",
"year": "2018"
},
{
"authors": [
"Akshay Simon S Du",
"Nan Krishnamurthy",
"Alekh Jiang",
"Miroslav Agarwal",
"John Dudik",
"Langford"
],
"doi": "",
"ref_id": "b7",
"title": "Provably efficient RL with rich observations via latent state decoding",
"year": "2019"
},
{
"authors": [
"Yuping Simon S Du",
"Ruosong Luo",
"Hanrui Wang",
"Zhang"
],
"doi": "",
"ref_id": "b8",
"title": "Provably efficient Q-learning with function approximation via distribution shift error checking oracle",
"year": "2019"
},
{
"authors": [
"Simon S Du",
"M Sham",
"Jason D Kakade",
"Shachar Lee",
"Gaurav Lovett",
"Wen Mahajan",
"Ruosong Sun",
"Wang"
],
"doi": "",
"ref_id": "b9",
"title": "Bilinear classes: A structural framework for provable generalization in RL",
"year": "2021"
},
{
"authors": [
"Yonathan Efroni",
"Dipendra Misra",
"Akshay Krishnamurthy",
"Alekh Agarwal",
"John Langford"
],
"doi": "",
"ref_id": "b10",
"title": "Provably filtering exogenous distractors using multistep inverse dynamics",
"year": "2021"
},
{
"authors": [
"Riashat Islam",
"Manan Tomar",
"Alex Lamb",
"Yonathan Efroni",
"Hongyu Zang",
"Aniket Didolkar",
"Dipendra Misra",
"Xin Li",
"Harm Van Seijen",
"Remi Tachet Des Combes"
],
"doi": "",
"ref_id": "b11",
"title": "Agentcontroller representations: Principled offline rl with rich exogenous information",
"year": "2022"
},
{
"authors": [
"Nan Jiang",
"Akshay Krishnamurthy",
"Alekh Agarwal",
"John Langford",
"Robert E Schapire"
],
"doi": "",
"ref_id": "b12",
"title": "Contextual decision processes with low Bellman rank are PAC-learnable",
"year": "2017"
},
{
"authors": [
"Chi Jin",
"Zeyuan Allen-Zhu",
"Sebastien Bubeck",
"Michael I Jordan"
],
"doi": "",
"ref_id": "b13",
"title": "Is q-learning provably efficient? Advances in neural information processing systems",
"year": "2018"
},
{
"authors": [
"Chi Jin",
"Zhuoran Yang",
"Zhaoran Wang",
"Michael I Jordan"
],
"doi": "10.1287/moor.2022.1309",
"ref_id": "b14",
"title": "Provably Efficient Reinforcement Learning with Linear Function Approximation",
"year": "2020"
},
{
"authors": [
"Yaonan Jin",
"Daogao Liu",
"Zhao Song"
],
"doi": "10.1137/1.9781611977554.ch176",
"ref_id": "b15",
"title": "Super-resolution and Robust Sparse Continuous Fourier Transform in Any Constant Dimension: Nearly Linear Time and Sample Complexity",
"year": "2021"
},
{
"authors": [
"Ioannis Loufopoulos",
"Ioannis G Karagiannidis",
"Savvas Lampridis",
"Sofoklis Mitsos",
"Nikolaos Panagiotopoulos"
],
"doi": "10.5152/turkthoracj.2021.20035",
"ref_id": "b16",
"title": "Vacuum Bell: Is It a Useful Innovative Device for Pectus Excavatum Correction?",
"year": "2003"
},
{
"authors": [
"Alex Lamb",
"Riashat Islam",
"Yonathan Efroni",
"Aniket Didolkar",
"Dipendra Misra",
"Dylan Foster",
"Lekan Molu",
"Rajan Chari",
"Akshay Krishnamurthy",
"John Langford"
],
"doi": "",
"ref_id": "b17",
"title": "Guaranteed discovery of controllable latent states with multistep inverse models",
"year": "2022"
},
{
"authors": [
"Zakaria Mhammedi",
"Dylan J Foster",
"Max Simchowitz",
"Dipendra Misra",
"Wen Sun",
"Akshay Krishnamurthy",
"Alexander Rakhlin",
"John Langford"
],
"doi": "",
"ref_id": "b18",
"title": "Learning the linear quadratic regulator from nonlinear observations",
"year": "2020"
},
{
"authors": [
"Dipendra Misra",
"Mikael Henaff",
"Akshay Krishnamurthy",
"John Langford"
],
"doi": "",
"ref_id": "b19",
"title": "Kinematic state abstraction and provably efficient rich-observation reinforcement learning",
"year": "2020"
}
] |
[
"c81f942ac06d4979",
"c698579aa7c97988",
"f0ae0b7213d46d35",
"bb2b248d8070963b",
"eac781a90622fbe9",
"304e7f8aa60f19df",
"8c3c55eb4073b426"
] |
[
"8c3c55eb4073b426",
"f8f81a715e719608",
"a192401bd23e8e4e",
"7bb423b1f879c381",
"50521b49b71e1c3e",
"aa3e5434a4b4da93",
"f0ae0b7213d46d35",
"8adf3e87a9a365df",
"a481545bc519c161",
"c698579aa7c97988",
"bce5f1175fc3614e",
"979d91a7a79f8a45",
"eac781a90622fbe9",
"bb2b248d8070963b",
"f966e308db2f9c0b",
"c81f942ac06d4979",
"5e6db6d24d979227",
"307c05423d7716b5",
"da508ba5f02f0434",
"304e7f8aa60f19df"
] |
mSKJS7YbwU
|
Raising the Cost of Malicious AI-Powered Image Editing
|
data/openreview_paper/ICML_2023_oral/mSKJS7YbwU//paper.pdf
| 55
| 27
|
[
{
"authors": [
"Tero Karras",
"Samuli Laine",
"Miika Aittala",
"Janne Hellsten",
"Jaakko Lehtinen",
"Timo Aila"
],
"doi": "10.1109/cvpr42600.2020.00813",
"ref_id": "b17",
"title": "Analyzing and Improving the Image Quality of StyleGAN",
"year": "2018"
},
{
"authors": [
"Hui Sun",
"Tianqing Zhu",
"Zhiqiu Zhang",
"Dawei Jin",
"Ping Xiong",
"Wanlei Zhou"
],
"doi": "10.1109/tkde.2021.3130903",
"ref_id": "b45",
"title": "Adversarial Attacks Against Deep Generative Models on Data: A Survey",
"year": "2021"
},
{
"authors": [
"Andreas Rossler",
"Davide Cozzolino",
"Luisa Verdoliva",
"Christian Riess",
"Justus Thies",
"Matthias Niessner"
],
"doi": "10.1109/iccv.2019.00009",
"ref_id": "b38",
"title": "FaceForensics++: Learning to Detect Manipulated Facial Images",
"year": "2019"
},
{
"authors": [
"T Salimans",
"I Goodfellow",
"W Zaremba",
"V Cheung",
"A Radford",
"X Chen"
],
"doi": "",
"ref_id": "b42",
"title": "Improved techniques for training gans",
"year": "2016"
},
{
"authors": [
"Phillip Isola",
"Jun-Yan Zhu",
"Tinghui Zhou",
"Alexei A Efros"
],
"doi": "10.1109/cvpr.2017.632",
"ref_id": "b16",
"title": "Image-to-Image Translation with Conditional Adversarial Networks",
"year": "2017"
},
{
"authors": [
"Ian Goodfellow",
"Jean Pouget-Abadie",
"Mehdi Mirza",
"Bing Xu",
"David Warde-Farley",
"Sherjil Ozair",
"Aaron Courville",
"Yoshua Bengio"
],
"doi": "10.1145/3422622",
"ref_id": "b12",
"title": "Generative adversarial networks",
"year": "2014"
},
{
"authors": [
"Ricard Durall",
"Franz-Josef Pfreundt",
"Janis Keuper"
],
"doi": "10.1109/ivcnz48456.2019.8961034",
"ref_id": "b9",
"title": "Semi Few-Shot Attribute Translation",
"year": "2019"
},
{
"authors": [
"S Fu",
"F He",
"Y Liu",
"L Shen",
"D Tao"
],
"doi": "",
"ref_id": "b11",
"title": "Robust unlearnable examples: Protecting data privacy against adversarial learning",
"year": "2021"
},
{
"authors": [
"T Karras",
"S Laine",
"Aila",
"T"
],
"doi": "",
"ref_id": "b18",
"title": "A style-based generator architecture for generative adversarial networks",
"year": "2019"
},
{
"authors": [
"H Huang",
"X Ma",
"S M Erfani",
"J Bailey",
"Y Wang"
],
"doi": "",
"ref_id": "b15",
"title": "Unlearnable examples: Making personal data unexploitable",
"year": "2021"
},
{
"authors": [
"A Ramesh",
"P Dhariwal",
"A Nichol",
"C Chu",
"M Chen"
],
"doi": "",
"ref_id": "b34",
"title": "Hierarchical text-conditional image generation with clip latents",
"year": "2022"
},
{
"authors": [
"Nicolo Bonettini",
"Edoardo Daniele Cannas",
"Sara Mandelli",
"Luca Bondi",
"Paolo Bestagini",
"Stefano Tubaro"
],
"doi": "10.1109/icpr48806.2021.9412711",
"ref_id": "b5",
"title": "Video Face Manipulation Detection Through Ensemble of CNNs",
"year": "2021"
},
{
"authors": [
"Thanh Thi Nguyen",
"Quoc Viet Hung Nguyen",
"Dung Tien Nguyen",
"Duc Thanh Nguyen",
"Thien Huynh-The",
"Saeid Nahavandi",
"Thanh Tam Nguyen",
"Quoc-Viet Pham",
"Cuong M Nguyen"
],
"doi": "10.2139/ssrn.4030341",
"ref_id": "b30",
"title": "Deep Learning for Deepfakes Creation and Detection: A Survey",
"year": "2019"
},
{
"authors": [
"J Sohl-Dickstein",
"E A Weiss",
"N Maheswaranathan",
"S Ganguli"
],
"doi": "",
"ref_id": "b44",
"title": "Deep unsupervised learning using nonequilibrium thermodynamics",
"year": "2015"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b14",
"title": "Denoising diffusion probabilistic models",
"year": "2020"
},
{
"authors": [
"Han Zhang",
"Tao Xu",
"Hongsheng Li",
"Shaoting Zhang",
"Xiaogang Wang",
"Xiaolei Huang",
"Dimitris Metaxas"
],
"doi": "10.1109/iccv.2017.629",
"ref_id": "b50",
"title": "StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks",
"year": "2017"
},
{
"authors": [
"Pavel Korshunov",
"Sébastien Marcel"
],
"doi": "10.1007/978-3-030-87664-7_5",
"ref_id": "b20",
"title": "The Threat of Deepfakes to Computer and Human Visions",
"year": "2018"
},
{
"authors": [
"I J Cox",
"J Kilian",
"F T Leighton",
"T Shamoon"
],
"doi": "10.1109/83.650120",
"ref_id": "b8",
"title": "Secure spread spectrum watermarking for multimedia",
"year": "1997"
},
{
"authors": [
"A Brock",
"J Donahue",
"K Simonyan"
],
"doi": "",
"ref_id": "b6",
"title": "Large scale GAN training for high fidelity natural image synthesis",
"year": "2019"
},
{
"authors": [
"Y Mirsky",
"W Lee"
],
"doi": "",
"ref_id": "b26",
"title": "The creation and detection of deepfakes: A survey",
"year": "2021"
},
{
"authors": [
"Paarth Neekhara",
"Shehzeen Hussain",
"Xinqiao Zhang",
"Ke Huang",
"Julian Mcauley",
"Farinaz Koushanfar"
],
"doi": "10.1145/3640466",
"ref_id": "b28",
"title": "FaceSigns: Semi-fragile Watermarks for Media Authentication",
"year": "2022"
},
{
"authors": [
"J.-Y Zhu",
"T Park",
"P Isola",
"A A Efros"
],
"doi": "",
"ref_id": "b54",
"title": "Unpaired image-to-image translation using cycle-consistent adversarial networks",
"year": "2017"
},
{
"authors": [
"M Mirza",
"S Osindero"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b27",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"J Kirchenbauer",
"J Geiping",
"Y Wen",
"J Katz",
"I Miers",
"T Goldstein"
],
"doi": "",
"ref_id": "b19",
"title": "A watermark for large language models",
"year": "2023"
},
{
"authors": [
"L Weng"
],
"doi": "",
"ref_id": "b48",
"title": "What are diffusion models? lilianweng",
"year": "Jul 2021"
},
{
"authors": [
"Robin Rombach",
"Andreas Blattmann",
"Dominik Lorenz",
"Patrick Esser",
"Bjorn Ommer"
],
"doi": "10.1109/cvpr52688.2022.01042",
"ref_id": "b37",
"title": "High-Resolution Image Synthesis with Latent Diffusion Models",
"year": "2022"
},
{
"authors": [
"Darius Afchar",
"Vincent Nozick",
"Junichi Yamagishi",
"Isao Echizen"
],
"doi": "10.1109/wifs.2018.8630761",
"ref_id": "b0",
"title": "MesoNet: a Compact Facial Video Forgery Detection Network",
"year": "2018. 2018"
}
] |
[
{
"authors": [
"Darius Afchar",
"Vincent Nozick",
"Junichi Yamagishi",
"Isao Echizen"
],
"doi": "10.1109/wifs.2018.8630761",
"ref_id": "b0",
"title": "MesoNet: a Compact Facial Video Forgery Detection Network",
"year": "2018. 2018"
},
{
"authors": [
"N Akhtar",
"A Mian",
"N Kardan",
"M Shah"
],
"doi": "",
"ref_id": "b1",
"title": "Threat of adversarial attacks on deep learning in computer vision",
"year": "2021"
},
{
"authors": [
"A Athalye",
"L Engstrom",
"A Ilyas",
"K Kwok"
],
"doi": "",
"ref_id": "b2",
"title": "Synthesizing robust adversarial examples",
"year": "2018"
},
{
"authors": [
"Amnon Balanov",
"Arik Schwartz",
"Yair Moshe",
"Nimrod Peleg"
],
"doi": "10.1109/icip.2015.7351172",
"ref_id": "b3",
"title": "Image quality assessment based on DCT subband similarity",
"year": "2015"
},
{
"authors": [
"B Biggio",
"I Corona",
"D Maiorca",
"B Nelson",
"N Šrndić",
"P Laskov",
"G Giacinto",
"F Roli"
],
"doi": "",
"ref_id": "b4",
"title": "Evasion attacks against machine learning at test time",
"year": "2013"
},
{
"authors": [
"Nicolo Bonettini",
"Edoardo Daniele Cannas",
"Sara Mandelli",
"Luca Bondi",
"Paolo Bestagini",
"Stefano Tubaro"
],
"doi": "10.1109/icpr48806.2021.9412711",
"ref_id": "b5",
"title": "Video Face Manipulation Detection Through Ensemble of CNNs",
"year": "2021"
},
{
"authors": [
"A Brock",
"J Donahue",
"K Simonyan"
],
"doi": "",
"ref_id": "b6",
"title": "Large scale GAN training for high fidelity natural image synthesis",
"year": "2019"
},
{
"authors": [
"T B Brown",
"D Mané",
"A Roy",
"M Abadi",
"J Gilmer"
],
"doi": "",
"ref_id": "b7",
"title": "Adversarial patch",
"year": "2018"
},
{
"authors": [
"I J Cox",
"J Kilian",
"F T Leighton",
"T Shamoon"
],
"doi": "10.1109/83.650120",
"ref_id": "b8",
"title": "Secure spread spectrum watermarking for multimedia",
"year": "1997"
},
{
"authors": [
"Ricard Durall",
"Franz-Josef Pfreundt",
"Janis Keuper"
],
"doi": "10.1109/ivcnz48456.2019.8961034",
"ref_id": "b9",
"title": "Semi Few-Shot Attribute Translation",
"year": "2019"
},
{
"authors": [
"Kevin Eykholt",
"Ivan Evtimov",
"Earlence Fernandes",
"Bo Li",
"Amir Rahmati",
"Chaowei Xiao",
"Atul Prakash",
"Tadayoshi Kohno",
"Dawn Song"
],
"doi": "10.1109/cvpr.2018.00175",
"ref_id": "b10",
"title": "Robust Physical-World Attacks on Deep Learning Visual Classification",
"year": "2018"
},
{
"authors": [
"S Fu",
"F He",
"Y Liu",
"L Shen",
"D Tao"
],
"doi": "",
"ref_id": "b11",
"title": "Robust unlearnable examples: Protecting data privacy against adversarial learning",
"year": "2021"
},
{
"authors": [
"Ian Goodfellow",
"Jean Pouget-Abadie",
"Mehdi Mirza",
"Bing Xu",
"David Warde-Farley",
"Sherjil Ozair",
"Aaron Courville",
"Yoshua Bengio"
],
"doi": "10.1145/3422622",
"ref_id": "b12",
"title": "Generative adversarial networks",
"year": "2014"
},
{
"authors": [
"M Heusel",
"H Ramsauer",
"T Unterthiner",
"B Nessler",
"S Hochreiter"
],
"doi": "",
"ref_id": "b13",
"title": "Gans trained by a two time-scale update rule converge to a local nash equilibrium",
"year": "2017"
},
{
"authors": [
"J Ho",
"A Jain",
"P Abbeel"
],
"doi": "",
"ref_id": "b14",
"title": "Denoising diffusion probabilistic models",
"year": "2020"
},
{
"authors": [
"H Huang",
"X Ma",
"S M Erfani",
"J Bailey",
"Y Wang"
],
"doi": "",
"ref_id": "b15",
"title": "Unlearnable examples: Making personal data unexploitable",
"year": "2021"
},
{
"authors": [
"Phillip Isola",
"Jun-Yan Zhu",
"Tinghui Zhou",
"Alexei A Efros"
],
"doi": "10.1109/cvpr.2017.632",
"ref_id": "b16",
"title": "Image-to-Image Translation with Conditional Adversarial Networks",
"year": "2017"
},
{
"authors": [
"Tero Karras",
"Samuli Laine",
"Miika Aittala",
"Janne Hellsten",
"Jaakko Lehtinen",
"Timo Aila"
],
"doi": "10.1109/cvpr42600.2020.00813",
"ref_id": "b17",
"title": "Analyzing and Improving the Image Quality of StyleGAN",
"year": "2018"
},
{
"authors": [
"T Karras",
"S Laine",
"Aila",
"T"
],
"doi": "",
"ref_id": "b18",
"title": "A style-based generator architecture for generative adversarial networks",
"year": "2019"
},
{
"authors": [
"J Kirchenbauer",
"J Geiping",
"Y Wen",
"J Katz",
"I Miers",
"T Goldstein"
],
"doi": "",
"ref_id": "b19",
"title": "A watermark for large language models",
"year": "2023"
},
{
"authors": [
"Pavel Korshunov",
"Sébastien Marcel"
],
"doi": "10.1007/978-3-030-87664-7_5",
"ref_id": "b20",
"title": "The Threat of Deepfakes to Computer and Human Visions",
"year": "2018"
},
{
"authors": [
"Alexey Kurakin",
"Ian J Goodfellow",
"Samy Bengio"
],
"doi": "10.1201/9781351251389-8",
"ref_id": "b21",
"title": "Adversarial Examples in the Physical World",
"year": "2016"
},
{
"authors": [
"Lingzhi Li",
"Jianmin Bao",
"Ting Zhang",
"Hao Yang",
"Dong Chen",
"Fang Wen",
"Baining Guo"
],
"doi": "10.1109/cvpr42600.2020.00505",
"ref_id": "b22",
"title": "Face X-Ray for More General Face Forgery Detection",
"year": "2020"
},
{
"authors": [
"Yuezun Li",
"Xin Yang",
"Pu Sun",
"Honggang Qi",
"Siwei Lyu"
],
"doi": "10.1109/cvpr42600.2020.00327",
"ref_id": "b23",
"title": "Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics",
"year": "2020"
},
{
"authors": [
"Y Liu",
"X Chen",
"C Liu",
"D Song"
],
"doi": "",
"ref_id": "b24",
"title": "Delving into transferable adversarial examples and black-box attacks",
"year": "2017"
},
{
"authors": [
"A Madry",
"A Makelov",
"L Schmidt",
"D Tsipras",
"A Vladu"
],
"doi": "",
"ref_id": "b25",
"title": "Towards deep learning models resistant to adversarial attacks",
"year": "2018"
},
{
"authors": [
"Y Mirsky",
"W Lee"
],
"doi": "",
"ref_id": "b26",
"title": "The creation and detection of deepfakes: A survey",
"year": "2021"
},
{
"authors": [
"M Mirza",
"S Osindero"
],
"doi": "10.1063/pt.5.028530",
"ref_id": "b27",
"title": "Preprint repository arXiv achieves milestone million uploads",
"year": "2014"
},
{
"authors": [
"Paarth Neekhara",
"Shehzeen Hussain",
"Xinqiao Zhang",
"Ke Huang",
"Julian Mcauley",
"Farinaz Koushanfar"
],
"doi": "10.1145/3640466",
"ref_id": "b28",
"title": "FaceSigns: Semi-fragile Watermarks for Media Authentication",
"year": "2022"
},
{
"authors": [
"Yurii Nesterov"
],
"doi": "10.1007/978-1-4419-8853-9",
"ref_id": "b29",
"title": "Introductory Lectures on Convex Optimization",
"year": "2003"
},
{
"authors": [
"Thanh Thi Nguyen",
"Quoc Viet Hung Nguyen",
"Dung Tien Nguyen",
"Duc Thanh Nguyen",
"Thien Huynh-The",
"Saeid Nahavandi",
"Thanh Tam Nguyen",
"Quoc-Viet Pham",
"Cuong M Nguyen"
],
"doi": "10.2139/ssrn.4030341",
"ref_id": "b30",
"title": "Deep Learning for Deepfakes Creation and Detection: A Survey",
"year": "2019"
},
{
"authors": [
"N Papernot",
"P Mcdaniel",
"I Goodfellow"
],
"doi": "",
"ref_id": "b31",
"title": "Transferability in machine learning: from phenomena to blackbox attacks using adversarial samples",
"year": "2016"
},
{
"authors": [
"A Radford",
"J W Kim",
"C Hallacy",
"A Ramesh",
"G Goh",
"S Agarwal",
"G Sastry",
"A Askell",
"P Mishkin",
"J Clark"
],
"doi": "",
"ref_id": "b32",
"title": "Learning transferable visual models from natural language supervision",
"year": "2021"
},
{
"authors": [
"Evani Radiya-Dixit",
"Gina Neff"
],
"doi": "10.1145/3593013.3594084",
"ref_id": "b33",
"title": "A Sociotechnical Audit: Assessing Police Use of Facial Recognition",
"year": "2021"
},
{
"authors": [
"A Ramesh",
"P Dhariwal",
"A Nichol",
"C Chu",
"M Chen"
],
"doi": "",
"ref_id": "b34",
"title": "Hierarchical text-conditional image generation with clip latents",
"year": "2022"
},
{
"authors": [
"Rafael Reisenhofer",
"Sebastian Bosse",
"Gitta Kutyniok",
"Thomas Wiegand"
],
"doi": "10.1016/j.image.2017.11.001",
"ref_id": "b35",
"title": "A Haar wavelet-based perceptual similarity index for image quality assessment",
"year": "2018"
},
{
"authors": [
"Albert Reuther",
"Jeremy Kepner",
"Chansup Byun",
"Siddharth Samsi",
"William Arcand",
"David Bestor",
"Bill Bergeron",
"Vijay Gadepally",
"Michael Houle",
"Matthew Hubbell",
"Michael Jones",
"Anna Klein",
"Lauren Milechin",
"Julia Mullen",
"Andrew Prout",
"Antonio Rosa",
"Charles Yee",
"Peter Michaleas"
],
"doi": "10.1109/hpec.2018.8547629",
"ref_id": "b36",
"title": "Interactive Supercomputing on 40,000 Cores for Machine Learning and Data Analysis",
"year": "2018"
},
{
"authors": [
"Robin Rombach",
"Andreas Blattmann",
"Dominik Lorenz",
"Patrick Esser",
"Bjorn Ommer"
],
"doi": "10.1109/cvpr52688.2022.01042",
"ref_id": "b37",
"title": "High-Resolution Image Synthesis with Latent Diffusion Models",
"year": "2022"
},
{
"authors": [
"Andreas Rossler",
"Davide Cozzolino",
"Luisa Verdoliva",
"Christian Riess",
"Justus Thies",
"Matthias Niessner"
],
"doi": "10.1109/iccv.2019.00009",
"ref_id": "b38",
"title": "FaceForensics++: Learning to Detect Manipulated Facial Images",
"year": "2019"
},
{
"authors": [
"Nataniel Ruiz",
"Sarah Adel Bargal",
"Stan Sclaroff"
],
"doi": "10.1007/978-3-030-66823-5_14",
"ref_id": "b39",
"title": "Disrupting Deepfakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems",
"year": "2020"
},
{
"authors": [
"Nataniel Ruiz",
"Sarah Adel Bargal",
"Stan Sclaroff"
],
"doi": "10.1007/978-3-030-66823-5_14",
"ref_id": "b40",
"title": "Disrupting Deepfakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems",
"year": "2020"
},
{
"authors": [
"M S M Sajjadi",
"O Bachem",
"M Lučić",
"O Bousquet",
"S Gelly"
],
"doi": "",
"ref_id": "b41",
"title": "Assessing generative models via precision and recall",
"year": "2018"
},
{
"authors": [
"T Salimans",
"I Goodfellow",
"W Zaremba",
"V Cheung",
"A Radford",
"X Chen"
],
"doi": "",
"ref_id": "b42",
"title": "Improved techniques for training gans",
"year": "2016"
},
{
"authors": [
"H R Sheikh",
"A C Bovik"
],
"doi": "10.1109/tip.2005.859378",
"ref_id": "b43",
"title": "Image information and visual quality",
"year": "2006"
},
{
"authors": [
"J Sohl-Dickstein",
"E A Weiss",
"N Maheswaranathan",
"S Ganguli"
],
"doi": "",
"ref_id": "b44",
"title": "Deep unsupervised learning using nonequilibrium thermodynamics",
"year": "2015"
},
{
"authors": [
"Hui Sun",
"Tianqing Zhu",
"Zhiqiu Zhang",
"Dawei Jin",
"Ping Xiong",
"Wanlei Zhou"
],
"doi": "10.1109/tkde.2021.3130903",
"ref_id": "b45",
"title": "Adversarial Attacks Against Deep Generative Models on Data: A Survey",
"year": "2021"
},
{
"authors": [
"C Szegedy",
"W Zaremba",
"I Sutskever",
"J Bruna",
"D Erhan",
"I Goodfellow",
"R Fergus"
],
"doi": "",
"ref_id": "b46",
"title": "Intriguing properties of neural networks",
"year": "2014"
},
{
"authors": [
"Z Wang",
"A Bovik",
"H Sheikh",
"E Simoncelli"
],
"doi": "",
"ref_id": "b47",
"title": "Image quality assessment: from error visibility to structural similarity",
"year": "2004"
},
{
"authors": [
"L Weng"
],
"doi": "",
"ref_id": "b48",
"title": "What are diffusion models? lilianweng",
"year": "Jul 2021"
},
{
"authors": [
"Wufeng Xue",
"Lei Zhang",
"Xuanqin Mou",
"Alan C Bovik"
],
"doi": "10.1109/tip.2013.2293423",
"ref_id": "b49",
"title": "Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index",
"year": "2014"
},
{
"authors": [
"Han Zhang",
"Tao Xu",
"Hongsheng Li",
"Shaoting Zhang",
"Xiaogang Wang",
"Xiaolei Huang",
"Dimitris Metaxas"
],
"doi": "10.1109/iccv.2017.629",
"ref_id": "b50",
"title": "StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks",
"year": "2017"
},
{
"authors": [
"L Zhang",
"H Li"
],
"doi": "",
"ref_id": "b51",
"title": "Sr-sim: A fast and high performance iqa index based on spectral residual",
"year": "2012"
},
{
"authors": [
"L Zhang",
"L Zhang",
"X Mou",
"D Zhang"
],
"doi": "",
"ref_id": "b52",
"title": "Fsim: A feature similarity index for image quality assessment",
"year": "2011"
},
{
"authors": [
"Lin Zhang",
"Ying Shen",
"Hongyu Li"
],
"doi": "10.1109/tip.2014.2346028",
"ref_id": "b53",
"title": "VSI: A Visual Saliency-Induced Index for Perceptual Image Quality Assessment",
"year": "2014"
},
{
"authors": [
"J.-Y Zhu",
"T Park",
"P Isola",
"A A Efros"
],
"doi": "",
"ref_id": "b54",
"title": "Unpaired image-to-image translation using cycle-consistent adversarial networks",
"year": "2017"
}
] |
[
"7fbbc01497729b4f",
"037b70db86a5a967",
"95a0cdb7f3977373",
"d17b2bec98bfc40c",
"ac4e3f89d6fcc3d7",
"3a117b95bc32c8c0",
"c58e1f316a55da1a",
"901070121ab3574c",
"4b05e2696cd4d070",
"341375a4653a3441",
"68b82b5cb5331481",
"2cddd2be374de169",
"a0d60c941e5cce2d",
"81805f398a50bce5",
"7cb4584473814329",
"0851d446eca730a4",
"a463805cc5ad7177",
"2c277049abf58eef",
"df67b2882931be8c",
"a4345a3f14b4890a",
"841b62268ebdf005",
"a39a7e057ae63a76",
"a9af0642118e71a8",
"9c761f4f2e150f92",
"a16a7c9a489ae4c4",
"1e1f042b021f7da2",
"2d7f34df90f0ff3f"
] |
[
"2d7f34df90f0ff3f",
"fc1aacc18af35090",
"aacd560b55f9df82",
"00a528de2b6e24f5",
"f3546b8e57b5e95a",
"2cddd2be374de169",
"df67b2882931be8c",
"d402fc4934eed507",
"2c277049abf58eef",
"c58e1f316a55da1a",
"b383b89e3362b932",
"901070121ab3574c",
"3a117b95bc32c8c0",
"c7599b8fa9638336",
"7cb4584473814329",
"341375a4653a3441",
"ac4e3f89d6fcc3d7",
"7fbbc01497729b4f",
"4b05e2696cd4d070",
"9c761f4f2e150f92",
"a463805cc5ad7177",
"3783262f5b3d04a1",
"fa2acd4ea7e35608",
"3f6b586a1f059262",
"614aa968cb005619",
"a9fb8d929255c90d",
"a4345a3f14b4890a",
"a9af0642118e71a8",
"841b62268ebdf005",
"07b1350c28dd9b61",
"a0d60c941e5cce2d",
"84d3d0a681c57439",
"d2cb36a6296098c3",
"cc25bdc9a82147c2",
"68b82b5cb5331481",
"39ebb07462dc0c00",
"a3fbb7f36f6098e3",
"1e1f042b021f7da2",
"95a0cdb7f3977373",
"5dc4bf0770e159ba",
"5dc4bf0770e159ba",
"a16614aa11a8f89d",
"d17b2bec98bfc40c",
"e47cfdf22122d539",
"81805f398a50bce5",
"037b70db86a5a967",
"5ff85232f1ccc86f",
"d20f0686b717a10f",
"a16a7c9a489ae4c4",
"34ed5de2ced371e7",
"0851d446eca730a4",
"a8d10909fd2bbe44",
"7232eaa9166b236c",
"97060789537f3669",
"a39a7e057ae63a76"
] |
thUjOwfzzv
|
Human-Timescale Adaptation in an Open-Ended Task Space
|
data/openreview_paper/ICML_2023_oral/thUjOwfzzv//paper.pdf
| 95
| 35
|
[
{
"authors": [
"Oriol Vinyals",
"Igor Babuschkin",
"Wojciech M Czarnecki",
"Michaël Mathieu",
"Andrew Dudzik",
"Junyoung Chung",
"David H Choi",
"Richard Powell",
"Timo Ewalds",
"Petko Georgiev",
"Junhyuk Oh",
"Dan Horgan",
"Manuel Kroiss",
"Ivo Danihelka",
"Aja Huang",
"Laurent Sifre",
"Trevor Cai",
"John P Agapiou",
"Max Jaderberg",
"Alexander S Vezhnevets",
"Rémi Leblond",
"Tobias Pohlen",
"Valentin Dalibard",
"David Budden",
"Yury Sulsky",
"James Molloy",
"Tom L Paine",
"Caglar Gulcehre",
"Ziyu Wang",
"Tobias Pfaff",
"Yuhuai Wu",
"Roman Ring",
"Dani Yogatama",
"Dario Wünsch",
"Katrina Mckinney",
"Oliver Smith",
"Tom Schaul",
"Timothy Lillicrap",
"Koray Kavukcuoglu",
"Demis Hassabis",
"Chris Apps",
"David Silver"
],
"doi": "10.1038/s41586-019-1724-z",
"ref_id": "b78",
"title": "Grandmaster level in StarCraft II using multi-agent reinforcement learning",
"year": "2019"
},
{
"authors": [
"C Berner",
"G Brockman",
"B Chan",
"V Cheung",
"P Debiak",
"C Dennison",
"D Farhi",
"Q Fischer",
"S Hashme",
"C Hesse",
"R Józefowicz",
"S Gray",
"C Olsson",
"J Pachocki",
"M Petrov",
"H P De Oliveira Pinto",
"J Raiman",
"T Salimans",
"J Schlatter",
"J Schneider",
"S Sidor",
"I Sutskever",
"J Tang",
"F Wolski",
"S Zhang"
],
"doi": "",
"ref_id": "b5",
"title": "Dota 2 with large scale deep reinforcement learning",
"year": "2019"
},
{
"authors": [
"H Hu",
"A Peysakhovich",
"A Lerer",
"J Foerster"
],
"doi": "",
"ref_id": "b24",
"title": "otherplay\"for zero-shot coordination",
"year": "2020"
},
{
"authors": [
"E Parisotto",
"F Song",
"J Rae",
"R Pascanu",
"C Gulcehre",
"S Jayakumar",
"M Jaderberg",
"R L Kaufman",
"A Clark",
"S Noury"
],
"doi": "",
"ref_id": "b53",
"title": "Stabilizing transformers for reinforcement learning",
"year": "2020"
},
{
"authors": [
"L C Melo"
],
"doi": "",
"ref_id": "b43",
"title": "Transformers are meta-reinforcement learners",
"year": "2022"
},
{
"authors": [
"B C Stadie",
"G Yang",
"R Houthooft",
"X Chen",
"Y Duan",
"Y Wu",
"P Abbeel",
"I Sutskever"
],
"doi": "",
"ref_id": "b70",
"title": "Some considerations on learning to explore via meta-reinforcement learning",
"year": "2018"
},
{
"authors": [
"Jane X Wang",
"Zeb Kurth-Nelson",
"Dharshan Kumaran",
"Dhruva Tirumala",
"Hubert Soyer",
"Joel Z Leibo",
"Demis Hassabis",
"Matthew Botvinick"
],
"doi": "10.1038/s41593-018-0147-8",
"ref_id": "b81",
"title": "Prefrontal cortex as a meta-reinforcement learning system",
"year": "2018"
},
{
"authors": [
"J Yang",
"A Li",
"M Farajtabar",
