File size: 1,838 Bytes
b44b21e
a0e095f
b44b21e
3495ee9
 
 
 
 
9a4ef3b
3495ee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
---
license: apache-2.0
---

# EOC-Bench : Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World?

<div align=left>

[![arXiv preprint](https://img.shields.io/badge/arxiv-2506.05287-ECA8A7?logo=arxiv)](https://arxiv.org/abs/2506.05287) 
[![GitHub](https://img.shields.io/badge/%20Git%20Hub-Code-yellow)](https://github.com/alibaba-damo-academy/EOCBench/)
[![Project Page](https://img.shields.io/badge/🌐%20Project-Page-9DC3E6)](https://circleradon.github.io/EOCBench/)
[![Learderboard](https://img.shields.io/badge/🏆%20Leaderboard-Page-96D03A)](https://circleradon.github.io/EOCBench/#leaderboard)


## 🔍 Overview
we introduce <strong>EOC-Bench</strong>, an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios.
Specially, <strong>EOC-Bench</strong> features 3,277 meticulously annotated QA pairs categorized into three temporal categories: Past, Present, and Future, covering 11 fine-grained evaluation  dimensions and 3 visual object referencing types.
To ensure thorough assessment, we develop a  mixed-format human-in-the-loop annotation framework with four types of questions and design a novel multi-scale temporal accuracy metric for open-ended temporal evaluation. 

<p align="center">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/64a3fe3dde901eb01df12398/gJb0lE0mi6EskZQ8H0Qsm.png" width="100%" style="margin-bottom: 0.2;"/>
<p>

## 📚 Tasks Definition
EOC-Bench structures questions into three temporally grounded categories: **Past, Present, and Future**, with a total of **11** categories.

![data.png](https://cdn-uploads.huggingface.co/production/uploads/64a3fe3dde901eb01df12398/wDwXgMA6UNyvtdWhqqzq9.png)

### 📈 Evaluation
Please see our [GitHub](https://github.com/alibaba-damo-academy/EOCBench/).