Upload scrpt27.py with huggingface_hub
Browse files- scrpt27.py +93 -97
scrpt27.py
CHANGED
|
@@ -20,6 +20,7 @@ from magic_pdf.filter.pdf_classify_by_type import classify
|
|
| 20 |
import fitz # PyMuPDF
|
| 21 |
import time
|
| 22 |
import signal
|
|
|
|
| 23 |
|
| 24 |
# Set up logging
|
| 25 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
@@ -28,6 +29,7 @@ logger = logging.getLogger(__name__)
|
|
| 28 |
# Minimum batch size
|
| 29 |
MIN_BATCH_SIZE = 1
|
| 30 |
|
|
|
|
| 31 |
def parse_arguments():
|
| 32 |
parser = argparse.ArgumentParser(description="Process multiple PDFs using Magic PDF")
|
| 33 |
parser.add_argument("--input", default="input", help="Input folder containing PDF files")
|
|
@@ -39,31 +41,35 @@ def parse_arguments():
|
|
| 39 |
parser.add_argument("--initial-batch-size", type=int, default=1, help="Initial batch size for processing")
|
| 40 |
return parser.parse_args()
|
| 41 |
|
|
|
|
| 42 |
def load_config(config_path):
|
| 43 |
with open(config_path, 'r') as f:
|
| 44 |
return json.load(f)
|
| 45 |
|
|
|
|
| 46 |
def get_available_memory(gpu_id):
|
| 47 |
return torch.cuda.get_device_properties(gpu_id).total_memory - torch.cuda.memory_allocated(gpu_id)
|
| 48 |
|
|
|
|
| 49 |
def extract_images(pdf_path, output_folder):
|
| 50 |
doc = fitz.open(pdf_path)
|
| 51 |
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
| 52 |
images_folder = os.path.join(output_folder, 'images')
|
| 53 |
os.makedirs(images_folder, exist_ok=True)
|
| 54 |
-
|
| 55 |
for page_num, page in enumerate(doc):
|
| 56 |
for img_index, img in enumerate(page.get_images(full=True)):
|
| 57 |
xref = img[0]
|
| 58 |
base_image = doc.extract_image(xref)
|
| 59 |
image_bytes = base_image["image"]
|
| 60 |
image_ext = base_image["ext"]
|
| 61 |
-
image_filename = f'{pdf_name}_{page_num+1:03d}_{img_index+1:03d}.{image_ext}'
|
| 62 |
image_path = os.path.join(images_folder, image_filename)
|
| 63 |
with open(image_path, "wb") as image_file:
|
| 64 |
image_file.write(image_bytes)
|
| 65 |
doc.close()
|
| 66 |
|
|
|
|
| 67 |
class MagicModel:
|
| 68 |
def __init__(self, config):
|
| 69 |
self.config = config
|
|
@@ -73,7 +79,8 @@ class MagicModel:
|
|
| 73 |
with open(log_file_path, 'a') as log_file:
|
| 74 |
log_file.write(f"Entering process_pdf\n")
|
| 75 |
log_file.write(f" parse_type: {parse_type}, (expected: str)\n")
|
| 76 |
-
log_file.write(
|
|
|
|
| 77 |
for page_index, page_info in enumerate(layout_info):
|
| 78 |
try:
|
| 79 |
with open(log_file_path, 'a') as log_file:
|
|
@@ -106,6 +113,7 @@ class MagicModel:
|
|
| 106 |
log_file.write(f"Exiting process_page\n")
|
| 107 |
return result
|
| 108 |
|
|
|
|
| 109 |
def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
|
| 110 |
start_time = time.time()
|
| 111 |
pdf_name = os.path.splitext(os.path.basename(input_file))[0]
|
|
@@ -134,17 +142,18 @@ def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_b
|
|
| 134 |
torch.set_default_device('cpu')
|
| 135 |
|
| 136 |
pdf_data = read_file(input_file, 'rb')
|
| 137 |
-
|
| 138 |
# Perform PDF metadata scan
|
| 139 |
metadata = pdf_meta_scan(pdf_data)
|
| 140 |
with open(log_file_path, 'a') as log_file:
|
| 141 |
log_file.write(f"Processing PDF: {input_file}\n")
|
| 142 |
log_file.write(f"Metadata (expected: dict): {json.dumps(metadata, indent=2)}\n")
|
| 143 |
-
|
| 144 |
# Check if metadata indicates the PDF should be dropped
|
| 145 |
if metadata.get("_need_drop", False):
|
| 146 |
with open(log_file_path, 'a') as log_file:
|
| 147 |
-
log_file.write(
|
|
|
|
| 148 |
return input_file, "Dropped", None
|
| 149 |
|
| 150 |
# Check if all required fields are present in metadata
|
|
