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Abstract We propose a program synthesis challenge inspired by the
Abstraction and Reasoning Corpus (ARC) [3]. The ARC is intended as
a touchstone for human intelligence. It consists of 400 tasks, each with
very small numbers (3-5) of ‘input-output’ image pairs. It is known that
the tasks are ‘human-solvable’ in the sense that, for any of the tasks,
there exists a human-authored description that transforms input images
in the task to the corresponding output images. Besides the ‘small data
problem’; other features of ARC make it hard to use as a yardstick for
machine learning. The solutions are not provided, nor is it known if they
are unique. The use of some basic prior knowledge is acknowledged, but
no definitions are available. The solutions are known also to apply to
images that may be significantly different to those provided, but those
images are not described. Inspired by ARC, but motivated to address
some of these issues, in this paper we propose the Inductive Program
Synthesis Challenge for ARC-like tasks (IPARC). The IPARC challenge
is much more controlled, focusing on the inductive synthesis of structured
programs. We specify for the challenge a set of ‘ARC-like’ tasks charac-
terised by: training and test example sets drawn from a clearly-defined
set of ‘ARC-like’ input-output image pairs; a set of image transformation
functions from the image-processing field of Mathematical Morphology
(MM); and target programs known to solve the tasks by transforming
input to output images. The IPARC tasks rely on a result known as
the ‘Structured Program Theorem’ that identifies a small set of rules
as sufficient for construction of a wide class of programs. Tasks in the
IPARC challenge are intended for machine learning methods of program
synthesis able to address instances of these rules. In principle, Inductive
Logic Programming (ILP) has the techniques needed to identify the con-
structs implied by the Structured Program Theorem. But, in practice, is
there an ILP implementation that can achieve this? The purpose of the
IPARC challenge is to determine if this is the case.
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1 Introduction

Perhaps the earliest demonstration of inductive program synthesis using images
was by Evans [4]. ANALOGY solved tasks of the kind shown in Fig. 1. Com-
putation in ANALOGY proceeded in two stages: a representation stage, that
detected objects and extracted represented them using pre-defined basic func-
tions and relations. The second stage then proceeded to find an appropriate
program. The first step in the program-synthesis process was to find automatic-
ally one or more rules—in ANALOGY, LISP programs—that describe (in Evans’
words): “how the objects of figure A are removed, added to, or altered in their
properties and their relations to other objects to generate B”. Generalisations
of the rules are then constructed to ensure that C is transformed to exactly one
of the alternatives 1-5. If multiple programs are possible, then ANALOGY used

a notion of generalisation strength to select one®.
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Figure 1. Examples for program-synthesis from [4]. Images are all line-drawings, and
the tasks considered were all of the kind “if A:B then which one of the following is
true: (a) C:1; (b) C:2; ---; (e) C:5”.

Now, nearly six decades later, a significantly more complex and wider variety

of visual tasks, with some overlapping motivations to those of Evans’ paper, has
been proposed in the Abstraction and Reasoning Corpus (ARC [3]). The ARC
consists of 400 tasks of the kind shown in Fig. 2.
The tasks in the ARC are not especially envisaged as being exclusively for pro-
gram synthesis. What is known is the the tasks are ‘human-solvable’ in the sense
that, for any of the tasks, there exists a human-authored procedure that trans-
forms input images in the task to the corresponding output images. But, as
noted by Francois Chollet in his description of the ARC:

Crucially, to the best of our knowledge, ARC does not appear to be ap-
proachable by any existing machine learning technique (including Deep
Learning), due to its focus on broad generalization and few-shot learn-
ing, as well as the fact that the evaluation set only features tasks that

in general, such analogical tasks can be ‘ill-posed’, in that multiple solutions might
exist for all training examples but only one of these is correct for unseen test cases,
with the criteria as to which to choose being impossible to ‘logically’ deduce from
the training examples alone.
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Figure 2. An example task from the ARC (taken from https://samacquaviva.com/
LARC/explore/). The task to be solved is of the form “if A1:B1 and A2:B2 and A3:B3
then C: 77.

