Datasets:
Tasks:
Object Detection
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
License:
File size: 1,518 Bytes
c2c0bbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: mit
task_categories:
- object-detection
language:
- en
tags:
- computer-vision
- cleanlab
- data-centric-ai
pretty_name: Object Detection Tutorial Dataset
size_categories:
- n<1K
---
# Object Detection Tutorial Dataset
Dataset used in cleanlab's [Object Detection tutorial](https://docs.cleanlab.ai/stable/tutorials/object_detection.html).
## Dataset Contents
- **labels.pkl**: Ground truth bounding box labels
- **predictions.pkl**: Model predictions for bounding boxes
- **example_images.zip**: Sample images for object detection
## Usage
```python
from huggingface_hub import hf_hub_download
import pickle
import zipfile
# Download labels
labels_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'labels.pkl')
with open(labels_path, 'rb') as f:
labels = pickle.load(f)
# Download predictions
predictions_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'predictions.pkl')
with open(predictions_path, 'rb') as f:
predictions = pickle.load(f)
# Download images
images_path = hf_hub_download('Cleanlab/object-detection-tutorial', 'example_images.zip')
with zipfile.ZipFile(images_path, 'r') as zip_ref:
zip_ref.extractall('example_images/')
```
## Citation
```bibtex
@software{cleanlab,
author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
title = {cleanlab},
year = {2021},
url = {https://github.com/cleanlab/cleanlab},
}
```
## Contact
- Repository: https://github.com/cleanlab/cleanlab
- Documentation: https://docs.cleanlab.ai
|