"P Sunehag",
"E Hughes",
"H Zha"
],
"doi": "10.48550/ARXIV.2006.06051",
"ref_id": "b90",
"title": "Learning to incentivize other learning agents",
"year": "2020"
},
{
"authors": [
"M Openai",
"R Plappert",
"T Sampedro",
"I Xu",
"V Akkaya",
"P Kosaraju",
"R Welinder",
"A D'sa",
"H P Petron",
"A De Oliveira Pinto",
"H Paino",
"L Noh",
"Q Weng",
"C Yuan",
"W Chu",
"Zaremba"
],
"doi": "",
"ref_id": "b49",
"title": "Asymmetric self-play for automatic goal discovery in robotic manipulation",
"year": "2021"
},
{
"authors": [
"S Sukhbaatar",
"Z Lin",
"I Kostrikov",
"G Synnaeve",
"A Szlam",
"R Fergus"
],
"doi": "",
"ref_id": "b73",
"title": "Intrinsic motivation and automatic curricula via asymmetric self-play",
"year": "2018"
},
{
"authors": [
"J W Rae",
"S Borgeaud",
"T Cai",
"K Millican",
"J Hoffmann",
"F Song",
"J Aslanides",
"S Henderson",
"R Ring",
"S Young"
],
"doi": "",
"ref_id": "b57",
"title": "Scaling language models: Methods, analysis & insights from training gopher",
"year": "2021"
},
{
"authors": [
"P A Ortega",
"J X Wang",
"M Rowland",
"T Genewein",
"Z Kurth-Nelson",
"R Pascanu",
"N Heess",
"J Veness",
"A Pritzel",
"P Sprechmann"
],
"doi": "",
"ref_id": "b50",
"title": "Meta-learning of sequential strategies",
"year": "2019"
},
{
"authors": [
"J Mu",
"V Zhong",
"R Raileanu",
"M Jiang",
"N Goodman",
"T Rocktäschel",
"E Grefenstette"
],
"doi": "",
"ref_id": "b45",
"title": "Improving intrinsic exploration with language abstractions",
"year": "2022"
},
{
"authors": [
"Rémy Portelas",
"Cédric Colas",
"Lilian Weng",
"Katja Hofmann",
"Pierre-Yves Oudeyer"
],
"doi": "10.24963/ijcai.2020/671",
"ref_id": "b56",
"title": "Automatic Curriculum Learning For Deep RL: A Short Survey",
"year": "2019. October 30 -November 1, 2019. 2019"
},
{
"authors": [
"Hechang Chen",
"Jifeng Hu",
"Sili Huang",
"Tao Luo",
"Lichao Sun",
"Bo Yang",
"Liwei Yang",
"Zhejian Yang"
],
"doi": "10.52202/079017-2314",
"ref_id": "b14",
"title": "Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling",
"year": "2021"
},
{
"authors": [
"J X Wang",
"M King",
"N Porcel",
"Z Kurth-Nelson",
"T Zhu",
"C Deck",
"P Choy",
"M Cassin",
"M Reynolds",
"F Song"
],
"doi": "",
"ref_id": "b82",
"title": "Alchemy: A structured task distribution for metareinforcement learning",
"year": "2021"
},
{
"authors": [
"Ashish Kumar",
"Zipeng Fu",
"Deepak Pathak",
"Jitendra Malik"
],
"doi": "10.15607/rss.2021.xvii.011",
"ref_id": "b36",
"title": "RMA: Rapid Motor Adaptation for Legged Robots",
"year": "2021"
},
{
"authors": [
"J Parker-Holder",
"M Jiang",
"M Dennis",
"M Samvelyan",
"J Foerster",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b54",
"title": "Evolving curricula with regret-based environment design",
"year": "2022"
},
{
"authors": [
"S Liu",
"G Lever",
"N Heess",
"J Merel",
"S Tunyasuvunakool",
"T Graepel"
],
"doi": "",
"ref_id": "b40",
"title": "Emergent coordination through competition",
"year": "2019"
},
{
"authors": [
"Peter Stone",
"Gal Kaminka",
"Sarit Kraus",
"Jeffrey Rosenschein"
],
"doi": "10.1609/aaai.v24i1.7529",
"ref_id": "b71",
"title": "Ad Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination",
"year": "July 11-15, 2010. 2010"
},
{
"authors": [
"A Campero",
"R Raileanu",
"H Kuttler",
"J B Tenenbaum",
"T Rocktäschel",
"E Grefenstette"
],
"doi": "",
"ref_id": "b11",
"title": "Learning with AMIGo: Adversarially motivated intrinsic goals",
"year": "2021"
},
{
"authors": [
"M Jaderberg",
"W M Czarnecki",
"I Dunning",
"L Marris",
"G Lever",
"A G Castañeda",
"C Beattie",
"N C Rabinowitz",
"A S Morcos",
"A Ruderman",
"N Sonnerat",
"T Green",
"L Deason",
"J Z Leibo",
"D Silver",
"D Hassabis",
"K Kavukcuoglu",
"T Graepel"
],
"doi": "",
"ref_id": "b26",
"title": "Human-level performance in 3d multiplayer games with populationbased reinforcement learning",
"year": "2019"
},
{
"authors": [
"F Christianos",
"G Papoudakis",
"S V Albrecht"
],
"doi": "10.48550/ARXIV.2209.14344",
"ref_id": "b17",
"title": "Pareto actor-critic for equilibrium selection in multi-agent reinforcement learning",
"year": "2022"
},
{
"authors": [
"D Strouse",
"K Mckee",
"M Botvinick",
"E Hughes",
"R Everett"
],
"doi": "",
"ref_id": "b72",
"title": "Collaborating with humans without human data",
"year": "2021"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b77",
"title": "Attention Is All You Need",
"year": "2017"
},
{
"authors": [
"M Janner",
"Q Li",
"S Levine"
],
"doi": "",
"ref_id": "b27",
"title": "Offline reinforcement learning as one big sequence modeling problem",
"year": "2021"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T B Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "",
"ref_id": "b34",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"M Laskin",
"L Wang",
"J Oh",
"E Parisotto",
"S Spencer",
"R Steigerwald",
"D Strouse",
"S Hansen",
"A Filos",
"E Brooks",
"M Gazeau",
"H Sahni",
"S Singh",
"V Mnih"
],
"doi": "",
"ref_id": "b38",
"title": "In-context reinforcement learning with algorithm distillation",
"year": "2022"
},
{
"authors": [
"Tambet Matiisen",
"Avital Oliver",
"Taco Cohen",
"John Schulman"
],
"doi": "10.1109/tnnls.2019.2934906",
"ref_id": "b42",
"title": "Teacher–Student Curriculum Learning",
"year": "2020"
},
{
"authors": [
"Ramesh Redrouthu",
"Venkatesa Prabhu Sundramurthy",
"Bekele Zergu"
],
"doi": "10.35940/ijeat.d8420.049420",
"ref_id": "b93",
"title": "Extraction of Essential Oils from Pumpkin Seeds RSM Based Process Modeling, Optimization and Oil Characterization",
"year": "April 26-30, 2020, 2020"
},
{
"authors": [
"Rui Wang",
"Joel Lehman",
"Jeff Clune",
"Kenneth O Stanley"
],
"doi": "10.1145/3321707.3321799",
"ref_id": "b83",
"title": "POET",
"year": "2019"
},
{
"authors": [
"S Reed",
"K Zolna",
"E Parisotto",
"S G Colmenarejo",
"A Novikov",
"G Barth-Maron",
"M Giménez",
"Y Sulsky",
"J Kay",
"J T Springenberg",
"T Eccles",
"J Bruce",
"A Razavi",
"A Edwards",
"N Heess",
"Y Chen",
"R Hadsell",
"O Vinyals",
"M Bordbar",
"N De Freitas"
],
"doi": "",
"ref_id": "b59",
"title": "A generalist agent",
"year": "2022"
},
{
"authors": [
"I Akkaya",
"M Andrychowicz",
"M Chociej",
"M Litwin",
"B Mcgrew",
"A Petron",
"A Paino",
"M Plappert",
"G Powell",
"R Ribas"
],
"doi": "",
"ref_id": "b1",
"title": "Solving rubik's cube with a robot hand",
"year": "2019"
},
{
"authors": [
"B Baker",
"I Kanitscheider",
"T Markov",
"Y Wu",
"G Powell",
"B Mcgrew",
"I Mordatch"
],
"doi": "",
"ref_id": "b3",
"title": "Emergent tool use from multi-agent autocurricula",
"year": "2020"
},
{
"authors": [
"Jane X Wang",
"Zeb Kurth-Nelson",
"Dharshan Kumaran",
"Dhruva Tirumala",
"Hubert Soyer",
"Joel Z Leibo",
"Demis Hassabis",
"Matthew Botvinick"
],
"doi": "10.1101/295964",
"ref_id": "b80",
"title": "Prefrontal Cortex as a Meta-Reinforcement Learning System",
"year": "2016"
}
] |
[
{
"authors": [
"R Agarwal",
"M Schwarzer",
"P S Castro",
"A C Courville",
"M G Bellemare"
],
"doi": "",
"ref_id": "b0",
"title": "Deep reinforcement learning at the edge of the statistical precipice",
"year": "2021"
},
{
"authors": [
"I Akkaya",
"M Andrychowicz",
"M Chociej",
"M Litwin",
"B Mcgrew",
"A Petron",
"A Paino",
"M Plappert",
"G Powell",
"R Ribas"
],
"doi": "",
"ref_id": "b1",
"title": "Solving rubik's cube with a robot hand",
"year": "2019"
},
{
"authors": [
"J Albrecht",
"A J Fetterman",
"B Fogelman",
"E Kitanidis",
"B Wróblewski",
"N Seo",
"M Rosenthal",
"M Knutins",
"Z Polizzi",
"J B Simon",
"K Qiu"
],
"doi": "",
"ref_id": "b2",
"title": "Avalon: A benchmark for RL generalization using procedurally generated worlds",
"year": "2022"
},
{
"authors": [
"B Baker",
"I Kanitscheider",
"T Markov",
"Y Wu",
"G Powell",
"B Mcgrew",
"I Mordatch"
],
"doi": "",
"ref_id": "b3",
"title": "Emergent tool use from multi-agent autocurricula",
"year": "2020"
},
{
"authors": [
"D Balduzzi",
"K Tuyls",
"J Perolat",
"T Graepel"
],
"doi": "",
"ref_id": "b4",
"title": "Reevaluating evaluation",
"year": "2018"
},
{
"authors": [
"C Berner",
"G Brockman",
"B Chan",
"V Cheung",
"P Debiak",
"C Dennison",
"D Farhi",
"Q Fischer",
"S Hashme",
"C Hesse",
"R Józefowicz",
"S Gray",
"C Olsson",
"J Pachocki",
"M Petrov",
"H P De Oliveira Pinto",
"J Raiman",
"T Salimans",
"J Schlatter",
"J Schneider",
"S Sidor",
"I Sutskever",
"J Tang",
"F Wolski",
"S Zhang"
],
"doi": "",
"ref_id": "b5",
"title": "Dota 2 with large scale deep reinforcement learning",
"year": "2019"
},
{
"authors": [
"V Bhatt",
"B Tjanaka",
"M C Fontaine",
"S Nikolaidis"
],
"doi": "",
"ref_id": "b6",
"title": "Deep surrogate assisted generation of environments",
"year": "2022"
},
{
"authors": [
"R Bommasani",
"D A Hudson",
"E Adeli",
"R Altman",
"S Arora",
"S Arx",
"M S Bernstein",
"J Bohg",
"A Bosselut",
"E Brunskill",
"E Brynjolfsson",
"S Buch",
"D Card",
"R Castellon",
"N S Chatterji",
"A S Chen",
"K Creel",
"J Q Davis",
"D Demszky",
"C Donahue",
"M Doumbouya",
"E Durmus",
"S Ermon",
"J Etchemendy",
"K Ethayarajh",
"L Fei-Fei",
"C Finn",
"T Gale",
"L Gillespie",
"K Goel",
"N D Goodman",
"S Grossman",
"N Guha",
"T Hashimoto",
"P Henderson",
"J Hewitt",
"D E Ho",
"J Hong",
"K Hsu",
"J Huang",
"T Icard",
"S Jain",
"D Jurafsky",
"P Kalluri",
"S Karamcheti",
"G Keeling",
"F Khani",
"O Khattab",
"P W Koh",
"M S Krass",
"R Krishna",
"R Kuditipudi"
],
"doi": "",
"ref_id": "b7",
"title": "On the opportunities and risks of foundation models",
"year": "2021"
},
{
"authors": [
"J Bradbury",
"R Frostig",
"P Hawkins",
"M J Johnson",
"C Leary",
"D Maclaurin",
"G Necula",
"A Paszke",
"J Vander-Plas",
"S Wanderman-Milne",
"Q Zhang"
],
"doi": "",
"ref_id": "b8",
"title": "JAX: composable transformations of Python+NumPy programs",
"year": "2018"
},
{
"authors": [
"T Brown",
"B Mann",
"N Ryder",
"M Subbiah",
"J D Kaplan",
"P Dhariwal",
"A Neelakantan",
"P Shyam",
"G Sastry",
"A Askell",
"S Agarwal",
"A Herbert-Voss",
"G Krueger",
"T Henighan",
"R Child",
"A Ramesh",
"D Ziegler",
"J Wu",
"C Winter",
"C Hesse",
"M Chen",
"E Sigler",
"M Litwin",
"S Gray",
"B Chess",
"J Clark",
"C Berner",
"S Mccandlish",
"A Radford",
"I Sutskever",
"D Amodei"
],
"doi": "",
"ref_id": "b9",
"title": "Language models are few-shot learners",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b10",
"title": "",
"year": "2020"
},
{
"authors": [
"A Campero",
"R Raileanu",
"H Kuttler",
"J B Tenenbaum",
"T Rocktäschel",
"E Grefenstette"
],
"doi": "",
"ref_id": "b11",
"title": "Learning with AMIGo: Adversarially motivated intrinsic goals",
"year": "2021"
},
{
"authors": [
"M Carroll",
"R Shah",
"M K Ho",
"T L Griffiths",
"S A Seshia",
"P Abbeel",
"A Dragan"
],
"doi": "",
"ref_id": "b12",
"title": "On the utility of learning about humans for human-ai coordination",
"year": "2019"
},
{
"authors": [
"E Cetin",
"P J Ball",
"S Roberts",
"O Celiktutan"
],
"doi": "",
"ref_id": "b13",
"title": "Stabilizing off-policy deep reinforcement learning from pixels",
"year": "Jul 2022"
},
{
"authors": [
"Hechang Chen",
"Jifeng Hu",
"Sili Huang",
"Tao Luo",
"Lichao Sun",
"Bo Yang",
"Liwei Yang",
"Zhejian Yang"
],
"doi": "10.52202/079017-2314",
"ref_id": "b14",
"title": "Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling",
"year": "2021"
},
{
"authors": [
"M Chevalier-Boisvert",
"L Willems",
"S Pal"
],
"doi": "",
"ref_id": "b15",
"title": "Minimalistic gridworld environment for OpenAI Gym",
"year": "2018"
},
{
"authors": [
"Kyunghyun Cho",
"Bart Van Merrienboer",
"Dzmitry Bahdanau",
"Yoshua Bengio"
],
"doi": "10.3115/v1/w14-4012",
"ref_id": "b16",
"title": "On the Properties of Neural Machine Translation: Encoder–Decoder Approaches",
"year": "2014"
},
{
"authors": [
"F Christianos",
"G Papoudakis",
"S V Albrecht"
],
"doi": "10.48550/ARXIV.2209.14344",
"ref_id": "b17",
"title": "Pareto actor-critic for equilibrium selection in multi-agent reinforcement learning",
"year": "2022"
},
{
"authors": [
"D Hafner"
],
"doi": "",
"ref_id": "b18",
"title": "Benchmarking the spectrum of agent capabilities",
"year": "2022"
},
{
"authors": [
"K He",
"X Zhang",
"S Ren",
"J Sun"
],
"doi": "10.1109/CVPR.2016",
"ref_id": "b19",
"title": "Deep residual learning for image recognition",
"year": "2016"
},
{
"authors": [
"J Heinrich",
"M Lanctot",
"D Silver"
],
"doi": "",
"ref_id": "b20",
"title": "Fictitious self-play in extensive-form games",
"year": "2015"
},
{
"authors": [
"D Hendrycks",
"K Gimpel"
],
"doi": "",
"ref_id": "b21",
"title": "Gaussian error linear units (gelus)",
"year": "2016"
},
{
"authors": [
"Matteo Hessel",
"Joseph Modayil",
"Hado Van Hasselt",
"Tom Schaul",
"Georg Ostrovski",
"Will Dabney",
"Dan Horgan",
"Bilal Piot",
"Mohammad Azar",
"David Silver"
],
"doi": "10.1609/aaai.v32i1.11796",
"ref_id": "b22",
"title": "Rainbow: Combining Improvements in Deep Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"J Hoffmann",
"S Borgeaud",
"A Mensch",
"E Buchatskaya",
"T Cai",
"E Rutherford",
"D D L Casas",
"L A Hendricks",
"J Welbl",
"A Clark"
],
"doi": "",
"ref_id": "b23",
"title": "Training compute-optimal large language models",
"year": "2022"
},
{
"authors": [
"H Hu",
"A Peysakhovich",
"A Lerer",
"J Foerster"
],
"doi": "",
"ref_id": "b24",
"title": "otherplay\"for zero-shot coordination",
"year": "2020"
},
{
"authors": [
"M Jaderberg",
"V Dalibard",
"S Osindero",
"W M Czarnecki",
"J Donahue",
"A Razavi",
"O Vinyals",
"T Green",
"I Dunning",
"K Simonyan"
],
"doi": "",
"ref_id": "b25",
"title": "Population based training of neural networks",
"year": "2017"
},
{
"authors": [
"M Jaderberg",
"W M Czarnecki",
"I Dunning",
"L Marris",
"G Lever",
"A G Castañeda",
"C Beattie",
"N C Rabinowitz",
"A S Morcos",
"A Ruderman",
"N Sonnerat",
"T Green",
"L Deason",
"J Z Leibo",
"D Silver",
"D Hassabis",
"K Kavukcuoglu",
"T Graepel"
],
"doi": "",
"ref_id": "b26",
"title": "Human-level performance in 3d multiplayer games with populationbased reinforcement learning",
"year": "2019"
},
{
"authors": [
"M Janner",
"Q Li",
"S Levine"
],
"doi": "",
"ref_id": "b27",
"title": "Offline reinforcement learning as one big sequence modeling problem",
"year": "2021"
},
{
"authors": [
"M Jiang",
"M Dennis",
"J Parker-Holder",
"J Foerster",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b28",
"title": "Replay-guided adversarial environment design",
"year": "2021"
},
{
"authors": [
"M Jiang",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b29",
"title": "Prioritized level replay",
"year": "2021"
},
{
"authors": [
"M Johnson",
"K Hofmann",
"T Hutton",
"D Bignell"
],
"doi": "",
"ref_id": "b30",
"title": "The Malmo platform for artificial intelligence experimentation",
"year": "2016"
},
{
"authors": [
"Arthur Juliani",
"Ahmed Khalifa",
"Vincent-Pierre Berges",
"Jonathan Harper",
"Ervin Teng",
"Hunter Henry",
"Adam Crespi",
"Julian Togelius",
"Danny Lange"
],
"doi": "10.24963/ijcai.2019/373",
"ref_id": "b31",
"title": "Obstacle Tower: A Generalization Challenge in Vision, Control, and Planning",
"year": "2019"
},
{
"authors": [
"N Justesen",
"R R Torrado",
"P Bontrager",
"A Khalifa",
"J Togelius",
"S Risi"
],
"doi": "",
"ref_id": "b32",
"title": "Procedural level generation improves generality of deep reinforcement learning",
"year": "2018"
},
{
"authors": [
"A Kanervisto",
"S Milani",
"K Ramanauskas",
"N Topin",
"Z Lin",
"J Li",
"J Shi",
"D Ye",
"Q Fu",
"W Yang",
"W Hong",
"Z Huang",
"H Chen",
"G Zeng",
"Y Lin",
"V Micheli",
"E Alonso",
"F Fleuret",
"A Nikulin",
"Y Belousov",
"O Svidchenko",
"A Shpilman"
],
"doi": "",
"ref_id": "b33",
"title": "Minerl diamond 2021 competition: Overview, results, and lessons learned",
"year": "2022"
},
{
"authors": [
"J Kaplan",
"S Mccandlish",
"T Henighan",
"T B Brown",
"B Chess",
"R Child",
"S Gray",
"A Radford",
"J Wu",
"D Amodei"
],
"doi": "",
"ref_id": "b34",
"title": "Scaling laws for neural language models",
"year": "2020"
},
{
"authors": [
"Robert Kirk",
"Amy Zhang",
"Edward Grefenstette",
"Tim Rocktäschel"
],
"doi": "10.1613/jair.1.14174",
"ref_id": "b35",
"title": "A Survey of Zero-shot Generalisation in Deep Reinforcement Learning",
"year": "2021"
},
{
"authors": [
"Ashish Kumar",
"Zipeng Fu",
"Deepak Pathak",
"Jitendra Malik"
],
"doi": "10.15607/rss.2021.xvii.011",
"ref_id": "b36",
"title": "RMA: Rapid Motor Adaptation for Legged Robots",
"year": "2021"
},
{
"authors": [
"H Küttler",
"N Nardelli",
"A H Miller",
"R Raileanu",
"M Selvatici",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b37",
"title": "The NetHack Learning Environment",
"year": "2020"
},
{
"authors": [
"M Laskin",
"L Wang",
"J Oh",
"E Parisotto",
"S Spencer",
"R Steigerwald",
"D Strouse",
"S Hansen",
"A Filos",
"E Brooks",
"M Gazeau",
"H Sahni",
"S Singh",
"V Mnih"
],
"doi": "",
"ref_id": "b38",
"title": "In-context reinforcement learning with algorithm distillation",
"year": "2022"
},
{
"authors": [
"K.-H Lee",
"O Nachum",
"S Yang",
"L Lee",
"C D Freeman",
"S Guadarrama",
"I Fischer",
"W Xu",
"E Jang",
"H Michalewski",
"I Mordatch"
],
"doi": "",
"ref_id": "b39",
"title": "Multi-game decision transformers",
"year": "2022"
},
{
"authors": [
"S Liu",
"G Lever",
"N Heess",
"J Merel",
"S Tunyasuvunakool",
"T Graepel"
],
"doi": "",
"ref_id": "b40",
"title": "Emergent coordination through competition",
"year": "2019"
},
{
"authors": [
"Dhruv Mahajan",
"Ross Girshick",
"Vignesh Ramanathan",
"Kaiming He",
"Manohar Paluri",
"Yixuan Li",
"Ashwin Bharambe",
"Laurens Van Der Maaten"
],
"doi": "10.1007/978-3-030-01216-8_12",
"ref_id": "b41",
"title": "Exploring the Limits of Weakly Supervised Pretraining",
"year": "September 8-14, 2018. 2018"
},
{
"authors": [
"Tambet Matiisen",
"Avital Oliver",
"Taco Cohen",
"John Schulman"
],
"doi": "10.1109/tnnls.2019.2934906",
"ref_id": "b42",
"title": "Teacher–Student Curriculum Learning",
"year": "2020"
},
{
"authors": [
"L C Melo"
],
"doi": "",
"ref_id": "b43",
"title": "Transformers are meta-reinforcement learners",
"year": "2022"
},
{
"authors": [
"V Mikulik",
"G Delétang",
"T Mcgrath",
"T Genewein",
"M Martic",
"S Legg",
"P Ortega"
],
"doi": "",
"ref_id": "b44",
"title": "Meta-trained agents implement bayes-optimal agents",
"year": ""
},
{
"authors": [
"J Mu",
"V Zhong",
"R Raileanu",
"M Jiang",
"N Goodman",
"T Rocktäschel",
"E Grefenstette"
],
"doi": "",
"ref_id": "b45",
"title": "Improving intrinsic exploration with language abstractions",
"year": "2022"
},
{
"authors": [
"R Munos",
"T Stepleton",
"A Harutyunyan",
"M Bellemare"
],
"doi": "",
"ref_id": "b46",
"title": "Safe and efficient off-policy reinforcement learning",
"year": "2016"
},
{
"authors": [
"E Nikishin",
"M Schwarzer",
"P D'oro",
"P.-L Bacon",
"A Courville"
],
"doi": "",
"ref_id": "b47",
"title": "The primacy bias in deep reinforcement learning",
"year": "2022"
},
{
"authors": [
"A Oel Team",
"A Stooke",
"C Mahajan",
"C Barros",
"J Deck",
"J Bauer",
"M Sygnowski",
"M Trebacz",
"M Jaderberg",
"N Mathieu",
"N Mcaleese",
"N Bradley-Schmieg",
"N Wong",
"R Porcel",
"S Raileanu",
"V Hughes-Fitt",
"W M Dalibard",
"Czarnecki"
],
"doi": "",
"ref_id": "b48",
"title": "Open-ended learning leads to generally capable agents",
"year": "2021"
},
{
"authors": [
"M Openai",
"R Plappert",
"T Sampedro",
"I Xu",
"V Akkaya",
"P Kosaraju",
"R Welinder",
"A D'sa",
"H P Petron",
"A De Oliveira Pinto",
"H Paino",
"L Noh",
"Q Weng",
"C Yuan",
"W Chu",
"Zaremba"
],
"doi": "",
"ref_id": "b49",
"title": "Asymmetric self-play for automatic goal discovery in robotic manipulation",
"year": "2021"
},
{
"authors": [
"P A Ortega",
"J X Wang",
"M Rowland",
"T Genewein",
"Z Kurth-Nelson",
"R Pascanu",
"N Heess",
"J Veness",
"A Pritzel",
"P Sprechmann"
],
"doi": "",
"ref_id": "b50",
"title": "Meta-learning of sequential strategies",
"year": "2019"
},
{
"authors": [
"Kei Ota",
"Devesh K Jha",
"Asako Kanezaki"
],
"doi": "10.1007/s10994-024-06547-6",
"ref_id": "b51",
"title": "A framework for training larger networks for deep Reinforcement learning",
"year": "2021"
},
{
"authors": [
"Brendan Gallagher",
"Yongzin Zhao"
],
"doi": "10.15190/d.2019.14",
"ref_id": "b52",
"title": "Nanoscale Imaging of Synaptic Connections with Expansion Microscopy",
"year": "2021"
},
{
"authors": [
"E Parisotto",
"F Song",
"J Rae",
"R Pascanu",
"C Gulcehre",
"S Jayakumar",
"M Jaderberg",
"R L Kaufman",
"A Clark",
"S Noury"
],
"doi": "",
"ref_id": "b53",
"title": "Stabilizing transformers for reinforcement learning",
"year": "2020"
},
{
"authors": [
"J Parker-Holder",
"M Jiang",
"M Dennis",
"M Samvelyan",
"J Foerster",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b54",
"title": "Evolving curricula with regret-based environment design",
"year": "2022"
},
{
"authors": [
"M Pislar",
"D Szepesvari",
"G Ostrovski",
"D L Borsa",
"T Schaul"
],
"doi": "",
"ref_id": "b55",
"title": "When should agents explore?",
"year": "2022"
},
{
"authors": [
"Rémy Portelas",
"Cédric Colas",
"Lilian Weng",
"Katja Hofmann",
"Pierre-Yves Oudeyer"
],
"doi": "10.24963/ijcai.2020/671",
"ref_id": "b56",
"title": "Automatic Curriculum Learning For Deep RL: A Short Survey",
"year": "2019. October 30 -November 1, 2019. 2019"
},
{
"authors": [
"J W Rae",
"S Borgeaud",
"T Cai",
"K Millican",
"J Hoffmann",
"F Song",
"J Aslanides",
"S Henderson",
"R Ring",
"S Young"
],
"doi": "",
"ref_id": "b57",
"title": "Scaling language models: Methods, analysis & insights from training gopher",
"year": "2021"
},
{
"authors": [
"R Raileanu",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b58",
"title": "Ride: Rewarding impactdriven exploration for procedurally-generated environments",
"year": "2020"
},
{
"authors": [
"S Reed",
"K Zolna",
"E Parisotto",
"S G Colmenarejo",
"A Novikov",
"G Barth-Maron",
"M Giménez",
"Y Sulsky",
"J Kay",
"J T Springenberg",
"T Eccles",
"J Bruce",
"A Razavi",
"A Edwards",
"N Heess",
"Y Chen",
"R Hadsell",
"O Vinyals",
"M Bordbar",
"N De Freitas"
],
"doi": "",
"ref_id": "b59",
"title": "A generalist agent",
"year": "2022"
},
{
"authors": [
"M Reid",
"Y Yamada",
"S S Gu"
],
"doi": "",
"ref_id": "b60",
"title": "Can wikipedia help offline reinforcement learning? CoRR",
"year": "2022"
},
{
"authors": [
"Sebastian Risi",
"Julian Togelius"
],
"doi": "10.1038/s42256-020-0208-z",
"ref_id": "b61",
"title": "Increasing generality in machine learning through procedural content generation",
"year": "2020"
},
{
"authors": [
"M Samvelyan",
"R Kirk",
"V Kurin",
"J Parker-Holder",
"M Jiang",
"E Hambro",
"F Petroni",
"H Kuttler",
"E Grefenstette",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b62",
"title": "Minihack the planet: A sandbox for open-ended reinforcement learning research",
"year": "2021"
},
{
"authors": [
"M Samvelyan",
"A Khan",
"M D Dennis",
"M Jiang",
"J Parker-Holder",
"J N Foerster",
"R Raileanu",
"T Rocktäschel"
],
"doi": "",
"ref_id": "b63",
"title": "MAESTRO: Open-ended environment design for multiagent reinforcement learning",
"year": "2022. 2022"
},
{
"authors": [
"T Schaul",
"J Quan",
"I Antonoglou",
"D Silver"
],
"doi": "",
"ref_id": "b64",
"title": "Prioritized experience replay",
"year": "2015"
},
{
"authors": [
"J Schmidhuber"
],
"doi": "10.1109/ijcnn.1991.170605",
"ref_id": "b65",
"title": "Curious model-building control systems",
"year": "1991"
},
{
"authors": [
"Jürgen Schmidhuber"
],
"doi": "10.1162/neco.1992.4.2.234",
"ref_id": "b66",
"title": "Learning Complex, Extended Sequences Using the Principle of History Compression",
"year": "1992"
},
{
"authors": [
"S Schmitt",
"J J Hudson",
"A Zidek",
"S Osindero",
"C Doersch",
"W M Czarnecki",
"J Z Leibo",
"H Kuttler",
"A Zisserman",
"K Simonyan"
],
"doi": "",
"ref_id": "b67",
"title": "Kickstarting deep reinforcement learning",
"year": "2018"
},
{
"authors": [
"C Schuhmann",
"R Beaumont",
"R Vencu",
"C W Gordon",
"R Wightman",
"M Cherti",
"T Coombes",
"A Katta",
"C Mullis",
"M Wortsman",
"P Schramowski",
"S R Kundurthy",
"K Crowson",
"L Schmidt",
"R Kaczmarczyk",
"J Jitsev"
],
"doi": "",
"ref_id": "b68",
"title": "LAION-5b: An open large-scale dataset for training next generation image-text models",
"year": "2022"
},
{
"authors": [
"N Shazeer"
],
"doi": "",
"ref_id": "b69",
"title": "Glu variants improve transformer",
"year": "2020"
},
{
"authors": [
"B C Stadie",
"G Yang",
"R Houthooft",
"X Chen",
"Y Duan",
"Y Wu",
"P Abbeel",
"I Sutskever"
],
"doi": "",
"ref_id": "b70",
"title": "Some considerations on learning to explore via meta-reinforcement learning",
"year": "2018"
},
{
"authors": [
"Peter Stone",
"Gal Kaminka",
"Sarit Kraus",
"Jeffrey Rosenschein"
],
"doi": "10.1609/aaai.v24i1.7529",
"ref_id": "b71",
"title": "Ad Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination",
"year": "July 11-15, 2010. 2010"
},
{
"authors": [
"D Strouse",
"K Mckee",
"M Botvinick",
"E Hughes",
"R Everett"
],
"doi": "",
"ref_id": "b72",
"title": "Collaborating with humans without human data",
"year": "2021"
},
{
"authors": [
"S Sukhbaatar",
"Z Lin",
"I Kostrikov",
"G Synnaeve",
"A Szlam",
"R Fergus"
],
"doi": "",
"ref_id": "b73",
"title": "Intrinsic motivation and automatic curricula via asymmetric self-play",
"year": "2018"
},
{
"authors": [
"Chen Sun",
"Abhinav Shrivastava",
"Saurabh Singh",
"Abhinav Gupta"
],
"doi": "10.1109/iccv.2017.97",
"ref_id": "b74",
"title": "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era",
"year": "2017"
},
{
"authors": [
"Yi Tay",
"Mostafa Dehghani",
"Samira Abnar",
"Hyung Chung",
"William Fedus",
"Jinfeng Rao",
"Sharan Narang",
"Vinh Tran",
"Dani Yogatama",
"Donald Metzler"
],
"doi": "10.18653/v1/2023.findings-emnlp.825",
"ref_id": "b75",
"title": "Scaling Laws vs Model Architectures: How does Inductive Bias Influence Scaling?",
"year": "2022"
},
{
"authors": [
"Julian Togelius",
"Jurgen Schmidhuber"
],
"doi": "10.1109/cig.2008.5035629",
"ref_id": "b76",
"title": "An experiment in automatic game design",
"year": "2008. 2008"
},
{
"authors": [
"Ashish Vaswani",
"Noam Shazeer",
"Niki Parmar",
"Jakob Uszkoreit",
"Llion Jones",
"Aidan N.Gomez",
"Lukasz Kaiser",
"Illia Polosukhin"
],
"doi": "10.65215/ctdc8e75",
"ref_id": "b77",
"title": "Attention Is All You Need",
"year": "2017"
},
{
"authors": [
"Oriol Vinyals",
"Igor Babuschkin",
"Wojciech M Czarnecki",
"Michaël Mathieu",
"Andrew Dudzik",
"Junyoung Chung",
"David H Choi",
"Richard Powell",
"Timo Ewalds",
"Petko Georgiev",
"Junhyuk Oh",
"Dan Horgan",
"Manuel Kroiss",
"Ivo Danihelka",
"Aja Huang",
"Laurent Sifre",
"Trevor Cai",
"John P Agapiou",
"Max Jaderberg",
"Alexander S Vezhnevets",
