Upload scrpt27.py with huggingface_hub
Browse files- scrpt27.py +435 -0
scrpt27.py
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import shutil
|
| 4 |
+
import argparse
|
| 5 |
+
import logging
|
| 6 |
+
import multiprocessing as mp
|
| 7 |
+
from concurrent.futures import ProcessPoolExecutor, as_completed
|
| 8 |
+
import torch
|
| 9 |
+
import psutil
|
| 10 |
+
import numpy as np
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
from magic_pdf.pipe.UNIPipe import UNIPipe
|
| 13 |
+
from magic_pdf.libs.commons import read_file
|
| 14 |
+
from magic_pdf.libs.config_reader import get_device
|
| 15 |
+
from magic_pdf.tools.common import do_parse
|
| 16 |
+
from magic_pdf.libs.pdf_image_tools import cut_image
|
| 17 |
+
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
|
| 18 |
+
from magic_pdf.filter.pdf_meta_scan import pdf_meta_scan
|
| 19 |
+
from magic_pdf.filter.pdf_classify_by_type import classify
|
| 20 |
+
import fitz # PyMuPDF
|
| 21 |
+
import time
|
| 22 |
+
import signal
|
| 23 |
+
|
| 24 |
+
# Set up logging
|
| 25 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
+
|
| 28 |
+
# Minimum batch size
|
| 29 |
+
MIN_BATCH_SIZE = 1
|
| 30 |
+
|
| 31 |
+
def parse_arguments():
|
| 32 |
+
parser = argparse.ArgumentParser(description="Process multiple PDFs using Magic PDF")
|
| 33 |
+
parser.add_argument("--input", default="input", help="Input folder containing PDF files")
|
| 34 |
+
parser.add_argument("--output", default="output", help="Output folder for processed files")
|
| 35 |
+
parser.add_argument("--config", default="magic-pdf.template.json", help="Path to configuration file")
|
| 36 |
+
parser.add_argument("--timeout", type=int, default=240, help="Timeout for processing each PDF (in seconds)")
|
| 37 |
+
parser.add_argument("--max-workers", type=int, default=None, help="Maximum number of worker processes")
|
| 38 |
+
parser.add_argument("--use-bf16", action="store_true", help="Use bfloat16 precision for model inference")
|
| 39 |
+
parser.add_argument("--initial-batch-size", type=int, default=1, help="Initial batch size for processing")
|
| 40 |
+
return parser.parse_args()
|
| 41 |
+
|
| 42 |
+
def load_config(config_path):
|
| 43 |
+
with open(config_path, 'r') as f:
|
| 44 |
+
return json.load(f)
|
| 45 |
+
|
| 46 |
+
def get_available_memory(gpu_id):
|
| 47 |
+
return torch.cuda.get_device_properties(gpu_id).total_memory - torch.cuda.memory_allocated(gpu_id)
|
| 48 |
+
|
| 49 |
+
def extract_images(pdf_path, output_folder):
|
| 50 |
+
doc = fitz.open(pdf_path)
|
| 51 |
+
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
| 52 |
+
images_folder = os.path.join(output_folder, 'images')
|
| 53 |
+
os.makedirs(images_folder, exist_ok=True)
|
| 54 |
+
|
| 55 |
+
for page_num, page in enumerate(doc):
|
| 56 |
+
for img_index, img in enumerate(page.get_images(full=True)):
|
| 57 |
+
xref = img[0]
|
| 58 |
+
base_image = doc.extract_image(xref)
|
| 59 |
+