—

do not appear in the training set. For a researcher setting out to solve
it, ARC is perhaps best understood as a program synthesis benchmark.

However, there are several aspects that pose a challenge when considering the
ARC as a benchmark for program synthesis. The human-authored solutions are
not provided, nor is it known if they are unique. The use of some basic prior know-
ledge is acknowledged, but no definitions are available. The solutions are known
also to apply to images that may be significantly different to those provided,
but those images are not described. Two different routes have been sought to
address these limitations. The authors of [1] re-interpret the ARC tasks in terms
of language. Solutions are ‘natural programs’ in the form of instructions in a
natural language. A natural program for a task is first obtained from a human
participant. This natural language description is then tested by a second par-
ticipant. A natural program is considered successful if it can be used by the
second participant to solve the task. The intent is that a collection of success-
ful natural programs will allow the identification of prior knowledge that can
subsequently be used as prior knowledge for inductive program synthesis by
machine. Separately, a Kaggle competition® focussed on automated techniques
for solving the ARC without reference to any prior knowledge, but providing
the usual machine-learning artefacts of training- and test-data; and allowing the
possibility that solutions may not be unique.

Inspired by ARC, but in a more controlled setting, we propose the Inductive
Program Synthesis Challenge for ARC-like tasks (IPARC). We are particularly
interested in the identification of structured programs. For the challenge, we
define a set of ‘ARC-like’ tasks characterised by: (a) Data, consisting of training-
and test-sets for constructing and testing programs, with images drawn from a
clearly defined set (which we call ‘ARC-like’ images); (b) Basic functions, drawn
from four different categories of image-transformation operations (mathematical
morphology operations, re-colouring, re-sizing, and endomorphisms), that we

® https://www.kaggle.com/c/abstraction-and-reasoning-challenge
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show are sufficient for constructing a transformation between any single pair
of input-output ARC-like images; and (¢) Target programs, known to solve the
tasks in the sense of being able to transform input images to output image in
both training- and test-sets.

The tasks in the IPARC rely on a result from structured program-construction
that identifies three rules of grammar (encoding sequence, selection and and iter-
ation) as being sufficient for representing a wide class of programs. It is possible
to view any instance of these rules within a program as constituting a ‘subpro-
gram’, with a meaning given by a mathematical (sub-)function defined using
some pre-defined basic functions. The overall computation of the program is
then a (mathematical) composition of (sub-)functions. The tasks in the IPARC
challenge are intended for machine learning methods of program-synthesis that
can address instances of these three rules. It is useful to clarify immediately
what is not being claimed in this paper. Given the open-ended nature of ARC,
we do not claim solving tasks in the IPARC is necessary or sufficient to solve
tasks in the ARC. However, it seems plausible that a machine-learning approach
equipped with techniques for addressing the IPARC would be able to re-use
those techniques to good effect to address tasks in the ARC.

There are good reasons to consider ILP as being well-suited to address tasks
in the IPARC: (a) Sequences, selection and iteration can all be represented as
logic- (or functional-)programs; (b) Basic functions can be provided as back-
ground knowledge to an ILP system; (3) Identification of sub-functions corres-
ponds to the invention of new predicates by an ILP system; and (4) Identification
of iteration can be achieved through the construction of recursive statements by
an ILP system. In principle therefore, the tasks in the IPARC challenge should
be solvable by an ILP system. But, in practice is there a single ILP system or
approach that can effectively construct structured programs? The purpose of the
IPARC challenge is to determine if this is the case.

The rest of the paper is organised as follows. Section 2 provides an introduc-
tion to the area of morphological filters that form a significant component of the
background knowledge for the tasks we propose later. Section 3.3 describes a set
basic functions for ARC-like tasks. Section 4 describes the ‘TPARC’ challenge
that contains 3 categories of tasks aimed at testing the capabilities of current
ILP systems to both invent new functions and synthesise complete programs.
Section 5 concludes the paper.