@@ -153,7 +162,7 @@ def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_b
|
|
| 153 |
for field in required_fields:
|
| 154 |
if field not in metadata:
|
| 155 |
raise ValueError(f"Required field '{field}' not found in metadata for {input_file}")
|
| 156 |
-
|
| 157 |
# Extract required fields for classify function
|
| 158 |
total_page = metadata['total_page']
|
| 159 |
page_width = metadata['page_width_pts']
|
|
@@ -172,26 +181,22 @@ def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_b
|
|
| 172 |
log_file.write(f" img_sz_list (expected: list of lists): {img_sz_list[:5]}...\n")
|
| 173 |
log_file.write(f" text_len_list (expected: list of ints): {text_len_list[:5]}...\n")
|
| 174 |
log_file.write(f" img_num_list (expected: list of ints): {img_num_list[:5]}...\n")
|
| 175 |
-
log_file.write(
|
|
|
|
| 176 |
log_file.write(f" invalid_chars (expected: bool): {invalid_chars}\n")
|
| 177 |
|
| 178 |
# Classify PDF
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
|
| 190 |
-
except Exception as e:
|
| 191 |
-
with open(log_file_path, 'a') as log_file:
|
| 192 |
-
log_file.write(f"Error in classify function for {input_file}: {str(e)}\n")
|
| 193 |
-
return input_file, f"Classification Error: {str(e)}", None
|
| 194 |
-
|
| 195 |
image_writer = DiskReaderWriter(output_subfolder)
|
| 196 |
with open(log_file_path, 'a') as log_file:
|
| 197 |
log_file.write(f"Image writer initialized: {image_writer}\n")
|
|
@@ -203,7 +208,7 @@ def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_b
|
|
| 203 |
unipipe = UNIPipe(pdf_data, jso_useful_key, image_writer)
|
| 204 |
with open(log_file_path, 'a') as log_file:
|
| 205 |
log_file.write(f"UNIPipe initialized: {unipipe}\n")
|
| 206 |
-
|
| 207 |
parse_type = unipipe.pipe_classify()
|
| 208 |
with open(log_file_path, 'a') as log_file:
|
| 209 |
log_file.write(f"pipe_classify result (expected: str): {parse_type}\n")
|
|
@@ -212,81 +217,58 @@ def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_b
|
|
| 212 |
with open(log_file_path, 'a') as log_file:
|
| 213 |
log_file.write(f"Detailed pipe_analyze Inputs for {input_file}:\n")
|
| 214 |
log_file.write(f" parse_type (expected: str): {parse_type}\n")
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
except Exception as e:
|
| 220 |
-
with open(log_file_path, 'a') as log_file:
|
| 221 |
-
log_file.write(f"Error in pipe_analyze for {input_file}: {str(e)}\n")
|
| 222 |
-
return input_file, f"pipe_analyze Error: {str(e)}", None
|
| 223 |
|
| 224 |
# Use OCR if it's not classified as a text PDF
|
| 225 |
if not is_text_pdf:
|
| 226 |
parse_type = 'ocr'
|
| 227 |
with open(log_file_path, 'a') as log_file:
|
| 228 |
-
log_file.write(
|
| 229 |
-
|
|
|
|
| 230 |
# Process the PDF using the model
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
log_file.write(f"Model process_pdf result (expected: dict): {parse_result}\n")
|
| 235 |
-
except Exception as e:
|
| 236 |
-
with open(log_file_path, 'a') as log_file:
|
| 237 |
-
log_file.write(f"Error in model processing for {input_file}: {str(e)}\n")
|
| 238 |
-
return input_file, f"Model Processing Error: {str(e)}", None
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
return input_file, f"pipe_mk_markdown Error: {str(e)}", None
|
| 249 |
|
| 250 |
-
try:
|
| 251 |
-
uni_format = unipipe.pipe_mk_uni_format(parse_result)
|
| 252 |
-
with open(log_file_path, 'a') as log_file:
|
| 253 |
-
log_file.write(f"pipe_mk_uni_format result (expected: dict): {uni_format}\n")
|
| 254 |
-
except Exception as e:
|
| 255 |
-
with open(log_file_path, 'a') as log_file:
|
| 256 |
-
log_file.write(f"Error in pipe_mk_uni_format for {input_file}: {str(e)}\n")