image_bytes = base_image["image"]
|
| 60 |
+
image_ext = base_image["ext"]
|
| 61 |
+
image_filename = f'{pdf_name}_{page_num+1:03d}_{img_index+1:03d}.{image_ext}'
|
| 62 |
+
image_path = os.path.join(images_folder, image_filename)
|
| 63 |
+
with open(image_path, "wb") as image_file:
|
| 64 |
+
image_file.write(image_bytes)
|
| 65 |
+
doc.close()
|
| 66 |
+
|
| 67 |
+
class MagicModel:
|
| 68 |
+
def __init__(self, config):
|
| 69 |
+
self.config = config
|
| 70 |
+
|
| 71 |
+
def process_pdf(self, pdf_data, parse_type, layout_info, log_file_path):
|
| 72 |
+
processed_pages = []
|
| 73 |
+
with open(log_file_path, 'a') as log_file:
|
| 74 |
+
log_file.write(f"Entering process_pdf\n")
|
| 75 |
+
log_file.write(f" parse_type: {parse_type}, (expected: str)\n")
|
| 76 |
+
log_file.write(f" layout_info (length: {len(layout_info)}), (expected: list of dicts): {layout_info}\n")
|
| 77 |
+
for page_index, page_info in enumerate(layout_info):
|
| 78 |
+
try:
|
| 79 |
+
with open(log_file_path, 'a') as log_file:
|
| 80 |
+
log_file.write(f"Processing page {page_index}\n")
|
| 81 |
+
log_file.write(f" Page info (expected: dict): {page_info}\n")
|
| 82 |
+
processed_page = self.process_page(page_info, parse_type)
|
| 83 |
+
processed_pages.append(processed_page)
|
| 84 |
+
except Exception as e:
|
| 85 |
+
with open(log_file_path, 'a') as log_file:
|
| 86 |
+
log_file.write(f"Error processing page {page_index} in process_pdf: {str(e)}\n")
|
| 87 |
+
log_file.write(f"Page info (expected: dict): {page_info}\n")
|
| 88 |
+
with open(log_file_path, 'a') as log_file:
|
| 89 |
+
log_file.write(f"Exiting process_pdf\n")
|
| 90 |
+
return {
|
| 91 |
+
"processed_pages": processed_pages,
|
| 92 |
+
"parse_type": parse_type,
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
def process_page(self, page_info, parse_type):
|
| 96 |
+
with open(log_file_path, 'a') as log_file:
|
| 97 |
+
log_file.write(f"Entering process_page\n")
|
| 98 |
+
log_file.write(f" page_info (expected: dict): {page_info}\n")
|
| 99 |
+
log_file.write(f" parse_type (expected: str): {parse_type}\n")
|
| 100 |
+
result = {
|
| 101 |
+
"page_no": page_info.get("page_info", {}).get("page_no", "unknown"),
|
| 102 |
+
"content": "Processed page content",
|
| 103 |
+
"parse_type": parse_type
|
| 104 |
+
}
|
| 105 |
+
with open(log_file_path, 'a') as log_file:
|
| 106 |
+
log_file.write(f"Exiting process_page\n")
|
| 107 |
+
return result
|
| 108 |
+
|
| 109 |
+
def process_single_pdf(input_file, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
|
| 110 |
+
start_time = time.time()
|
| 111 |
+
pdf_name = os.path.splitext(os.path.basename(input_file))[0]
|
| 112 |
+
output_subfolder = os.path.join(output_folder, pdf_name, 'auto')
|
| 113 |
+
os.makedirs(output_subfolder, exist_ok=True)
|
| 114 |
+
|
| 115 |
+
def timeout_handler(signum, frame):
|
| 116 |
+
raise TimeoutError("PDF processing timed out")
|
| 117 |
+
|
| 118 |
+
try:
|
| 119 |
+