"Rémi Leblond",
"Tobias Pohlen",
"Valentin Dalibard",
"David Budden",
"Yury Sulsky",
"James Molloy",
"Tom L Paine",
"Caglar Gulcehre",
"Ziyu Wang",
"Tobias Pfaff",
"Yuhuai Wu",
"Roman Ring",
"Dani Yogatama",
"Dario Wünsch",
"Katrina Mckinney",
"Oliver Smith",
"Tom Schaul",
"Timothy Lillicrap",
"Koray Kavukcuoglu",
"Demis Hassabis",
"Chris Apps",
"David Silver"
],
"doi": "10.1038/s41586-019-1724-z",
"ref_id": "b78",
"title": "Grandmaster level in StarCraft II using multi-agent reinforcement learning",
"year": "2019"
},
{
"authors": [
"L Vygotsky"
],
"doi": "10.1017/cbo9781107588318.008",
"ref_id": "b79",
"title": "Learning at School: Children Not Only Learn; They Develop As Well",
"year": "1978"
},
{
"authors": [
"Jane X Wang",
"Zeb Kurth-Nelson",
"Dharshan Kumaran",
"Dhruva Tirumala",
"Hubert Soyer",
"Joel Z Leibo",
"Demis Hassabis",
"Matthew Botvinick"
],
"doi": "10.1101/295964",
"ref_id": "b80",
"title": "Prefrontal Cortex as a Meta-Reinforcement Learning System",
"year": "2016"
},
{
"authors": [
"Jane X Wang",
"Zeb Kurth-Nelson",
"Dharshan Kumaran",
"Dhruva Tirumala",
"Hubert Soyer",
"Joel Z Leibo",
"Demis Hassabis",
"Matthew Botvinick"
],
"doi": "10.1038/s41593-018-0147-8",
"ref_id": "b81",
"title": "Prefrontal cortex as a meta-reinforcement learning system",
"year": "2018"
},
{
"authors": [
"J X Wang",
"M King",
"N Porcel",
"Z Kurth-Nelson",
"T Zhu",
"C Deck",
"P Choy",
"M Cassin",
"M Reynolds",
"F Song"
],
"doi": "",
"ref_id": "b82",
"title": "Alchemy: A structured task distribution for metareinforcement learning",
"year": "2021"
},
{
"authors": [
"Rui Wang",
"Joel Lehman",
"Jeff Clune",
"Kenneth O Stanley"
],
"doi": "10.1145/3321707.3321799",
"ref_id": "b83",
"title": "POET",
"year": "2019"
},
{
"authors": [
"Rui Wang",
"Joel Lehman",
"Jeff Clune",
"Kenneth O Stanley"
],
"doi": "10.1145/3321707.3321799",
"ref_id": "b84",
"title": "POET",
"year": "Jul 2020"
},
{
"authors": [
"T Wang",
"H Dong",
"V Lesser",
"C Zhang"
],
"doi": "",
"ref_id": "b85",
"title": "Roma: Multiagent reinforcement learning with emergent roles",
"year": "2020"
},
{
"authors": [
"Z Xu",
"J Modayil",
"H P Van Hasselt",
"A Barreto",
"D Silver",
"T Schaul"
],
"doi": "",
"ref_id": "b86",
"title": "Natural value approximators: Learning when to trust past estimates",
"year": ""
},
{
"authors": [
"U V Guyon",
"S Luxburg",
"H Bengio"
],
"doi": "",
"ref_id": "b87",
"title": "",
"year": ""
},
{
"authors": [
"Curran Associates",
"Inc"
],
"doi": "",
"ref_id": "b88",
"title": "",
"year": "2017"
},
{
"authors": [
"J Yang",
"B Petersen",
"H Zha",
"D Faissol"
],
"doi": "",
"ref_id": "b89",
"title": "Single episode policy transfer in reinforcement learning",
"year": "2019"
},
{
"authors": [
"J Yang",
"A Li",
"M Farajtabar",
"P Sunehag",
"E Hughes",
"H Zha"
],
"doi": "10.48550/ARXIV.2006.06051",
"ref_id": "b90",
"title": "Learning to incentivize other learning agents",
"year": "2020"
},
{
"authors": [
"W Yu",
"J Tan",
"Y Bai",
"E Coumans",
"S Ha"
],
"doi": "",
"ref_id": "b91",
"title": "Learning fast adaptation with meta strategy optimization",
"year": "2020"
},
{
"authors": [
"Xiaohua Zhai",
"Alexander Kolesnikov",
"Neil Houlsby",
"Lucas Beyer"
],
"doi": "10.1109/cvpr52688.2022.01179",
"ref_id": "b92",
"title": "Scaling Vision Transformers",
"year": "2022. jun 2022"
},
{
"authors": [
"Ramesh Redrouthu",
"Venkatesa Prabhu Sundramurthy",
"Bekele Zergu"
],
"doi": "10.35940/ijeat.d8420.049420",
"ref_id": "b93",
"title": "Extraction of Essential Oils from Pumpkin Seeds RSM Based Process Modeling, Optimization and Oil Characterization",
"year": "April 26-30, 2020, 2020"
},
{
"authors": [
"L Zintgraf"
],
"doi": "10.47205/jdss.2021(2-iv)74",
"ref_id": "b94",
"title": "(2021) Volume 2, Issue 4 Cultural Implications of China Pakistan Economic Corridor (CPEC Authors: Dr. Unsa Jamshed Amar Jahangir Anbrin Khawaja Abstract: This study is an attempt to highlight the cultural implication of CPEC on Pak-China relations, how it will align two nations culturally, and what steps were taken by the governments of two states to bring the people closer. After the establishment of diplomatic relations between Pakistan and China, the cultural aspect of relations between the two states also moved forward. The flow of cultural delegations intensified after the 2010, because this year was celebrated as the ‘Pak-China Friendship Year’. This dimension of relations further cemented between the two states with the signing of CPEC in April 2015. CPEC will not only bring economic prosperity in Pakistan but it will also bring two states culturally closer. The roads and other communication link under this project will become source of cultural flow between the two states. Keyswords: China, CPEC, Culture, Exhibitions Pages: 01-11 Article: 1 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)01 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)01 Download Pdf: download pdf view article Creative Commons License Political Persona on Twittersphere: Comparing the Stardom of Prime Minister(s) of Pakistan, UK and India Authors: Maryam Waqas Mudassar Hussain Shah Saima Kausar Abstract: Political setup demands to use Twittersphere for preserving its reputation because of significant twitter audience, which follows celebrities and political figures. In this perspective, political figures frequently use twitter to highlight their political as well as personal lives worldwide. However, political figures take the stardom status among the twitter audience that follow, retweet and comment by their fans. The purpose of this study is, to analyze what kind of language, level of interest is made by political figures while communicating via twitter, text, phrases and languages used by political figures, and do their tweets contribute in their reputation. The qualitative content analysis is used for evaluation of the interests shared by PM Imran Khan, PM Boris John Son and PM Narendra Modi with the key words of tweets. A well-established coding sheet is developed for the analysis of text, phrases and words in the frames of negative, positive and neutral from March 2020 to May 2020. The results are demonstrating on the basis of content shared by Prime Ministers of three countries i.e., From Pakistan, Imran Khan, United Kingdom, Johnson Boris and India, Narendra Modi on twitter. The findings also reveal that varied issues discussed in tweets, significantly positive and neutral words are selected by these political figures. PM Imran tweeted more negative tweets than PM Boris Johnson and PM Narendra Modi. However, PM Boris Johnson and PM Narendra Modi make significant positive and neutral tweets. It is observed that political figures are conscious about their personal reputation while tweeting. It also revealed that the issues and tweets shared by these leaders contribute to their personal reputation. Keyswords: Imran Khan, Johnson Boris, Narendra Modi, Political Persona, Stardom, Twittersphere Pages: 12-23 Article: 2 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)02 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)02 Download Pdf: download pdf view article Creative Commons License An Empirical Relationship between Government Size and Economic Growth of Pakistan in the Presence of Different Budget Uncertainty Measures Authors: Sunila Jabeen Dr. Wasim Shahid Malik Abstract: Relationship between government size and economic growth has always been a debated issue all over the world since the formative work of Barro (1990). However, this relationship becomes more questionable when policy uncertainty is added in it. Hence, this paper presents evidence on the effect of government size on economic growth in the presence of budget uncertainty measured through three different approaches. Rather than relying on the traditional and complicated measures of uncertainty, a new method of measuring uncertainty based on government budget revisions of total spending is introduced and compared with the other competing approaches. Using time series annual data from 1973-2018, the short run and long run coefficients from Autoregressive Distributed Lag (ARDL) framework validate the negative effect of budget uncertainty and government size on economic growth of Pakistan regardless of the uncertainty measure used. Therefore, to attain the long run economic growth, along with the control on the share of government spending in total GDP, government should keep the revisions in the budget as close to the initial announcements as it can so that uncertainty can be reduced. Further, the uncertainty in fiscal spending calculated through the deviation method raises a big question on the credibility of fiscal policy in Pakistan. Higher will be the deviation higher will be the uncertainty and lower the fiscal policy credibility hence making fiscal policy less effective in the long run. Keyswords: Budget Uncertainty, Economic Growth, Government Size, Policy Credibility Pages: 24-38 Article: 3 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)03 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)03 Download Pdf: download pdf view article Creative Commons License Despair in The Alchemist by Ben Jonson Authors: Dr. Fatima Syeda Dr. Faiza Zaheer Numrah Mehmood Abstract: This research aims to challenge the assumption that The Alchemist by Ben Jonson is one of the greatest examples of the “explicit mirth and laughter” (Veneables 86). The paper argues that The Alchemist is a cynical and despairing play created in an atmosphere not suitable for a comedy. This is a qualitative study of the text and aims at an analysis of the theme, situations, characters, language, and the mood of the play to determine that Jonson is unable to retain the comic spirit in The Alchemist and in an attempt to “better men” (Prologue. 12) he becomes more satirical and less humorous or comic. This research is important for it contends that the play, termed as a comedy, may be read as a bitter satire on the cynical, stinky, and despairing world of the Elizabethan times. Keyswords: Comedy, Despair, Reformation Pages: 39-47 Article: 4 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)04 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)04 Download Pdf: download pdf view article Creative Commons License Analysis of Principles of Coordinated Border Management (CBM) in articulation of War-Control Strategies: An Account of Implementation Range on Pakistan and Afghanistan Authors: Dr. Sehrish Qayyum Dr. Umbreen Javaid Abstract: Currently, Border Management is crucial issue not only for Pakistan but for the entire world due to increased technological developments and security circumstances. Pakistan and Afghanistan being immediate states have inter-connected future with socio-economic and security prospects. Principles of Coordinated Border Management (CBM) approach have been extracted on the basis of in-depth interviews with security agencies and policymakers to understand the real time needs. The current research employs mixed method approach. Process Tracing is employed in this research to comprehend the causal mechanism behind the contemporary issue of border management system. A detailed statistical analysis of prospect outcomes has been given to validate the implication of CBM. Implication range of CBM has been discussed with positive and probably negative impacts due to its wide range of significance. This research gives an analysis of feasibility support to exercise CBM in best interest of the state and secure future of the region. Keyswords: Afghanistan, Coordinated Border Management, Fencing, Pakistan, Security Pages: 48-62 Article: 5 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)05 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)05 Download Pdf: download pdf view article Creative Commons License The Belt and Road Initiative (BRI) vs. Quadrilateral Security Dialogue (the Quad): A Perspective of a Game Theory Authors: Muhammad Atif Prof. Dr. Muqarrab Akbar Abstract: Containment is the central part of the U.S.'s foreign policy during the cold war. With the application of containment Policy, the U.S. achieved much success in international politics. Over time China has become more powerful and sees great power in international politics. China wants to expand and launched the Belt and Road Initiative (BRI). The primary purpose of The Belt and Road Initiative (BRI) is to achieve support from regional countries and save their interests from the U.S. In 2017, the American administration launched its Containment policy through Quadrilateral Security Dialogue (the Quad) to keep their interest from China. The Quadrilateral Security Dialogue (Quad) is comprising of Australia, the United States, Japan, and India. This Study is based on Qualitative research with theoretical application of Game theory. This research investigates both plans of China (BRI) and the U.S. (the Quad) through a Game Theory. In this study, China and the U.S. both like to act as gamers in international politics. This study recommends that Game theory can predict all developments in the long term. Keyswords: Containment, Expansionism, Quadrilateral Security Dialogue, The Belt and Road Initiative (BRI) Pages: 63-75 Article: 6 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)06 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)06 Download Pdf: download pdf view article Creative Commons License Narendra Modi a Machiavellian Prince: An Appraisal Authors: Dr. Imran Khan Dr. Karim Haider Syed Muhammad Yousaf Abstract: The comparison of Narendra Modi and Machiavellian Prince is very important as policies of Modi are creating problems within India and beyond the borders. The Prince is the book of Niccolo Machiavelli a great philosopher of his time. If Indian Prime Minister Narendra Modi qualifies as a Prince of Machiavelli is a very important question. This is answered in the light of his policies and strategies to become the undisputed political leader of India. Much of the Machiavellian Prince deals with the problem of how a layman can raise himself from abject and obscure origins to such a position that Narendra Modi has been holding in India since 2014. The basic theme of this article is revolving around the question that is following: Can Modi’s success be attributed to techniques of The Prince in important respects? This article analyzed Narendra Modi's policies and strategies to develop an analogy between Machiavellian Prince and Modi in terms of characteristics and political strategies. This research work examines, how Narendra Modi became the strongest person in India. Keyswords: Comparison, India, Machiavelli, Modus Operandi, Narendra Modi Pages: 76-84 Article: 7 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)07 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)07 Download Pdf: download pdf view article Creative Commons License Analyzing Beckett's Waiting for Godot as a Political Comedy Authors: Muhammad Umer Azim Dr. Muhammad Saleem Nargis Saleem Abstract: This study was devised to analyze Samuel Beckett’s play Waiting for Godot in the light of Jean-Francois Lyotard’s theory of postmodernism given in his book The Postmodern Condition (1984). This Lyotardian paradigm extends a subversive challenge to all the grand narratives that have been enjoying the status of an enviable complete code of life in the world for a long time. Even a cursory scan over the play under analysis creates a strong feel that Beckett very smartly, comprehensively and successfully questioned the relevance of the totalizing metanarratives to the present times. Being an imaginative writer, he was well aware of the fact that ridicule is a much more useful weapon than satire in the context of political literature. There are so many foundationalist ideologies that he ridicules in his dramatic writing. Christianity as a religion is well exposed; the gravity of philosophy is devalued; the traditional luxury that the humans get from the art of poetry is ruptured and the great ideals of struggle are punctured. He achieves his artistic and ideologically evolved authorial intentions with a ringing success. It is interesting to note that he maintains a healthy balance between art and message. Keyswords: Beckett, Lyotard, The Postmodern Condition, Waiting for Godot Pages: 85-94 Article: 8 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)08 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)08 Download Pdf: download pdf view article Creative Commons License Effect of Parenting Styles on Students’ Academic Achievement at Elementary Level Authors: Hafsa Noreen Mushtaq Ahmad Uzma Shahzadi Abstract: The study intended to find out the effect of parenting styles on students’ academic achievement. Current study was quantitative in nature. All elementary level enrolled students at government schools in the province of the Punjab made the population of the study. Multistage sampling was used to select the sample from four districts of one division (Sargodha) of the Punjab province i.e., Sargodha. A sample size i.e., n=960; students and their parents were participated in this study. Research scales i.e. Parenting Styles Dimension Questionnaire (PSDQ) was adapted to analyze and measure parents’ parenting styles and an achievement test was developed to measure the academic achievement of the elementary students. After pilot testing, reliability coefficient Cronbach Alpha values for PSDQ and achievement test were 0.67 and 0.71 Data was collected and analyzed using frequencies count, percentages, mean scores and one way ANOVA. Major findings of the study were; Majority of the parents had authoritative parental style, a handsome number of parents keep connection of warmth and support with their children, show intimacy, focus on discipline, do not grant autonomy to their children, do not indulge with their children and as well as a handsome number of students were confident during their studies and study, further, found that parental style had positive relationship with academic achievement. Recommendations were made on the basis of findings and conclusion such as arrangement of Parents Teachers Meetings (PTM‘s), parents’ training, provision of incentives and facilities to motivate families might be an inclusive component of elementary education program. Keyswords: Academic Achievement, Elementary Education, Parenting Styles Pages: 95-110 Article: 9 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)09 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)09 Download Pdf: download pdf view article Creative Commons License Kashmir Conflict and the Question of Self-Determination Authors: Izzat Raazia Saqib Ur Rehman Abstract: The objective of this paper is to explore relations between Pakistan and India since their inception in the perspective of Kashmir conundrum and its impact on the regional security. Kashmir is the unfinished agenda of partition and a stumbling block in the bilateral relations between Pakistan and India. After the partition of sub-continent in 1947, Pakistan and India got their sovereign status. Kashmir conflict, a disputed status state, is the byproduct of partition. Pakistan and India are traditional arch-foes. Any clash between Pakistan and India can bring the two nuclear states toe-to-toe and accelerate into nuclear warfare. Due to the revulsion, hostility and lack of trust between the two, the peaceful resolution of the Kashmir issue has been long overdue. Ever-increasing border spats, arms race and threat of terrorism between the two have augmented anxiety in the subcontinent along with the halt of talks between India and Pakistan at several times. Additionally, it hampers the economic and trade ties between the two. India, time and again, backtracked on Kashmir issue despite UN efforts to resolve the issue. Recently, Indian government has responded heavy-handedly to the Kashmiri agitators’ demand for sovereignty and revocation of ‘Special Status’ of Kashmir impacting the stability of the region in future. Keyswords: India, Kashmir Conundrum, Pakistan, Regional Security, Sovereignty Pages: 111-119 Article: 10 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)10 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)10 Download Pdf: download pdf view article Creative Commons License Exploring Image of China in the Diplomatic Discourse: A Critical Discourse Analysis Authors: Muhammad Afzaal Muhammad Ilyas Chishti Abstract: The present study hinges on the major objective of analyzing Pakistani and Indian diplomatic discourses employed in portrayal of image of China. Data comprises the official discourse which is used in diplomatic affairs of both the states. The extensive investigation seeks insights from the fundamentals of Critical Discourse Analysis propounded by van Dijk, Fairclough and Wodak with a special focus on Bhatia’s (2006) work. The study reveals that the image of China has always been accorded priority within Indian and Pakistani diplomatic discourse even though nature of bilateral relations among China, India and Pakistan is based on entirely different dynamics; Indian and Pakistani diplomatic discourses are reflective of sensitivities involved within the bilateral relations. Through employment of linguistic techniques of ‘positivity’, ‘evasion’ and ‘influence and power’, Indian diplomats have managed not to compromise over the fundamentals in bilateral relations with China despite Pakistan’s already strengthened and deep-rooted relations with China. While Pakistani diplomatic fronts have been equally successful in further deepening their already strengthened relations in the midst of surging controversies on CPEC, BRI and OBOR. Hence, diplomatic fronts of both the counties, through employment of ideologically loaded linguistic choices, leave no stone unturned in consolidation of the diplomatic relations with China. Keyswords: CDA, China Image, Corpus, Language of Diplomacy, Political Discourse Analysis Pages: 120-133 Article: 11 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)11 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)11 Download Pdf: download pdf view article Creative Commons License Students’ Perception about Academic Advising Satisfaction at Higher Education Level Authors: Rukhsana Sardar Zarina Akhtar Shamsa Aziz Abstract: The purpose of the study was to examine the students’ perception about academic advising satisfaction at higher education level. All the students from two years master (M.A) degree programme and four years (BS) degree programme of eight departments from International Islamic University Islamabad (IIUI), Faculty of Social Sciences were taken as a population of the study. 