Create mimir.py
Browse files
mimir.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Data used for experiments with MIMIR. Processed train/test splits for models trained on the Pile (for now).
|
| 3 |
+
Processing data at HF end.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from datasets import GeneratorBasedBuilder, SplitGenerator, DownloadManager, BuilderConfig
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
import datasets
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
_HOMEPAGE = "http://github.com/iamgroot42/mimir"
|
| 14 |
+
|
| 15 |
+
_DESCRIPTION = """\
|
| 16 |
+
Member and non-member splits for our MI experiments using MIMIR. Data is available for each source.
|
| 17 |
+
We also cache neighbors (generated for the NE attack).
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
_CITATION = """\
|
| 21 |
+
@article{duan2024do,
|
| 22 |
+
title={Do Membership Inference Attacks Work on Large Language Models?},
|
| 23 |
+
author={Duan*, Michael and \textbf{A. Suri*} and Mireshghallah, Niloofar and Min, Sewon and Shi, Weijia and Zettlemoyer, Luke and Tsvetkov, Yulia and Choi, Yejin and Evans, David and Hajishirzi, Hannaneh},
|
| 24 |
+
journal={arXiv preprint arXiv:???},
|
| 25 |
+
year={2024}
|
| 26 |
+
}
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
class MimirConfig(BuilderConfig):
|
| 30 |
+
"""BuilderConfig for Mimir dataset."""
|
| 31 |
+
|
| 32 |
+
def __init__(self, **kwargs):
|
| 33 |
+
"""Constructs a MimirConfig.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
**kwargs: keyword arguments forwarded to super.
|
| 37 |
+
"""
|
| 38 |
+
super(MimirConfig, self).__init__(**kwargs)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class MimirDataset(GeneratorBasedBuilder):
|
| 42 |
+
# Assuming 'VERSION' is defined
|
| 43 |
+
VERSION = datasets.Version("1.0.0")
|
| 44 |
+
|
| 45 |
+
# Define the builder configs
|
| 46 |
+
BUILDER_CONFIG_CLASS = MimirConfig
|
| 47 |
+
BUILDER_CONFIGS = [
|
| 48 |
+
MimirConfig(name="the_pile_arxiv", description="This split contains data from Arxiv, truncated with 7-gram overlap threshold < 0.2."),
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
def _info(self):
|
| 52 |
+
return datasets.DatasetInfo(
|
| 53 |
+
# This is the description that will appear on the datasets page.
|
| 54 |
+
description=_DESCRIPTION,
|
| 55 |
+
# This defines the different columns of the dataset and their types
|
| 56 |
+
features=datasets.Features(
|
| 57 |
+
{
|
| 58 |
+
"text": datasets.Value("string"), # Each example is a piece of text
|
| 59 |
+
}
|
| 60 |
+
),
|
| 61 |
+
# If there's a common (input, target) tuple from the features,
|
| 62 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 63 |
+
# builder.as_dataset.
|
| 64 |
+
supervised_keys=None,
|
| 65 |
+
# Homepage of the dataset for documentation
|
| 66 |
+
homepage=_HOMEPAGE,
|
| 67 |
+
# Citation for the dataset
|
| 68 |
+
# citation=_CITATION,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def _split_generators(self, dl_manager: DownloadManager):
|
| 72 |
+
"""Returns SplitGenerators."""
|
| 73 |
+
# Path to the data files
|
| 74 |
+
NEIGHBOR_SUFFIX = "_neighbors_25_bert_in_place_swap"
|
| 75 |
+
parent_dir = "cache_100_200_1000_512"
|
| 76 |
+
|
| 77 |
+
file_paths = {
|
| 78 |
+
"member": os.path.join(parent_dir, "train", self.config.name + ".jsonl"),
|
| 79 |
+
"nonmember": os.path.join(parent_dir, "test", self.config.name + ".jsonl")
|
| 80 |
+
}
|
| 81 |
+
# Load neighbor splits if they exist
|
| 82 |
+
if os.path.exists(os.path.join(parent_dir, "train_neighbors", self.config.name + f"{NEIGHBOR_SUFFIX}.jsonl")):
|
| 83 |
+
# Assume if train nieghbors exist, test neighbors also exist
|
| 84 |
+
file_paths["member_neighbors"] = os.path.join("cache_100_200_1000_512", "train_neighbors", self.config.name + f"{NEIGHBOR_SUFFIX}.jsonl"),
|
| 85 |
+
file_paths["nonmember_neighbors"] = os.path.join("cache_100_200_1000_512", "test_neighbors", self.config.name + f"{NEIGHBOR_SUFFIX}.jsonl")
|
| 86 |
+
|
| 87 |
+
splits = []
|
| 88 |
+
for k, v in file_paths.items():
|
| 89 |
+
splits.append(SplitGenerator(name=k, gen_kwargs={"file_path": v}))
|
| 90 |
+
return splits
|
| 91 |
+
|
| 92 |
+
def _generate_examples(self, file_path):
|
| 93 |
+
"""Yields examples."""
|
| 94 |
+
# Open the specified .jsonl file and read each line
|
| 95 |
+
with open(file_path, 'r') as f:
|
| 96 |
+
for id, line in enumerate(f):
|
| 97 |
+
data = json.loads(line)
|
| 98 |
+
yield id, {"text": data}
|