|
|
import os |
|
|
import tempfile |
|
|
import zipfile |
|
|
import zarr |
|
|
import numpy as np |
|
|
from typing import Dict, List, Any, Optional |
|
|
import datasets |
|
|
from datasets import DownloadManager, DatasetInfo, Split, SplitGenerator, Features, Value, Array2D, Array3D |
|
|
import fsspec |
|
|
from pathlib import Path |
|
|
|
|
|
|
|
|
class TestDownloadManager(datasets.DownloadManager): |
|
|
"""Custom download manager that handles zarr chunks in zip format for streaming.""" |
|
|
|
|
|
def __init__(self, dataset_name: str = "test", cache_dir: Optional[str] = None): |
|
|
|
|
|
super().__init__() |
|
|
self.dataset_name = dataset_name |
|
|
|
|
|
if cache_dir: |
|
|
self.cache_dir = cache_dir |
|
|
elif not hasattr(self, 'cache_dir') or self.cache_dir is None: |
|
|
|
|
|
import tempfile |
|
|
self.cache_dir = tempfile.gettempdir() |
|
|
|
|
|
def download_zarr_chunks(self, traces_path: str, chunk_size: int = 100) -> str: |
|
|
""" |
|
|
Convert traces.npy to zarr format with chunks and store in zip file. |
|
|
Returns path to the zip file containing zarr chunks. |
|
|
""" |
|
|
|
|
|
traces = np.load(traces_path) |
|
|
|
|
|
|
|
|
temp_dir = tempfile.mkdtemp() |
|
|
zarr_path = os.path.join(temp_dir, "traces.zarr") |
|
|
zip_path = os.path.join(temp_dir, "traces_zarr.zip") |
|
|
|
|
|
|
|
|
chunks = (chunk_size, traces.shape[1]) |
|
|
zarr_array = zarr.open(zarr_path, mode='w', shape=traces.shape, |
|
|
chunks=chunks, dtype=traces.dtype) |
|
|
|
|
|
|
|
|
for i in range(0, traces.shape[0], chunk_size): |
|
|
end_idx = min(i + chunk_size, traces.shape[0]) |
|
|
zarr_array[i:end_idx] = traces[i:end_idx] |
|
|
|
|
|
|
|
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
|
for root, dirs, files in os.walk(zarr_path): |
|
|
for file in files: |
|
|
file_path = os.path.join(root, file) |
|
|
|
|
|
arcname = os.path.relpath(file_path, temp_dir) |
|
|
zipf.write(file_path, arcname) |
|
|
|
|
|
|
|
|
cache_path = os.path.join(self.cache_dir, f"{self.dataset_name}_traces_zarr.zip") |
|
|
os.makedirs(os.path.dirname(cache_path), exist_ok=True) |
|
|
|
|
|
|
|
|
if not os.path.exists(cache_path) or os.path.getmtime(zip_path) > os.path.getmtime(cache_path): |
|
|
import shutil |
|
|
shutil.copy2(zip_path, cache_path) |
|
|
|
|
|
return cache_path |
|
|
|
|
|
|
|
|
class TestDataset(datasets.GeneratorBasedBuilder): |
|
|
"""Custom dataset for DLSCA test data with streaming zarr support.""" |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
def _info(self) -> DatasetInfo: |
|
|
"""Define the dataset information and features.""" |
|
|
return DatasetInfo( |
|
|
description="DLSCA test dataset with streaming support for large traces", |
|
|
features=Features({ |
|
|
"labels": datasets.Sequence(datasets.Value("int32"), length=4), |
|
|
"traces": datasets.Sequence(datasets.Value("int8"), length=20971), |
|
|
"index": Value("int32"), |
|
|
}), |
|
|
supervised_keys=("traces", "labels"), |
|
|
homepage="https://huggingface.co/datasets/DLSCA/test", |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[SplitGenerator]: |
|
|
"""Define the data splits.""" |
|
|
|
|
|
if isinstance(dl_manager, TestDownloadManager): |
|
|
|
|
|
data_dir = os.path.join(os.path.dirname(__file__), "data") |
|
|
labels_path = os.path.join(data_dir, "labels.npy") |
|
|
|
|
|
|
|
|
traces_path = os.path.join(data_dir, "traces.npy") |
|
|
zarr_zip_path = dl_manager.download_zarr_chunks(traces_path) |
|
|
else: |
|
|
|
|
|
data_dir = os.path.join(os.path.dirname(__file__), "data") |
|
|
labels_path = os.path.join(data_dir, "labels.npy") |
|
|
traces_path = os.path.join(data_dir, "traces.npy") |
