## NOTE: The data is currently on /lts/mblab/downloaded_data/barkai_checseq ## and the parquet dataset is on the brentlab-strides aws at s3://yeast-binding-perturbation-data/barkai_checkseq library(tidyverse) library(here) library(arrow) library(GEOquery) # genomic feature harmonization table ---- # see https://huggingface.co/datasets/BrentLab/yeast_genome_resources genomicfeatures = arrow::open_dataset(here("data/genome_files/hf/features")) %>% as_tibble() # sacCer3_genome = rtracklayer::import("~/ref/sacCer3/ucsc/sacCer3.fa.gz", format="fasta") # # sacCer3_seqnames = unlist(map(str_split(names(sacCer3_genome), " "), ~.[[1]])) # # sacCer3_genome_df = tibble( # seqnames = rep(sacCer3_seqnames, Biostrings::width(sacCer3_genome)) # ) %>% # group_by(seqnames) %>% # mutate(start = row_number()-1, # end = row_number()) %>% # ungroup() # # retrieve_series_paths = function(series_id){ # sra_meta_path = file.path("data/barkai_checseq", series_id, "SraRunTable.csv") # stopifnot(file.exists(sra_meta_path)) # df = read_csv(sra_meta_path) # # data_files = list.files(here("data/barkai_checseq", series_id), "*.txt.gz", full.names = TRUE) # # stopifnot(nrow(df) == length(data_files)) # # names(data_files) = str_extract(basename(data_files), "GSM\\d+") # # list( # meta = sra_meta_path, # files = data_files # ) # } # # # add_genomic_coordinate = function(checseqpath){ # # bind_cols(sacCer3_genome_df, # data.table::fread(checseqpath, sep = "\t", col.names='pileup')) # # } # # process_checseq_files = function(file){ # # add_genomic_coordinate(file) %>% # filter(pileup != 0) # } # # series_list = map(set_names(c("GSE179430", "GSE209631", "GSE222268")), retrieve_series_paths) # # dataset_basepath = here("data/barkai_checseq/hf/genome_map") # # # Create output directory # dir.create(dataset_basepath, recursive = TRUE, showWarnings = FALSE) # # for (series_id in names(series_list)) { # # message(glue::glue("Processing series {series_id}")) # # for (accession_id in names(series_list[[series_id]]$files)) { # # message(glue::glue(" Processing {accession_id}")) # # df <- process_checseq_files( # series_list[[series_id]]$files[[accession_id]] # ) %>% # mutate(accession = accession_id, series = series_id) # # df %>% # group_by(seqnames) %>% # write_dataset( # path = dataset_basepath, # format = "parquet", # partitioning = c("series", "accession"), # existing_data_behavior = "overwrite", # compression = "zstd", # write_statistics = TRUE, # use_dictionary = c( # seqnames = TRUE # ) # ) # # gc() # } # } # the following code was used to parse an entire series to DF and then save # to a parquet dataset. that was too large and I chose the dataset partitioning # instead. split_manipulation <- function(manipulation_str) { parts <- str_split(manipulation_str, "::")[[1]] if (length(parts) != 2) { stop("Unexpected format. Expected 'LOCUS::TAGGED_CONSTRUCT'") } tagged_locus <- parts[1] rhs <- parts[2] # default dbd_donor_symbol_str <- "none" ortholog <- "none" # Check for paralog DBD if (str_detect(rhs, "-[A-Za-z0-9]+DBD-Mnase$")) { dbd_donor_symbol_str <- toupper(str_remove(str_split(rhs, "-", simplify = TRUE)[[2]], "DBD")) } else if (str_detect(rhs, "^K\\.lactis .*?