475 students were randomly selected as a sample of the study. The Academic Advising Inventory (AAI) was used to assess Academic Advising Style. For measuring level of the satisfaction, descriptive statistics was used. To compare the mean difference department-wise and gender-wise about academic advising satisfaction t.test was applied. It was concluded that from the major findings of the study those students who received departmental academic advising style are more satisfied as compared to those students who provided prescriptive academic advising style. Female students seemed more satisfied as compared to male students regarding the academic advising style provided to them. Students who satisfied from developmental academic advising style and they were also highly satisfied from the advising provided to them at Personalizing Education (PE) and this is the subscale of developmental academic advising whereas students who received prescriptive academic advising they were also satisfied from the advising provided to them regarding personalizing education and academic decision making but their percentage is less. It is recommended to Universities Administration to focus on Developmental Academic Advising Style and establish centers at universities/department level and nominate staff who may be responsible to provide developmental academic advising. Keyswords: Academic Advising, Higher Level, Students’ Perception Pages: 134-144 Article: 12 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)12 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)12 Download Pdf: download pdf view article Creative Commons License Perceptions of Sexual Harassment in Higher Education Institutions: A Gender Analysis Authors: Ruhina Ghassan Dr. Subha Malik Nayab Javed Abstract: Sexual harassment is a social issue which is present in every society, globally, which interferes in an individual’s social and professional life. It happens almost everywhere i.e. at workplaces, public places or institutes as well. The focus of the present study was to explore the differences of male and female students’ perception of sexual harassment. This study was a quantitative research. Sample of the study included of 400 students (200 males and 200 females) from two government and two private universities. In the present study, Sexual Harassment Perception Questionnaire (SHPQ) was used to find out these differences in perceptions as every person has his own view for different situations. The study revealed the significant differences in perception of students. Study showed that both genders perceived that female students get more harassed than male students. The factors that affect the perception frequently were gender and age. The findings recommended that regulations for sexual harassment should be implemented in universities; laws should be made for sexual harassment in higher education institutes. Students should be aware of sexual harassment through seminars, self-defense classes and awareness campaigns. And every institute should have a counseling center for the better mental health of students. Keyswords: Gender Differences, Higher Educational Institutions, Sexual Harassment Pages: 145-158 Article: 13 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)13 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)13 Download Pdf: download pdf view article Creative Commons License Role of IMF Over the Governance Structure and Economic Development of Pakistan Authors: Ali Qamar Sheikh Dr. Muhammad Imran Pasha Muhammad Shakeel Ahmad Siddiqui Abstract: Developing countries like Pakistan seeks for financial assistance in order to fulfil their deficits. IMF is one of the largest financial institution who give loans to countries who need it. This research has studied the IMF role and the effects of IMF conditions on the economy of Pakistan. To carry out this research, both quantitative data from primary sources has been gathered and qualitative analysis has been made to signify whither this borrowing creating and maintaining dependency of Pakistan on West and financial and governance structure constructed to curtail Countries like Pakistan. The results concluded that there is negative and insignificant relationship between GDP and IMF loans in the long run. The short-term dynamic shows that weak economic and Political Institutions in Pakistan. The Development dilemma constitutes dependency even today. The Current Budget Deficit Pakistan's fiscal deficit climbs to Rs 3.403 trillion in 2020-21 needs to be readdressed in such a manner that Pakistan can counter Balance of Payments and import/export imbalance. Keyswords: Dependency, Development, IMF, Loans, Debt, Pakistan, Governance structure Pages: 159-172 Article: 14 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)14 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)14 Download Pdf: download pdf view article Creative Commons License Climate Change and the Indus Basin: Prospects of Cooperation between India and Pakistan Authors: Sarah Saeed Prof. Dr. Rana Eijaz Ahmad Abstract: Climate change is transforming the global societies. The shift in average temperature is putting negative impacts on human health, food production and the natural resources. In the wake of the altered climate, water flow in the river systems is experiencing variability and uncertainty. This paper aims at studying the negative impacts of climate change on the water resources of the Indus Basin and investigate the prospects of cooperation between India and Pakistan; two major riparian nations sharing the basin. Adopting the case study approach, a theoretical framework has been built on the ‘Theory of the International Regimes’. It has been argued that institutional capacity and the dispute resolution mechanism provided in any water sharing agreement determine the extent of cooperation among the member states. Since India and Pakistan are bound by the provisions of the Indus Waters Treaty, this study tries to assess the effectiveness of this agreement in managing the negative consequences of the climate change. Keyswords: Climate Change, Cooperation, Dispute Resolution Mechanism, Institutional Capacity Pages: 173-185 Article: 15 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)15 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)15 Download Pdf: download pdf view article Creative Commons License Translation, Cultural Adaptation and Validation of Behavioral-Emotional Reactivity Index for Adolescents Authors: Saima Saeed Farah Malik Suzanne Bartle Haring Abstract: Measuring differentiation of self in terms of behavioral/emotional reactivity towards parents is important because of the complex parent-child connection. This needs a valid and reliable measure to assess the differentiation of self particularly in a relationship with parents. Behavior\\Emotional Reactivity Index is such a tool that fulfills this purpose. The present study was carried out to culturaly adapt and translate BERI into the Urdu language and establish the psychometric properties of Urdu version. A sample of 303 adolescents of age (M = 16.07, SD = 1.77) was taken from different schools and colleges. Scale was split into Mother and father forms for the convenience of respondents. Findings supported the original factor structure of the BERI-original version. Higher-order factor analysis showed good fit indices with excellent alpha ranges (α= .91 to α=.80). BERI scores were compared for the adolescents who were securely attached with parents and insecurely attached with parents which showed a significant difference between the groups. BERI-Urdu version was found to be a valid and reliable measure in the Pakistani cultural context which gives researchers new directions to work with adolescents. Keyswords: Adolescence, Differentiation of Self, Behavioral, Emotional Reactivit, Index, Parental Attachment Pages: 186-200 Article: 16 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)16 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)16 Download Pdf: download pdf view article Creative Commons License Notion of Repression in Modern Society: A Comparative Analysis of Sigmund Freud and Herbert Marcuse Authors: Khadija Naz Abstract: One of the fundamental issues for modern civilized man is how to adapt a modern society without losing his individual status. Is it possible for an individual to adjust in a society where he/she loses his/her individuality and becomes part of collectivity? One point of view is that for society to flourish, man needs to be repressed. But to what extent is repression necessary for societies to rise and survive? This paper shall examine the above given questions from the standpoint of two thinkers who greatly influenced twentieth-century thought: Sigmund Freud and Herbert Marcuse. To undertake this task, first the term Repression shall be examined and then the notions of Freud and Marcuse will be discussed to determine the degree of repression required for the development of modern society. Keyswords: Modern Society, Performance Principle, Repression, Surplus-Repression, The Pleasure Principle, The Reality Principle Pages: 201-214 Article: 17 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)17 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)17 Download Pdf: download pdf view article Creative Commons License Perceptions of Teacher Educators about Integration of (ESD) in Elementary Teachers Education Program Authors: Dr. Rukhsana Durrani Dr. Fazal ur Rahman Dr. Shaista Anjum Abstract: Education and sustainable development have a close relationship as education provides sustainability to society. This study explored the perceptions of teacher educators for integration of Education for Sustainable Development (ESD) in B.Ed. 4 years’ elementary program. Four major components of ESD i.e., Education, Social & Culture, Economic and Environment were included in study. 127 teacher educators from departments of education were randomly selected from public universities of Pakistan who were offering B.Ed. 4 years’ elementary program. Data was collected through questionnaires from teacher educators. The findings recommended the inclusion of the components of Education for Sustainable Development (ESD) in curriculum of B.Ed. 4 years’ elementary program. Keyswords: B.Ed. 4 Years Elementary Curriculum, Sustainable Development, Integration, Teacher Education Pages: 215-225 Article: 18 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)18 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)18 Download Pdf: download pdf view article Creative Commons License Exploring TPACK skills of prospective teachers and challenges faced in digital technology integration in Pakistan Authors: Tariq Saleem Ghayyur Dr. Nargis Abbas Mirza Abstract: The current study was aimed to explore TPACK skills of prospective teachers and challenges faced in digital technology integration in Pakistan. The study was qualitative in nature and semi structured interview schedule was developed to collect data from prospective teachers. Purposive sampling technique was employed to collect data from 20 prospective teachers of 7 public sector universities. It was concluded that majority of the prospective teachers used general technological and pedagogical practices (GTPP), technological knowledge practices (TKP), Technological Pedagogical Knowledge practices (TPKP), Technological Content Knowledge practices (TCKP). Majority of prospective teachers reported multiple challenges in integration of digital technology in teacher education programs including lack of teacher training as one of the largest hurdle in digital technology integration, lack of digital technology resources or outdated digital technology resources, inadequate computer lab, lack of learning apps (courseware), financial constraints, lack of teachers’ motivation to use digital technology, slow computers available at computer labs, and unavailability of technical support. It was recommended that digital technology infrastructure should be improved across all teacher education institution and it was further recommended that TPACK model of digital technology integration should serve digital technology integration in teacher education programs in Pakistan. Keyswords: Challenges, Digital Technology Integration, Digital Technology Resources, Digital Technology, TPACK Pages: 226-241 Article: 19 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)19 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)19 Download Pdf: download pdf view article Creative Commons License Revisiting the Linkage between Money Supply and Income: A Simultaneous Equation Model for Pakistan Authors: Zenab Faizullah Dr. Shahid Ali Muhammad Imad Khan Abstract: A reliable estimate of the money supply is an important sign of the Gross Domestic Product (GDP) and many other macroeconomic indicators. It is widely discussed that over a long period of time, there is a strong link between GDP and money supply. This link is significantly important for formation of monetary policy. The main aim of this study is to estimate the income-money supply model for Pakistan. This study estimates the income-money supply model for Pakistan over the period of 2009 to 2019. The study uses Two Stage Least Square (2SLS) econometric technique due to the presence of endogeneity problem in the model under consideration. The existence of simultaneity between money supply (M2) and income (GDP) is also clear from the results of Hausman Specification test for simultaneity between M2 and GDP. The results further show that there exists a strong money-income relationship in case of Pakistan. Keyswords: Money Supply, Income, Simultaneous Equations Pages: 242-247 Article: 20 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)20 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)20 Download Pdf: download pdf view article Creative Commons License Analyzing the Mechanism of Language Learning Process by the Use of Language Learning Strategies Authors: Shafiq Ahmad Farooqi Dr. Muhammad Shakir Sher Muhammad Awan Abstract: This analytical research study involves the use of learning strategies to know the mechanism of learning a second language. People acquire their native language (L1) without any conscious effort and they have a complete knowledge of L1 and are competent in their native language even without going to school. It is believed that language learning is a process as well as an outcome and the focus of current study is to understand the process of learning a second language. The population in this study comprised of 182 boys and Girls Govt. Higher Secondary Schools studying at intermediate level in the 11 Districts of the Southern Punjab. The sample was selected through random probability sampling and consisted of 40 subject specialists teaching the subject of English in Govt. higher secondary schools with 400 students studying English at Intermediate level. A questionnaire comprising some common and easily accessible learning strategies was designed to determine the frequency of these strategies used in the classrooms by the language learners through the specialists of the subject. The data was collected from the selected sample through the subject specialists teaching in these schools. The data was collected quantitatively and was analyzed in the statistical package for social sciences (SPSS) version 20. The most common 27 language learning strategies (LLS) were applied to analyze the process of language learning. In the light of the results of the study, it was concluded that application of the learning strategies according to the nature of the text is helpful in understanding the language functions and its application. Keyswords: Language Acquisition, Learning Strategies, Mechanism of Language Learning Pages: 249-258 Article: 21 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)21 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)21 Download Pdf: download pdf view article Creative Commons License Secondary School Science Teachers’ Practices for the Development of Critical Thinking Skills: An Observational Study Authors: Dr. Muhammad Jamil Dr. Yaar Muhammad Dr. Naima Qureshi Abstract: In the National curriculum policy documents, to produce rationale and independent critical thinkers, different pedagogical practices have been recommended like cooperative learning, questioning, discussion, etc. This qualitative case study aimed at analyzing secondary school science teachers’ practices for the development of critical thinking skills in secondary school students. There were twelve classrooms (four from each subject of Physics, Chemistry and Biology) selected as cases. Video recording was used for the observations for six lessons in each classroom. In this way, a total of 72 observations were conducted lasting for approximately 35 minutes. Qualitative content analysis was used for data analysis through Nvivo 12. The findings of the observations revealed that all the teachers used the lecture method. They used this to cover the content at a given specific time. There was not much focus on the development of critical thinking. In a few of the classrooms, the students were engaged and active during learning different specific topics. Whiteboard was used as a visual aid by most of the teachers. Furthermore, to some extent, discussion, questioning, and daily life examples were used in different classrooms. It is recommended that teachers’ professional development should be conducted to focus on the development of critical thinking skills through pedagogical practices which have been recommended by the national education policy documents. Keyswords: Analysis, Critical Thinking, Curriculum Policy, Pedagogy, Secondary Level Pages: 259-265 Article: 22 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)22 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)22 Download Pdf: download pdf view article Creative Commons License Historical Development of Clinical Psychology in Pakistan: A Critical Review-based Study Authors: Muhammad Nawaz Shahzad Dr. Mushtaq Ahmad Dr. Muhammad Waseem Tufail Abstract: Clinical Psychology is clinical and curing psychological practices in Pakistan. The present research study endeavors to examine the contemporary status of Clinical Psychology in the country and descriptively analyzes the significant contribution of various psychologists in its development. The study also elaborates the emergence of Clinical Psychology and its treatment aspects in the country. The experimental approach of the treatment psychology has also been defined. The role of different scholars to set and promote the Clinical Psychology as discipline and dealing about treatment of Human mind has also been discussed here. The study also presented the scenario of the issues of legislative acknowledgment, qualifications mandatory for practice, communal awareness of cerebral treatment, the tradition of ethnic and native practices about the clinical psychological treatments has also been discussed. Keyswords: Approaches, Clinical Psychology, Psychologist, Therapist Pages: 266-272 Article: 23 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)23 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)23 Download Pdf: download pdf view article Creative Commons License Impact of Devolution of Power on School Education Performance in Sindh after 18th Constitutional Amendment Authors: Abdul Hafeez Dr. Saima Iqbal Muhammad Imran Abstract: Devolution of the authority from central units of empowering authorities to the local level to develop and exercise policies at local or organizational level is under debate in various countries of the world. The legation in with the name of 18th constitutional amendment in constitution of 1973 of Pakistan ensures more autonomy to federal units. The difference between province and federation mostly creates misunderstanding in the belief of cooperation and universalism of education standards, expenditures and service delivery. Very currently the ministry of education and local government encoring principles and headmasters to adopt self-management skills to be updated to accept the spin of power from higher authorities to lower authorities’ pedagogical and local schools. In this qualitative research semi structured questioner were incorporated as data collection tool equally, the data was analyzed by usage of NVivo software. In this regard Government of Sindh has introduced various reforms and new trends like objectives and policy pillars, better government schools, improved learning outcomes and increased and improved funding in the education sector Sindh government has so far been unable to effectively use its resources to implement effective governance system which provides quality and sustained education in the province. To achieve this basic universal education, equally fourth objective of Sustainable Development Goal (SDG) the educational leaders must develop a comparative education setup that help to educate planers to plan and design standards for school leaders, instruction, appropriate professional development of teachers, ways to support school leaders to change in mission. Parallel, develop new program for early childhood, school and class size and ensure school enrollment. Keyswords: 18th Constitutional Amendment, Devolution of Power, Sindh Education Performance Pages: 273-285 Article: 24 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)24 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)24 Download Pdf: download pdf view article Creative Commons License Legal Aspects of Evidence Collected by Modern Devices: A Case Study Authors: Muhammad Hassan Zia Alvina Ali Abstract: This paper is a qualitative research of different case laws dealing with modern technological evidence. Courts were required to adopt new methods, techniques and devices obtained through advancement of science without affecting the original intention of law. Because of modern technology, a benefit could be taken from said technology to preserve evidences and to assist proceedings of the Court in the dispensation of justice in modern times. Owing to the scientific and technological advancements the admissibility of audio and visual proofs has grown doubtful. No doubt modern evidence assist the court in reaching out to the just decision but at the same time certain criteria need to be laid down which must be satisfied to consider such evidence admissible. Different Case laws are discussed here to show how the cases were resolved on the basis of technological evidence and when and why such evidence have been rejected by the court, if it did. Moreover, legal practices developed in various countries allow our Courts to record evidence through video conferencing. The Honorable Supreme Court of Pakistan directed that in appropriate cases statement of juvenile rape victims and other cases of sensitive nature must be recorded through video conferencing to avoid inconvenience for them to come to the Court. Nevertheless, it has some problems. The most important among them is the identification of the witness and an assurance that he is not being prompted when his statement is recorded. In this paper protocols that are necessary to follow while examining witness through video link are discussed Keyswords: DNA Profiling, Finger Prints, , Telephone Calls, Video Tape Pages: 286-297 Article: 25 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)25 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)25 Download Pdf: download pdf view article Creative Commons License The Political Economy of Terrorisms: Economic Cost of War on Terror for Pakistan Authors: Muhammad Shakeel Ahmad Siddiqui Dr. Muhammad Imran Pasha Saira Akram Abstract: Terrorism and its effect on contemporary society is one of the core and vital subjects of International Political Economy (IPE) during the last years. Despite the fact that this is not a new phenomenon, special attention has been given to this issue, specifically after the terrorist attacks of 9/11, 2001. The objective of this paper analyzes to what dimensions terrorism affects the global economy mainly the two predominant actors of the conflict i.e. Pakistan and the United States. For this purpose, this article will take a look at the financial cost of War for Pakistan and how Pakistan’s decision to become frontline State has affected its Economy, its effect on agriculture, manufacturing, tourism, FDI, increased defense costs The normative and qualitative methodology shows a significant disadvantage between terrorist activities and economic growth, social progress, and political development. The results shows that Pakistan has bear slow economic growth while facing terrorist activities more than US. In this last section, the paper suggests ways and means to satisfy people around the world not to go in the hands of fundamentals and terrorists. Keyswords: Cost of War, Economic Growth, Frontline States, Pak Us Relations, Terrorism Pages: 297-309 Article: 26 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)26 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)26 Download Pdf: download pdf view article Creative Commons License A Comparative Study of Grade 10 English Textbooks of Sindh Textbook Board and Cambridge “O Level” in the perspective of Revised Bloom’s Taxonomy Authors: Mahnoor Shaikh Dr. Shumaila Memon Abstract: The present study evaluated the cognitive levels of reading comprehension questions present in grade 10 English Textbooks namely English Textbook for grade 10 by Sindh Textbook Board and compared it to Oxford Progressive English book 10 used in Cambridge “O Level” in the perspective of Revised Bloom’s Taxonomy. Qualitative content analysis was used as a methodology to carry out the study. To collect the data, a checklist based on Revised Bloom’s taxonomy was used as an instrument. A total of 260 reading comprehension questions from both the textbooks were evaluated. The findings of the study revealed that reading comprehension questions in English textbook for grade 10 were solely based on remembering level (100%) whereas the questions in Oxford Progressive English 10 were mainly based on understanding level (75.5%) with a small percentage of remembering (12.5%), analyzing (11.1%) and evaluating level (0.74%). This suggests that the reading comprehension questions in both the textbooks are dominantly based on lower-order thinking skills. Keyswords: Bloom’s Taxonomy, Content Analysis, Reading Comprehension, Textbook Evaluation Pages: 310-320 Article: 27 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)27 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)27 Download Pdf: download pdf view article Creative Commons License Assessing the Preparedness of Government Hospitals: A Case of Quetta City, Balochiatan Authors: Sahar Arshad Syed Ainuddin Jamal ud din Abstract: Earthquake with high magnitude is often resulting in massive destruction with more causalities and high mortality rate. Timely providence of critical healthcare facilities to affected people during an emergency response is the core principle of disaster resilient communities. The main objective of this paper is assessing the hospital preparedness of government hospitals in Quetta. Primary data was collected through questionnaire survey. Total of 165 sample size chosen via simple random sampling. Relative important index (RII) is used to analyze the overall situation of hospitals preparedness in term of earthquake disaster. Findings of the study showed that the preparedness level of government hospitals in Quetta is weak to moderate level. Based on the findings this study recommends the necessary measures to minimize the risk of earthquake disaster including training and exercise programs for the staff of hospital, proper resource management to efficiently use the existing machinery and equipment in the meeting of disaster to enhance employee’s performance and preparedness of government hospitals in Quetta to deal with earthquake disaster. Keyswords: Earthquake, Preparedness, Relative Important Index Pages: 321-329 Article: 28 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)28 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)28 Download Pdf: download pdf view article Creative Commons License Development of Reasoning Skills among Prospective Teachers through Cognitive Acceleration Approach Authors: Memoona Bibi Dr. Shamsa Aziz Abstract: The main objectives of this study were to; investigate the effects of the Cognitive Acceleration approach on the reasoning skills of the prospective teachers at the university level and compare the effects of the Cognitive Acceleration approach and traditional approach concerning reasoning skills of prospective teachers’ at the university level. The study was experimental and followed a pre-test post-test control group experimental design. The sample of the study included the experimental group and control group from the BS Education program in the Department of Education at International Islamic University Islamabad. A simple random sampling technique was used to select the sample after pre-test and pairing of prospective teachers. CTSR (classroom test for scientific reasoning) developed by A.E. Lawson (2000) was used to collect the data through pre-tests and post-tests. The experimental group’s perception about different activities of the experiment was taken through a self-made rating scale. Collected data were analyzed