signal.signal(signal.SIGALRM, timeout_handler)
|
| 120 |
+
signal.alarm(timeout)
|
| 121 |
+
|
| 122 |
+
if gpu_id >= 0:
|
| 123 |
+
torch.cuda.set_device(gpu_id)
|
| 124 |
+
if use_bf16 and torch.cuda.is_bf16_supported():
|
| 125 |
+
torch.set_default_dtype(torch.bfloat16)
|
| 126 |
+
else:
|
| 127 |
+
torch.set_default_dtype(torch.float32)
|
| 128 |
+
torch.set_default_device(f'cuda:{gpu_id}')
|
| 129 |
+
else:
|
| 130 |
+
if use_bf16:
|
| 131 |
+
torch.set_default_dtype(torch.bfloat16)
|
| 132 |
+
else:
|
| 133 |
+
torch.set_default_dtype(torch.float32)
|
| 134 |
+
torch.set_default_device('cpu')
|
| 135 |
+
|
| 136 |
+
pdf_data = read_file(input_file, 'rb')
|
| 137 |
+
|
| 138 |
+
# Perform PDF metadata scan
|
| 139 |
+
metadata = pdf_meta_scan(pdf_data)
|
| 140 |
+
with open(log_file_path, 'a') as log_file:
|
| 141 |
+
log_file.write(f"Processing PDF: {input_file}\n")
|
| 142 |
+
log_file.write(f"Metadata (expected: dict): {json.dumps(metadata, indent=2)}\n")
|
| 143 |
+
|
| 144 |
+
# Check if metadata indicates the PDF should be dropped
|
| 145 |
+
if metadata.get("_need_drop", False):
|
| 146 |
+
with open(log_file_path, 'a') as log_file:
|
| 147 |
+
log_file.write(f"Dropping PDF {input_file}: {metadata.get('_drop_reason', 'Unknown reason')}\n")
|
| 148 |
+
return input_file, "Dropped", None
|
| 149 |
+
|
| 150 |
+
# Check if all required fields are present in metadata
|
| 151 |
+
required_fields = ['total_page', 'page_width_pts', 'page_height_pts', 'image_info_per_page',
|
| 152 |
+
'text_len_per_page', 'imgs_per_page', 'text_layout_per_page', 'invalid_chars']
|
| 153 |
+
for field in required_fields:
|
| 154 |
+
if field not in metadata:
|
| 155 |
+
raise ValueError(f"Required field '{field}' not found in metadata for {input_file}")
|
| 156 |
+
|
| 157 |
+
# Extract required fields for classify function
|
| 158 |
+
total_page = metadata['total_page']
|
| 159 |
+
page_width = metadata['page_width_pts']
|
| 160 |
+
page_height = metadata['page_height_pts']
|
| 161 |
+
img_sz_list = metadata['image_info_per_page']
|
| 162 |
+
text_len_list = metadata['text_len_per_page']
|
| 163 |
+
img_num_list = metadata['imgs_per_page']
|
| 164 |
+
text_layout_list = metadata['text_layout_per_page']
|
| 165 |
+
invalid_chars = metadata['invalid_chars']
|
| 166 |
+
|
| 167 |
+
with open(log_file_path, 'a') as log_file:
|
| 168 |
+
log_file.write(f"Classify parameters:\n")
|
| 169 |
+
log_file.write(f" total_page (expected: int): {total_page}\n")
|
| 170 |
+
log_file.write(f" page_width (expected: int): {page_width}\n")
|
| 171 |
+
log_file.write(f" page_height (expected: int): {page_height}\n")
|
| 172 |
+
log_file.write(f" img_sz_list (expected: list of lists): {img_sz_list[:5]}...\n")
|
| 173 |
+
log_file.write(f" text_len_list (expected: list of ints): {text_len_list[:5]}...\n")
|
| 174 |
+
log_file.write(f" img_num_list (expected: list of ints): {img_num_list[:5]}...\n")
|
| 175 |
+