|
|
zarr_zip_path = None |
|
|
|
|
|
return [ |
|
|
SplitGenerator( |
|
|
name=Split.TRAIN, |
|
|
gen_kwargs={ |
|
|
"labels_path": labels_path, |
|
|
"traces_path": traces_path, |
|
|
"zarr_zip_path": zarr_zip_path, |
|
|
}, |
|
|
), |
|
|
] |
|
|
|
|
|
def _generate_examples(self, labels_path: str, traces_path: str, zarr_zip_path: Optional[str] = None): |
|
|
"""Generate examples from the dataset.""" |
|
|
|
|
|
labels = np.load(labels_path) |
|
|
|
|
|
if zarr_zip_path and os.path.exists(zarr_zip_path): |
|
|
|
|
|
traces_array = self._load_zarr_from_zip(zarr_zip_path) |
|
|
else: |
|
|
|
|
|
traces_array = np.load(traces_path) |
|
|
|
|
|
|
|
|
for idx in range(len(labels)): |
|
|
yield idx, { |
|
|
"labels": labels[idx], |
|
|
"traces": traces_array[idx] if zarr_zip_path else traces_array[idx], |
|
|
"index": idx, |
|
|
} |
|
|
|
|
|
def _load_zarr_from_zip(self, zip_path: str) -> zarr.Array: |
|
|
"""Load zarr array from zip file with streaming support.""" |
|
|
|
|
|
fs = fsspec.filesystem('zip', fo=zip_path) |
|
|
|
|
|
|
|
|
mapper = fs.get_mapper('traces.zarr') |
|
|
zarr_array = zarr.open(mapper, mode='r') |
|
|
|
|
|
return zarr_array |
|
|
|
|
|
def _get_chunk_indices(self, start_idx: int, end_idx: int, chunk_size: int = 100) -> List[tuple]: |
|
|
"""Helper method to get chunk indices for streaming access.""" |
|
|
chunks = [] |
|
|
current_idx = start_idx |
|
|
while current_idx < end_idx: |
|
|
chunk_start = (current_idx // chunk_size) * chunk_size |
|
|
chunk_end = min(chunk_start + chunk_size, end_idx) |
|
|
chunks.append((chunk_start, chunk_end)) |
|
|
current_idx = chunk_end |
|
|
return chunks |
|
|
|
|
|
|
|
|
|
|
|
def get_dataset_info(): |
|
|
"""Get information about the dataset.""" |
|
|
dataset = TestDataset() |
|
|
info = { |
|
|
"description": "DLSCA test dataset with streaming support", |
|
|
"total_examples": 1000, |
|
|
"features": { |
|
|
"labels": {"shape": (4,), "dtype": "int32"}, |
|
|
"traces": {"shape": (20971,), "dtype": "int8"}, |
|
|
"index": {"dtype": "int32"} |
|
|
}, |
|
|
"splits": ["train"], |
|
|
"size_info": { |
|
|
"labels_file": "~16KB", |
|
|
"traces_file": "~20MB", |
|
|
"zarr_chunks": "10 chunks of 100 examples each" |
|
|
} |
|
|
} |
|
|
return info |
|
|
|
|
|
|
|
|
def create_data_loader(zarr_zip_path: str, batch_size: int = 32, shuffle: bool = True): |
|
|
"""Create a data loader for the zarr dataset.""" |
|
|
dataset = TestDataset() |
|
|
zarr_array = dataset._load_zarr_from_zip(zarr_zip_path) |
|
|
labels = np.load(os.path.join(os.path.dirname(__file__), "data", "labels.npy")) |
|
|
|
|
|
|
|
|
def batch_generator(): |
|
|
indices = list(range(len(labels))) |
|
|
if shuffle: |
|
|
import random |
|
|
random.shuffle(indices) |
|
|
|
|
|
for i in range(0, len(indices), batch_size): |
|
|
batch_indices = indices[i:i+batch_size] |
|
|
batch_traces = zarr_array[batch_indices] |
|
|
batch_labels = labels[batch_indices] |
|
|
yield { |
|
|
"traces": batch_traces, |
|
|
"labels": batch_labels, |
|
|
"indices": batch_indices |
|
|
} |
|
|
|
|
|
return batch_generator |
|
|
|
|
|
|
|
|
def validate_dataset_integrity(): |
|
|
"""Validate that zarr conversion preserves data integrity.""" |
|
|
|
|
|
original_traces = np.load(os.path.join(os.path.dirname(__file__), "data", "traces.npy")) |
|
|
original_labels = np.load(os.path.join(os.path.dirname(__file__), "data", "labels.npy")) |
|
|
|
|
|
|
|
|
dl_manager = TestDownloadManager() |
|
|
traces_path = os.path.join(os.path.dirname(__file__), "data", "traces.npy") |
|
|
zarr_zip_path = dl_manager.download_zarr_chunks(traces_path) |
|
|
|
|
|
dataset = TestDataset() |
|
|