2 Mathematical Morphology (MM)

Mathematical Morphology (MM) is field developed during the 1960s [9] for the
purpose of analysis of petrographic samples. However, it has evolved into a strong
image processing framework based on non-linear operators. In this section, we
review three important operators from MM for binary images relevant to this
paper. For details regarding other operators and theory of MM refer to [7,8].
Before describing the operators we make some remarks:

— All MM operators in this paper operate with two images — one is considered

to be the input image and the other, referred to as the structuring element
(s.e.), is used to “probe” the input to generate the output;
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— Note that a binary image can be written as a function f : Z? — {0, 1}. Hence,
each pixel within the image can be “addressed” using pairs of integers. The
set of pixels which take the value 1 are referred to as foreground and the set
of pixels which take the value 0 are referred to as background;

— The structuring element (s.e.) is defined with an origin (0, 0), usually identi-
fied with a O at the pixel. The other pixels are accordingly addressed using
integers. For instance, the pixel to the left of the origin is given the address
of (—1,0), and so on.

— Also, observe that each binary image can be equivalently represented as a
set by considering the set of pixels with value 1. We will use binary images
and sets interchangeably in this paper. Thus, union of two images refers to
the union of sets equivalent to the image, and intersection of two images
refers to the intersection of sets equivalent to the image. Note that these are
only valid when the images are of same size;

— It is useful to think of MM operators as belonging to the class of functions
IxFxB — I.HereT is a set of images, F is a set of Boolean functions, and
B is a set of s.e’s. Any particular MM operator usually involves a specific
Boolean function F' € F and a specific s.e. B € B. The resulting operator is
then pup p : Z — Z. When one or the other or both of F, B is obvious from
the context, it is dropped from the suffix of the operator.

For reasons of space, we direct the reader to the IPARC website for informal
descriptions of some commonly used MM operators.

3 Program Synthesis for ARC-like Tasks
3.1 ARC-like Images and Tasks

We first develop an abstract characterisation of what we will call ARC-like’
images (the corresponding tasks being ARC-like tasks). Let Iff%n denote a par-
ticular image, where (m,n) denotes the size of the grid and k& denotes the set of
possible colours each pixel can take. This image can be decomposed as follows :

m,n’tm,ns
where I,(Ti)n denotes a binary image (only possible values are 0,1) of colour i. Let

L’,ﬁhn = {Iﬁln | m,n fixed and each pixel has value 1 in

(2)

at most one of <I7(11)n>§:1}
We distinguish £fn’n from:

ijnn = {Iﬁln | m,n fixed where each of

3)

<I7(7{?n>§:1 can be any binary image.}

That is, the set £ contains images which can have multiple colours associated
with any pixel. We will denote the set of ‘ARC-like’ images as £ = {J,,, , /J,kn,n
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An ‘ARC-like’ task T is a finite set {(i,0) : i,0 € L}. Usually, |T| will be some
small number, like three. In this paper, program-synthesis for an ARC-like task
T will mean constructing a sequence of functional compositions that identifies a
many-to-one mapping f : Z — Z s.t. for every (i,0) € T, f(i) = o. Additionally,
we will require the function f to be “general enough” to be correct on additional
sets of input images not used in the construction of f.

3.2 Functional Categories for ARC-like Tasks

Given colours 1. ..k recall that all the input/output images in an ARC-like task
belong to the space £ =, ,, Ef?mn, where £F,  is the set of all colour-images

m,n
of a (fixed) size m,n. Also, for a fixed m,n let L(T]L)n denote the set of m x n
binary images of colour j. In this paper, we propose functions in the following
basic categories for solving ARC-like tasks:

Structure. Functions in this category are concerned with changing the structure
of the image. We provide definitions for the following kinds of functions:

1. For each colour j =1 " k, colour-specific MM-operators are functions of the
form @) I,gi)n — I,(ﬁ)n(’ )

2. An overall structuring operation is a function ¢ : Cfnyn — Efnyn defined as
follows:

¢(<[(1) R D) Y) = <f(1) jff) )

m,n? rtm,n m,n’

where fy(,{)n = gb(j)(ly(,{?n). Note that the Lh.s. is the same as ¢(I}, ,,) and is

an element of £ . That is, a ¢ operation can assign more than one colour
to a pixel.