log_file.write(f" text_layout_list (expected: list of strs): {text_layout_list[:5]}...\n")
|
| 176 |
+
log_file.write(f" invalid_chars (expected: bool): {invalid_chars}\n")
|
| 177 |
+
|
| 178 |
+
# Classify PDF
|
| 179 |
+
try:
|
| 180 |
+
is_text_pdf, classification_results = classify(
|
| 181 |
+
total_page, page_width, page_height, img_sz_list[:total_page],
|
| 182 |
+
text_len_list[:total_page], img_num_list[:total_page],
|
| 183 |
+
text_layout_list[:len(text_layout_list)], invalid_chars
|
| 184 |
+
)
|
| 185 |
+
with open(log_file_path, 'a') as log_file:
|
| 186 |
+
log_file.write(f"Classification Results:\n")
|
| 187 |
+
log_file.write(f" is_text_pdf (expected: bool): {is_text_pdf}\n")
|
| 188 |
+
log_file.write(f" classification_results (expected: dict): {classification_results}\n")
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
with open(log_file_path, 'a') as log_file:
|
| 192 |
+
log_file.write(f"Error in classify function for {input_file}: {str(e)}\n")
|
| 193 |
+
return input_file, f"Classification Error: {str(e)}", None
|
| 194 |
+
|
| 195 |
+
image_writer = DiskReaderWriter(output_subfolder)
|
| 196 |
+
with open(log_file_path, 'a') as log_file:
|
| 197 |
+
log_file.write(f"Image writer initialized: {image_writer}\n")
|
| 198 |
+
|
| 199 |
+
# Create jso_useful_key as a dictionary
|
| 200 |
+
model_json = [] # Or load your model data here
|
| 201 |
+
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
|
| 202 |
+
|
| 203 |
+
unipipe = UNIPipe(pdf_data, jso_useful_key, image_writer)
|
| 204 |
+
with open(log_file_path, 'a') as log_file:
|
| 205 |
+
log_file.write(f"UNIPipe initialized: {unipipe}\n")
|
| 206 |
+
|
| 207 |
+
parse_type = unipipe.pipe_classify()
|
| 208 |
+
with open(log_file_path, 'a') as log_file:
|
| 209 |
+
log_file.write(f"pipe_classify result (expected: str): {parse_type}\n")
|
| 210 |
+
|
| 211 |
+
# Add detailed logging for pipe_analyze inputs and output
|
| 212 |
+
with open(log_file_path, 'a') as log_file:
|
| 213 |
+
log_file.write(f"Detailed pipe_analyze Inputs for {input_file}:\n")
|
| 214 |
+
log_file.write(f" parse_type (expected: str): {parse_type}\n")
|
| 215 |
+
try:
|
| 216 |
+
layout_info = unipipe.pipe_analyze()
|
| 217 |
+
with open(log_file_path, 'a') as log_file:
|
| 218 |
+
log_file.write(f"pipe_analyze Results (expected: list of dicts, length: {len(layout_info)}): {layout_info}\n")
|
| 219 |
+
except Exception as e:
|
| 220 |
+
with open(log_file_path, 'a') as log_file:
|
| 221 |
+
log_file.write(f"Error in pipe_analyze for {input_file}: {str(e)}\n")
|
| 222 |
+
return input_file, f"pipe_analyze Error: {str(e)}", None
|
| 223 |
+
|
| 224 |
+
# Use OCR if it's not classified as a text PDF
|
| 225 |
+
if not is_text_pdf:
|
| 226 |
+
parse_type = 'ocr'
|
| 227 |
+
with open(log_file_path, 'a') as log_file:
|
| 228 |
+
log_file.write(f"parse_type after OCR check (expected: str): {parse_type}\n")
|
| 229 |
+
|
| 230 |
+
# Process the PDF using the model
|
| 231 |
+
try:
|
| 232 |
