SkyTong commited on
Commit
44fa0b5
·
verified ·
1 Parent(s): 2bcfb87

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -77
README.md CHANGED
@@ -1,101 +1,102 @@
1
- ---
2
- license: openrail
3
- tags:
4
- - robotics
5
- - trajectory-prediction
6
- - manipulation
7
- - computer-vision
8
- - time-series
9
- pretty_name: Codatta Robotic Manipulation Trajectory
10
- configs:
11
- - config_name: default
12
- data_files:
13
- - split: train
14
- path: data/train-*
15
- dataset_info:
16
- features:
17
- - name: id
18
- dtype: string
19
- - name: total_frames
20
- dtype: int32
21
- - name: annotations
22
- dtype: string
23
- - name: trajectory_image
24
- dtype: image
25
- - name: video_path
26
- dtype: string
27
- splits:
28
- - name: train
29
- num_bytes: 39054025
30
- num_examples: 50
31
- download_size: 38738419
32
- dataset_size: 39054025
33
- language:
34
- - en
35
- size_categories:
36
- - n<1K
37
- ---
38
 
39
  # Codatta Robotic Manipulation Trajectory (Sample)
40
 
41
- ## Dataset Summary
42
 
43
- This dataset contains high-quality annotated trajectories of robotic gripper manipulations. It is designed to train models for fine-grained control, trajectory prediction, and object interaction tasks.
44
 
45
- Produced by **Codatta**, this dataset focuses on third-person views of robotic arms performing pick-and-place or manipulation tasks. Each sample includes the raw video, a visualization of the trajectory, and a rigorous JSON annotation of keyframes and coordinate points.
46
 
47
- **Note:** This is a sample dataset containing **50 annotated examples**.
48
 
49
- ## Supported Tasks
50
-
51
- * **Trajectory Prediction:** Predicting the path of a gripper based on visual context.
52
- * **Keyframe Extraction:** Identifying critical moments in a manipulation task (e.g., contact, velocity change).
53
- * **Robotic Control:** Imitation learning from human-demonstrated or teleoperated data.
54
-
55
- ## Dataset Structure
56
 
57
  ### Data Fields
58
-
59
  * **`id`** (string): Unique identifier for the trajectory sequence.
60
  * **`total_frames`** (int32): Total number of frames in the video sequence.
61
  * **`video_path`** (string): Path to the source MP4 video file recording the manipulation action.
62
  * **`trajectory_image`** (image): A JPEG preview showing the overlaid trajectory path or keyframe visualization.
63
- * **`annotations`** (string): A JSON-formatted string containing the detailed coordinate data.
64
- * *Structure:* Contains lists of keyframes, timestamp, and the 5-point coordinates for the gripper in each annotated frame.
65
 
66
- ### Data Preview
67
- *(Hugging Face's viewer will automatically render the `trajectory_image` here)*
68
 
69
- ## Annotation Standards
 
 
 
 
 
 
70
 
71
- The data was annotated following a strict protocol to ensure precision and consistency.
 
72
 
73
- ### 1. Viewpoint Scope
74
- * **Included:** Third-person views (fixed camera recording the robot).
75
- * [cite_start]**Excluded:** First-person views (Eye-in-Hand) are explicitly excluded to ensure consistent coordinate mapping[cite: 5, 15].
 
 
76
 
77
- ### 2. Keyframe Selection
78
- Annotations are not dense (every frame) but sparse, focusing on **Keyframes** that define the motion logic. [cite_start]A Keyframe is defined by the following events [cite: 20-25]:
79
- 1. [cite_start]**Start Frame:** The gripper first appears in the screen[cite: 21].
80
- 2. [cite_start]**End Frame:** The gripper leaves the screen[cite: 22].
81
- 3. [cite_start]**Velocity Change:** Frames where the speed direction suddenly changes (marking the minimum speed point)[cite: 23].
82
- 4. [cite_start]**State Change:** Frames where the gripper opens or closes[cite: 24].
83
- 5. [cite_start]**Contact:** The precise moment the gripper touches the object[cite: 25].
84
 
85
- ### 3. The 5-Point Annotation Method
86
- [cite_start]For every annotated keyframe, the gripper is labeled with **5 specific coordinate points** to capture its pose and state accurately[cite: 27]:
87
 
88
- | Point ID | Description | Location Detail |
89
- | :--- | :--- | :--- |
90
- | **Point 1 & 2** | **Fingertips** | [cite_start]Center of the bottom edge of the gripper tips[cite: 28, 29]. |
91
- | **Point 3 & 4** | **Gripper Ends** | [cite_start]The rearmost points of the closing area (indicating the finger direction)[cite: 31]. |
92
- | **Point 5** | **Tiger's Mouth** | [cite_start]The center of the crossbeam (base of the gripper)[cite: 32]. |
 
 
 
 
93
 
94
- ### 4. Quality Control
95
- * [cite_start]**Accuracy:** All datasets passed a rigorous quality assurance process with a minimum **95% accuracy rate**[cite: 78].
96
- * **Occlusion Handling:** If the gripper is partially occluded, points are estimated based on object geometry. [cite_start]Sequences where the gripper is fully occluded or only shows a side profile without clear features are discarded[cite: 58, 63].
 