Colour. Functions in this category either resolve conflicting assignments of col-
ours to the same pixel, or perform consistent re-colourings. For some m,n this
category contains functions of the form v : LF, . — £F .

Size. One or more re-sizing functions of the form 1 : ﬁﬁn,m — Lﬁlzym. These
change the size of the grids of an image If, , to If .~ where (my,ni) #
(mg,n2)7.

It is useful also to distinguish an overall structure-and-colour operation @ :
Lk, — Lk defined as:

D(Iy, ) = V(6L )

&(+) transforms an image in the manner shown in Fig. 3.
We define one further category of operations based on &(-):

5 Correctly, the function is ¢%>,Bj’ where F} is the Boolean function used by the MM

operator, and Bj is the set of s.e’s used by the operator.
" That is, either mi # ma or n1 # no
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Figure 3. Illustrating the @ operator.

Endomorphisms. Two specific endomorphic functions are defined on Efn’n:

DI n) = Iy U (L5, )

and
D(Iyn) = I NI, )
where,
Iy n U ) = (L), UL IS OIS oo TG0, U L) @
Ly V0L ) = (L5 VI, I, O I, I NI, )

Although not explicitly defined as such, we will take each of Structure, Colour,
Size and Endomorphisms to be sets of functions, and denote X' = Structure U
Colour U Size U Endomorphisms. We claim that these sets are sufficient for a
restricted form of ARC-like tasks. Specifically, we have the following proposition.

Proposition 1. If I* Ik are from \JLE = and IF is non-empty,

1,117 “M2,na m,n miy,ni
then there exists a sequence of functions {fi, fa,..., fn) s.t. each f; € X and

= (v (AT L)) ).
Proof. See Appendix A.

We will use I =5 f(I) to denote that given an an input-output pair (I, f), Iis
obtained by the composition f of some functions from X applied to I.

The result in Proposition 1 is useful in that it identifies the kinds of functions
needed for ARC-like tasks. But the result does not immediately tell us what
the (f;) are, because: (a) Other than @, @, and ®, all other functions remain
unspecified. These are the ¢$,J;?n—functions in Structure, the y-functions in Colour
and the ¢-functions in Size; (b) Even if all the functions were specified, the proof
does not provide a constructive method to identify the sequence; and (c) Even
if an appropriate sequence for an image-pair was found, this may still not be
sufficient for solving an ARC-like task 7. We would like a function sequence to
be ‘general enough’ to apply to all image-pairs in 7. We will have more to say
on this shortly.

We have minimally to address each of these problems when identifying a
solution for ARC-like tasks.
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3.3 ILP-based Program Synthesis for ARC-like Tasks

Before we consider the use of ILP for solving ARC-like tasks it is useful to clarify
what exactly we will mean by a program and the computation it performs. In this
paper, we will adopt the position taken in the Structured Program Theorem (or
the Bohm-Jacopini Theorem [2]), according to which structured programs can
be constructed solely by combining subprograms containing sequence, selection,
or iteration. We will further assume each subprogram can be mathematically
represented by a function, which we will call a sub-function, and that a program’s
computation given some input is equivalent to the application of the composition
of the sub-functions to the input.

We turn now to an ILP formulation of identifying such compositions. A first-
cut at an ILP formulation is just this:

Given: the set of basic functions B as background knowledge, and ex-
amples F of input-output images,
Find: a program H s.t. BAH | FE

For ARC-like tasks, we will assume the basic functions will include well under-
stood image-manipulation functions from the sets Structure, Colour, Size, and
Endomorphisms categories. Also, we restrict ourselves to the standard MM op-
erators of Dilation and FErosion with different structuring elements to model
the Structure operators. The structuring elements to be used are those shown
in Fig. 4. The set of functions X7 consists of: (1) Dilation and Erosion with
eight different structuring elements as shown in Figure 4; (2) Colour and Size
operations as described above; and (3) Endomorphisms as described above. The
functions in X; are available at: https://ac20.github.io/IPARC/Challenge/.