+
parse_result = model.process_pdf(pdf_data, parse_type, layout_info, log_file_path)
|
| 233 |
+
with open(log_file_path, 'a') as log_file:
|
| 234 |
+
log_file.write(f"Model process_pdf result (expected: dict): {parse_result}\n")
|
| 235 |
+
except Exception as e:
|
| 236 |
+
with open(log_file_path, 'a') as log_file:
|
| 237 |
+
log_file.write(f"Error in model processing for {input_file}: {str(e)}\n")
|
| 238 |
+
return input_file, f"Model Processing Error: {str(e)}", None
|
| 239 |
+
|
| 240 |
+
try:
|
| 241 |
+
markdown_content = unipipe.pipe_mk_markdown(parse_result)
|
| 242 |
+
with open(log_file_path, 'a') as log_file:
|
| 243 |
+
log_file.write(f"pipe_mk_markdown result (expected: str, length: {len(markdown_content)}): {markdown_content}\n")
|
| 244 |
+
except Exception as e:
|
| 245 |
+
with open(log_file_path, 'a') as log_file:
|
| 246 |
+
log_file.write(f"Error in pipe_mk_markdown for {input_file}: {str(e)}\n")
|
| 247 |
+
log_file.write(f" parse_result (expected: dict): {parse_result}\n")
|
| 248 |
+
return input_file, f"pipe_mk_markdown Error: {str(e)}", None
|
| 249 |
+
|
| 250 |
+
try:
|
| 251 |
+
uni_format = unipipe.pipe_mk_uni_format(parse_result)
|
| 252 |
+
with open(log_file_path, 'a') as log_file:
|
| 253 |
+
log_file.write(f"pipe_mk_uni_format result (expected: dict): {uni_format}\n")
|
| 254 |
+
except Exception as e:
|
| 255 |
+
with open(log_file_path, 'a') as log_file:
|
| 256 |
+
log_file.write(f"Error in pipe_mk_uni_format for {input_file}: {str(e)}\n")
|
| 257 |
+
log_file.write(f" parse_result (expected: dict): {parse_result}\n")
|
| 258 |
+
return input_file, f"pipe_mk_uni_format Error: {str(e)}", None
|
| 259 |
+
|
| 260 |
+
# Write markdown content
|
| 261 |
+
with open(os.path.join(output_subfolder, f'{pdf_name}.md'), 'w', encoding='utf-8') as f:
|
| 262 |
+
f.write(markdown_content)
|
| 263 |
+
|
| 264 |
+
# Write middle.json
|
| 265 |
+
with open(os.path.join(output_subfolder, 'middle.json'), 'w', encoding='utf-8') as f:
|
| 266 |
+
json.dump(parse_result, f, ensure_ascii=False, indent=2)
|
| 267 |
+
|
| 268 |
+
# Write model.json
|
| 269 |
+
with open(os.path.join(output_subfolder, 'model.json'), 'w', encoding='utf-8') as f:
|
| 270 |
+
json.dump(uni_format, f, ensure_ascii=False, indent=2)
|
| 271 |
+
|
| 272 |
+
# Copy original PDF
|
| 273 |
+
shutil.copy(input_file, os.path.join(output_subfolder, f'{pdf_name}.pdf'))
|
| 274 |
+
|
| 275 |
+
# Generate layout.pdf and spans.pdf
|
| 276 |
+
try:
|
| 277 |
+
do_parse(input_file, parse_type, output_subfolder, draw_bbox=True)
|
| 278 |
+
except Exception as e:
|
| 279 |
+
with open(log_file_path, 'a') as log_file:
|
| 280 |
+
log_file.write(f"Error in do_parse for {input_file}: {str(e)}\n")
|
| 281 |
+
return input_file, f"do_parse Error: {str(e)}", None
|
| 282 |
+
|
| 283 |
+
# Extract images
|
| 284 |
+
extract_images(input_file, output_subfolder)
|
| 285 |
+
|
| 286 |
+
processing_time = time.time() - start_time
