Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
# Dataset Card for Text2Tech Curated Documents
|
| 4 |
+
|
| 5 |
+
## Dataset Summary
|
| 6 |
+
|
| 7 |
+
This dataset is the result of converting a UIMA CAS 0.4 JSON export from the Inception annotation tool into a simplified format suitable for Natural Language Processing tasks. Specifically, it provides configurations for Named Entity Recognition (NER), Entity Linking (EL), and Relation Extraction (RE).
|
| 8 |
+
|
| 9 |
+
The conversion process utilized the `dkpro-cassis` library to load the original annotations and `spaCy` for tokenization. The final dataset is structured similarly to the DFKI-SLT/mobie dataset to ensure compatibility and ease of use with the Hugging Face ecosystem.
|
| 10 |
+
|
| 11 |
+
This version of the dataset loader provides configurations for:
|
| 12 |
+
|
| 13 |
+
* **Named Entity Recognition (ner)**: NER tags use spaCy's BILUO tagging scheme.
|
| 14 |
+
* **Entity Linking (el)**: Entity mentions are linked to external knowledge bases.
|
| 15 |
+
* **Relation Extraction (re)**: Relations between entities are annotated.
|
| 16 |
+
|
| 17 |
+
## Supported Tasks and Leaderboards
|
| 18 |
+
|
| 19 |
+
* **Tasks**: Named Entity Recognition, Entity Linking, Relation Extraction
|
| 20 |
+
* **Leaderboards**: More Information Needed
|
| 21 |
+
|
| 22 |
+
## Languages
|
| 23 |
+
|
| 24 |
+
The text in the dataset is in English.
|
| 25 |
+
|
| 26 |
+
## Dataset Structure
|
| 27 |
+
|
| 28 |
+
### Data Instances
|
| 29 |
+
|
| 30 |
+
#### ner
|
| 31 |
+
|
| 32 |
+
An example of 'train' looks as follows.
|
| 33 |
+
|
| 34 |
+
```json
|
| 35 |
+
{
|
| 36 |
+
"docid": "138",
|
| 37 |
+
"tokens": [
|
| 38 |
+
"\"",
|
| 39 |
+
"Samsung",
|
| 40 |
+
"takes",
|
| 41 |
+
"aim",
|
| 42 |
+
"at",
|
| 43 |
+
"blood",
|
| 44 |
+
"pressure",
|
| 45 |
+
"monitoring",
|
| 46 |
+
"with",
|
| 47 |
+
"the",
|
| 48 |
+
"Galaxy",
|
| 49 |
+
"Watch",
|
| 50 |
+
"Active",
|
| 51 |
+
"..."
|
| 52 |
+
],
|
| 53 |
+
"ner_tags": [
|
| 54 |
+
0,
|
| 55 |
+
1,
|
| 56 |
+
0,
|
| 57 |
+
0,
|
| 58 |
+
0,
|
| 59 |
+
2,
|
| 60 |
+
3,
|
| 61 |
+
4,
|
| 62 |
+
0,
|
| 63 |
+
0,
|
| 64 |
+
5,
|
| 65 |
+
6,
|
| 66 |
+
7,
|
| 67 |
+
"..."
|
| 68 |
+
]
|
| 69 |
+
}
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
#### el
|
| 73 |
+
|
| 74 |
+
An example of 'train' looks as follows.
|
| 75 |
+
|
| 76 |
+
```json
|
| 77 |
+
{
|
| 78 |
+
"docid": "138",
|
| 79 |
+
"tokens": [
|
| 80 |
+
"\"",
|
| 81 |
+
"Samsung",
|
| 82 |
+
"takes",
|
| 83 |
+
"aim",
|
| 84 |
+
"at",
|
| 85 |
+
"blood",
|
| 86 |
+
"pressure",
|
| 87 |
+
"monitoring",
|
| 88 |
+
"with",
|
| 89 |
+
"the",
|
| 90 |
+
"Galaxy",
|
| 91 |
+
"Watch",
|
| 92 |
+
"Active",
|
| 93 |
+
"..."
|
| 94 |
+
],
|
| 95 |
+
"ner_tags": [
|
| 96 |
+
0,
|
| 97 |
+
1,
|
| 98 |
+
0,
|
| 99 |
+
0,
|
| 100 |
+
0,
|
| 101 |
+
2,
|
| 102 |
+
3,
|
| 103 |
+
4,
|
| 104 |
+
0,
|
| 105 |
+
0,
|
| 106 |
+
5,
|
| 107 |
+
6,
|
| 108 |
+
7,
|
| 109 |
+
"..."
|
| 110 |
+
],
|
| 111 |
+
|
| 112 |
+
"entity_mentions": [
|
| 113 |
+
{
|
| 114 |
+
"text": "Samsung",
|
| 115 |
+
"start": 1,
|
| 116 |
+
"end": 2,
|
| 117 |
+
"char_start": 1,
|
| 118 |
+
"char_end": 8,
|
| 119 |
+
"type": 0,
|
| 120 |
+
"entity_id": "http://www.wikidata.org/entity/Q124989916"
|
| 121 |
+
},
|
| 122 |
+
"..."
