File size: 1,838 Bytes
b44b21e a0e095f b44b21e 3495ee9 9a4ef3b 3495ee9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
---
license: apache-2.0
---
# EOC-Bench : Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World?
<div align=left>
[](https://arxiv.org/abs/2506.05287)
[](https://github.com/alibaba-damo-academy/EOCBench/)
[](https://circleradon.github.io/EOCBench/)
[](https://circleradon.github.io/EOCBench/#leaderboard)
## 🔍 Overview
we introduce <strong>EOC-Bench</strong>, an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios.
Specially, <strong>EOC-Bench</strong> features 3,277 meticulously annotated QA pairs categorized into three temporal categories: Past, Present, and Future, covering 11 fine-grained evaluation dimensions and 3 visual object referencing types.
To ensure thorough assessment, we develop a mixed-format human-in-the-loop annotation framework with four types of questions and design a novel multi-scale temporal accuracy metric for open-ended temporal evaluation.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64a3fe3dde901eb01df12398/gJb0lE0mi6EskZQ8H0Qsm.png" width="100%" style="margin-bottom: 0.2;"/>
<p>
## 📚 Tasks Definition
EOC-Bench structures questions into three temporally grounded categories: **Past, Present, and Future**, with a total of **11** categories.

### 📈 Evaluation
Please see our [GitHub](https://github.com/alibaba-damo-academy/EOCBench/). |