) SE1 (b) ) SE3
) SE5 ) SE7

b) SE2
(f) SE6

) SE4

(h) SE8

Figure 4. The eight structuring elements (s.e.’s) used in this paper, where yellow pixels
denote value 1 and purple denotes 0. Each s.e. is a 3 x 3 grid. Functions in X; comprise
the Dilation and Erosion operators with any of these structuring elements, along with
Color, Size and Endomorphism operators (see text for details).
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Even though X is a restriction of Y| it remains challenging as we note with
the following proposition.

Proposition 2. Given the set of functions Xy there exists an ARC-like task T
that contains elements (I, 1), (12,{2), st. Iy =5, f(I1), and Iy =5, g(I2) but
there is no h s.t. I =5, h(I1) and Iy =5, h(13).

Proof. See Appendix A.

That is, there may not be any single composition sequence of functions from
X, that can solve all examples in an ARC-like task.® It follows that solving
a given set of ARC-like tasks may require enlargement of the set of functions
J1. Here we will restrict ourselves to enlarging the existing set of functions Xy
by constructing new functions that re-use elements of X'; within the constructs
described by the Structured Program Theorem, namely sequence, selection and
iteration. Specifically, we will require that the new functions of these kinds should
be constructed automatically by the program-synthesis engine (in ILP termino-
logy, we require X to be augmented by predicate-invention only). In turn, this
means that the background knowledge B in the ILP formulation of the program-
synthesis task will need to be augmented with definitions for sequence, selection
and iteration to allow inference; and perhaps also meta-information that can
help learn these control structures from data. The former is straightforward, the
latter is less obvious.

Remark: Note that all problems in IPARC can be solved using Ef (X with
predicate-invention), even though not all (i,0) pairs from £ would have a solution
in X;". (From proposition 1, we have ¥ is sufficient to obtain a solution to an
arbitrary (i,0) pair.)

4 IPARC

The Inductive Program Synthesis Challenge for ARC-like Tasks, or IPARC, is
intended to assess the current state of readiness of ILP systems to address chal-
lenges posed by the synthesis of structured programs. Specifically, we structure
tasks in the IPARC in the following way: (A) Tasks that require simple sequence
of steps; (B) Tasks that augment techniques in (A) with techniques for synthesis
of sub-programs; and (C) Tasks that augment techniques in (B) with techniques
for constructing full programs from sub-programs.

Below we describe the categories of tasks in the IPARC and provide ex-
amples in each category. Within each category, we distinguish between “easy”
and “hard” variants.” In all cases, programs that solve the tasks are generated
automatically. The programs serve two purposes: they serve as potential ‘target
programs’ for the program-synthesis engines; and they can be used as generators

8 This is consistent with the Bshm-Jacopini result, which says that more than just
sequence will be needed.

9 For reasons of space, a complete listing of tasks in each category is not provided.
Instead, we describe the requirements in each category, and provide some illustrative
examples. A complete listing will be available at the IPARC website.
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of data. The latter may prove useful for approaches that require more data than
are provided.

Remark 1 Assuming that the length of sequence of operators is I and number
of options for each operator is d, the size of this set is O(d'). So, the complexity
increases exponentially with the length. For IPARC tasks, we seek to have the
length between 4 — 8. For instance, the Structure functions we have chosen to
strictly alternate between Dilation and Erostion, starting with Dilation, and
each operator has a choice of eight structuring elements (illustrated in Figure 4).
Hence d in this case is 8. So, the size of the search space is of the order 2%,

4.1 Category A: Warm-Up

Category A tasks consist simply of learning generalisations by functional compos-
itions of relations in ;. The tasks are in two sub-categories: (a) Easy. Solutions
of tasks consist of programs that require relations from the categories of Struc-
ture and Endomorphisms; and (b) Hard. Solutions of tasks consist of programs
that require relations from the entire set in ;.

In principle, all programs in Category A can be obtained by a generate-
and-test approach, with some simple generalisation over parameters used by the
background relations. However the size of the search-space (see Remark 1) may
preclude such a brute-force approach. Figure 5 illustrates a simple program from

category A.
- | HE 1 -
|
m " |
(a) (b) (©) (@) ©

Figure 5. Example images from a program used to generate data in Category A, where
(a) shows a sample input image, (b) shows the image obtained after operating on (a)
with Dilation_SE4, (c) shows the image after operating on (b) with Erosion_SE5, (d)
shows the image after operating on (¢) with Dilation SE1, and (e) shows the image
after operating on (d) with Erosion_SE3.