|
| 257 |
-
log_file.write(f" parse_result (expected: dict): {parse_result}\n")
|
| 258 |
-
return input_file, f"pipe_mk_uni_format Error: {str(e)}", None
|
| 259 |
-
|
| 260 |
# Write markdown content
|
| 261 |
with open(os.path.join(output_subfolder, f'{pdf_name}.md'), 'w', encoding='utf-8') as f:
|
| 262 |
f.write(markdown_content)
|
| 263 |
-
|
| 264 |
# Write middle.json
|
| 265 |
with open(os.path.join(output_subfolder, 'middle.json'), 'w', encoding='utf-8') as f:
|
| 266 |
json.dump(parse_result, f, ensure_ascii=False, indent=2)
|
| 267 |
-
|
| 268 |
# Write model.json
|
| 269 |
with open(os.path.join(output_subfolder, 'model.json'), 'w', encoding='utf-8') as f:
|
| 270 |
json.dump(uni_format, f, ensure_ascii=False, indent=2)
|
| 271 |
-
|
| 272 |
# Copy original PDF
|
| 273 |
shutil.copy(input_file, os.path.join(output_subfolder, f'{pdf_name}.pdf'))
|
| 274 |
-
|
| 275 |
# Generate layout.pdf and spans.pdf
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
except Exception as e:
|
| 279 |
-
with open(log_file_path, 'a') as log_file:
|
| 280 |
-
log_file.write(f"Error in do_parse for {input_file}: {str(e)}\n")
|
| 281 |
-
return input_file, f"do_parse Error: {str(e)}", None
|
| 282 |
-
|
| 283 |
# Extract images
|
| 284 |
extract_images(input_file, output_subfolder)
|
| 285 |
-
|
| 286 |
processing_time = time.time() - start_time
|
| 287 |
with open(log_file_path, 'a') as log_file:
|
| 288 |
-
log_file.write(
|
| 289 |
-
|
|
|
|
| 290 |
# Prepare result for JSONL output
|
| 291 |
result = {
|
| 292 |
"file_name": pdf_name,
|
|
@@ -296,7 +278,7 @@ def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_b
|
|
| 296 |
"classification": classification_results,
|
| 297 |
"is_text_pdf": is_text_pdf
|
| 298 |
}
|
| 299 |
-
|
| 300 |
return input_file, "Success", result
|
| 301 |
|
| 302 |
except ValueError as ve:
|
|
@@ -310,15 +292,22 @@ def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_b
|
|
| 310 |
return input_file, "Timeout", None
|
| 311 |
|
| 312 |
except Exception as e:
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
finally:
|
| 318 |
signal.alarm(0) # Cancel the alarm
|
| 319 |
if gpu_id >= 0:
|
| 320 |
torch.cuda.empty_cache()
|
| 321 |
|
|
|
|
| 322 |
def process_pdf_batch(batch, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
|
| 323 |
results = []
|
| 324 |
for pdf_file in batch:
|
|
@@ -326,6 +315,7 @@ def process_pdf_batch(batch, output_folder, gpu_id, config, timeout, use_bf16, m
|
|
| 326 |
results.append(result)
|
| 327 |
return results
|
| 328 |
|
|
|
|
| 329 |
def write_to_jsonl(results, output_file):
|
| 330 |
with open(output_file, 'a') as f:
|
| 331 |
for result in results:
|
|
@@ -333,6 +323,7 @@ def write_to_jsonl(results, output_file):
|
|
| 333 |
json.dump(result[2], f)
|
| 334 |
f.write('\n')
|
| 335 |
|
|
|
|
| 336 |
def get_gpu_memory_usage(gpu_id):
|
| 337 |
if gpu_id < 0:
|
| 338 |
return 0, 0 # CPU mode
|
|
@@ -340,18 +331,19 @@ def get_gpu_memory_usage(gpu_id):
|
|
| 340 |
allocated_memory = torch.cuda.memory_allocated(gpu_id)
|
| 341 |
return allocated_memory, total_memory
|
| 342 |
|
|
|
|
| 343 |
def main():
|
| 344 |
mp.set_start_method('spawn', force=True)
|
| 345 |
-
|
| 346 |
args = parse_arguments()
|
| 347 |
config = load_config(args.config)
|
| 348 |
-
|
| 349 |
input_folder = args.input
|
| 350 |
output_folder = args.output
|
| 351 |
os.makedirs(output_folder, exist_ok=True)
|
| 352 |
-
|
| 353 |
pdf_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.endswith('.pdf')]
|
| 354 |
-
|
| 355 |
num_gpus = torch.cuda.device_count()
|
| 356 |
if num_gpus == 0:
|
| 357 |
print("No GPUs available. Using CPU.")