-Mnase$")) { ortholog <- rhs } list( mnase_tagged_symbol = tagged_locus, dbd_donor_symbol = dbd_donor_symbol_str, ortholog_donor = ortholog ) } split_deletion <- function(deletion_str) { parts <- str_split(deletion_str, "::", simplify = TRUE) list( paralog_deletion_symbol = parts[1], paralog_resistance_cassette = if (ncol(parts) >= 2) parts[2] else "none" ) } split_construct_to_tibble = function(split_list){ background = list(background=split_list[[1]]) manipulation_list = split_manipulation(split_list[[2]]) deletion_list = split_deletion(tryCatch(split_list[[3]], error = function(e) "none")) bind_cols(map(list(background, manipulation_list, deletion_list), as_tibble)) } split_constructs <- function(s) { s <- str_trim(s) if (s == "" || is.na(s)) return(character(0)) # split on spaces ONLY when the next token starts a new locus "XYZ::" split_geno = str_split(s, "\\s+(?=[A-Za-z0-9_.()\\-]+::)")[[1]] bind_cols(tibble(genotype = s), split_construct_to_tibble(split_geno)) } gse178430_meta = read_csv("data/barkai_checseq/GSE179430/SraRunTable.csv") %>% mutate(genotype = str_replace(genotype, "Yap2", "Cad1")) %>% mutate(genotype = str_replace(genotype, "Yap4", "Cin5")) gse178430_parsed_meta = bind_cols( select(gse178430_meta, `Sample Name`, strainid, Instrument) %>% dplyr::rename(accession = `Sample Name`, instrument = Instrument), bind_rows(map(gse178430_meta$genotype, split_constructs))) %>% left_join(select(genomicfeatures, locus_tag, symbol) %>% dplyr::rename(mnase_tagged_symbol = symbol)) %>% dplyr::rename(regulator_locus_tag = locus_tag, regulator_symbol = mnase_tagged_symbol) %>% select(accession, regulator_locus_tag, regulator_symbol, strainid, instrument, genotype, dbd_donor_symbol, ortholog_donor, paralog_deletion_symbol, paralog_resistance_cassette) gse178430_parsed_meta %>% write_parquet(here("/home/chase/code/hf/barkai_compendium/GSE178430_metadata.parquet"), compression = "zstd", write_statistics = TRUE, use_dictionary = c( accession = TRUE, regulator_locus_tag = TRUE, regulator_symbol = TRUE ) ) gse209631_meta = read_csv("data/barkai_checseq/GSE209631/SraRunTable.csv") gse209631_parsed_meta = gse209631_meta %>% select(`Sample Name`, tagged_tf, Instrument, `variant-type`) %>% janitor::clean_names() %>% dplyr::rename(accession = sample_name) %>% arrange(tagged_tf, variant_type) %>% left_join(select(genomicfeatures, locus_tag, symbol) %>% dplyr::rename(tagged_tf = symbol)) %>% dplyr::rename(regulator_symbol = tagged_tf, regulator_locus_tag = locus_tag) %>% select(accession, regulator_locus_tag, regulator_symbol, variant_type) gse209631_parsed_meta %>% write_parquet(here("/home/chase/code/hf/barkai_compendium/GSE209631_metadata.parquet"), compression = "zstd", write_statistics = TRUE, use_dictionary = c( accession = TRUE, regulator_locus_tag = TRUE, regulator_symbol = TRUE, variant_type = TRUE ) ) gse=GEOquery::getGEO(filename=here("data/barkai_checseq/GSE222268_series_matrix.txt")) gse222268_meta = Biobase::pData(gse@phenoData) %>% as_tibble() %>% select(title, geo_accession, extract_protocol_ch1, description, instrument_model, library_selection) %>% mutate(description = ifelse(description == "", library_selection, description)) %>% dplyr::rename(accession = geo_accession) %>% select(-library_selection, -instrument_model, -extract_protocol_ch1) gse222268_meta %>% write_parquet(here("/home/chase/code/hf/barkai_compendium/GSE222268_metadata.parquet"), compression = "zstd", write_statistics = TRUE, use_dictionary = c( accession = TRUE ) )