by calculating mean scores and t-test for hypothesis testing by using SPSS. The main findings of the study revealed that the Cognitive Acceleration teaching approach has a significant positive effect on the reasoning skills development of prospective teachers at the university level. Findings also showed that participants found this teaching approach effective and learned many new concepts and skills with the help of thinking activities. Based on findings it has been concluded that the Cognitive Acceleration teaching approach might be encouraged for training prospective teachers at the university level and training sessions about the use of the Cognitive Acceleration approach must be arranged by teacher education programs and institutions. Keyswords: Cognitive Acceleration Approach, Prospective Teachers, Reasoning Skills, Traditional Approach Pages: 330-342 Article: 29 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)29 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)29 Download Pdf: download pdf view article Creative Commons License Spatial Injustice in Shamsie’s Kartography Authors: Syeda Hibba Zainab Zaidi Dr. Ali Usman Saleem Sadia Waheed Abstract: Social space under postmodernism and wave of globalization have suffered in and its idealistic representations are lost and deteriorated which ultimately led to discursiveness in the lives of postmodern man, especially Karachiites. The boundaries of geographies play a significant role in shaping fates, biographies, social superstructures and shared collective histories of its residents. Considering this, Henri Lefebvre and Edward William Soja, argue that space is something which determines the living circumstances within the particular social framework and instigates and controls various societal happenings. City space of Karachi suffers from appalling distortions as a part of postmodern, globalized and capitalist world. By employing Lefebvre’s idea of spatial triad and Soja’s views of the trialectrics of spaciality, this paper foregrounds how social space enforces spatial injustice and serves for the inculcation of spatial cleansing in the lives of inhabitants of urban space. Using Shamsie’s Kartography as an interpretive tool for contemporary urban environment, this paper inquires the engrafting of spatial cleansing in the lives of Karachiites resulting in multiple standardization and segregation on the basis of living standards among different social strata. This research substantiates how in Kartography, Materialism nibbles the roots of social values and norms while sequentially administering Spatial Injustice in the lives of Karachiites. This paper proclaims the scarcity of execution of Spatial Justice in the lives of common people in this postmodern globalized capitalist era. This paper urges the possibility of a utopian urban space with enforced spatial justice where people can be saved from dilemmas of injustice and segregation, especially Karachiites. Keyswords: Capitalistic Hegemony, City Space, Globalization, Spatial Cleansing, Spatial Injustice Pages: 343-352 Article: 30 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)30 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)30 Download Pdf: download pdf view article Creative Commons License A Quasi-Experimental Study on the Performance and Attitudes of Pakistani Undergraduate Students towards Hello English Language Learning Application Authors: Wafa Pirzada Dr. Shumaila Memon Dr. Habibullah Pathan Abstract: With the advancement of technology, more and more avenues of bringing creativity and innovation in language learning have opened up. These exciting advances have given rise to a new field of study within linguistics, termed Mobile Assisted Language Learning (MALL). This paper aims to fill the gap of MALL research in the area of grammar teaching in the Pakistan. Two BS Part 1 classes from University of Sindh, Jamshoro, were chosen for this quasi-experimental study. In total, 62 out of 101 students volunteered to use the Hello English application for 2 months, making up the experiment group, and the remaining 39 students were put in a control group. Paired Samples T-Test was run on pretest and posttest results which revealed no significant difference in both groups’ performances, proving that Hello English application could not significantly improve students’ grammar performance. However, in spite of the lack of a significant difference between the test results, the data gathered through the attitudinal survey showed that students still found mobile application very easy to use and effective in language learning. Keyswords: Attitudes, Grammar Learning, Hello English, Mobile Language Learning, Technology In Language Learning Pages: 353-367 Article: 31 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)31 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)31 Download Pdf: download pdf view article Creative Commons License Impact of Determinants on the Profile Elevation of Secondary School Teachers in Pakistan Authors: Zahida Aziz Sial Dr. Farah Latif Naz Humaira Saadia Abstract: The foremost purpose of this research paper was to interrogate the effects of determinants on the educational and social profile of secondary school teachers in Pakistan. The key question taken was related to determinants that affect teachers’ profile. The Population of the study was secondary school teachers of Punjab province. A questionnaire was used as research instrument. The researcher personally visited the schools to administer the questionnaire. E-Views software was used for data analysis. Moreover, OLS regression model and LOGIT regression model were carried out. It was found that the variable years of teaching experience (EXPYR) (*** 0.03) can have a vital concrete effect upon the societal figuration of teachers as the experience of teachers grows, so does their social interactions with officials, colleagues, students and friends increases. The said variable is significant at 10 percent level. The variable, Residence (RESIDE) (** 0.53) have a significant impact upon civic links. This obviously associated with less community connection of country side teachers than the teachers residing in urban areas. Keyswords: Determinants, Elevation, Educational Profile, Social Profile, Secondary School Teacher Pages: 368-372 Article: 32 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)32 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)32 Download Pdf: download pdf view article Creative Commons License Impact of War on Terror on the Tourism Industry in Swat, Pakistan Authors: Sabir Ihsan Prof. Dr. Anwar Alam Aman Ullah Abstract: The present study was designed to ascertain the status of tourism before insurgency, during insurgency and after insurgency in District Swat-KP Pakistan. The study is quantitative and descriptive in nature. A diverse sample size of 370 out of 9014 was selected through convenient sampling strategy. Notwithstanding, the objectives of the study was achieved through structured questionnaire. Data was analysed through chi-square at Bi Variate level. Findings of the study revealed that earning livelihood in swat was significantly associated (P=0.016), (P=0.003) with tourism industry prior 2009 and present time respective, but the same statement was observed non-significant (P=0.075) at the time of insurgency. Arranging different festivals in the study area and establishment of different showrooms for local handcrafts, artificial jewellery and woollen shawl are some of the recommendations of the study. Keyswords: Business, Insurgency, Swat, Tourism Pages: 373-385 Article: 33 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)33 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)33 Download Pdf: download pdf view article Creative Commons License Challenges and Prospects of Pak-China Economic Corridor Authors: Muhammad Mudabbir Malik Prof. Dr. Muqarrab Akbar Abstract: Pak-China has historic relationships from the emergence of both states, and were proved long-lasting in every thick and thin times. In initial times they supported each other in foreign policies and regional issues. Pakistan and China have border disputes with India, which forced them to come close to counter India, letter on the economic interests strengthened these relations. In order to maximize the economic benefits, China announced economic corridor with the name China Pakistan Economic Corridor (CEPC). It was thought it will boost the economic growth of China, and as a prime partner Pakistan will also get economic benefits. In order to completely understand how Pakistan and China came on the same page and decided to put CPEC into reality we have to understand the Geo-political Importance of Pakistan, Strategic and economic importance of CPEC for China and Pakistan, Influence and concerns of West and neighboring countries including India. Domestic limitations and all the possible benefits and risks involved in this project for both Pakistan and China, this research acknowledges all these questions. Keyswords: Challenges, China, CPEC, Domestic Limitations Economic Growth, Pakistan, Western and Regional Concerns Pages: 386-404 Article: 34 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)34 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)34 Download Pdf: download pdf view article Creative Commons License An Analysis of Learning Practices and Habits of Children at Early Childhood Education: Students’ Perspective Authors: Masood Ahmad Sabiha Iqbal Shaista Noreen Abstract: The study was designed to analysis learning practices and habits of children at early childhood education. The major objective of the study was to find out the learning practices and habits of children. Problem was related to current situation, so survey method was exercised, 220 students were selected with the help of convenient sampling technique. Self-constructed questionnaire were exercised. The collected data was analyzed and calculate frequency, percentage, mean score, standard deviation and t-test of independent variable. The major findings of the study were; students learn from the pictures, cartoons and funny face; student’s eyes get tired of reading. When student read context continuously then they feel that their eyes get tired. There was a significance difference between male and female student about learning practices and habits of children. Keyswords: Early Childhood Education, Learning Practices and Habits, Pre-School Students Pages: 405-416 Article: 35 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)35 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)35 Download Pdf: download pdf view article Creative Commons License Gender Identity Construction in Akhtar’s Melody of a Tear Authors: Dr. Amna Saeed Hina Quddus Abstract: This study aims to discuss the notion of gender in terms of performativity and social construction. It also draws upon the idea of gender identity construction and how it relates to the society, performativity and biology. As its theoretical framework, the study relies upon the Performative Theory of Gender and Sex (1990) presented by Judith Butler and studies the gender identity construction in the female protagonist of Akhtar’s Melody of a Tear. Zara is a girl who is raised as a boy from his father and there is a kind of dilemma in Zara’s personality related to being masculine and feminine. The cultural norms of a particular gender are also a cause of this dilemma. Throughout the novel, she is in a conflicting state whether she should behave feminine or masculine. She is being depicted as an incomplete person until she finds and resolves this issue of gender identity. The paper discusses the gender performativity, social construction, cultural norms and identity as these are all contributing to the confusion and construction of the protagonist’s identity. Character analysis is used as the methodology of analysis. Keyswords: Cultural Norms, Femininity And Identity Confusion, Gender, Performativity, Masculinity, Social Construction Pages: 417-427 Article: 36 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)36 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)36 Download Pdf: download pdf view article Creative Commons License The Level of Impulsivity and Aggression among Crystal Meth and Cannabis Users Authors: Dr. Umbreen Khizar Muhammad Shafique Sana Nawab Abstract: Cannabis and crystal meth use is pervading in our society. Present study was conducted to explore the relationship between level of impulsivity and aggression among crystal meth and cannabis users. The sample of the present study was comprised of 100 participants. There were 50 cannabis and 50 crystal meth users who were diagnosed on the basis of DSM-V without any comorbidity. The sample were taken from all age range of population. The minimum education level was primary and maximum education level was graduation and above. The sample was selected from different drug rehabilitation centers of Rawalpindi and Islamabad, Pakistan. Demographic Performa was used to collect the initial important information, The “Barratt Impulsiveness Scale was used to measure the impulsivity and “Aggression Questionnaire” were used to measure the level of aggression. Finding of the study showed that there are significant differences among crystal meth and cannabis users on level of aggression. The calculated mean value for crystal meth user and for cannabis users indicates that crystal meth users have higher level of aggression as compared to the cannabis user. Over all analysis indicates a significant positive correlation of impulsivity with the variable aggression. The alpha coefficient value for all scale is acceptable. Keyswords: Aggression, Cannabis Users, Crystal Meth, Impulsivity Pages: 428-439 Article: 37 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)37 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)37 Download Pdf: download pdf view article Creative Commons License Impact of Social Factors on the Status of Tribal Women: A Case Study of the (Erstwhile) Mohmand Agency Authors: Sadia Jabeen Prof. Dr. Anwar Alam Muhammad Jawad Abstract: This study investigates the impact of socio-economic and cultural factors on the status of tribal women in the erstwhile Mohmand agency of the Ex-Federally Administered Tribal Area (FATA), Pakistan. Cultural practices and illiteracy impede the role of women in socio-economic development. The respondents were randomly selected from tehsil Ekka Ghund and Pindialai with a sample size of 370, through stratified random sampling. Data collected through structured interview schedule, FGD and observation technique. The study reveals that tribal practices early marriages, joint family system, tradition of forced marriages, compensation/Swara, exchange, purchase marriages, hampers women’s socioeconomic status. The illiteracy rate is high among the tribal women and it further undermines their role and negatively affects their socio-economic status. However, improvement in women status needs peace and stability, reforms in the constitution for women empowerment and active participation, improvement in the quality and quantity of education, women employability, skills development and women entrepreneurship Keyswords: Empowerment and Education, Marriage Types, Tribal Women Role, Tribal Women Status, Violence against Women Pages: 440-455 Article: 38 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)38 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)38 Download Pdf: download pdf view article Creative Commons License Effects of Heavy School Bags on Students’ Health at Primary Level in District Haveli (Kahutta) Azad Jammu and Kashmir Authors: Dr. Muhammad Mushtaq Shamsa Rathore Mishbah Saba Abstract: Heavy school bags is a very serious issue for the health of the primary level students throughout the world particularly in Azad Jammu and Kashmir. This study intends to explore the effect of heavy school bags on students’ health at primary level in district Kahuta. Naturally the study was descriptive and survey method was used, the population consists of one hundred ninety teachers and a sample of one hundred twenty seven teachers was selected using non probability sampling technique. A likert scale questionnaire was developed validated and distributed among the sampled respondents. The researcher personally visited the schools and collected the filled questionnaire. The data was coded and fed to the SPSS to analyze and interpret. The Chi Square test was applied to see the effect of heavy school bags on student’s health and academic achievement. The study found that heavy bags have negative effect on their health as well as their academic achievement. Students were found complaining their sickness, body and back pain. They were also found improper in their gait and their body postures. The researcher recommended the policy makers to take and develop strategies to decrease the heavy school bags. The school administration needs to make alternate days’ time tables of the subjects. Keyswords: Health, Primary Level, School, Bags, Students Heavy Pages: 456-466 Article: 39 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)39 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)39 Download Pdf: download pdf view article Creative Commons License Exploring the ‘Civil Repair’ Function of Media: A Case Study of The Christchurch Mosques Shootings Authors: Ayaz Khan Dr. Muhammad Junaid Ghauri Riffat Alam Abstract: This research endeavor is an attempt to explore and analyze the discourse produced by The New Zealand Herald; a newspaper from New Zealand and by The News International; a Pakistani newspaper. The researchers intend to determine whether and to what extent both the newspapers have the role of ‘civil repair’ played after the Christchurch mosques shootings. The researchers have incorporated the ‘lexicalization’ and the ‘ideological square’ techniques proposed by Tuen A. van Dijk within the scope of Critical Discourse Analysis. The findings of this study show that both the selected newspapers assuming the social status of ‘vital center’ performed the role of ‘civil repair’ in the aftermath of the shootings by producing the ‘solidarity discourse’. The ‘solidarity discourse’ has been produced in terms of the ‘we-ness’, harmony, understanding, and by mitigating the conflicting opinions. Keyswords: Christchurch Mosque Shootings, Civil Repair, Civil Sphere Theory, Lexicalization, Solidarity Discourse Pages: 467-484 Article: 40 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)40 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)40 Download Pdf: download pdf view article Creative Commons License China Pakistan Economic Corridor: Regional Dominance into Peace and Economic Development Authors: Tayba Anwar Asia Saif Alvi Abstract: The purpose of this qualitative study was to investigate the true motivations behind CPEC idea and the advantages it delivers to Pakistan and China. It also recognizes the Corridor's potential for mixing regional economies while dissolving geographical borders. The study is deductive in character, since it examines financial, political, and military elements of Pakistan and China's positions and situations. Enhancing geographical linkages through improved road, train, and air transport systems with regular and free exchanges of development and individual’s interaction, boosting through educational, social, and regional civilization and wisdom, activity of larger quantity of investment and commerce flow, generating and moving energy to provide more optimal businesses for the region. Keyswords: Geographical Linkages, Globalized World, Landlocked, Regional Connectivity, Regionalization Pages: 485-497 Article: 41 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)41 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)41 Download Pdf: download pdf view article Creative Commons License China’s New Great Game in Central Asia: Its Interest and Development Authors: Bushra Fatima Rana Eijaz Ahmad Abstract: Central Asia is rich in hydrocarbon resources. It’s geostrategic, geopolitical, and geo-economic significance has grasped the attention of multiple actors such as China, the USA, Russia, Turkey, the European Union, Pakistan, Afghanistan, and India. Due to its location, the Central Asian region appeared as a strategic hub. In the present scenario, China’s strategy is massive economic development, energy interest, peace, and stability. This article highlights China’s interest, political and economic development, and its role as a major player in the New Great Game in Central Asia. Shanghai Cooperation Organization (SCO) which presents as a platform where China is playing an active role in political, economic, and security concerns for achieving its objectives in Central Asia. The new step of the Belt and Road Initiative (BRI) sheds light on China’s progressive move in this region via land and sea routes, which creates opportunities for globalization. Keyswords: Belt and Road Initiative, Central Asia, China, New Great Game Pages: 498-509 Article: 42 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)42 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)42 Download Pdf: download pdf view article Creative Commons License Personality Traits as Predictors of Self-Esteem and Death Anxiety among Drug Addicts Authors: Umbreen Khizar Saira Irfan Iram Ramzan Abstract: This study seeks to investigate whether personality traits predict self-esteem and death anxiety among drug addicts. The sample consisted of 100 drug addicts taken from the two hospitals in Multan city. Only men between the ages of 20 and 65 were included in the study. Data was collected through reliable and valid questionnaires. Results revealed positive relationship between conscientiousness, openness to experience and self-esteem. Moreover, findings showed positive relationship between extraversion and death anxiety, and negative correlation between neuroticism and death anxiety. Findings also showed that self-esteem and death anxiety are significantly and negatively correlated. Additionally, findings revealed that conscientiousness positively predicted self-esteem and neuroticism negatively predicted death anxiety. Furthermore, significant differences were observed in self-esteem, and death anxiety based on age. Significant differences were also found in extraversion, agreeableness, openness to experience, and death anxiety based on location. Understanding how personality traits affect behavior can help drug addicts get the support they need to live a better life and reduce their risk of death anxiety and premature death. Keyswords: Death Anxiety, Drug Users, Personality Traits, Self- Esteem Pages: 510-524 Article: 43 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)43 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)43 Download Pdf: download pdf view article Creative Commons License Middle East: A Regional Instability Prototype Provoking Third Party Interventions Authors: Waseem Din Prof. Dr. Iram Khalid Abstract: Third party interventions always prolong the interstate or civil wars with unending sufferings and devastations. The entire Middle East region is fraught with tensions, conflicts, civil wars and rivalries. From strategic interests to power grabbing, sectarian divisions, flaws in the civil and social structure of the state and society, ethnic insurrections, and many other shapes of instability syndromes can be diagnosed in this region. In the post-Arab Spring, 2011, the emerging new regional hierarchical order for power/dominance, in addition to the weakening/declining dominant US power in the region, changed the entire shape of already conflict-ridden region. New weak or collapsing states and bifurcation of the ‘status quo’ and ‘counter-hegemonic’ states along with their respective allies, made this region a prototype of instability in the regional security complex of the Middle East, as a direct result of these developments. The perpetuation of these abnormalities would not recede this instability conundrum from the region, provoking third party intervention, if not contained. Keyswords: Conflicts/Civil Wars, Dominant Power, Instability, Intervention, Middle East, Middle Powers, Regional Hierarchy, Regional Powers, Security Complex, Weak State Pages: 525-542 Article: 44 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)44 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)44 Download Pdf: download pdf view article Creative Commons License Impact of Classroom Environment on Second Language Learning Anxiety Authors: Zohaib Zahid Abstract: Second language learning anxiety has attained the attention of the researchers in almost every part of the world. Pakistan is a country where English is taught as a second language from the very beginning of school education. Second Language learning anxiety is a phenomenon which has been prominently found among the learners because of their less proficiency in learning English language. This study has been conducted to investigate the effect of anxiety in learning and using English language in classroom, university and outside the classroom. There are variables that affect language learning performance of the learners but this paper has solely investigated the effect of anxiety. The paper has concluded that anxiety is a variable which has a striking affect in second language learning and its use inside classrooms. Keyswords: Effect of Anxiety, Proficiency, Second Language Learning Anxiety, Striking Affect Pages: 485-497 Article: 45 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)45 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)45 Download Pdf: download pdf view article Creative Commons License Struggling for Democracy: A Case of Democratization in Pakistan Authors: Ammara Tariq Cheema Dr. Rehana Saeed Hashmi Abstract: The objective of this research paper is to review the challenges for democratization in Pakistan. The problem of democratization and consolidation refers to the