File size: 1,518 Bytes
c2c0bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: mit
task_categories:
- object-detection
language:
- en
tags:
- computer-vision
- cleanlab
- data-centric-ai
pretty_name: Object Detection Tutorial Dataset
size_categories:
- n<1K
---

# Object Detection Tutorial Dataset

Dataset used in cleanlab's [Object Detection tutorial](https://docs.cleanlab.ai/stable/tutorials/object_detection.html).

## Dataset Contents

- **labels.pkl**: Ground truth bounding box labels
- **predictions.pkl**: Model predictions for bounding boxes
- **example_images.zip**: Sample images for object detection

## Usage

```python
from huggingface_hub import hf_hub_download
import pickle
import zipfile

# Download labels
labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl')
with open(labels_path, 'rb') as f:
    labels = pickle.load(f)

# Download predictions
predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl')
with open(predictions_path, 'rb') as f:
    predictions = pickle.load(f)

# Download images
images_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'example_images.zip')
with zipfile.ZipFile(images_path, 'r') as zip_ref:
    zip_ref.extractall('example_images/')
```

## Citation

```bibtex
@software{cleanlab,
  author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
  title = {cleanlab},
  year = {2021},
  url = {https://github.com/cleanlab/cleanlab},
}
```

## Contact

- Repository: https://github.com/cleanlab/cleanlab
- Documentation: https://docs.cleanlab.ai