4.2 Category B: Learning Sub-Programs

Proposition 2 suggests that in general, an ability to invent new functions may
be needed to construct programs that explain multiple instances in an ARC-
like task. Here we consider a simpler but nevertheless still useful variant of the
general predicate-invention problem. All the tasks we consider here are solvable
as in Category A, but inventing one or more new functions defined in terms
of functions already in X will allow a more compact definitions across tasks,
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due to reuse of definitions. Within this restricted setting, we propose tasks that
require the invention of predicates corresponding to subsets of functions in Y.

For all tasks in this category, systems are given a set of ARC-like tasks
{T\,T5,...,Tn}. Let Hy,Hs,...,Hy be individual programs obtained inde-
pendently for each task using background relations in ;. The tasks involve auto-
matically augmenting X to X7 D X and obtaining programs Hj, Hj, ..., Hy
such that (|2 U H; U Hy---U Hyl|) > (/2] UH UH,---U HY|), where | - |
denotes some measure of size.

Augmentations correspond to sub-programs, and in an ILP setting corres-
ponds to invention of the new predicates. We propose tasks that benefit from
the following kinds of predicate-invention:

(a) Invention of Sequence. The predicate to be invented can be seen as to be
of the kind used in the inter-construction operation of inverse resolution [6]. Tt
may be helpful to think of this form of predicate-invention as ‘slot-filling’ in the
value of NewP in the following higher-order statement (the syntax is Prolog-ish;
X, Y are images):

newp(X,Y,NewP) : - NewP(X,Y).

New predicate definitions are therefore similar to the programs obtained in Cat-
egory A, except they may only represent some sub-computation. As with Cat-
egory A, we will distinguish between Easy and Hard variants, where specifica-
tions of these sub-categories will be available on the IPARC website.

(b) Invention of Selection. Here predicate-invention is used to represent con-
ditionals. As above, it may be helpful to see this to mean slot-filling the values
of Q, NewP1, and NewP2 in the following Prolog-like higher-order statement:®

if_else(X,Y,Q,NewP1,NewP2):- (Q(X) -> NewP1(X,Y); NewP2(X,Y)).

In all tasks, we will assume Q to be restricted to one of the Hit-or-Miss relations
in ;. We again propose to distinguish between Easy and Hard variants; we refer
the reader to the IPARC website for details.

(c) Invention of Iteration. We will restrict iteration to bounded repetition.
corresponding to slot-filling K and NewP in:

repeat k(X,Y,K,NewP) : -
(K >0 -> (NewP(X,Y1), K1 is K - 1, repeat k(Y1,Y,K1,NewP)); Y=X).

Again, some tasks will involve the invention of more complex iterators than
others.

In each case, the benefit of predicate-invention has to be decided automatic-
ally, based on: (a) the repeated occurrence on some subset of tasks provided; and
(b) the trade-off of increasing the size of Xy with the addition of new functions
and the decrease in overall size of the programs for all tasks. Figure 6 shows
example of Selection predicate-invention.

10 a->B;C is to be read as “if A then B else C”; X, Y are images, Q is a variable, standing
for any Boolean function of X from X, NewP1 and NewP2 are invented predicates.
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(a) (b) (c) ()

Figure 6. Example of Selection predicate-invention in Category B. (a) indicates the
input image. (b) is obtained using the Dilation_SE3 operator on (a). (c) indic-
ates the pixels selected using Hit_Or Miss_SE3. Recall that Hit_Or_Miss selects those
pixels which fit a particular pattern and is used to simulate the Conditional Q. (d)
shows the final image where pixels identified by the conditional are transformed using
Dilation_SE1 and the rest of the pixels are transformed using Dilation_SE2. That is,
we have NewP1 = Dilation SE1 and NewP2 = Dilation_SE2.