|
|
@@ -359,20 +351,20 @@ def main():
|
|
| 359 |
gpu_ids = [-1]
|
| 360 |
else:
|
| 361 |
gpu_ids = list(range(num_gpus))
|
| 362 |
-
|
| 363 |
num_workers = args.max_workers or min(num_gpus, os.cpu_count())
|
| 364 |
-
|
| 365 |
main_jsonl = os.path.join(output_folder, 'processing_results.jsonl')
|
| 366 |
temp_jsonl = os.path.join(output_folder, 'temp_results.jsonl')
|
| 367 |
log_file_path = os.path.join(output_folder, 'processing_log.txt')
|
| 368 |
-
|
| 369 |
# Enable deterministic mode
|
| 370 |
torch.backends.cudnn.deterministic = True
|
| 371 |
torch.backends.cudnn.benchmark = False
|
| 372 |
-
|
| 373 |
# Load the model
|
| 374 |
model = MagicModel(config)
|
| 375 |
-
|
| 376 |
results = []
|
| 377 |
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
| 378 |
for gpu_id in gpu_ids:
|
|
@@ -382,16 +374,18 @@ def main():
|
|
| 382 |
while pdf_index < len(pdf_files):
|
| 383 |
batch = pdf_files[pdf_index:pdf_index + batch_size]
|
| 384 |
try:
|
| 385 |
-
future = executor.submit(process_pdf_batch, batch, output_folder, gpu_id, config, args.timeout,
|
|
|
|
| 386 |
batch_results = future.result()
|
| 387 |
results.extend(batch_results)
|
| 388 |
for result in batch_results:
|
| 389 |
write_to_jsonl([result], temp_jsonl)
|
| 390 |
-
|
| 391 |
# Print VRAM usage
|
| 392 |
allocated, total = get_gpu_memory_usage(gpu_id)
|
| 393 |
with open(log_file_path, 'a') as log_file:
|
| 394 |
-
log_file.write(
|
|
|
|
| 395 |
# If successful and OOM hasn't occurred yet, increase batch size
|
| 396 |
if not oom_occurred:
|
| 397 |
batch_size += 1
|
|
@@ -404,24 +398,25 @@ def main():
|
|
| 404 |
log_file.write(f"OOM error occurred. Reducing batch size to {batch_size}\n")
|
| 405 |
torch.cuda.empty_cache()
|
| 406 |
continue
|
| 407 |
-
|
| 408 |
# After processing each batch, move temp JSONL to main JSONL
|
| 409 |
if os.path.exists(temp_jsonl):
|
| 410 |
with open(temp_jsonl, 'r') as temp, open(main_jsonl, 'a') as main:
|
| 411 |
shutil.copyfileobj(temp, main)
|
| 412 |
os.remove(temp_jsonl)
|
| 413 |
-
|
| 414 |
# Clear GPU cache after each batch
|
| 415 |
if gpu_id >= 0:
|
| 416 |
torch.cuda.empty_cache()
|
| 417 |
-
|
| 418 |
success_count = sum(1 for _, status, _ in results if status == "Success")
|
| 419 |
timeout_count = sum(1 for _, status, _ in results if status == "Timeout")
|
| 420 |
error_count = len(results) - success_count - timeout_count
|
| 421 |
-
|
| 422 |
with open(log_file_path, 'a') as log_file:
|
| 423 |
-
log_file.write(
|
| 424 |
-
|
|
|
|
| 425 |
with open(os.path.join(output_folder, 'processing_summary.txt'), 'w') as summary:
|
| 426 |
summary.write(f"Total PDFs processed: {len(results)}\n")
|
| 427 |
summary.write(f"Successful: {success_count}\n")
|
|
@@ -431,5 +426,6 @@ def main():
|
|
| 431 |
for pdf, status, _ in [result for result in results if result[1] != "Success"]:
|
| 432 |
summary.write(f" - {pdf}: {status}\n")
|
| 433 |
|
|
|
|
| 434 |
if __name__ == '__main__':
|
| 435 |
main()
|
|
|
|
| 20 |
import fitz # PyMuPDF
|
| 21 |
import time
|
| 22 |
import signal
|
| 23 |
+
import traceback
|
| 24 |
|
| 25 |
# Set up logging
|
| 26 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 29 |
# Minimum batch size
|
| 30 |
MIN_BATCH_SIZE = 1
|
| 31 |
|
| 32 |
+
|
| 33 |
def parse_arguments():
|
| 34 |
parser = argparse.ArgumentParser(description="Process multiple PDFs using Magic PDF")
|
| 35 |