structure of democracy following the collapse of non-democratic regime. Ten factors as given by Michael J. Sodaro are considered effective in helping a democratically unstable state to stabilize its system in other words helps in the democratic consolidation. It is argued in this research that the ten factors of democratization as given by Michael J. Sodaro have been absent in the political system of Pakistan and working on these factors can lead Pakistan to the road of democratization. This study uses qualitative method of research and proposes a novel framework for the deed of parliament, because the effectiveness of parliament can contribute positively to democratization/consolidated democracy. Keyswords: Electoral Politics, General Elections, Political Participation, Women Empowerment Pages: 554-562 Article: 46 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)46 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)46 Download Pdf: download pdf view article Creative Commons License Impact of Dependency Ratio on Economic Growth among Most Populated Asian Countries Authors: Dilshad Ahmad Salyha Zulfiqar Ali Shah Abstract: Demographic transition through different channels significantly influences economic growth. Malthusian view postulated as dependency ratio adversely affects economic growth while Julian Simon's view is quite different, highlighted the long-run benefits of the population in the range of 5 to15 years on economic growth. This study can be a valuable addition in research to analyzing the association of dependency ratio and economic growth of the five most populated Asian countries (Bangladesh, China, Indonesia, India, and Pakistan). Empirical findings of the study indicated that a total dependency and younger dependency ratio has a positive and significant influence on economic growth in both short-run and long-run scenarios while the old dependency ratio shows a negative influence on economic growth in the long run while short-run results are unpredictable. There is a need for state-based proper policy measures in focusing the higher financing in human capital development specifically in education and health. Keyswords: Economic Growth, Gross Saving, Old Dependency Ratio, Young Dependency Ratio Pages: 563-579 Article: 47 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)47 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)47 Download Pdf: download pdf view article Creative Commons License Chinese Geo-Strategic Objectives and Economic Interests in Afghanistan under President Xi Jinping Authors: Farooq Ahmed Prof. Dr. Iram Khalid Abstract: China has its own distinctive interests, concerns and strategies with respect to the changing security dynamics in Afghanistan. China has taken an active interest, though retaining a low profile and avoiding direct military interaction. China has exclusively relished on economic engagement actively and provided numerous financial aid and financial support in the rebuilding of Afghanistan's economy. The aim of this research study is to analyze the geo-strategic objectives and economic interests of China under the leadership of President Xi Jinping. This study looks at the actual diplomatic, economic and protection commitments of both countries as well as the basis of the geopolitical complexities – core variables that form China's current foreign policy to Afghanistan. Keyswords: Afghanistan, BRI, China, NATO Withdrawal Pages: 580-592 Article: 48 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)48 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)48 Download Pdf: download pdf view article Creative Commons License The Argument Structure of Intransitive Verbs in Pashto Authors: Abdul Hamid Nadeem Haider Bukhari Ghani Rehman Abstract: This study focuses on the description and categorization of intransitive verbs in terms of its argument structure. The study concludes that the unaccusative verbs only project an internal argument. It does not require the event argument. However, the said verb can be causativised by adding external argument and at the same time the event argument gets included in the valency of the derived causative of the unaccusative root. The unergative, on the other hand, requires an external argument as an obligatory argument while the internal argument is not the obligatory argument of the verb. The event argument is also a part of the valency of the verb. The APFs require one argument which is the internal argument of the verb. However, since the external argument is not available, the internal argument of the verb gets realized as the subject of the verb. The verb does not project event argument. The ergative predicates are derived by the suppression of the external argument and by the externalization of the internal argument. Keyswords: Argument Structure, Ergative Case, Event Argument, External Argument, Internal Argument, Valency Pages: 593-610 Article: 49 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)49 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)49 Download Pdf: download pdf view article Creative Commons License Positive, Negative and Criminal Orientation of Beggars in Okara: Perspective of Students Authors: Shahzad Farid Saif-Ur-Rehman Saif Abbasi Hassan Raza Abstract: This study aimed to measure the perspective of students about the criminal orientation of beggars. The sample size of the study (i.e., 100 students) was explored using Taro Yamane’ equation from the university of Okara, Punjab, Pakistan. The respondents were approached using simple random sampling and interviewed using face to face interview schedule. The data was collected using a structured questionnaire. The analysis was administered through SPSS-20.The study explored that parental illiteracy is associated with the high criminal and negative orientation of students towards beggars. It was also explored that females and respondents from rural background have low negative orientation towards beggars. However, males and respondents from urban background have medium criminal orientation and low positive orientation towards beggars, respectively. The study is useful for the government of Punjab, Pakistan campaign and policy for anti-begging. The study introduced the geometrical model of youth’s orientation toward begging. The study also contributed to the literature on begging by extending its domain from Law and Criminology to sociology as it incorporated social variables e.g., parents’ education, gender, etc., to explore their association with the youth’s socialization about begging. Keyswords: Begging, Crime, Education, Gender, Students Pages: 611-621 Article: 50 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)50 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)50 Download Pdf: download pdf view article Creative Commons License Relationship between Entrepreneurial Export Orientation and Export Entrepreneurship through Mediation of Entrepreneurial Capabilities Authors: Muhammad Saqib Nawaz Masood ul Hassan Abstract: Export led growth is prominent paradigm in developing world since decades. Exports play vital role in the economy by improving the level of balance of payments, economic growth and employment. Due to strategic importance of exports, organizational researchers focused on finding antecedents of export performance of the organizations. To line with this, current study aims to find the impact of entrepreneurial export orientation on export entrepreneurship through mediation of entrepreneurial capabilities in the Pakistani context. For this purpose, data was collected from 221 exporting firms of Pakistan by using questionnaire. Collected data was analyzed with the help of Smart PLS. In findings, measurement model confirmed the validity and reliability of measures of variables. Additionally, structural model provides the positive impact of entrepreneurial export orientation on export entrepreneurship. Similarly, entrepreneurial capabilities mediate the relationship between entrepreneurial export orientation on export entrepreneurship. The findings provide important implications for the managers of exporting firms to improve export performance. Keyswords: Entrepreneurial Capabilities, Entrepreneurial Export Orientation, Export Entrepreneurship Pages: 622-636 Article: 51 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)51 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)51 Download Pdf: download pdf view article Creative Commons License China Pakistan Economic Corridor: Explaining U.S-India Strategic Concerns Authors: Nasreen Akhtar Dilshad Bano Abstract: Regional and International political and economic landscape is being changed owing to China Pakistan Economic Corridor (CEPEC)-the new security paradigm has taken place-that has increased the strategic concerns of the U.S. and India. This research paper attempts to re-examine China-Pakistan relations in the new emerging geo-political compass. This paper has investigated the question that how regional, and global developments have impacted the China-Pakistan relationship? And why China – Pakistan have become partners of CPEC? In the global context, this paper assesses the emerging International Order, Indo-U. S strategic narrative vis-à-vis CPEC, and the containment of China through the new alliances and their impacts on China -Pakistan vis-à-vis the Belt Road Initiative (BRI). Quadrilateral (Quad) alliances is shaping the new strategic political and security paradigms in the world politics. Keyswords: BRI, China, CPEC, India, Pakistan, Silk Road, Strategic Concerns Pages: 637-649 Article: 52 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)52 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)52 Download Pdf: download pdf view article Creative Commons License The Structure of Domestic Politics and 1973 Constitution of Pakistan Authors: Dr. Fida Bazai Dr. Ruqia Rehman Amjad Rashid Abstract: Pakistan is located in a pivotal region. Its geo-strategic location affects its national identity as a nation state. Unlike Europe in South Asia security dilemma, proxy warfare and nuclear arms race are consistent features of the regional politics. The identity of Pakistan as security-centric state gives its army disproportional power, which created institutional imbalance that directly affected constitutionalism in the country. The constitution of Pakistan is based on principles of civilian supremacy and separation of power but in reality Pakistan’s army is the most powerful institution in country. This paper argues that the structure of Pakistani politics; created institutional imbalances by the disproportionate distribution of resources is the key variable in creating dichotomy. The structure of domestic politics is based upon the principles of hostility to India, use of Islam for national unity and strategic alliances with major powers to finance defense against the neighboring countries. Keyswords: Constitutionalism, Identity, Islam, South Asia Pages: 650-661 Article: 53 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)53 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)53 Download Pdf: download pdf view article Creative Commons License National Integration and Regionalism in Pakistan: Government’s Strategy and Response toward Regionalist Demands 1947-77 Authors: Najeeb ur Rehman Mohammad Dilshad Mohabbat Muhammad Wahid Abstract: The countries of South Asian region have pluralistic societies with different language, religious, and ethnic identities. Pakistan is no exception who is facing the challenge of regionalism since its inception. Different ethnic groups have been consistently raising their voices for separatism or autonomy within the frame work of an existing territorial state. The issues of provincialism, ethnicity, and regionalism is posing a serious challenge to the integrity of the country. This paper aims to explore the causes of the regionalism in Pakistan and intends to analyze the policies and strategies of different political governments which they launched to tackle this all important issue. The paper follows the historical method of research and analyzes different types of qualitative data to conclude the finding of the research. The paper develops the theory of “Regionalists Demand and Government Response” which shows how different regionalist forces put their demands and how the governments react on these demands. It recommends the grant of greater regional autonomy to the regionalists to enhance internal security and to protect the country from disintegration. Keyswords: Demands, Ethnicity, Government Strategy, National Integrity, Nationalism, Regionalism Pages: 662-678 Article: 54 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)54 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)54 Download Pdf: download pdf view article Creative Commons License Fostering Entrepreneurial Mindset through Entrepreneurial Education: A Qualitative Study Authors: Saira Maqbool Dr. Qaisara Parveen Dr. Muhammad Hanif Abstract: Research on entrepreneurial mindset has flourished in these recent years. Its significance lies in a critical suspicion and its matters for inventive behavior. Entrepreneurship joined with innovative abilities, seen as one of the most wanted in this day and age. This study aims to determine the perceptions about entrepreneurial mindset, its importance, and the role of entrepreneurship education and Training in developing the entrepreneurial mindset. This is a qualitative study based on interviews conducted by professors of Pakistan and Germany. The analysis was determined through content analysis. The results determine that 'Making Entrepreneurial Mindset' assists with seeing better all parts of business venture, which will undoubtedly influence their view of business venture, pioneering abilities, and mentalities. Keyswords: Entrepreneurship Education, Entrepreneurial Mindset Pages: 679-691 Article: 55 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)55 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)55 Download Pdf: download pdf view article Creative Commons License Benefits of Implementing Single National Curriculum in Special Schools of Lahore city for Children with Intellectual Disability: Teachers’ Perception Authors: Dr. Hina Fazil Khurram Rameez Sidra Ansar Abstract: Single national curriculum (SNC) is an important issue across the Punjab Province of Pakistan. Making and implementing SNC is not only focusing the education of normal pupils, but also focusing students with disabilities (SWD). The field of special education experienced an increased discussion of curriculum for students with intellectual disabilities (SID). The present research aimed to know the benefits to implement first stage of single national curriculum for students with Intellectual disability and to know the differences about the benefits between public and private schools regarding SNC for students with ID based on demographic characteristics. Likert type researchers-made questionnaire with reliability) Cronbach alpha .922) was used. 90 special educationists from public and private schools were chosen through random sampling technique. The findings raised some benefits such as: SNC will bridge the social and economic disparities which will increase the acceptance of ID students. It was recommended that SNC should include areas of adaptive skills, motor, and vocational skills to get involved in work activities. Keyswords: Benefits, Children with Intellectual Disability, Single National Curriculum Pages: 692-703 Article: 56 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)56 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)56 Download Pdf: download pdf view article Creative Commons License Last Rituals and Problems Faced by the Hindu Community in Punjab: A Case Study of Lahore Authors: Sabir Naz Abstract: Lahore is the provincial capital of Punjab, where a sizeable population of the Hindus has been residing there since the inception of Pakistan. There had been many crematoriums in the city but with the passage of time, one after another, disappeared from the land after partition of the Sub-continent. Those places were replaced by commercial or residential sites. There is also a graveyard in the city which is in the use of Hindu Valmik Sect. However, it was encroached by some Muslims due to very small size of population and indolence of the Hindus. Later on, the encroachments were removed by the District Government Lahore in compliance of order of the Supreme Court of Pakistan. Presently, there is a graveyard as well as a crematorium in the city. The community remained deprived of a place to dispose of a dead body according to their faith for a long period which is contravention with the guidelines of the Quaid-e-Azam, founder of the nation Keyswords: Crematorium, Graveyard, Hindu community, Last Rituals Pages: 704-713 Article: 57 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)57 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)57 Download Pdf: download pdf view article Creative Commons License Estimating Growth Model by Non-Nested Encompassing: A Cross Country Analysis Authors: Benish Rashid Dr. Shahid Razzaque Dr. Atiq ur Rehman Abstract: Whether models are nested or non-nested it is important to be able to compare them and evaluate their comparative results. In this study six growth models have been used for analyzing the main determinants of economic growth in case of cross countries, therefore by using these six models we have tested them for non-nested and nested encompassing through Cox test and F-test respectively. Data from 1980 to 2020 were used to analyze the cross country growth factors so therefore, the current study looked at about forty four countries with modelling these different comparative studies based on growth modelling. So, we can make these six individual models and we can estimate the General Unrestricted Model with the use of econometric technique of Non-Nested Encompassing. By evaluating the data using the Non-Nested Encompassing econometric technique, different sets of economic variables has been used to evaluate which sets of the economic variables are important to boost up the growth level of the country. And found that in case of nested model or full model it is concluded that model with lag value of GDP, trade openness, population, real export, and gross fix capital formation are the main and potential determinants to boost up the Economic Growth in most of the countries. Keyswords: Cross Country, Economic Growth, Encompassing, Nested, Non-nested Pages: 714-727 Article: 58 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)58 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)58 Download Pdf: download pdf view article Creative Commons License Assessment of Youth Buying Behaviour for Organic Food Products in Southern Punjab: Perceptions and Hindrances Authors: Ayousha Rahman Asif Yaseen Muhammad Arif Nawaz Abstract: This research examined the cognitive antecedental effects on organic food purchase behaviour for understanding the perceptions and hindrances associated with purchasing organic food products. Theory of Planned Behaviour (TPB) was adopted as a theoretical framework. A total of 250 young consumers in the two cities of Southern Punjab, Pakistan was randomly sampled and data were collected via a face-to-face survey method. Partial least square technique was employed to test the model. The results showed that attitude towards organic food purchasing motivated when moral norms were activated to consume organic food products. Further, environmental knowledge moderated the relationship of organic food purchase intentions and behaviour significantly. The findings highlighted the importance of moral norms as a meaningful antecedent that could increase the TP-based psychosocial processes if consumers have sufficient environmental knowledge. Therefore, farmers, organic products marketers, government administrators, and food retailers should take initiatives not only to highlight the norms and values but also when promoting organic food production and consumption. Keyswords: Environmental Knowledge, Organic Food Purchase Behaviour, Personal Attitude, PLS-SEM, Subjective & Moral Norms Pages: 728-748 Article: 59 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)59 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)59 Download Pdf: download pdf view article Creative Commons License An Analysis on Students Ideas about English and Urdu as Medium of Instructions in the Subjects of Social Sciences studying in the Colleges of the Punjab, Pakistan Authors: Ashiq Hussain Asma Amanat Abstract: The worth and usefulness of English education as a foreign language is of great concern to language rule and planning (LRP) researchers compared to teaching their native language globally in higher education. The study under research examines the perspectives of two similar groups of the final year students of at Higher Education Institutions of Pakistan. The first group consists of art students who received the Urdu medium of instruction (UMI), and the second group received the English medium of instruction (EMI). An empirical methodology was carried out in the present year, students answered questionnaires to find out the benefits and challenges of learning subject-based knowledge, what subject-based knowledge means to them, and their understanding of language as a teaching language. Interviews were conducted with the selected group of students who wished to participate in research. Additional information is available from the tests and results obtained in the two equivalent courses. Although many similarities have been identified between the two groups, the overall knowledge of disciplinary knowledge of English medium instruction students was not very effective, while that of UMI students was very effective. It explains the implications of the findings to continue the language rule as policy experience for teaching in higher education institutions. Keyswords: English as Medium of Instruction (EMI), Higher Education Institutions (HEIs), Urdu as Medium of Instruction (UMI) Pages: 749-760 Article: 60 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)60 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)60 Download Pdf: download pdf view article Creative Commons License Environment and Women in Kurt Vonnegut’s ‘Happy Birthday Wanda Juny’: An Eco- Critical and Feminist Analysis Authors: Dr. Muhammad Asif Safana Hashmat Khan Muhammad Afzal Khan Janjua Abstract: This is an Eco-feminist study of Vonnegut’s ‘Happy Birthday Wanda Juny’ and focuses on how both women and environment are exploited by patriarchy. Ecofeminism critiques masculine dominance highlighting its role in creating and perpetuating gender discrimination, social inequity and environmental degradation. Women suffer more because of power disparity in society. Environmental crises affect women more than men because of their already precarious existence and subaltern position. There is affinity between women and nature are victims of climate change and other environmental hazards. Cheryl Glotfelty introduced interdisciplinary approach to the study of literature and environment. Literary ecology as an emerging discipline explores the intriguing relationship between environment and literature. Ecofeminism draws on feminist critique of gender inequality showing how gender categories inscribed in power structure exploit both women and nature. Francoise d‘Eaubonne coined the term ecofeminism to critique the prevalent exploitation of both women and environment. Ecofeminism asserts that exploitation of women and degradation of the environment are the direct result of male dominance and capitalism. Ecofeminism argues for redressing the plight of women and protection of environment. Vonnegut’s play ‘Happy Birthday Wanda June’ was written at a time when the movement for the right of women and protection of environment were gaining momentum. The play shows how toxic masculinity rooted in power and capitalism exploit both women and environment. Keyswords: Eco-Feminism, Eco-Criticism, Ecology, Environment, Exploitation Pages: 761-773 Article: 61 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)61 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)61 Download Pdf: download pdf view article Creative Commons License Critical Analysis of Social Equity and Economic Opportunities in the Light of Quranic Message Authors: Prof. Dr. Muhammad Yousuf Sharjeel Mahnaz Aslam Zahida Shah Abstract: This study critically evaluated the key verses of Surah Al-Baqarah -the second chapter of Quran, a sacred scripture of Islam- which specifically relates to social equity opportunities and a code of conduct in the context of economics. The Quran claims that it is a book which explains every situation; therefore, the aim of this study remained to extract those verses of Surah Al-Baqarah which can guide us in Economics. The authentic and approved Islamic clerics and their translations were consulted for the interpretations of the Holy verses. The researchers chiefly focused and studied Surah Baqarah with regards to social equity and economic opportunities. The translations were primarily in the regional language Urdu so the interpretations must not be related exactly equitable in English. The study engaged the document analysis research strategy. This study is only an endeavour to decipher Holy Quran’s message from Allah for the mankind so it must not be considered as the full and complete solution to the all the economic issues, challenges and opportunities. Ahadees and the saying of the Holy prophet were referred to where ever required and available. The researcher also considered the Tafasir (detail intellectual interpretations) of the Quran done by the well-known scholars of Islam for the verses studied therein and any statements and/or material - such as ideas, studies, articles, documentation, data, reports, facts, statistics etc. For the study, data was collected and analyzed