File size: 2,026 Bytes
8932dec 04aed56 9516e14 04aed56 8932dec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
annotations_creators:
- automated
language:
- en
license:
- mit
task_categories:
- time-series-forecasting
- reinforcement-learning
tags:
- finance
- stock-market
- technical-analysis
- yfinance
size_categories:
- 10K<n<100K
---
# π Multi-Agent RL Trading System - Dataset
This dataset contains historical OHLCV (Open, High, Low, Close, Volume) data for **AAPL**, **MSFT**, and **GOOGL**, pre-processed for Reinforcement Learning based trading systems.
## π Dataset Content
The dataset consists of CSV files downloaded via `yfinance`:
* `AAPL.csv`: Apple Inc. daily data (Jan 2018 - Dec 2024).
* `MSFT.csv`: Microsoft Corp. daily data (Jan 2018 - Dec 2024).
* `GOOGL.csv`: Alphabet Inc. daily data (Jan 2018 - Dec 2024).
## π Columns
| Column | Description |
| :--- | :--- |
| **Date** | Trading date (YYYY-MM-DD) |
| **Open** | Opening price |
| **High** | Highest price of the day |
| **Low** | Lowest price of the day |
| **Close** | Closing price (Adjusted for splits/dividends) |
| **Volume** | Number of shares traded |
## βοΈ Usage
This data is designed to be fed into a Feature Engineering pipeline (calculating RSI, MACD, etc.) before being used by the `TradingEnv`.
```python
import pandas as pd
# Load data
df = pd.read_csv("AAPL.csv", parse_dates=['Date'], index_col='Date')
print(df.head())
```
## π Related Models
* **Trained Agents**: [AdityaaXD/Multi-Agent_Reinforcement_Learning_Trading_System_Models](https://huggingface.co/AdityaaXD/Multi-Agent_Reinforcement_Learning_Trading_System_Models)
* **GitHub Repository**: [ADITYA-tp01/Multi-Agent-Reinforcement-Learning-Trading-System-Data](https://github.com/ADITYA-tp01/Multi-Agent-Reinforcement-Learning-Trading-System-Data)
## β οΈ Source
Data was sourced from Yahoo Finance API. Not intended for real financial advice or live trading decisions.
## π οΈ Credits
Collected by **Adityaraj Suman** for the Multi-Agent RL Trading System project.
|