parser.add_argument("--input", default="input", help="Input folder containing PDF files")
|
|
|
|
| 41 |
parser.add_argument("--initial-batch-size", type=int, default=1, help="Initial batch size for processing")
|
| 42 |
return parser.parse_args()
|
| 43 |
|
| 44 |
+
|
| 45 |
def load_config(config_path):
|
| 46 |
with open(config_path, 'r') as f:
|
| 47 |
return json.load(f)
|
| 48 |
|
| 49 |
+
|
| 50 |
def get_available_memory(gpu_id):
|
| 51 |
return torch.cuda.get_device_properties(gpu_id).total_memory - torch.cuda.memory_allocated(gpu_id)
|
| 52 |
|
| 53 |
+
|
| 54 |
def extract_images(pdf_path, output_folder):
|
| 55 |
doc = fitz.open(pdf_path)
|
| 56 |
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
| 57 |
images_folder = os.path.join(output_folder, 'images')
|
| 58 |
os.makedirs(images_folder, exist_ok=True)
|
| 59 |
+
|
| 60 |
for page_num, page in enumerate(doc):
|
| 61 |
for img_index, img in enumerate(page.get_images(full=True)):
|
| 62 |
xref = img[0]
|
| 63 |
base_image = doc.extract_image(xref)
|
| 64 |
image_bytes = base_image["image"]
|
| 65 |
image_ext = base_image["ext"]
|
| 66 |
+
image_filename = f'{pdf_name}_{page_num + 1:03d}_{img_index + 1:03d}.{image_ext}'
|
| 67 |
image_path = os.path.join(images_folder, image_filename)
|
| 68 |
with open(image_path, "wb") as image_file:
|
| 69 |
image_file.write(image_bytes)
|
| 70 |
doc.close()
|
| 71 |
|
| 72 |
+
|
| 73 |
class MagicModel:
|
| 74 |
def __init__(self, config):
|
| 75 |
self.config = config
|
|
|
|
| 79 |
with open(log_file_path, 'a') as log_file:
|
| 80 |
log_file.write(f"Entering process_pdf\n")
|
| 81 |
log_file.write(f" parse_type: {parse_type}, (expected: str)\n")
|
| 82 |
+
log_file.write(
|
| 83 |
+
f" layout_info (length: {len(layout_info)}), (expected: list of dicts): {layout_info}\n")
|
| 84 |
for page_index, page_info in enumerate(layout_info):
|
| 85 |
try:
|
| 86 |
with open(log_file_path, 'a') as log_file:
|
|
|
|
| 113 |
log_file.write(f"Exiting process_page\n")
|
| 114 |
return result
|
| 115 |
|
| 116 |
+
|
| 117 |
def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
|
| 118 |
start_time = time.time()
|
| 119 |
pdf_name = os.path.splitext(os.path.basename(input_file))[0]
|
|
|
|
| 142 |
torch.set_default_device('cpu')
|
| 143 |
|
| 144 |
pdf_data = read_file(input_file, 'rb')
|
| 145 |
+
|
| 146 |
# Perform PDF metadata scan
|
| 147 |
metadata = pdf_meta_scan(pdf_data)
|
| 148 |
with open(log_file_path, 'a') as log_file:
|
| 149 |
log_file.write(f"Processing PDF: {input_file}\n")
|
| 150 |
log_file.write(f"Metadata (expected: dict): {json.dumps(metadata, indent=2)}\n")
|
| 151 |
+
|
| 152 |
# Check if metadata indicates the PDF should be dropped
|
| 153 |
if metadata.get("_need_drop", False):
|
| 154 |
with open(log_file_path, 'a') as log_file:
|
| 155 |
+
log_file.write(
|
| 156 |
+
f"Dropping PDF {input_file}: {metadata.get('_drop_reason', 'Unknown reason')}\n")
|
| 157 |
return input_file, "Dropped", None
|
| 158 |
|
| 159 |
# Check if all required fields are present in metadata
|
|
|
|
| 162 |
for field in required_fields:
|
| 163 |
if field not in metadata:
|
| 164 |
raise ValueError(f"Required field '{field}' not found in metadata for {input_file}")
|
| 165 |
+
|
| 166 |
# Extract required fields for classify function
|
| 167 |
total_page = metadata['total_page']
|
| 168 |
page_width = metadata['page_width_pts']
|
|
|
|
| 181 |