|
| 123 |
+
]
|
| 124 |
+
}
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
#### re
|
| 128 |
+
|
| 129 |
+
An example of 'train' looks as follows.
|
| 130 |
+
|
| 131 |
+
```json
|
| 132 |
+
{
|
| 133 |
+
"docid": "138",
|
| 134 |
+
"tokens": [
|
| 135 |
+
"\"",
|
| 136 |
+
"Samsung",
|
| 137 |
+
"takes",
|
| 138 |
+
"aim",
|
| 139 |
+
"at",
|
| 140 |
+
"blood",
|
| 141 |
+
"pressure",
|
| 142 |
+
"monitoring",
|
| 143 |
+
"with",
|
| 144 |
+
"the",
|
| 145 |
+
"Galaxy",
|
| 146 |
+
"Watch",
|
| 147 |
+
"Active",
|
| 148 |
+
"..."
|
| 149 |
+
],
|
| 150 |
+
"ner_tags": [
|
| 151 |
+
0,
|
| 152 |
+
1,
|
| 153 |
+
0,
|
| 154 |
+
0,
|
| 155 |
+
0,
|
| 156 |
+
2,
|
| 157 |
+
3,
|
| 158 |
+
4,
|
| 159 |
+
0,
|
| 160 |
+
0,
|
| 161 |
+
5,
|
| 162 |
+
6,
|
| 163 |
+
7,
|
| 164 |
+
"..."
|
| 165 |
+
],
|
| 166 |
+
"relations": [
|
| 167 |
+
{
|
| 168 |
+
"id": "138-0",
|
| 169 |
+
"head_start": 706,
|
| 170 |
+
"head_end": 708,
|
| 171 |
+
"head_type": 2,
|
| 172 |
+
"tail_start": 706,
|
| 173 |
+
"tail_end": 708,
|
| 174 |
+
"tail_type": 2,
|
| 175 |
+
"type": 0
|
| 176 |
+
},
|
| 177 |
+
"..."
|
| 178 |
+
]
|
| 179 |
+
}
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
### Data Fields
|
| 183 |
+
|
| 184 |
+
#### ner
|
| 185 |
+
|
| 186 |
+
* `docid`: A `string` feature representing the document identifier.
|
| 187 |
+
* `tokens`: A `list` of `string` features representing the tokens in the document.
|
| 188 |
+
* `ner_tags`: A `list` of classification labels using spaCy's BILUO tagging scheme. The mapping from ID to tag is as follows:
|
| 189 |
+
|
| 190 |
+
**BILUO Tagging Scheme:**
|
| 191 |
+
- **B-** (Begin): First token of a multi-token entity
|
| 192 |
+
- **I-** (Inside): Inner tokens of a multi-token entity
|
| 193 |
+
- **L-** (Last): Final token of a multi-token entity
|
| 194 |
+
- **U-** (Unit): Single token entity
|
| 195 |
+
- **O** (Outside): Non-entity token
|
| 196 |
+
|
| 197 |
+
```json
|
| 198 |
+
{
|
| 199 |
+
"O": 0,
|
| 200 |
+
"U-Organization": 1,
|
| 201 |
+
"B-Method": 2,
|
| 202 |
+
"I-Method": 3,
|
| 203 |
+
"L-Method": 4,
|
| 204 |
+
"B-Technological System": 5,
|
| 205 |
+
"I-Technological System": 6,
|
| 206 |
+
"L-Technological System": 7,
|
| 207 |
+
"U-Technological System": 8,
|
| 208 |
+
"U-Method": 9,
|
| 209 |
+
"B-Material": 10,
|
| 210 |
+
"L-Material": 11,
|
| 211 |
+
"I-Material": 12,
|
| 212 |
+
"B-Organization": 13,
|
| 213 |
+
"L-Organization": 14,
|
| 214 |
+
"I-Organization": 15,
|
| 215 |
+
"U-Material": 16,
|
| 216 |
+
"B-Technical Field": 17,
|
| 217 |
+
"L-Technical Field": 18,
|
| 218 |
+
"I-Technical Field": 19,
|
| 219 |
+
"U-Technical Field": 20
|
| 220 |
+
}
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
#### el
|
| 224 |
+
|
| 225 |
+
* `docid`: A `string` feature representing the document identifier.
|
| 226 |
+
* `tokens`: A `list` of `string` features representing the tokens in the document.
|
| 227 |
+
* `entity_mentions`: A `list` of `struct` features containing:
|
| 228 |
+
* `text`: a `string` feature.
|
| 229 |
+
* `start`: token offset start, a `int32` feature.
|
| 230 |
+
* `end`: token offset end, a `int32` feature.