97
 
98
- ## Usage Example
99
 
100
  ```python
101
  from datasets import load_dataset
@@ -113,4 +114,9 @@ sample['trajectory_image'].show()
113
 
114
  # Parse annotations
115
  annotations = json.loads(sample['annotations'])
116
- print(f"Keyframes count: {len(annotations)}")
 
 
 
 
 
 
1
+ ---
2
+ license: openrail
3
+ tags:
4
+ - robotics
5
+ - trajectory-prediction
6
+ - manipulation
7
+ - computer-vision
8
+ - time-series
9
+ pretty_name: Codatta Robotic Manipulation Trajectory
10
+ configs:
11
+ - config_name: default
12
+ data_files:
13
+ - split: train
14
+ path: data/train-*
15
+ dataset_info:
16
+ features:
17
+ - name: id
18
+ dtype: string
19
+ - name: total_frames
20
+ dtype: int32
21
+ - name: annotations
22
+ dtype: string
23
+ - name: trajectory_image
24
+ dtype: image
25
+ - name: video_path
26
+ dtype: string
27
+ splits:
28
+ - name: train
29
+ num_bytes: 39054025
30
+ num_examples: 50
31
+ download_size: 38738419
32
+ dataset_size: 39054025
33
+ language:
34
+ - en
35
+ size_categories:
36
+ - n<1K
37
+ ---
38
 
39
  # Codatta Robotic Manipulation Trajectory (Sample)
40
 
41
+ ## Overview
42
 
43
+ This dataset contains high-quality annotated trajectories of robotic gripper manipulations. Produced by **Codatta**, it focuses on third-person views of robotic arms performing pick-and-place or manipulation tasks. The dataset is designed to train models for fine-grained control, trajectory prediction, and object interaction tasks.
44
 
45
+ The scope specifically includes third-person views (fixed camera recording the robot) while explicitly excluding first-person views (Eye-in-Hand) to ensure consistent coordinate mapping.
46
 
47
+ ## Dataset Contents
48
 
49
+ Each sample in this dataset includes the raw video, a visualization of the trajectory, and a rigorous JSON annotation of keyframes and coordinate points.
 
 
 
 
 
 
50
 
51
  ### Data Fields
 
52
  * **`id`** (string): Unique identifier for the trajectory sequence.
53
  * **`total_frames`** (int32): Total number of frames in the video sequence.
54
  * **`video_path`** (string): Path to the source MP4 video file recording the manipulation action.
55
  * **`trajectory_image`** (image): A JPEG preview showing the overlaid trajectory path or keyframe visualization.
56
+ * **`annotations`** (string): A JSON-formatted string containing the detailed coordinate data. It contains lists of keyframes, timestamps, and 5-point coordinates for the gripper.
 
57
 
58
+ ### Annotation Standards
59
+ The data follows a strict protocol to ensure precision:
60
 
61
+ **1. Keyframe Selection**
62
+ Annotations are sparse, focusing on specific Keyframes defined by the following events:
63
+ * **Start Frame:** The gripper first appears in the screen.
64
+ * **End Frame:** The gripper leaves the screen.
65
+ * **Velocity Change:** Frames where the speed direction suddenly changes (marking the minimum speed point).
66
+ * **State Change:** Frames where the gripper opens or closes.
67
+ * **Contact:** The precise moment the gripper touches the object.
68
 
69
+ **2. The 5-Point Annotation Method**
70
+ For every annotated keyframe, the gripper is labeled with **5 specific coordinate points** to capture its pose and state accurately:
71
 
72
+ | Point ID | Description | Location Detail |
73
+ | :--- | :--- | :--- |
74
+ | **Point 1 & 2** | **Fingertips** | Center of the bottom edge of the gripper tips. |
75
+ | **Point 3 & 4** | **Gripper Ends** | The rearmost points of the closing area (indicating the finger direction). |
76
+ | **Point 5** | **Tiger's Mouth** | The center of the crossbeam (base of the gripper). |
77
 
78
+ **3. Quality Control**
79
+ * **Accuracy:** All datasets passed a rigorous quality assurance process with a minimum **95% accuracy rate**.
80
+ * **Occlusion Handling:** Sequences where the gripper is fully occluded or only shows a side profile without clear features are discarded.
 
 
 
 
81
 
82
+ ## Key Statistics
 
83
 
84
+ * **Total Examples:** 50 annotated examples (Sample Dataset).
85
+ * **Language:** English (`en`).
86
+ * **Splits:** Train split available.
87
+ * **Download Size:** ~38.7 MB.
88
+ * **Dataset Size:** ~39.0 MB.
89
+
90
+ ## Usage
91
+
92
+ This dataset is suitable for research and development in the field of Embodied AI and Computer Vision. It is specifically curated to support the following downstream tasks and application scenarios:
93
 
94
+ * **Trajectory Prediction:** The high-precision coordinate data allows for training models to predict the future path of a gripper based on initial visual contexts.
95
+ * **Keyframe Extraction & Event Detection:** By leveraging the labeled event types (e.g., "Contact", "Velocity Change"), models can be trained to automatically identify critical moments in long-horizon manipulation tasks.
96
+ * **Fine-Grained Robotic Control:** The 5-point annotation system provides detailed pose information, enabling Imitation Learning (IL) from human-demonstrated or teleoperated data for precise pick-and-place operations.
97
+ * **Object Interaction Analysis:** The dataset helps in understanding gripper-object relationships, specifically modeling the transition states when the gripper opens, closes, or makes contact with an object.
98
 
99
+ ### Usage Example
100
 
101
  ```python
102
  from datasets import load_dataset
 
114
 
115
  # Parse annotations
116
  annotations = json.loads(sample['annotations'])
117
+ print(f"Keyframes count: {len(annotations)}")
118
+ ```
119
+
120
+ ## License and Open-Source Details
121
+
122
+ * **License:** This dataset is released under the **OpenRAIL** license.