log_file.write(f" img_sz_list (expected: list of lists): {img_sz_list[:5]}...\n")
|
| 182 |
log_file.write(f" text_len_list (expected: list of ints): {text_len_list[:5]}...\n")
|
| 183 |
log_file.write(f" img_num_list (expected: list of ints): {img_num_list[:5]}...\n")
|
| 184 |
+
log_file.write(
|
| 185 |
+
f" text_layout_list (expected: list of strs): {text_layout_list[:5]}...\n")
|
| 186 |
log_file.write(f" invalid_chars (expected: bool): {invalid_chars}\n")
|
| 187 |
|
| 188 |
# Classify PDF
|
| 189 |
+
is_text_pdf, classification_results = classify(
|
| 190 |
+
total_page, page_width, page_height, img_sz_list[:total_page],
|
| 191 |
+
text_len_list[:total_page], img_num_list[:total_page],
|
| 192 |
+
text_layout_list[:len(text_layout_list)], invalid_chars
|
| 193 |
+
)
|
| 194 |
+
with open(log_file_path, 'a') as log_file:
|
| 195 |
+
log_file.write(f"Classification Results:\n")
|
| 196 |
+
log_file.write(f" is_text_pdf (expected: bool): {is_text_pdf}\n")
|
| 197 |
+
log_file.write(
|
| 198 |
+
f" classification_results (expected: dict): {classification_results}\n")
|
| 199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
image_writer = DiskReaderWriter(output_subfolder)
|
| 201 |
with open(log_file_path, 'a') as log_file:
|
| 202 |
log_file.write(f"Image writer initialized: {image_writer}\n")
|
|
|
|
| 208 |
unipipe = UNIPipe(pdf_data, jso_useful_key, image_writer)
|
| 209 |
with open(log_file_path, 'a') as log_file:
|
| 210 |
log_file.write(f"UNIPipe initialized: {unipipe}\n")
|
| 211 |
+
|
| 212 |
parse_type = unipipe.pipe_classify()
|
| 213 |
with open(log_file_path, 'a') as log_file:
|
| 214 |
log_file.write(f"pipe_classify result (expected: str): {parse_type}\n")
|
|
|
|
| 217 |
with open(log_file_path, 'a') as log_file:
|
| 218 |
log_file.write(f"Detailed pipe_analyze Inputs for {input_file}:\n")
|
| 219 |
log_file.write(f" parse_type (expected: str): {parse_type}\n")
|
| 220 |
+
layout_info = unipipe.pipe_analyze()
|
| 221 |
+
with open(log_file_path, 'a') as log_file:
|
| 222 |
+
log_file.write(
|
| 223 |
+
f"pipe_analyze Results (expected: list of dicts, length: {len(layout_info)}): {layout_info}\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
# Use OCR if it's not classified as a text PDF
|
| 226 |
if not is_text_pdf:
|
| 227 |
parse_type = 'ocr'
|
| 228 |
with open(log_file_path, 'a') as log_file:
|
| 229 |
+
log_file.write(
|
| 230 |
+
f"parse_type after OCR check (expected: str): {parse_type}\n")
|
| 231 |
+
|
| 232 |
# Process the PDF using the model
|
| 233 |
+
parse_result = model.process_pdf(pdf_data, parse_type, layout_info, log_file_path)
|
| 234 |
+
with open(log_file_path, 'a') as log_file:
|
| 235 |
+
log_file.write(f"Model process_pdf result (expected: dict): {parse_result}\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
+
markdown_content = unipipe.pipe_mk_markdown(parse_result)
|
| 238 |
+
with open(log_file_path, 'a') as log_file:
|
| 239 |
+
log_file.write(
|
| 240 |
+
f"pipe_mk_markdown result (expected: str, length: {len(markdown_content)}): {markdown_content}\n")
|
| 241 |
+
|
| 242 |
+
uni_format = unipipe.pipe_mk_uni_format(parse_result)
|
| 243 |
+
with open(log_file_path, 'a') as log_file:
|
| 244 |
+
log_file.write(f"pipe_mk_uni_format result (expected: dict): {uni_format}\n")
|
|
|
|
| 245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
# Write markdown content
|
| 247 |
