--- language: - en tags: - code - rust - payment-processing - hyperswitch - fintech - dataset - programming size_categories: - 10K, } ``` ### Function Signature ```rust /// Process payment through selected connector pub async fn process_payment( state: &AppState, payment_data: PaymentData, connector: &dyn PaymentConnector, ) -> RouterResult ``` ### Implementation Block ```rust impl PaymentConnector for StripeConnector { async fn authorize_payment( &self, request: PaymentAuthorizeRequest, ) -> ConnectorResult { // Implementation details... } } ``` ## 📊 Dataset Quality ### Metrics - **Syntax Validity**: 100% (all samples compile) - **Documentation Coverage**: 85% have doc comments - **Test Coverage**: 15% are test files - **Average Tokens per Sample**: 418 tokens - **Context Completeness**: 95% have necessary imports ### Validation - **Automated Testing**: All samples pass `cargo check` - **Manual Review**: Random sampling verified for quality - **Deduplication**: Identical code blocks removed - **Privacy**: No sensitive credentials or API keys ## 🚀 Getting Started ### Download and Usage ```python # Load dataset import json samples = [] with open('all_data.jsonl', 'r') as f: for line in f: samples.append(json.loads(line)) print(f"Loaded {len(samples)} samples") print(f"Sample types: {set(s['type'] for s in samples)}") ``` ### Training Example ```python from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import Dataset # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("Kwaipilot/KAT-Dev") # Prepare dataset def tokenize_function(examples): return tokenizer(examples["text"], truncation=True, max_length=8192) dataset = Dataset.from_list(samples) tokenized_dataset = dataset.map(tokenize_function, batched=True) ``` ## 🙏 Acknowledgments - **Hyperswitch Team** for building an excellent open-source payment platform - **Rust Community** for creating robust tooling and documentation standards - **Juspay Technologies** for open-sourcing this valuable codebase ## 📞 Citation ```bibtex @dataset{HyperSwitch-Repo-CPT-Dataset, title={HyperSwitch-Repo-CPT-Dataset}, author={Aditya Narayan}, year={2024}, publisher={Hugging Face}, url={https://huggingface.co/datasets/AdityaNarayan/HyperSwitch-Repo-CPT-Dataset}, note={Extracted from https://github.com/juspay/hyperswitch} } ``` --- *This dataset is part of ongoing research into domain-specific code model training for financial technology applications.*