4.3 Category C: Learning Programs from Traces

This category is concerned with the connecting sub-programs using a sequence
of examples describing a computation trace. This requires us to generalise the
definition of ARC-like tasks to include data in a manner akin to inductive pro-
gram synthesis by demonstration (PBD [5]). Instead of a task containing a set
pairs of input-output images, it is now a set of sequences of images. Each se-
quence represents a computation by the program from an input-image to an
output-image.'! Given a set of tasks {Ty, T, ..., Tn}, the requirement is to find
a program that correctly derives all the intermediate input-output pairs of im-
ages. Suppose the computation for task 7} is represented by the sequence of
images (I1,152,...,1jn,). Then each pair (I, Ijx+1) in this sequence can
be seen as a specification for a Category B task. Several (sub-)programs may
synthesised could solve this task. In principle, a complete solution for a set of
tasks in Category C can be found by identifying and combining alternative sub-
programs for all such image-pairs, possibly with some generalisation. Again, the
combinations possible may preclude such a brute-force approach. Tasks within
the category C would provide snapshots after each sub-program (belonging to
Category A or B) similar to the one provided in figures 5 and 6.

Website for the dataset

The dataset and the generating procedures will be hosted on https://github.
com/ac20/IPARC_ChallengeV2.

5 Concluding Remarks

Inductive program synthesis, especially using small data sets exemplifying visual
analogy problems has a surprisingly long history in Computer Science. The Ab-

1 This is clearly more information than provided in in Categories A and B, and, in that
sense, Category C tasks can be seen as providing more constraints on the program-
synthesis problem.
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straction and Reasoning Corpus (ARC) continues this long tradition. The ARC
presents a formidable challenge to the use of machine learning techniques for pro-
gram synthesis: it is abstract, dealing with apparently arbitrary visual patterns;
the data are extremely limited; it requires some core background knowledge,
which may be necessary but not sufficient. Finally, the programs are required
to be applicable on data which may look substantially different. No signific-
ant details are available on either the background knowledge or the new data,
and all that is known is that all tasks in the ARC have been solved manually
(but the solutions are not known). While the ARC represents a laudable goal
to achieve, we have used it as inspiration for the Inductive Program Synthesis
Challenge for ARC-like Tasks (IPARC). The IPARC presents a controlled set-
ting directly concerned with the automated synthesis of programs. We propose
a definition of ‘ARC-like’ images, identify a set of ‘ARC-like’ tasks, and provide
background knowledge, with the following properties: (a) All images in the ARC
are also in the set of ARC-like images; (b) The tasks are concerned with identi-
fying constructs known to be sufficient for a large class of structured programs;
and (c¢) The background knowledge is provably sufficient for any specific pair of
images in the data provided for each ARC-like task. We provide training- and
test-data sets for all tasks, and also present programs that correctly transform
input-images to output-images (although these may not be the only solutions).

We note here that the background knowledge proposed for solving IPARC
tasks may not immediately useful for ARC tasks. For example, consider the case
that there exists a unique program in X", (that is, functions in ¥; and augmen-
ted with predicates invented for specific compositions, selection and iteration)
that solves every training example of an ARC task. An IPARC solver will find
this program, but this program may still fail for the test example(s) in the ARC
task, with the ‘true’ solution program being outside Zf , which uses the hitherto
unspecified and possibly unknown set of ‘core knowledge’ primitives that ARC
tasks are based on. This does not of course invalidate the utility of an ILP engine
capable of starting with some set background primitives and enlarging that set
to construct programs automatically from examples.