with open(os.path.join(output_subfolder, f'{pdf_name}.md'), 'w', encoding='utf-8') as f:
|
| 248 |
f.write(markdown_content)
|
| 249 |
+
|
| 250 |
# Write middle.json
|
| 251 |
with open(os.path.join(output_subfolder, 'middle.json'), 'w', encoding='utf-8') as f:
|
| 252 |
json.dump(parse_result, f, ensure_ascii=False, indent=2)
|
| 253 |
+
|
| 254 |
# Write model.json
|
| 255 |
with open(os.path.join(output_subfolder, 'model.json'), 'w', encoding='utf-8') as f:
|
| 256 |
json.dump(uni_format, f, ensure_ascii=False, indent=2)
|
| 257 |
+
|
| 258 |
# Copy original PDF
|
| 259 |
shutil.copy(input_file, os.path.join(output_subfolder, f'{pdf_name}.pdf'))
|
| 260 |
+
|
| 261 |
# Generate layout.pdf and spans.pdf
|
| 262 |
+
do_parse(input_file, parse_type, output_subfolder, draw_bbox=True)
|
| 263 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
# Extract images
|
| 265 |
extract_images(input_file, output_subfolder)
|
| 266 |
+
|
| 267 |
processing_time = time.time() - start_time
|
| 268 |
with open(log_file_path, 'a') as log_file:
|
| 269 |
+
log_file.write(
|
| 270 |
+
f"Successfully processed {input_file} on GPU {gpu_id} in {processing_time:.2f} seconds\n")
|
| 271 |
+
|
| 272 |
# Prepare result for JSONL output
|
| 273 |
result = {
|
| 274 |
"file_name": pdf_name,
|
|
|
|
| 278 |
"classification": classification_results,
|
| 279 |
"is_text_pdf": is_text_pdf
|
| 280 |
}
|
| 281 |
+
|
| 282 |
return input_file, "Success", result
|
| 283 |
|
| 284 |
except ValueError as ve:
|
|
|
|
| 292 |
return input_file, "Timeout", None
|
| 293 |
|
| 294 |
except Exception as e:
|
| 295 |
+
# Save full traceback to a file
|
| 296 |
+
traceback_file = os.path.join(output_folder, 'traceback.txt')
|
| 297 |
+
with open(traceback_file, 'w') as f:
|
| 298 |
+
f.write(traceback.format_exc())
|
| 299 |
+
|
| 300 |
+
# Print error message and traceback location to CLI
|
| 301 |
+
print(f"Error occurred: {e}")
|
| 302 |
+
print(f"Full traceback saved to: {traceback_file}")
|
| 303 |
+
exit(1) # Terminate the script
|
| 304 |
|
| 305 |
finally:
|
| 306 |
signal.alarm(0) # Cancel the alarm
|
| 307 |
if gpu_id >= 0:
|
| 308 |
torch.cuda.empty_cache()
|
| 309 |
|
| 310 |
+
|
| 311 |
def process_pdf_batch(batch, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
|
| 312 |
results = []
|
| 313 |
for pdf_file in batch:
|
|
|
|
| 315 |
results.append(result)
|
| 316 |
return results
|
| 317 |
|
| 318 |
+
|
| 319 |
def write_to_jsonl(results, output_file):
|
| 320 |
with open(output_file, 'a') as f:
|
| 321 |
for result in results:
|
|
|
|
| 323 |
json.dump(result[2], f)
|
| 324 |
f.write('\n')
|
| 325 |
|
| 326 |
+
|
| 327 |
def get_gpu_memory_usage(gpu_id):
|
| 328 |
if gpu_id < 0:
|
| 329 |
return 0, 0 # CPU mode
|
|
|
|
| 331 |
allocated_memory = torch.cuda.memory_allocated(gpu_id)
|
| 332 |
return allocated_memory, total_memory
|
| 333 |
|
| 334 |
+
|
| 335 |
def main():
|
| 336 |
mp.set_start_method('spawn', force=True)
|
| 337 |
+
|
| 338 |
args = parse_arguments()
|
| 339 |
config = load_config(args.config)
|
| 340 |
+
|
| 341 |
input_folder = args.input
|
| 342 |
output_folder = args.output
|
| 343 |
os.makedirs(output_folder, exist_ok=True)
|
| 344 |
+
|
| 345 |
pdf_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.endswith('.pdf')]
|
| 346 |
+
|
| 347 |
num_gpus = torch.cuda.device_count()
|
| 348 |
if num_gpus == 0:
|
| 349 |
print("No GPUs available. Using CPU.")