|
| 287 |
+
with open(log_file_path, 'a') as log_file:
|
| 288 |
+
log_file.write(f"Successfully processed {input_file} on GPU {gpu_id} in {processing_time:.2f} seconds\n")
|
| 289 |
+
|
| 290 |
+
# Prepare result for JSONL output
|
| 291 |
+
result = {
|
| 292 |
+
"file_name": pdf_name,
|
| 293 |
+
"processing_time": processing_time,
|
| 294 |
+
"parse_type": parse_type,
|
| 295 |
+
"metadata": metadata,
|
| 296 |
+
"classification": classification_results,
|
| 297 |
+
"is_text_pdf": is_text_pdf
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
return input_file, "Success", result
|
| 301 |
+
|
| 302 |
+
except ValueError as ve:
|
| 303 |
+
with open(log_file_path, 'a') as log_file:
|
| 304 |
+
log_file.write(f"Metadata error: {str(ve)}\n")
|
| 305 |
+
return input_file, f"Metadata Error: {str(ve)}", None
|
| 306 |
+
|
| 307 |
+
except TimeoutError:
|
| 308 |
+
with open(log_file_path, 'a') as log_file:
|
| 309 |
+
log_file.write(f"Processing timed out after {timeout} seconds\n")
|
| 310 |
+
return input_file, "Timeout", None
|
| 311 |
+
|
| 312 |
+
except Exception as e:
|
| 313 |
+
with open(log_file_path, 'a') as log_file:
|
| 314 |
+
log_file.write(f"Error occurred: {str(e)}\n")
|
| 315 |
+
return input_file, f"Error: {str(e)}", None
|
| 316 |
+
|
| 317 |
+
finally:
|
| 318 |
+
signal.alarm(0) # Cancel the alarm
|
| 319 |
+
if gpu_id >= 0:
|
| 320 |
+
torch.cuda.empty_cache()
|
| 321 |
+
|
| 322 |
+
def process_pdf_batch(batch, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path):
|
| 323 |
+
results = []
|
| 324 |
+
for pdf_file in batch:
|
| 325 |
+
result = process_single_pdf(pdf_file, output_folder, gpu_id, config, timeout, use_bf16, model, log_file_path)
|
| 326 |
+
results.append(result)
|
| 327 |
+
return results
|
| 328 |
+
|
| 329 |
+
def write_to_jsonl(results, output_file):
|
| 330 |
+
with open(output_file, 'a') as f:
|
| 331 |
+
for result in results:
|
| 332 |
+
if result[2]: # Check if result is not None
|
| 333 |
+
json.dump(result[2], f)
|
| 334 |
+
f.write('\n')
|
| 335 |
+
|
| 336 |
+
def get_gpu_memory_usage(gpu_id):
|
| 337 |
+
if gpu_id < 0:
|
| 338 |
+
return 0, 0 # CPU mode
|
| 339 |
+
total_memory = torch.cuda.get_device_properties(gpu_id).total_memory
|
| 340 |
+
allocated_memory = torch.cuda.memory_allocated(gpu_id)
|
| 341 |
+
return allocated_memory, total_memory
|
| 342 |
+
|
| 343 |
+
def main():
|
| 344 |
+
mp.set_start_method('spawn', force=True)
|
| 345 |
+
|
| 346 |
+
args = parse_arguments()
|
| 347 |
+
config = load_config(args.config)
|
| 348 |
+
|
| 349 |
+
input_folder = args.input
|
| 350 |
+
output_folder = args.output
|
| 351 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 352 |
+
|
| 353 |
+
pdf_files = [os.path.join(input_folder, f) for f in os.listdir(input_folder) if f.endswith('.pdf')]
|
| 354 |
+
|
| 355 |
+
num_gpus = torch.cuda.device_count()
|
| 356 |
+
if num_gpus == 0:
|
| 357 |
+
print("No GPUs available. Using CPU.")