qualitatively. On the basis of the study, recommendations were also primed. Keyswords: Economic Issues and Challenges, Social Equity, Surah Al-Baqarah, Al Quran Pages: 774-790 Article: 62 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)62 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)62 Download Pdf: download pdf view article Creative Commons License A Critical Discourse Analysis of Dastak by Mirza Adeeb Authors: Muhammad Afzal Dr. Syed Kazim Shah Umar Hayat Abstract: The present research aims to explore ideology in Pakistani drama. The drama, “Dastak”, written by Mirza Adeeb, has been taken for exploration ideologically. Fairclough’s (1992) three-dimensional model has been used for analyzing the text of the above-mentioned drama which includes textual, discursive practice and social practice analyses. The linguistic and social analyses of the drama reveal the writer’s ideology about socio-cultural, conventional and professional aspects of life. The study has also explored the past and present states of mind of Dr. Zaidi, the central and principal character of the drama, Dastak. The text implies that the writer has conveyed personal as well as social aspects of his times through the drama of Dastak. Keyswords: Dastak, Drama, Ideology, Semiotics Pages: 791-807 Article: 63 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)63 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)63 Download Pdf: download pdf view article Creative Commons License Linking Job Satisfaction to Employee Performance: The Moderating Role of Islamic Work Ethics Authors: Dr. Shakira Huma Siddiqui Dr. Hira Salah ud din Khan Dr. Nabeel Younus Ansari Abstract: The most pervasive concern in public sector organizations is declining employee performance and workforce of these organizations are less satisfied with their jobs. The aim of this study is to investigate the impact of Job Satisfaction on employee’s performance and how Islamic work ethics moderates the above mentioned direct relationship in the public sector organizations of Pakistan. The data were collected from the sample of 193 permanent employees working in public sector organizations through stratified sampling technique. The results revealed that employees Job satisfaction is significantly related to higher performance. Further, the findings indicated that Islamic work ethics moderates the relationship between job satisfaction and employee performance. The present research has some theoretical and empirical implications for academicians, policymakers, especially of public sector organizations, for the improvement of performance of their workforce. Keyswords: Employee Performance, Islamic Work Ethics, Job Satisfaction, Person-Environment Fit Theory Pages: 808-821 Article: 64 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)64 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)64 Download Pdf: download pdf view article Creative Commons License Semantics of Qawwali: Poetry, Perception, and Cultural Consumption Authors: Rao Nadeem Alam Tayyaba Khalid Abstract: Semantics is about meanings and meanings are arbitrary and shared. Understanding qawwali context requires comprehension of semantics or process of meaning creation and meaning sharing among the qawwal party and the audience. This interactive activity might frequently be hindered when interrupted by subjective meanings creation during cultural consumption. Qawwali is a cultural tradition, its semantics are conditioned by axiological premises of poetry and perceptions which are transforming. The previous researches revealed that qawwali is associated with religion which provides the religious message by singing hamd and naat. It was a means to experience Divine; therefore, semantics are multi-layered and often crossroad with values and subjective experiences. It is novel due to its ritual of Sama. It has the therapeutic power that helps mentally disturbed people and they find refuge. This study is exploratory having a small sample size of twenty purposively selected audiences. This phenomenological inquiry used ethnographic method of conversational interviews at selected shrines and cultural spaces in Islamabad. The results indicate that qawwali is a strong refuge for people facing miseries of life and they attend Sama with a belief that attending and listening will consequently resolve their issues, either psychological or physiological. They participate in Sama which teaches them how to be optimistic in a negative situation; this paper brings forth this nodal phenomenon using the verbatim explanations by the interlocutors. Semantics of Qawwali are conditioned and some of these elements are highlighted including poetry and axiology based perceptions and cultural consumption of a cultural realm. Keyswords: Cognition, Culture, Poetry, Qawwal, Qawwali, Semantics Pages: 822-834 Article: 65 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)65 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)65 Download Pdf: download pdf view article Creative Commons License Political Economy of Smuggling: The Living Source for the Natives (A Case Study of Jiwani-Iran Border, Baluchistan) Authors: Abdul Raheem Dr. Ikram Badshah Wasia Arshed Abstract: This study explores the political economy of smuggling on Jiwani-Iran border. The natives are majorly involved in illegal transportation of goods and objects, therefore; the study sets to explain how significant smuggling for the local people is. It describes the kinship role in reciprocity of their trade and transportation. The qualitative methods such as purposive sampling and interview guide were employed for data collection. The research findings revealed that local people were satisfied with their illegal trading which is depended largely on their expertise and know-how of smuggling at borders. They disclosed that their total economy was predominantly based on smuggling of stuff like drugs, diesel, oil, gas, petrol, ration food from Iran, and human trafficking. They also enjoyed the privilege of possessing Sajjil (Iranian identity card), thus; the dual nationality helped them in their daily business and rahdari (border crossing agreement), enabling them to travel to Iran for multiple purposes. Keyswords: Drugs, Human, Navigation, Political Economy, Reciprocity, Smuggling, Trafficking Pages: 835-848 Article: 66 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)66 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)66 Download Pdf: download pdf view article Creative Commons License The Vicious Circles of System: A Kafkaesque Study of Kobo Abe’s The Woman in the Dunes Authors: Imran Aslam Kainat Azhar Abstract: This paper analyses the Kafkaesque/Kafkan features of Kobo Abe’s novel The Woman in the as formulated by Kundera in “Kafka’s World.” For Kundera, in a Kafkaesque work human existence is bleakly represented through intermingling of tragedy and comedy in an indifferent world dominated by hegemonic systems. The Kafkaesque is characterised by the following: World is a huge forking labyrinthine institution where the man has been thrown to suffer its complexities, confrontation with the labyrinth makes his existence meaningless because freedom is a taboo in no man’s land, he is punished for an unknown sin for which he seeks justification from the superior authorities, but his efforts are viewed as ludicrous or comic despite the underlying sense of tragedy. (5) The Kafkaesque tendency to present tragic situation comically is also explored in Abe’s novel. The paper studies the effect of higher authorities exercising their power over man and the inscrutability of cosmic structures continuously undermining human freedom in nightmarish conditions. The paper establishes Kobo Abe in the literary world as a writer who portrays the hollowness and futility of human lives with a Kafkaesque touch. Keyswords: Authority, Institutions, Kafka, Kafkaesque, Kafkan, Kobo Abe, Kundera, The Trial, The Woman in the Dune Pages: 849-861 Article: 67 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)67 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)67 Download Pdf: download pdf view article Creative Commons License Subjectivity and Ideological Interpellation: An Investigation of Omar Shahid Hamid’s The Spinner’s Tale Authors: Hina Iqbal Dr. Muhammad Asif Asia Saeed Abstract: Louis Althusser’s concept of interpellation is a process in which individuals internalize cultural values and ideology and becomes subject. Althusser believes that ideology is a belief system of a society in which ideological agencies establish hierarchies in society through reinforcement and discrimination for cultural conditioning. These agencies function through ideological state apparatuses. These ideological agencies help to construct individual identity in society. The undesirable ideologies promote repressive political agendas. The non-repressive ideologies are inhaled by the individuals as a natural way of looking at the culture and society. This research seeks to investigate Omar Shahid Hamid’s novel The Spinners Tales through the lens of Althusser’s ideology and interpellation. This study examines how the characters of Shahid’s novel inhaled ideology and became its subjects. This research also depicts the alarming effects of cultural hegemony that creates cultural infidelity and hierarchies between the bourgeoisie and proletariat classes. Keyswords: Cultural Hegemony, Ideological State Apparatus, Ideology, Interpellation, Repressive Factors Pages: 862-872 Article: 68 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)68 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)68 Download Pdf: download pdf view article Creative Commons License Blessing in Disguise: Recommendations of Indian Education Commission (1882) and Christian Missionaries’ Educational Policy in the Colonial Punjab Authors: Mohammad Dilshad Mohabbat Muhammad Hassan Muhammad Ayaz Rafi Abstract: Woods Education Despatch is considered to be the Magna Carta of Indian Education. It controlled the Indian education field till the establishment of Indian Education Commission, 1882. The Despatch provided space to Christian missionaries by promising government’s gradual withdrawal from the education in favour of missionaries. It also facilitated the missionaries by offering system of ‘grants on aid’ to the private bodies. Consequently, the missionaries fancied to replace the government institutions in the Punjab and initiated their efforts to increase the number of their educational institutions. They tried to occupy the educational field by establishing more and more educational institutions. But after the Recommendations of the Indian Education Commission 1882, a change in their policy of numeric increase of educational institutions is quite visible. With the turn of the century, they are found to be eager to establish a few institutions with good quality of education. This paper intends to analyse different factors behind the change of their policy of quantitative dominance to qualitative improvement. It also attempts to evaluate how their change of policy worked and what steps were taken to improve the quality of their educational institutions. Following the historical method qualitative data comprising educational reports, missionaries’ autobiographies, Reports of missionaries’ conferences, and the other relevant primary and secondary sources has been collected from different repositories. The analysis of the data suggests that the attitude of the administration of the education department and the recommendations of Indian Education Commission were the major driving forces behind the change of missionaries’ educational policy in the 20th century. The missionaries, after adopting the new policy, worked on the quality of education in their institutions and became successful. Keyswords: Christian Missionaries, Indian Education Commission, Missionary Schools, Numeric Increase, Quality of Education. The Punjab, Woods Education Despatch Pages: 873-887 Article: 69 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)69 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)69 Download Pdf: download pdf view article Creative Commons License Basic Life Values of Prospective Special Education Teachers Authors: Dr. Maria Sohaib Qureshi Dr. Syeda Samina Tahira Dr. Muhammad Irfan Arif Abstract: Future teachers' preconceived values about how to live their lives and how that affects the lives of their students were the focus of this study. Descriptive research was used by the researchers. The study was carried out by using Morris's Ways to Live Scale. Researchers used this scale to study prospective special education teachers' gender, social status, personal relationships, aesthetics and mental approach using purposive sampling method. Descriptive and inferential stats were used to analyse the data collected from those who participated in the study on basic life values of prospective teachers. Results indicated that being social and sympathetic are the most important values among prospective special education teachers. It was also found that male and female prospective special education teachers living in urban and rural areas had no significant differences in their basic life values. Keyswords: Special Education, Teacher, Values Pages: 888-896 Article: 70 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)70 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)70 Download Pdf: download pdf view article Creative Commons License Perception of Dowry: Effects on Women Rights in Punjab Authors: Dr. Bushra Yasmeen Dr. Muhammad Ramzan Dr. Asma Seemi Malik Abstract: Dowry is a common tradition in south Asian countries, especially in Pakistan and India. Daughters became curses and liability for parents causing serious consequences. For control, there are legal ban/restrictions (Dowry and Wedding Gifts (Restriction) Act, 1976; Amendment in Act, 1993) on its practice in Pakistan. Despite the legal cover, the custom has been extended. Dowry amount seems to be increasing due to changing lifestyle and trends of society. To understand males’ and females’ perceptions about dowry; impacts of dowry; why dowry is essential; and how it is affecting women’s rights and eventually affecting women’s autonomy. A qualitative study was conducted. Data was collected by using unstructured interviews from males and females including social activists, economists, and married couples about wedding expenses, demands, society pressure, men’s support, and perception against dowry especially with regards to women’s rights and autonomy. The study concluded heavy dowry especially in terms of furniture, electronics, kitchenware, car, furnished houses, and cash highly associated with women’s development and their rights. General people’s perception showed that dowry is no longer remained a custom or tradition in Asian countries. It is just a trend and people follow it as a symbol of respect for parents and women as well. Keyswords: Dowry, Effects, Impacts Of Dowry, Perceptions, Women Autonomy, Women Rights Pages: 897-909 Article: 71 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)71 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)71 Download Pdf: download pdf view article Creative Commons License NCOC-An Emblem of Effective Governance: An analysis of Pakistan’s Counter Strategy for Covid-19 as a Non-Traditional Security Challenge Authors: Dr. Iram Khalid Abstract: COVID -19 affected the world unprecedentedly. Lack of capacity and poor standards of governance caused nontraditional security challenges to Pakistan too. The NCOC is the central nerve center to guide the national response to COVID-19 by Pakistan and can be best analyzed in the light of the decision-making theory of Naturalist Decision Making (NDM). The study points out the effective role performed by NCOC at policy formation through a more prosaic combination of science, data, decision making and execution of decisions at the level of federalism. The study highlights the changing patterns of government’s approach during the pandemic at various levels. Pakistan faced economic, political and social crisis during this phase. This study uses a survey and key informant interviews as the source of analysis for qualitative data collection. By applying the decision- making theory, the paper extends that there is a need to use a model to balance the existing gap within the system, to meet challenges. The study suggests a coordinating approach among various units and center; that might raise the level of performance to meet the nontraditional security challenges with innovation, creativity and boldness. Keyswords: COVID-19, Decision Making Theory, Governance, Nontraditional Threats, Strategy Pages: 910-930 Article: 72 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)72 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)72 Download Pdf: download pdf view article Creative Commons License Comparative Implications of Wednesbury Principle in England and Pakistan Authors: Safarat Ahmad Ali Shah Dr. Sara Qayum Arzoo Farhad Abstract: Wednesbury principle is one of the most important and useful grounds of the Judicial Review. Judicial review is a remedy provided by the public law and is exercised by the superior and higher courts to supervise administrative authorities' powers and functions. The main objective of the judicial review is to ensure the fair and transparent treatment of individuals by public authorities. The ground of the judicial review, i.e., Unreasonableness or irrationality or popularly known as Wednesbury Unreasonableness was introduced by lord Greene in the Wednesbury Corporation case in 1948. Initially, the scope of this ground of judicial review was very narrow and was allowed only in rare cases. However, with the development of administrative law and Human rights, it also developed. Its development resulted in different controversies and issues about the application of this ground. The main issue is about its encroachment in the jurisdiction of other branches of the government i.e., the parliament and executive. The free and loose application of this principle results in confusion and conflict between different organs of the government. The present paper is based on the implications of the limitations on the ground of Wednesbury Unreasonableness both on the judicial and administrative bodies in Pakistan to avoid the chaos and confusion that results in the criticisms on this ground of judicial review. Keyswords: Administrative Authorities, Critical Analysis, Illegality, Judicial Review, Pakistan, Wednesbury Unreasonableness Pages: 931-946 Article: 73 , Volume 2 , Issue 4 DOI Number: 10.47205/jdss.2021(2-IV)73 DOI Link: http://doi.org/10.47205/jdss.2021(2-IV)73 Download Pdf: download pdf view article Creative Commons License Water Sharing Issues in Pakistan: Impacts on Inter-Provincial Relations",
"year": "2022. 987. 008. 009"
}
] |
[
"f76ce8acbfe9a5f1",
"5d81b1f38b4b83b8",
"ddbb07429c5f21e2",
"5adc6607c3961a5e",
"7235d5262d5a4d7b",
"251f80e416ed5a89",
"98bc82759cfd2fe2",
"7455bb9742889228",
"6e7ae86faa68efca",
"928e28380c239b95",
"81c9122940928711",
"4103f9ba48bb74c6",
"19b6b300a05748e8",
"f694cff4f03ec1b4",
"f5bd275dd911c0ce",
"1f8e40693ac9d1fe",
"292ff6016de86819",
"f4f331e743f45c64",
"e445c1d6bcd2dce6",
"5a8bdfc380e0c996",
"8ebe0e3449b22c41",
"251a8c5ad77a925f",
"041e422bb89ab308",
"3b697ecf901a3c8e",
"2c0dc3d0f1ec41b0",
"804d307068aed9b9",
"e9b17f06b8676f55",
"7408d36a5d270a41",
"012f9887834887e2",
"9bf254f6dcfa408d",
"b727a5b19b2e22b2",
"b9fae72c8bb10622",
"db0765648f7587a8",
"e8b746d09db153fd",
"1f23e725b8fc6aa6"
] |
[
"f7bc1a840a30006d",
"db0765648f7587a8",
"4a0e4816aa8fad26",
"e8b746d09db153fd",
"cd53e3c7bcb32102",
"5d81b1f38b4b83b8",
"12d9568bf5310dcd",
"d43c5e781f28cd68",
"c451e574675021fe",
"51ad6b41d45a1eb0",
"c27b3e365f55765e",
"8ebe0e3449b22c41",
"f17b4fcc997ffa31",
"c21ad03147aebd5b",
"f5bd275dd911c0ce",
"a3003891016eb6aa",
"126fb7eaba4739f4",
"041e422bb89ab308",
"77768318230f32bd",
"7e5cebe3fc786a57",
"12e8b0d4fcf2b4d4",
"747951cddab9d91d",
"ff76b3ddb11abd08",
"49462dbc692e254a",
"ddbb07429c5f21e2",
"f40ce8747f873a3d",
"251a8c5ad77a925f",
"804d307068aed9b9",
"07b31d754e1c8f9c",
"ab10413ccb42189f",
"876d72164ffd89e6",
"bdfce79689015a2b",
"a63dcf3f3e0e432c",
"5aeb45b6a09f640b",
"e9b17f06b8676f55",
"f30653299776c92a",
"292ff6016de86819",
"a781fa7f1b8b685d",
"7408d36a5d270a41",
"44c915357eab854a",
"e445c1d6bcd2dce6",
"6e7ca9665334bf18",
"012f9887834887e2",
"7235d5262d5a4d7b",
"a6298ef1abb045ce",
"19b6b300a05748e8",
"fed99c8101c9f5a1",
"1fa6cdf1979640c4",
"39e24cefccd26a68",
"6e7ae86faa68efca",
"4103f9ba48bb74c6",
"f3b724c147b672e8",
"2524c641ab43a9ce",
"5adc6607c3961a5e",
"f4f331e743f45c64",
"d7ae66ac169ca418",
"f694cff4f03ec1b4",
"81c9122940928711",
"acc0fdd12612ee36",
"b9fae72c8bb10622",
"d8e7cf38d14ec735",
"c9e65b226766dc33",
"ac57236a79f07c38",
"5be4c73c711dd854",
"82077fd4043e438a",
"039a30511a688763",
"240677d45ad73cb4",
"31c9b047a3df0782",
"2ac3bf75a57a6525",
"20b1021e4ca44a5f",
"251f80e416ed5a89",
"5a8bdfc380e0c996",
"3b697ecf901a3c8e",
"928e28380c239b95",
"c5e30ce54ede3a8a",
"8ff59d104acf331b",
"77c3cf6c100eca5c",
"2c0dc3d0f1ec41b0",
"f76ce8acbfe9a5f1",
"c67690f230101a9f",
"1f23e725b8fc6aa6",
"98bc82759cfd2fe2",
"1f8e40693ac9d1fe",
"b727a5b19b2e22b2",
"fc4b261d45539d92",
"d5fc3e2e7319f19b",
"32823ebe616060fe",
"1d87dc363dba72cd",
"1b4395952f8afebb",
"2cfed20a88ad04b5",
"7455bb9742889228",
"57fbb2aa8b25cd7b",
"8480d1db40a0676b",
"9bf254f6dcfa408d",
"4577668a17bf8654"
] |
mGUJMqjDwE
|
Provably Learning Object-Centric Representations
|
data/openreview_paper/ICML_2023_oral/mGUJMqjDwE//paper.pdf
| 96
| 35
|
[
{
"authors": [
"R S Zimmermann",
"Y Sharma",
"S Schneider",
"M Bethge",
"W Brendel"
],
"doi": "",
"ref_id": "b95",
"title": "Contrastive learning inverts the data generating process",
"year": "2021"
},
{
"authors": [
"J Peters",
"D Janzing",
"B Schölkopf"
],
"doi": "",
"ref_id": "b69",
"title": "Elements of causal inference: foundations and learning algorithms",
"year": "2017"
},
{
"authors": [
"L Gresele",
"P K Rubenstein",
"A Mehrjou",
"F Locatello",
"B Schölkopf"
],
"doi": "10.1109/icicrs46726.2019.9555865",
"ref_id": "b27",
"title": "Artificial Intelligence & Machine Learning [Breaker page]",
"year": "July 22-25, 2019. 2019"
},
{
"authors": [
"L Gresele",
"J Von Kügelgen",
"V Stimper",
"B Schölkopf",
"M Besserve"
],
"doi": "",
"ref_id": "b28",
"title": "Independent mechanism analysis, a new concept?",
"year": "2021"
},
{
"authors": [
"E J Green"
],
"doi": "10.1111/phpr.12521",
"ref_id": "b22",
"title": "A Theory of Perceptual Objects",
"year": "2019"
},
{
"authors": [
"A Hyvärinen",
"P O Hoyer"
],
"doi": "",
"ref_id": "b36",
"title": "Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces",
"year": "2000"
},
{
"authors": [
"S Lachapelle",
"S Lacoste-Julien"
],
"doi": "",
"ref_id": "b56",
"title": "Partial disentanglement via mechanism sparsity",
"year": "2022"
},
{
"authors": [
"N Shajarisales",
"D Janzing",
"B Schölkopf",
"M Besserve"
],
"doi": "",
"ref_id": "b77",
"title": "Telling cause from effect in deterministic linear dynamical systems",
"year": "2015"
},
{
"authors": [
"M Tangemann",
"S Schneider",
"J Von Kügelgen",
"F Locatello",
"P Gehler",
"T Brox",
"M Kümmerer",
"M Bethge",
"B Schölkopf"
],
"doi": "",
"ref_id": "b84",
"title": "Unsupervised object learning via common fate",
"year": "2023"
},
{
"authors": [
"H Hälvä",
"A Hyvärinen"
],
"doi": "",
"ref_id": "b30",
"title": "Hidden markov nonlinear ICA: unsupervised learning from nonstationary time series",
"year": "August 3-6, 2020. 2020"
},
{
"authors": [
"Judea Pearl",
"Causality"
],
"doi": "10.1017/cbo9780511803161",
"ref_id": "b67",
"title": "Causality",
"year": "2009"
},
{
"authors": [
"P Reizinger",
"L Gresele",
"J Brady",
"J Von Kügelgen",
"D Zietlow",
"B Schölkopf",
"G Martius",
"W Brendel",
"M Besserve"
],
"doi": "",
"ref_id": "b70",
"title": "Embrace the gap: Vaes perform independent mechanism analysis",
"year": "2022"
},
{
"authors": [
"S Van Steenkiste",
"M Chang",
"K Greff",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b87",
"title": "Relational neural expectation maximization: Unsupervised discovery of objects and their interactions",
"year": "2018"
},
{
"authors": [
"H Hälvä",
"S L Corff",
"L Lehéricy",
"J So",
"Y Zhu",
"E Gassiat",
"A Hyvärinen"
],
"doi": "",
"ref_id": "b31",
"title": "Disentangling identifiable features from noisy data with structured nonlinear ICA",
"year": "2021"
},
{
"authors": [
"Klaus Greff",
"Rupesh K Srivastava",
"Jan Koutnik",
"Bas R Steunebrink",
"Jurgen Schmidhuber"
],
"doi": "10.1109/tnnls.2016.2582924",
"ref_id": "b23",
"title": "LSTM: A Search Space Odyssey",
"year": "2015"
},
{
"authors": [
"F Träuble",
"E Creager",
"N Kilbertus",
"F Locatello",
"A Dittadi",
"A Goyal",
"B Schölkopf",
"S Bauer"
],
"doi": "",
"ref_id": "b86",
"title": "On disentangled representations learned from correlated data",
"year": "2021"
},
{
"authors": [
"Bernhard Schölkopf",
"Dominik Janzing",
"Jonas Peters",
"Eleni Sgouritsa",
"Kun Zhang",
"Joris Mooij"
],
"doi": "10.1007/978-3-642-41136-6_13",
"ref_id": "b74",
"title": "Semi-supervised Learning in Causal and Anticausal Settings",
"year": "2012"
},
{
"authors": [
"S Buchholz",
"M Besserve",
"B Schölkopf"
],
"doi": "",
"ref_id": "b4",
"title": "Function classes for identifiable nonlinear independent component analysis",
"year": "2022"
},
{
"authors": [
"G E Moran",
"D Sridhar",
"Y Wang",
"D M Blei"
],
"doi": "",
"ref_id": "b64",
"title": "Identifiable variational autoencoders via sparse decoding",
"year": "2021"
},
{
"authors": [
"Aapo Hyvärinen",
"Ilyes Khemakhem",
"Hiroshi Morioka"
],
"doi": "10.1016/j.patter.2023.100844",
"ref_id": "b37",
"title": "Nonlinear independent component analysis for principled disentanglement in unsupervised deep learning",
"year": "2016"
},
{
"authors": [
"A Hyvärinen",
"H Sasaki",
"R E Turner"
],
"doi": "",
"ref_id": "b40",
"title": "Nonlinear ICA using auxiliary variables and generalized contrastive learning",
"year": "2019"
},
{
"authors": [