|
|
|
|
| 351 |
gpu_ids = [-1]
|
| 352 |
else:
|
| 353 |
gpu_ids = list(range(num_gpus))
|
| 354 |
+
|
| 355 |
num_workers = args.max_workers or min(num_gpus, os.cpu_count())
|
| 356 |
+
|
| 357 |
main_jsonl = os.path.join(output_folder, 'processing_results.jsonl')
|
| 358 |
temp_jsonl = os.path.join(output_folder, 'temp_results.jsonl')
|
| 359 |
log_file_path = os.path.join(output_folder, 'processing_log.txt')
|
| 360 |
+
|
| 361 |
# Enable deterministic mode
|
| 362 |
torch.backends.cudnn.deterministic = True
|
| 363 |
torch.backends.cudnn.benchmark = False
|
| 364 |
+
|
| 365 |
# Load the model
|
| 366 |
model = MagicModel(config)
|
| 367 |
+
|
| 368 |
results = []
|
| 369 |
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
| 370 |
for gpu_id in gpu_ids:
|
|
|
|
| 374 |
while pdf_index < len(pdf_files):
|
| 375 |
batch = pdf_files[pdf_index:pdf_index + batch_size]
|
| 376 |
try:
|
| 377 |
+
future = executor.submit(process_pdf_batch, batch, output_folder, gpu_id, config, args.timeout,
|
| 378 |
+
args.use_bf16, model, log_file_path)
|
| 379 |
batch_results = future.result()
|
| 380 |
results.extend(batch_results)
|
| 381 |
for result in batch_results:
|
| 382 |
write_to_jsonl([result], temp_jsonl)
|
| 383 |
+
|
| 384 |
# Print VRAM usage
|
| 385 |
allocated, total = get_gpu_memory_usage(gpu_id)
|
| 386 |
with open(log_file_path, 'a') as log_file:
|
| 387 |
+
log_file.write(
|
| 388 |
+
f"GPU {gpu_id} - Batch size: {batch_size}, VRAM usage: {allocated / 1024 ** 3:.2f}GB / {total / 1024 ** 3:.2f}GB\n")
|
| 389 |
# If successful and OOM hasn't occurred yet, increase batch size
|
| 390 |
if not oom_occurred:
|
| 391 |
batch_size += 1
|
|
|
|
| 398 |
log_file.write(f"OOM error occurred. Reducing batch size to {batch_size}\n")
|
| 399 |
torch.cuda.empty_cache()
|
| 400 |
continue
|
| 401 |
+
|
| 402 |
# After processing each batch, move temp JSONL to main JSONL
|
| 403 |
if os.path.exists(temp_jsonl):
|
| 404 |
with open(temp_jsonl, 'r') as temp, open(main_jsonl, 'a') as main:
|
| 405 |
shutil.copyfileobj(temp, main)
|
| 406 |
os.remove(temp_jsonl)
|
| 407 |
+
|
| 408 |
# Clear GPU cache after each batch
|
| 409 |
if gpu_id >= 0:
|
| 410 |
torch.cuda.empty_cache()
|
| 411 |
+
|
| 412 |
success_count = sum(1 for _, status, _ in results if status == "Success")
|
| 413 |
timeout_count = sum(1 for _, status, _ in results if status == "Timeout")
|
| 414 |
error_count = len(results) - success_count - timeout_count
|
| 415 |
+
|
| 416 |
with open(log_file_path, 'a') as log_file:
|
| 417 |
+
log_file.write(
|
| 418 |
+
f"Processed {len(results)} PDFs. {success_count} succeeded, {timeout_count} timed out, {error_count} failed.\n")
|
| 419 |
+
|
| 420 |
with open(os.path.join(output_folder, 'processing_summary.txt'), 'w') as summary:
|
| 421 |
summary.write(f"Total PDFs processed: {len(results)}\n")
|
| 422 |
summary.write(f"Successful: {success_count}\n")
|
|
|
|
| 426 |
for pdf, status, _ in [result for result in results if result[1] != "Success"]:
|
| 427 |
summary.write(f" - {pdf}: {status}\n")
|
| 428 |
|
| 429 |
+
|
| 430 |
if __name__ == '__main__':
|
| 431 |
main()
|