|
| 231 |
+
* `char_start`: character offset start, a `int32` feature.
|
| 232 |
+
* `char_end`: character offset end, a `int32` feature.
|
| 233 |
+
* `type`: a classification label. The mapping from ID to entity type is as follows:
|
| 234 |
+
|
| 235 |
+
```json
|
| 236 |
+
{
|
| 237 |
+
"Organization": 0,
|
| 238 |
+
"Method": 1,
|
| 239 |
+
"Technological System": 2,
|
| 240 |
+
"Material": 3,
|
| 241 |
+
"Technical Field": 4
|
| 242 |
+
}
|
| 243 |
+
```
|
| 244 |
+
|
| 245 |
+
* `entity_id`: a `string` feature representing the entity identifier from a knowledge base.
|
| 246 |
+
|
| 247 |
+
#### re
|
| 248 |
+
|
| 249 |
+
* `docid`: A `string` feature representing the document identifier.
|
| 250 |
+
* `tokens`: A `list` of `string` features representing the tokens in the document.
|
| 251 |
+
* `ner_tags`: A `list` of classification labels, corresponding to the NER task.
|
| 252 |
+
* `relations`: A `list` of `struct` features containing:
|
| 253 |
+
* `id`: a `string` feature representing the relation identifier.
|
| 254 |
+
* `head_start`: token offset start of the head entity, an `int32` feature.
|
| 255 |
+
* `head_end`: token offset end of the head entity, an `int32` feature.
|
| 256 |
+
* `head_type`: a classification label for the head entity type.
|
| 257 |
+
* `tail_start`: token offset start of the tail entity, an `int32` feature.
|
| 258 |
+
* `tail_end`: token offset end of the tail entity, an `int32` feature.
|
| 259 |
+
* `tail_type`: a classification label for the tail entity type.
|
| 260 |
+
* `type`: a classification label for the relation type. The mapping from ID to relation type is as follows:
|
| 261 |
+
|
| 262 |
+
```json
|
| 263 |
+
{
|
| 264 |
+
"ts:executes": 0,
|
| 265 |
+
"org:develops_or_provides": 1,
|
| 266 |
+
"ts:contains": 2,
|
| 267 |
+
"ts:made_of": 3,
|
| 268 |
+
"ts:uses": 4,
|
| 269 |
+
"ts:supports": 5,
|
| 270 |
+
"met:employs": 6,
|
| 271 |
+
"met:processes": 7,
|
| 272 |
+
"mat:transformed_to": 8,
|
| 273 |
+
"org:collaborates": 9,
|
| 274 |
+
"met:creates": 10,
|
| 275 |
+
"met:applied_to": 11,
|
| 276 |
+
"ts:processes": 12
|
| 277 |
+
}
|
| 278 |
+
```
|
| 279 |
+
|
| 280 |
+
### Data Splits
|
| 281 |
+
|
| 282 |
+
Please add information about your data splits here. For example:
|
| 283 |
+
|
| 284 |
+
* **train**: X samples
|
| 285 |
+
* **validation**: Y samples
|
| 286 |
+
* **test**: Z samples
|
| 287 |
+
|
| 288 |
+
## Dataset Creation
|
| 289 |
+
|
| 290 |
+
The dataset was created by converting JSON files exported from the Inception annotation tool. The `inception_converter.py` script was used to process these files. This script uses the `dkpro-cassis` library to load the UIMA CAS JSON data and `spaCy` for tokenization and creating BIO tags for the NER task. The data was then split into three separate files for NER, EL, and RE tasks.
|
| 291 |
+
|
| 292 |
+
## Considerations for Using the Data
|
| 293 |
+
|
| 294 |
+
### Social Impact of Dataset
|
| 295 |
+
|
| 296 |
+
More Information Needed
|
| 297 |
+
|
| 298 |
+
### Discussion of Biases
|
| 299 |
+
|
| 300 |
+
More Information Needed
|
| 301 |
+
|
| 302 |
+
### Other Known Limitations
|
| 303 |
+
|
| 304 |
+
More Information Needed
|
| 305 |
+
|
| 306 |
+
## Additional Information
|
| 307 |
+
|
| 308 |
+
### Dataset Curators
|
| 309 |
+
|
| 310 |
+
Amir Safari
|
| 311 |
+
|
| 312 |
+
### Licensing Information
|
| 313 |
+
|
| 314 |
+
Please specify the license for this dataset.
|
| 315 |
+
|
| 316 |
+
### Citation Information
|
| 317 |
+
|
| 318 |
+
Please provide a BibTeX citation for your dataset.
|
| 319 |
+
|
| 320 |
+
```bibtex
|
| 321 |
+
author = {Amir Safari},
|
| 322 |
+
title = {Text2Tech Curated Documents},
|
| 323 |
+
year = {2025},
|
| 324 |
+
publisher = {Hugging Face}
|
| 325 |
+
}
|
| 326 |
+
```
|