"N L Roux",
"N M O Heess",
"J Shotton",
"J M Winn"
],
"doi": "",
"ref_id": "b72",
"title": "Learning a generative model of images by factoring appearance and shape",
"year": "2011"
},
{
"authors": [
"Y Zheng",
"I Ng",
"K Zhang"
],
"doi": "",
"ref_id": "b94",
"title": "On the identifiability of nonlinear ICA: Sparsity and beyond",
"year": "2022"
},
{
"authors": [
"A Hyvarinen",
"J Perkio"
],
"doi": "10.1109/ijcnn.2006.246965",
"ref_id": "b39",
"title": "Learning to Segment Any Random Vector",
"year": "2006"
},
{
"authors": [
"J Von Kügelgen",
"Y Sharma",
"L Gresele",
"W Brendel",
"B Schölkopf",
"M Besserve",
"F Locatello"
],
"doi": "",
"ref_id": "b89",
"title": "Selfsupervised learning with data augmentations provably isolates content from style",
"year": "2021"
},
{
"authors": [
"P Spirtes",
"C Glymour",
"R Scheines",
"Causation"
],
"doi": "",
"ref_id": "b83",
"title": "",
"year": "2001"
},
{
"authors": [
"B Schölkopf",
"F Locatello",
"S Bauer",
"N R Ke",
"N Kalchbrenner",
"A Goyal",
"Y Bengio"
],
"doi": "",
"ref_id": "b75",
"title": "Toward causal representation learning",
"year": "2021"
},
{
"authors": [
"S Lachapelle",
"P Rodriguez",
"Y Sharma",
"K E Everett",
"R Le Priol",
"A Lacoste",
"S Lacoste-Julien"
],
"doi": "",
"ref_id": "b57",
"title": "Disentanglement via mechanism sparsity regularization: A new principle for nonlinear ica",
"year": "2021"
},
{
"authors": [
"F Locatello",
"D Vincent",
"I Tolstikhin",
"G Rätsch",
"S Gelly",
"B Schölkopf"
],
"doi": "",
"ref_id": "b60",
"title": "Competitive training of mixtures of independent deep generative models",
"year": "2018"
},
{
"authors": [
"D A Klindt",
"L Schott",
"Y Sharma",
"I Ustyuzhaninov",
"W Brendel",
"M Bethge",
"D M Paiton"
],
"doi": "",
"ref_id": "b53",
"title": "Towards nonlinear disentanglement in natural data with temporal sparse coding",
"year": "2021"
},
{
"authors": [
"Nicolas Heess",
"Christopher K I Williams",
"Geoffrey E Hinton"
],
"doi": "10.5244/c.23.115",
"ref_id": "b33",
"title": "Learning generative texture models with extended Fields-of-Experts",
"year": "2012"
},
{
"authors": [
"Dominik Janzing"
],
"doi": "10.1515/jci-2021-0022",
"ref_id": "b42",
"title": "Causal versions of maximum entropy and principle of insufficient reason",
"year": "2021"
},
{
"authors": [
"S Guo",
"V Tóth",
"B Schölkopf",
"F Huszár"
],
"doi": "",
"ref_id": "b29",
"title": "Causal de Finetti: On the identification of invariant causal structure in exchangeable data",
"year": "2022"
},
{
"authors": [
"P Daniusis",
"D Janzing",
"J M Mooij",
"J Zscheischler",
"B Steudel",
"K Zhang",
"B Schölkopf"
],
"doi": "",
"ref_id": "b10",
"title": "Inferring deterministic causal relations",
"year": "July 8-11, 2010. 2010"
},
{
"authors": [
"Michel Besserve",
"Remy Sun",
"Dominik Janzing",
"Bernhard Schölkopf"
],
"doi": "10.1609/aaai.v35i8.16833",
"ref_id": "b1",
"title": "A Theory of Independent Mechanisms for Extrapolation in Generative Models",
"year": "2018"
}
] |
[
{
"authors": [
"P W Battaglia",
"J B Hamrick",
"V Bapst",
"A Sanchez-Gonzalez",
"V F Zambaldi",
"M Malinowski",
"A Tacchetti",
"D Raposo",
"A Santoro",
"R Faulkner",
"¸aglar Gülc ¸ehre",
"H F Song",
"A J Ballard",
"J Gilmer",
"G E Dahl",
"A Vaswani",
"K R Allen",
"C Nash",
"V Langston",
"C Dyer",
"N M O Heess",
"D Wierstra",
"P Kohli",
"M M Botvinick",
"O Vinyals",
"Y Li",
"R Pascanu"
],
"doi": "",
"ref_id": "b0",
"title": "Relational inductive biases, deep learning, and graph networks",
"year": "2018"
},
{
"authors": [
"Michel Besserve",
"Remy Sun",
"Dominik Janzing",
"Bernhard Schölkopf"
],
"doi": "10.1609/aaai.v35i8.16833",
"ref_id": "b1",
"title": "A Theory of Independent Mechanisms for Extrapolation in Generative Models",
"year": "2018"
},
{
"authors": [
"Michel Besserve",
"Remy Sun",
"Dominik Janzing",
"Bernhard Schölkopf"
],
"doi": "10.1609/aaai.v35i8.16833",
"ref_id": "b2",
"title": "A Theory of Independent Mechanisms for Extrapolation in Generative Models",
"year": "2021"
},
{
"authors": [
"O Biza",
"S Van Steenkiste",
"M S Sajjadi",
"G F Elsayed",
"A Mahendran",
"T Kipf"
],
"doi": "",
"ref_id": "b3",
"title": "Invariant slot attention: Object discovery with slot-centric reference frames",
"year": "2023"
},
{
"authors": [
"S Buchholz",
"M Besserve",
"B Schölkopf"
],
"doi": "",
"ref_id": "b4",
"title": "Function classes for identifiable nonlinear independent component analysis",
"year": "2022"
},
{
"authors": [
"C P Burgess",
"I Higgins",
"A Pal",
"L Matthey",
"N Watters",
"G Desjardins",
"A Lerchner"
],
"doi": "",
"ref_id": "b5",
"title": "Understanding disentangling in β-vae",
"year": "2018"
},
{
"authors": [
"C P Burgess",
"L Matthey",
"N Watters",
"R Kabra",
"I Higgins",
"M Botvinick",
"A Lerchner",
"Monet"
],
"doi": "",
"ref_id": "b6",
"title": "Unsupervised scene decomposition and representation",
"year": "2019"
},
{
"authors": [
"Mathilde Caron",
"Hugo Touvron",
"Ishan Misra",
"Herve Jegou",
"Julien Mairal",
"Piotr Bojanowski",
"Armand Joulin"
],
"doi": "10.1109/iccv48922.2021.00951",
"ref_id": "b7",
"title": "Emerging Properties in Self-Supervised Vision Transformers",
"year": "2021"
},
{
"authors": [
"Honglin Chen",
"Rahul Venkatesh",
"Yoni Friedman",
"Jiajun Wu",
"Joshua B Tenenbaum",
"Daniel L K Yamins",
"Daniel M Bear"
],
"doi": "10.1007/978-3-031-19818-2_41",
"ref_id": "b8",
"title": "Unsupervised Segmentation in Real-World Images via Spelke Object Inference",
"year": "2022"
},
{
"authors": [
"Liang-Chieh Chen",
"George Papandreou",
"Iasonas Kokkinos",
"Kevin Murphy",
"Alan L Yuille"
],
"doi": "10.1109/tpami.2017.2699184",
"ref_id": "b9",
"title": "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs",
"year": "2017"
},
{
"authors": [
"P Daniusis",
"D Janzing",
"J M Mooij",
"J Zscheischler",
"B Steudel",
"K Zhang",
"B Schölkopf"
],
"doi": "",
"ref_id": "b10",
"title": "Inferring deterministic causal relations",
"year": "July 8-11, 2010. 2010"
},
{
"authors": [
"S Dehaene"
],
"doi": "",
"ref_id": "b11",
"title": "How We Learn: Why Brains Learn Better Than Any Machine",
"year": "2020"
},
{
"authors": [
"A Dittadi",
"S S Papa",
"M D Vita",
"B Schölkopf",
"O Winther",
"F Locatello"
],
"doi": "",
"ref_id": "b12",
"title": "Generalization and robustness implications in object-centric learning",
"year": "2022"
},
{
"authors": [
"G F Elsayed",
"A Mahendran",
"S Van Steenkiste",
"K Greff",
"M C Mozer",
"T Kipf",
"Savi++"
],
"doi": "",
"ref_id": "b13",
"title": "Towards end-toend object-centric learning from real-world videos",
"year": "2022"
},
{
"authors": [
"M Engelcke",
"O P Jones",
"I Posner"
],
"doi": "",
"ref_id": "b14",
"title": "Reconstruction bottlenecks in object-centric generative models",
"year": "2020"
},
{
"authors": [
"M Engelcke",
"A R Kosiorek",
"O P Jones",
"I Posner"
],
"doi": "",
"ref_id": "b15",
"title": "GENESIS: generative scene inference and sampling with object-centric latent representations",
"year": "2020"
},
{
"authors": [
"M Engelcke",
"O P Jones",
"I Posner"
],
"doi": "",
"ref_id": "b16",
"title": "GENESIS-V2: inferring unordered object representations without iterative refinement",
"year": "2021"
},
{
"authors": [
"Jerry A Fodor",
"Zenon W Pylyshyn"
],
"doi": "10.1016/0010-0277(88)90031-5",
"ref_id": "b17",
"title": "Connectionism and cognitive architecture: A critical analysis",
"year": "1988"
},
{
"authors": [
"T Gerstenberg",
"J B Tenenbaum"
],
"doi": "",
"ref_id": "b18",
"title": "Oxford handbook of causal reasoning",
"year": "2017"
},
{
"authors": [
"Tobias Gerstenberg",
"Noah D Goodman",
"David A Lagnado",
"Joshua B Tenenbaum"
],
"doi": "10.1037/rev0000281",
"ref_id": "b19",
"title": "A counterfactual simulation model of causal judgments for physical events.",
"year": "2021"
},
{
"authors": [
"Alison Gopnik",
"Clark Glymour",
"David M Sobel",
"Laura E Schulz",
"Tamar Kushnir",
"David Danks"
],
"doi": "10.1037/0033-295x.111.1.3",
"ref_id": "b20",
"title": "A Theory of Causal Learning in Children: Causal Maps and Bayes Nets.",
"year": "2004"
},
{
"authors": [
"Anirudh Goyal",
"Yoshua Bengio"
],
"doi": "10.1098/rspa.2021.0068",
"ref_id": "b21",
"title": "Inductive biases for deep learning of higher-level cognition",
"year": "2266. 2022"
},
{
"authors": [
"E J Green"
],
"doi": "10.1111/phpr.12521",
"ref_id": "b22",
"title": "A Theory of Perceptual Objects",
"year": "2019"
},
{
"authors": [
"Klaus Greff",
"Rupesh K Srivastava",
"Jan Koutnik",
"Bas R Steunebrink",
"Jurgen Schmidhuber"
],
"doi": "10.1109/tnnls.2016.2582924",
"ref_id": "b23",
"title": "LSTM: A Search Space Odyssey",
"year": "2015"
},
{
"authors": [
"K Greff",
"S Van Steenkiste",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b24",
"title": "Neural expectation maximization",
"year": "2017"
},
{
"authors": [
"K Greff",
"R L Kaufman",
"R Kabra",
"N Watters",
"C Burgess",
"D Zoran",
"L Matthey",
"M M Botvinick",
"A Lerchner"
],
"doi": "",
"ref_id": "b25",
"title": "Multi-object representation learning with iterative variational inference",
"year": "2019"
},
{
"authors": [
"K Greff",
"S Van Steenkiste",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b26",
"title": "On the binding problem in artificial neural networks",
"year": "2020"
},
{
"authors": [
"L Gresele",
"P K Rubenstein",
"A Mehrjou",
"F Locatello",
"B Schölkopf"
],
"doi": "10.1109/icicrs46726.2019.9555865",
"ref_id": "b27",
"title": "Artificial Intelligence & Machine Learning [Breaker page]",
"year": "July 22-25, 2019. 2019"
},
{
"authors": [
"L Gresele",
"J Von Kügelgen",
"V Stimper",
"B Schölkopf",
"M Besserve"
],
"doi": "",
"ref_id": "b28",
"title": "Independent mechanism analysis, a new concept?",
"year": "2021"
},
{
"authors": [
"S Guo",
"V Tóth",
"B Schölkopf",
"F Huszár"
],
"doi": "",
"ref_id": "b29",
"title": "Causal de Finetti: On the identification of invariant causal structure in exchangeable data",
"year": "2022"
},
{
"authors": [
"H Hälvä",
"A Hyvärinen"
],
"doi": "",
"ref_id": "b30",
"title": "Hidden markov nonlinear ICA: unsupervised learning from nonstationary time series",
"year": "August 3-6, 2020. 2020"
},
{
"authors": [
"H Hälvä",
"S L Corff",
"L Lehéricy",
"J So",
"Y Zhu",
"E Gassiat",
"A Hyvärinen"
],
"doi": "",
"ref_id": "b31",
"title": "Disentangling identifiable features from noisy data with structured nonlinear ICA",
"year": "2021"
},
{
"authors": [
"Kaiming He",
"Georgia Gkioxari",
"Piotr Dollar",
"Ross Girshick"
],
"doi": "10.1109/iccv.2017.322",
"ref_id": "b32",
"title": "Mask R-CNN",
"year": "2017"
},
{
"authors": [
"Nicolas Heess",
"Christopher K I Williams",
"Geoffrey E Hinton"
],
"doi": "10.5244/c.23.115",
"ref_id": "b33",
"title": "Learning generative texture models with extended Fields-of-Experts",
"year": "2012"
},
{
"authors": [
"Geoffrey E Hinton"
],
"doi": "10.1162/neco_a_01557",
"ref_id": "b34",
"title": "How to Represent Part-Whole Hierarchies in a Neural Network",
"year": "2021"
},
{
"authors": [
"Roger A Horn",
"Charles R Johnson"
],
"doi": "10.1017/cbo9781139020411",
"ref_id": "b35",
"title": "Matrix Analysis",
"year": "2012"
},
{
"authors": [
"A Hyvärinen",
"P O Hoyer"
],
"doi": "",
"ref_id": "b36",
"title": "Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces",
"year": "2000"
},
{
"authors": [
"Aapo Hyvärinen",
"Ilyes Khemakhem",
"Hiroshi Morioka"
],
"doi": "10.1016/j.patter.2023.100844",
"ref_id": "b37",
"title": "Nonlinear independent component analysis for principled disentanglement in unsupervised deep learning",
"year": "2016"
},
{
"authors": [
"A Hyvärinen",
"H Morioka"
],
"doi": "",
"ref_id": "b38",
"title": "Nonlinear ICA of temporally dependent stationary sources",
"year": "2017"
},
{
"authors": [
"A Hyvarinen",
"J Perkio"
],
"doi": "10.1109/ijcnn.2006.246965",
"ref_id": "b39",
"title": "Learning to Segment Any Random Vector",
"year": "2006"
},
{
"authors": [
"A Hyvärinen",
"H Sasaki",
"R E Turner"
],
"doi": "",
"ref_id": "b40",
"title": "Nonlinear ICA using auxiliary variables and generalized contrastive learning",
"year": "2019"
},
{
"authors": [
"Aapo Hyvärinen",
"Petteri Pajunen"
],
"doi": "10.1016/s0893-6080(98)00140-3",
"ref_id": "b41",
"title": "Nonlinear independent component analysis: Existence and uniqueness results",
"year": "1999"
},
{
"authors": [
"Dominik Janzing"
],
"doi": "10.1515/jci-2021-0022",
"ref_id": "b42",
"title": "Causal versions of maximum entropy and principle of insufficient reason",
"year": "2021"
},
{
"authors": [
"Dominik Janzing",
"Bernhard Scholkopf"
],
"doi": "10.1109/tit.2010.2060095",
"ref_id": "b43",
"title": "Causal Inference Using the Algorithmic Markov Condition",
"year": "2010"
},
{
"authors": [
"D Janzing",
"P O Hoyer",
"B Schölkopf"
],
"doi": "",
"ref_id": "b44",
"title": "Telling cause from effect based on high-dimensional observations",
"year": "2010"
},
{
"authors": [
"Dominik Janzing",
"Joris Mooij",
"Kun Zhang",
"Jan Lemeire",
"Jakob Zscheischler",
"Povilas Daniušis",
"Bastian Steudel",
"Bernhard Schölkopf"
],
"doi": "10.1016/j.artint.2012.01.002",
"ref_id": "b45",
"title": "Information-geometric approach to inferring causal directions",
"year": "2012"
},
{
"authors": [
"R Kabra",
"C Burgess",
"L Matthey",
"R L Kaufman",
"K Greff",
"M Reynolds",
"A Lerchner"
],
"doi": "",
"ref_id": "b46",
"title": "Multiobject datasets",
"year": "2019"
},
{
"authors": [
"L Karazija",
"I Laina",
"C Rupprecht"
],
"doi": "",
"ref_id": "b47",
"title": "Clevrtex: A texture-rich benchmark for unsupervised multi-object segmentation",
"year": "2021"
},
{
"authors": [
"I Khemakhem",
"D P Kingma",
"R P Monti",
"A Hyvärinen"
],
"doi": "",
"ref_id": "b48",
"title": "Variational autoencoders and nonlinear ICA: A unifying framework",
"year": "2020"
},
{
"authors": [
"I Khemakhem",
"R P Monti",
"D P Kingma",
"A Hyvärinen"
],
"doi": "10.52591/lxai202012120",
"ref_id": "b49",
"title": "LatinX in AI at Neural Information Processing Systems Conference 2020",
"year": "2020. December 6-12, 2020. 2020"
},
{
"authors": [
"D P Kingma",
"J Ba",
"Adam"
],
"doi": "",
"ref_id": "b50",
"title": "A method for stochastic optimization",
"year": "2015"
},
{
"authors": [
"T Kipf",
"G F Elsayed",
"A Mahendran",
"A Stone",
"S Sabour",
"G Heigold",
"R Jonschkowski",
"A Dosovitskiy",
"K Greff"
],
"doi": "",
"ref_id": "b51",
"title": "Conditional object-centric learning from video",
"year": "2022"
},
{
"authors": [
"T N Kipf",
"E Van Der Pol",
"M Welling"
],
"doi": "",
"ref_id": "b52",
"title": "Contrastive learning of structured world models",
"year": "2020"
},
{
"authors": [
"D A Klindt",
"L Schott",
"Y Sharma",
"I Ustyuzhaninov",
"W Brendel",
"M Bethge",
"D M Paiton"
],
"doi": "",
"ref_id": "b53",
"title": "Towards nonlinear disentanglement in natural data with temporal sparse coding",
"year": "2021"
},
{
"authors": [
"K Koffka"
],
"doi": "",
"ref_id": "b54",
"title": "Principles Of Gestalt Psychology",
"year": "1936"
},
{
"authors": [
"H W Kuhn"
],
"doi": "10.1002/nav.3800020109",
"ref_id": "b55",
"title": "The Hungarian method for the assignment problem",
"year": "1955"
},
{
"authors": [
"S Lachapelle",
"S Lacoste-Julien"
],
"doi": "",
"ref_id": "b56",
"title": "Partial disentanglement via mechanism sparsity",
"year": "2022"
},
{
"authors": [
"S Lachapelle",
"P Rodriguez",
"Y Sharma",
"K E Everett",
"R Le Priol",
"A Lacoste",
"S Lacoste-Julien"
],
"doi": "",
"ref_id": "b57",
"title": "Disentanglement via mechanism sparsity regularization: A new principle for nonlinear ica",
"year": "2021"
},
{
"authors": [
"B M Lake",
"T D Ullman",
"J B Tenenbaum",
"S J Gershman"
],
"doi": "",
"ref_id": "b58",
"title": "Building machines that learn and think like people",
"year": "2017"
},
{
"authors": [
"Z Lin",
"Y Wu",
"S V Peri",
"W Sun",
"G Singh",
"F Deng",
"J Jiang",
"S Ahn"
],
"doi": "",
"ref_id": "b59",
"title": "SPACE: unsupervised objectoriented scene representation via spatial attention and decomposition",
"year": "2020"
},
{
"authors": [
"F Locatello",
"D Vincent",
"I Tolstikhin",
"G Rätsch",
"S Gelly",
"B Schölkopf"
],
"doi": "",
"ref_id": "b60",
"title": "Competitive training of mixtures of independent deep generative models",
"year": "2018"
},
{
"authors": [
"F Locatello",
"S Bauer",
"M Lucic",
"G Rätsch",
"S Gelly",
"B Schölkopf",
"O Bachem"
],
"doi": "",
"ref_id": "b61",
"title": "Challenging common assumptions in the unsupervised learning of disentangled representations",
"year": "2019"
},
{
"authors": [
"F Locatello",
"D Weissenborn",
"T Unterthiner",
"A Mahendran",
"G Heigold",
"J Uszkoreit",
"A Dosovitskiy",
"T Kipf"
],
"doi": "",
"ref_id": "b62",
"title": "Object-centric learning with slot attention",
"year": "2020"
},
{
"authors": [
"Gary F Marcus"
],
"doi": "10.7551/mitpress/1187.001.0001",
"ref_id": "b63",
"title": "The Algebraic Mind",
"year": "2001"
},
{
"authors": [
"G E Moran",
"D Sridhar",
"Y Wang",
"D M Blei"
],
"doi": "",
"ref_id": "b64",
"title": "Identifiable variational autoencoders via sparse decoding",
"year": "2021"
},
{
"authors": [
"S Papa",
"O Winther",
"A Dittadi"
],
"doi": "",
"ref_id": "b65",
"title": "Inductive biases for object-centric representations in the presence of complex textures",
"year": "2022"
},
{
"authors": [
"A Paszke",
"S Gross",
"F Massa",
"A Lerer",
"J Bradbury",
"G Chanan",
"T Killeen",
"Z Lin",
"N Gimelshein",
"L Antiga",
"A Desmaison",
"A Köpf",
"E Z Yang",
"Z Devito",
"M Raison",
"A Tejani",
"S Chilamkurthy",
"B Steiner",
"L Fang",
"J Bai",
"S Chintala"
],
"doi": "",
"ref_id": "b66",
"title": "Pytorch: An imperative style, high-performance deep learning library",
"year": "2019"
},
{
"authors": [
"Judea Pearl",
"Causality"
],
"doi": "10.1017/cbo9780511803161",
"ref_id": "b67",
"title": "Causality",
"year": "2009"
},
{
"authors": [
"Benjamin Peters",
"Nikolaus Kriegeskorte"
],
"doi": "10.1038/s41562-021-01194-6",
"ref_id": "b68",
"title": "Capturing the objects of vision with neural networks",
"year": "2021"
},
{
"authors": [
"J Peters",
"D Janzing",
"B Schölkopf"
],
"doi": "",
"ref_id": "b69",
"title": "Elements of causal inference: foundations and learning algorithms",
"year": "2017"
},
{
"authors": [
"P Reizinger",
"L Gresele",
"J Brady",
"J Von Kügelgen",
"D Zietlow",
"B Schölkopf",
"G Martius",
"W Brendel",
"M Besserve"
],
"doi": "",
"ref_id": "b70",
"title": "Embrace the gap: Vaes perform independent mechanism analysis",
"year": "2022"
},
{
"authors": [
"O Ronneberger",
"P Fischer",
"T Brox"
],
"doi": "",
"ref_id": "b71",
"title": "U-net: Convolutional networks for biomedical image segmentation",
"year": "October 5-9, 2015. 2015"
},
{
"authors": [
"N L Roux",
"N M O Heess",
"J Shotton",
"J M Winn"
],
"doi": "",
"ref_id": "b72",
"title": "Learning a generative model of images by factoring appearance and shape",
"year": "2011"
},
{
"authors": [
"Mehdi S M Sajjadi",
"Aravindh Mahendran",
"Thomas Kipf",
"Etienne Pot",
"Daniel Duckworth",
"Mario Lučić",
"Klaus Greff"
],
"doi": "10.1109/cvpr52729.2023.01659",
"ref_id": "b73",
"title": "RUST: Latent Neural Scene Representations from Unposed Imagery",
"year": "2022"
},
{
"authors": [
"Bernhard Schölkopf",
"Dominik Janzing",
"Jonas Peters",
"Eleni Sgouritsa",
"Kun Zhang",
"Joris Mooij"
],
"doi": "10.1007/978-3-642-41136-6_13",
"ref_id": "b74",
"title": "Semi-supervised Learning in Causal and Anticausal Settings",
"year": "2012"
},
{
"authors": [
"B Schölkopf",
"F Locatello",
"S Bauer",
"N R Ke",
"N Kalchbrenner",
"A Goyal",
"Y Bengio"
],
"doi": "",
"ref_id": "b75",
"title": "Toward causal representation learning",
"year": "2021"
},
{
"authors": [
"M Seitzer",
"M Horn",
"A Zadaianchuk",
"D Zietlow",
"T Xiao",
"C.-J Simon-Gabriel",
"T He",
"Z Zhang",
"B Schölkopf",
"T Brox",
"F Locatello"
],
"doi": "",
"ref_id": "b76",
"title": "Bridging the gap to real-world object-centric learning",
"year": "2023"
},
{
"authors": [
"N Shajarisales",
"D Janzing",
"B Schölkopf",
"M Besserve"
],
"doi": "",
"ref_id": "b77",
"title": "Telling cause from effect in deterministic linear dynamical systems",
"year": "2015"
},
{
"authors": [
"G Singh",
"F Deng",
"S Ahn"
],
"doi": "",
"ref_id": "b78",
"title": "Illiterate DALL-E learns to compose",
"year": "2022"
},
{
"authors": [
"G Singh",
"Y Wu",
"S Ahn"
],
"doi": "",
"ref_id": "b79",
"title": "Simple unsupervised objectcentric learning for complex and naturalistic videos",
"year": "2022"
},
{
"authors": [
"E S Spelke"
],
"doi": "10.1016/0364-0213(90)90025-r",
"ref_id": "b80",
"title": "Principles of object perception",
"year": "1990"
},
{
"authors": [
"Elizabeth S Spelke"
],
"doi": "10.7551/mitpress/4117.003.0017",
"ref_id": "b81",
"title": "What Makes Us Smart? Core Knowledge and Natural Language",
"year": "2003"
},
{
"authors": [
"E S Spelke",
"K D Kinzler"
],
"doi": "",
"ref_id": "b82",
"title": "Core knowledge",
"year": "2007"
},
{
"authors": [
"P Spirtes",
"C Glymour",
"R Scheines",
"Causation"
],
"doi": "",
"ref_id": "b83",
"title": "",
"year": "2001"
},
{
"authors": [
"M Tangemann",
"S Schneider",
"J Von Kügelgen",
"F Locatello",
"P Gehler",
"T Brox",
"M Kümmerer",
"M Bethge",
"B Schölkopf"
],
"doi": "",
"ref_id": "b84",
"title": "Unsupervised object learning via common fate",
"year": "2023"
},
{
"authors": [
"Joshua B Tenenbaum",
"Charles Kemp",
"Thomas L Griffiths",
"Noah D Goodman"
],
"doi": "10.1126/science.1192788",
"ref_id": "b85",
"title": "How to Grow a Mind: Statistics, Structure, and Abstraction",
"year": "2011"
},
{
"authors": [
"F Träuble",
"E Creager",
"N Kilbertus",
"F Locatello",
"A Dittadi",
"A Goyal",
"B Schölkopf",
"S Bauer"
],
"doi": "",
"ref_id": "b86",
"title": "On disentangled representations learned from correlated data",
"year": "2021"
},
{
"authors": [
"S Van Steenkiste",
"M Chang",
"K Greff",
"J Schmidhuber"
],
"doi": "",
"ref_id": "b87",
"title": "Relational neural expectation maximization: Unsupervised discovery of objects and their interactions",
"year": "2018"
},
{
"authors": [
"J Von Kügelgen",
"I Ustyuzhaninov",
"P Gehler",
"M Bethge",
"B Schölkopf"
],
"doi": "",
"ref_id": "b88",
"title": "Towards causal generative scene models via competition of experts",
"year": ""
},
{
"authors": [
"J Von Kügelgen",
"Y Sharma",
"L Gresele",
"W Brendel",
"B Schölkopf",
"M Besserve",
"F Locatello"
],
"doi": "",
"ref_id": "b89",
"title": "Selfsupervised learning with data augmentations provably isolates content from style",
"year": "2021"
},
{
"authors": [
"N Watters",
"L Matthey",
"S Borgeaud",
"R Kabra",
"A Lerchner"
],
"doi": "",
"ref_id": "b90",
"title": "Spriteworld: A flexible, configurable reinforcement learning environment",
"year": "2019"
},
{
"authors": [
"M A Weis",
"K Chitta",
"Y Sharma",
"W Brendel",
"M Bethge",
"A Geiger",
"A S Ecker"
],
"doi": "",
"ref_id": "b91",
"title": "Benchmarking unsupervised object representations for video sequences",
"year": "2021"
},
{
"authors": [
"Xuehua Yang",
"Haixiang Zhang",
"Qi Zhang",
"Guangwei Yuan"
],
"doi": "10.1007/s11071-022-07399-2",
"ref_id": "b92",
"title": "Simple positivity-preserving nonlinear finite volume scheme for subdiffusion equations on general non-conforming distorted meshes",
"year": "2022"
},
{
"authors": [
"Yafei Yang",
"Bo Yang"
],
"doi": "10.1007/s11263-023-01973-w",
"ref_id": "b93",
"title": "Benchmarking and Analysis of Unsupervised Object Segmentation from Real-World Single Images",
"year": "2022"
},
{
"authors": [
"Y Zheng",
"I Ng",
"K Zhang"
],
"doi": "",
"ref_id": "b94",
"title": "On the identifiability of nonlinear ICA: Sparsity and beyond",
"year": "2022"
},
{
"authors": [
"R S Zimmermann",
"Y Sharma",
"S Schneider",
"M Bethge",
"W Brendel"
],
"doi": "",
"ref_id": "b95",
"title": "Contrastive learning inverts the data generating process",
"year": "2021"
}
] |
[
"9feb3729eb2f17c6",
"f2e7c079d09eb2c2",
"3f8fa7ddddeea66a",
"377afb1dd87a2fc6",
"3825210e432768f1",
"c7f708183ba355d1",
"5899fddcfae22c61",
"f3a3075f9d729774",
"97516499f5b9cb9d",
"b8eaba7e87791d41",
"f1172c7c3ef4c7b4",
"a1ebaafb0eeb2e80",
"b524d5530d83f27c",
"52a928bd87561675",
"106b4f77562cfd89",
"c020f6fdb20dd3f0",
"905a2d747f1bdd5e",
"96dcfea18bbe2070",
"65b6b0b00d93695b",
"3d1cb2d51aa7ccae",
"65f6887a0bfa015d",
"313d048c23816dc3",
"b3e494945369022a",
"391849d13e31f74c",
"0e11d7caf9a549c8",
"ca349eecca14467c",
"990272970aee7b02",
"f5596d2e20d8642f",
"13eb090de5b3a855",
"784cd4c0ad9c059f",
"8956f23dff690134",
"497c7013d29018c0",
"3fab057ca4e50ec9",
"45b76c0d658b8df1",
"a2801a7874a09885"
] |
[
"c0b6564f72a486b6",
"a2801a7874a09885",
"2a7f34ae1b65de3a",
"b47f05592fd24b5e",
"96dcfea18bbe2070",
"ad472f7c1f8334ed",
"11814b0968b8997c",
"c6633ba2d12ec124",
"a0cb0bc9ba61474a",
"668c7e7cd1716742",
"45b76c0d658b8df1",
"13ea6bcdb800a250",
"468b12781d084e67",
"5f64b6e04e233fa5",
"1afe920ba40dce23",
"df367b32aedc137e",
"b879b82b88b9b951",
"f5229dcd11b2e49e",
"21b49335feb09b6c",
"8508afb40b7737d8",
"1e0c0e702da478ce",
"0ca6db54eab1d72d",
"3825210e432768f1",
"106b4f77562cfd89",
"5f2081493082816a",
"723bb9a7e0022ec8",
"49a71132b9712314",
"3f8fa7ddddeea66a",
"377afb1dd87a2fc6",
"3fab057ca4e50ec9",
"b8eaba7e87791d41",
"52a928bd87561675",
"a9335eeefc0d99f3",
"8956f23dff690134",
"f6daab06de7b50e4",
"49fb01facf65ba7d",
"c7f708183ba355d1",
"3d1cb2d51aa7ccae",
"c5811953a88afc09",
"391849d13e31f74c",
"65f6887a0bfa015d",
"614a50a17b28b69e",
"497c7013d29018c0",
"5e00ca08e53be372",
"aac70ca6eb12e8db",
"567d0f8b43c0ca11",
"8f76fcc377e04aa4",
"2397ed6a8f178a45",
"d3bfc9b0429760d5",
"e40e999bc6f991cb",
"efa52fc16696aff7",
"d23212e2e8ce7e97",
"b1904ddc705f7814",
"784cd4c0ad9c059f",
"59b9d9058286b4f0",
"76c2b361b63bd9ef",
"5899fddcfae22c61",
"f5596d2e20d8642f",
"d62f9eaa5cb1bf16",
"0485e64f22a110db",
"13eb090de5b3a855",
"9de04cf58885ddd4",
"79f4350a980a33c8",
"5edad6d15d12bf34",
"65b6b0b00d93695b",
"d39d641a71b2f106",
"3ff94a9516071c90",
"f1172c7c3ef4c7b4",
"e840792fdfd73fb0",
"f2e7c079d09eb2c2",
"a1ebaafb0eeb2e80",
"f430acdc9aab9092",
"313d048c23816dc3",
"13897f6f94f49d67",
"905a2d747f1bdd5e",
"990272970aee7b02",
"52f57f551b01ed15",
"f3a3075f9d729774",
"88a5095e7f3beb16",
"29ce76d7e124faa9",
"1883c55f1510664e",
"822d1d2f0272d97f",
"6a68f3d75633de4e",
"ca349eecca14467c",
"97516499f5b9cb9d",
"306c79deb06d5b63",
"c020f6fdb20dd3f0",
"b524d5530d83f27c",
"eb6c2fc07a2217b1",
"0e11d7caf9a549c8",
"6bf23a9f8ac896e4",
"ed9ca3c1c1d21f68",
"e69139d37be3a670",
"51e3e6487b55c553",
"b3e494945369022a",
"9feb3729eb2f17c6"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.