|
| 358 |
+
num_gpus = 1
|
| 359 |
+
gpu_ids = [-1]
|
| 360 |
+
else:
|
| 361 |
+
gpu_ids = list(range(num_gpus))
|
| 362 |
+
|
| 363 |
+
num_workers = args.max_workers or min(num_gpus, os.cpu_count())
|
| 364 |
+
|
| 365 |
+
main_jsonl = os.path.join(output_folder, 'processing_results.jsonl')
|
| 366 |
+
temp_jsonl = os.path.join(output_folder, 'temp_results.jsonl')
|
| 367 |
+
log_file_path = os.path.join(output_folder, 'processing_log.txt')
|
| 368 |
+
|
| 369 |
+
# Enable deterministic mode
|
| 370 |
+
torch.backends.cudnn.deterministic = True
|
| 371 |
+
torch.backends.cudnn.benchmark = False
|
| 372 |
+
|
| 373 |
+
# Load the model
|
| 374 |
+
model = MagicModel(config)
|
| 375 |
+
|
| 376 |
+
results = []
|
| 377 |
+
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
| 378 |
+
for gpu_id in gpu_ids:
|
| 379 |
+
batch_size = args.initial_batch_size
|
| 380 |
+
pdf_index = 0
|
| 381 |
+
oom_occurred = False
|
| 382 |
+
while pdf_index < len(pdf_files):
|
| 383 |
+
batch = pdf_files[pdf_index:pdf_index + batch_size]
|
| 384 |
+
try:
|
| 385 |
+
future = executor.submit(process_pdf_batch, batch, output_folder, gpu_id, config, args.timeout, args.use_bf16, model, log_file_path)
|
| 386 |
+
batch_results = future.result()
|
| 387 |
+
results.extend(batch_results)
|
| 388 |
+
for result in batch_results:
|
| 389 |
+
write_to_jsonl([result], temp_jsonl)
|
| 390 |
+
|
| 391 |
+
# Print VRAM usage
|
| 392 |
+
allocated, total = get_gpu_memory_usage(gpu_id)
|
| 393 |
+
with open(log_file_path, 'a') as log_file:
|
| 394 |
+
log_file.write(f"GPU {gpu_id} - Batch size: {batch_size}, VRAM usage: {allocated/1024**3:.2f}GB / {total/1024**3:.2f}GB\n")
|
| 395 |
+
# If successful and OOM hasn't occurred yet, increase batch size
|
| 396 |
+
if not oom_occurred:
|
| 397 |
+
batch_size += 1
|
| 398 |
+
pdf_index += len(batch)
|
| 399 |
+
except torch.cuda.OutOfMemoryError:
|
| 400 |
+
# If OOM occurs, reduce batch size
|
| 401 |
+
oom_occurred = True
|
| 402 |
+
batch_size = max(MIN_BATCH_SIZE, batch_size - 1)
|
| 403 |
+
with open(log_file_path, 'a') as log_file:
|
| 404 |
+
log_file.write(f"OOM error occurred. Reducing batch size to {batch_size}\n")
|
| 405 |
+
torch.cuda.empty_cache()
|
| 406 |
+
continue
|
| 407 |
+
|
| 408 |
+
# After processing each batch, move temp JSONL to main JSONL
|
| 409 |
+
if os.path.exists(temp_jsonl):
|
| 410 |
+
with open(temp_jsonl, 'r') as temp, open(main_jsonl, 'a') as main:
|
| 411 |
+
shutil.copyfileobj(temp, main)
|
| 412 |
+
os.remove(temp_jsonl)
|
| 413 |
+
|
| 414 |
+
# Clear GPU cache after each batch
|
| 415 |
+
if gpu_id >= 0:
|
| 416 |
+
torch.cuda.empty_cache()
|
| 417 |
+
|
| 418 |
+
success_count = sum(1 for _, status, _ in results if status == "Success")
|
| 419 |
+
timeout_count = sum(1 for _, status, _ in results if status == "Timeout")
|
| 420 |
+
error_count = len(results) - success_count - timeout_count
|
| 421 |
+
|
| 422 |
+
with open(log_file_path, 'a') as log_file:
|
| 423 |
+
log_file.write(f"Processed {len(results)} PDFs. {success_count} succeeded, {timeout_count} timed out, {error_count} failed.\n")
|
| 424 |
+
|
| 425 |
+
with open(os.path.join(output_folder, 'processing_summary.txt'), 'w') as summary:
|
| 426 |
+
summary.write(f"Total PDFs processed: {len(results)}\n")
|
| 427 |
+
summary.write(f"Successful: {success_count}\n")
|
| 428 |
+
summary.write(f"Timed out: {timeout_count}\n")
|
| 429 |
+
summary.write(f"Failed: {error_count}\n\n")
|
| 430 |
+
summary.write("Failed PDFs:\n")
|
| 431 |
+
for pdf, status, _ in [result for result in results if result[1] != "Success"]:
|
| 432 |
+
summary.write(f" - {pdf}: {status}\n")
|
| 433 |
+
|
| 434 |
+
if __name__ == '__main__':
|
| 435 |
+
main()
|