Despite its restricted setting, tasks in the IPARC are still non-trivial. They
require the identification of sub-programs consisting of sequences of functional
transformations, conditionals and iteration. In principle, techniques have been
proposed and demonstrated within ILP systems for addressing each of these
requirements. But these have been over nearly 4 decades of conceptual develop-
ment in the use of domain-knowledge, predicate-invention, and learning recursive
programs. What about in practice? That is, are there any current ILP systems
that can address the type of problems posed in the IPARC? We invite ILP
practitioners to participate in the IPARC and showcase the program-synthesis
capabilities of their ILP system.
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Lemma 2. Gien any two images I Ik < [k

m,n’ Tm,n m,n’

one can find a sequence
of transitions within ¢ operators which takes in as input I*  and returns f,’fm

m,n

From lemmas 1 and 2, it is clear that there exists a sequence of transitions

which takes in as input I¥, 1.n, and returns f,’fw’m. We first prove lemma 1
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Proof (Proof of lemma 2). Observe the following - Given any two binary images
(of same shape) Iy, I, with I; as non-zero, we have that,

dner, (I) =1z (5)

Case A: If all of Iy(r?n (refer figure 3.2) are non-empty, we have that there

exists a transition qﬁ(i) which takes I,gi)n to output f,(ﬁ)n

Case B: Let I,(ﬁor)b be empty for some colour ig. Since Iﬁl,n is non-empty, there
exists an ¢’ such that L(,QL is non-empty. We define the operator ¢ as follows -
¢ = id, where id denotes the identity map, and the colour change ¢ maps

colour ' to ig. Then the proof is as in Case A.

Proof (Proof of proposition 2). The proof of proposition 2 follows from the fol-
lowing observation - Any given transition in X either

— Takes an element from ﬁfn’n to itself, or

— Takes an element from Effmn to £F . or

m,n’
— Takes an element from £%,  to £k, . where m’ # m and n/ # n.

Thus, given any I1, I5 and f we have that the shape of (1:1) =y f(I1) should be
the same as (I5) =x f(I2).

However, it is possible for an ARC-like task to have different shapes for (f 1)
and (I3). An example of this is shown below.

Crop with corners Crop with corners

(11),(3.2) (11),(3.3)

Figure 7. Example of ARC-like task with different output shapes.

B Description of basic mathematical morphological
operators

Dilation. The dilation operator uses the Boolean function OR. For any s.e. B,
the dilation operation (dp(-)) is shown as an example in Fig. 8. Here X is
the input. Simply put, the dilation operator places the s.e at each 1 pixel
and takes the union of all the resulting images (equivalently, the disjunction
of the pixel values within the “window” defined by the s.e.)
Mathematically, we have

p(X)=XoB=JX,
beB (6)
={z| B, NX # 0}
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1 1
1 1 1 @ 1 1
) 1 @ | Dilation i !
1 1
B
X Place the center of B at each 1 pixel of X. XeB
and take the union
Figure 8. Illustrating the Dilation operator.
1 it
1 1 1 1 i @ i 1
11 INIO]E! —Brosion L T 1
1 1 1
B
X Place the center of B at cach 1 pixel of X. XoB
and take all the pixels for which B, “fits”
Figure 9. Illustrating the Erosion operator.
1l
L | ©
Erosion with By
1 1 —_— o
1 1 1 1 @ 1
1 1 1 1 1
1
By fits the foreground Select all pixels where By
fits the foreground
. Intersection
1 1 1
1
1 1] 1] |
1 1 1 1 O L
X . O . Brosion with By [ P X
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
B, fits the backg
X Select all pixels where By

and Shroff

fits the background

Figure 10. Illustrating the Hit-or-Miss operator.
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where X3 denotes the set X translates by b, B, denotes the set B translated
by z.

Erosion. The erosion operator (eg(-)) uses the Boolean function AND. It can
be thought of as an opposite of the dilation operator. Fig. 9 shows a simple
illustration. As before, X is considered the input and B denotes the s.e. used
to probe the input. That is, the erosion operator places the s.e at each pixel
and takes those pixels for which the s.e “fits” within the foreground (pixels
with value 1).

Mathematically, we have

EB(X):X@B: ﬂ X_b
beB (7)
={z|B: € X}

where X} denotes the set X translates by b, B, denotes the set B translated
by z.

Hit-or-Miss. The erosion operator can also be extended to match patterns
within the neighbourhood. Using two s.e’s B; and By (with shared origin)
we identify all pixels such that B;, matches the foreground (pixels with
1) and Bj, matches the background. This is referred to as the Hit-or-Miss
transform. An illustrative example is in Fig. 10.
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