File size: 2,416 Bytes
44aec65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
task_categories:
- other
tags:
- human-activity-recognition
- sensor-data
- time-series
- out-of-distribution
---
# HAROOD: A Benchmark for Out-of-distribution Generalization in Sensor-based Human Activity Recognition
[**Paper**](https://huggingface.co/papers/2512.10807) | [**GitHub Repository**](https://github.com/AIFrontierLab/HAROOD)
HAROOD is a modular and reproducible benchmark framework for studying generalization in sensor-based human activity recognition (HAR). It unifies preprocessing pipelines, standardizes four realistic OOD scenarios (cross-person, cross-position, cross-dataset, and cross-time), and implements 16 representative algorithms across CNN and Transformer architectures.
## Key Features
- **6 public HAR datasets** unified under a single framework.
- **5 realistic OOD scenarios**: cross-person, cross-position, cross-dataset, cross-time, and cross-device.
- **16 generalization algorithms** spanning Data Manipulation, Representation Learning, and Learning Strategies.
- **Backbone support**: Includes both CNN and Transformer-based architectures.
- **Standardized splits**: Provides train/val/test model selection protocols.
## Usage
The benchmark is designed to be modular. Below are examples of how to run experiments using the official implementation:
### Run with a YAML config
```python
from core import train
results = train(config='./config/experiment.yaml')
```
### Run with a Python dict
```python
from core import train
config_dict = {
'algorithm': 'CORAL',
'batch_size': 32,
}
results = train(config=config_dict)
```
### Override parameters
```python
from core import train
results = train(
config='./config/experiment.yaml',
lr=2e-3,
max_epoch=200,
)
```
## Supported Algorithms
The benchmark implements 16 algorithms across three main categories:
- **Data Manipulation**: Mixup, DDLearn.
- **Representation Learning**: ERM, DANN, CORAL, MMD, VREx, LAG.
- **Learning Strategy**: MLDG, RSC, GroupDRO, ANDMask, Fish, Fishr, URM, ERM++.
## Citation
If you use HAROOD in your research, please cite the following paper:
```bibtex
@inproceedings{lu2026harood,
title={HAROOD: A Benchmark for Out-of-distribution Generalization in Sensor-based Human Activity Recognition},
author={Lu, Wang and Zhu, Yao and Wang, Jindong},
booktitle={The 32rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)},
year={2026}
}
``` |