zarr_traces = dataset._load_zarr_from_zip(zarr_zip_path) |
|
|
|
|
|
|
|
|
traces_match = np.array_equal(original_traces, zarr_traces[:]) |
|
|
shapes_match = original_traces.shape == zarr_traces.shape |
|
|
dtypes_match = original_traces.dtype == zarr_traces.dtype |
|
|
|
|
|
validation_results = { |
|
|
"traces_data_match": traces_match, |
|
|
"shapes_match": shapes_match, |
|
|
"dtypes_match": dtypes_match, |
|
|
"original_shape": original_traces.shape, |
|
|
"zarr_shape": zarr_traces.shape, |
|
|
"original_dtype": str(original_traces.dtype), |
|
|
"zarr_dtype": str(zarr_traces.dtype), |
|
|
"zarr_chunks": zarr_traces.chunks |
|
|
} |
|
|
|
|
|
return validation_results |
|
|
|
|
|
|
|
|
|
|
|
def prepare_for_hub_upload(): |
|
|
"""Prepare dataset files for Hugging Face Hub upload.""" |
|
|
print("Preparing dataset for Hugging Face Hub upload...") |
|
|
|
|
|
|
|
|
validation = validate_dataset_integrity() |
|
|
if not all([validation["traces_data_match"], validation["shapes_match"], validation["dtypes_match"]]): |
|
|
raise ValueError("Dataset validation failed!") |
|
|
|
|
|
|
|
|
info = get_dataset_info() |
|
|
|
|
|
print("✅ Dataset validation passed") |
|
|
print(f"✅ Total examples: {info['total_examples']}") |
|
|
print(f"✅ Features: {list(info['features'].keys())}") |
|
|
print(f"✅ Zarr chunks: {validation['zarr_chunks']}") |
|
|
|
|
|
return { |
|
|
"validation": validation, |
|
|
"info": info, |
|
|
"ready_for_upload": True |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
print("Loading dataset locally...") |
|
|
dataset = TestDataset() |
|
|
|
|
|
|
|
|
print("Downloading and preparing dataset...") |
|
|
dataset.download_and_prepare() |
|
|
|
|
|
|
|
|
dataset_dict = dataset.as_dataset(split="train") |
|
|
|
|
|
print(f"Dataset size: {len(dataset_dict)}") |
|
|
print(f"Features: {dataset_dict.features}") |
|
|
|
|
|
|
|
|
first_example = dataset_dict[0] |
|
|
print(f"First example - Labels length: {len(first_example['labels'])}") |
|
|
print(f"First example - Traces length: {len(first_example['traces'])}") |
|
|
print(f"First example - Labels: {first_example['labels']}") |
|
|
print(f"First example - Index: {first_example['index']}") |
|
|
|
|
|
|
|
|
print("\nTesting zarr conversion...") |
|
|
dl_manager = TestDownloadManager() |
|
|
traces_path = os.path.join(os.path.dirname(__file__), "data", "traces.npy") |
|
|
zarr_zip_path = dl_manager.download_zarr_chunks(traces_path, chunk_size=100) |
|
|
print(f"Zarr zip created at: {zarr_zip_path}") |
|
|
|
|
|
|
|
|
test_dataset_zarr = TestDataset() |
|
|
zarr_array = test_dataset_zarr._load_zarr_from_zip(zarr_zip_path) |
|
|
print(f"Zarr array shape: {zarr_array.shape}") |
|
|
print(f"Zarr array dtype: {zarr_array.dtype}") |
|
|
print(f"Zarr array chunks: {zarr_array.chunks}") |
|
|
|
|
|
|
|
|
original_traces = np.load(traces_path) |
|
|
print(f"Data integrity check: {np.array_equal(original_traces, zarr_array[:])}") |
|
|
|
|
|
print("\n=== Dataset Utilities Test ===") |
|
|
|
|
|
|
|
|
info = get_dataset_info() |
|
|
print(f"Dataset info: {info['total_examples']} examples") |
|
|
|
|
|
|
|
|
validation = validate_dataset_integrity() |
|
|
print(f"Validation passed: {validation['traces_data_match']}") |
|
|
|
|
|
|
|
|
dl_manager = TestDownloadManager() |
|
|
traces_path = os.path.join(os.path.dirname(__file__), "data", "traces.npy") |
|
|
zarr_zip_path = dl_manager.download_zarr_chunks(traces_path) |
|
|
|
|
|
batch_gen = create_data_loader(zarr_zip_path, batch_size=16) |
|
|
first_batch = next(batch_gen()) |
|
|
print(f"First batch shape: traces={first_batch['traces'].shape}, labels={first_batch['labels'].shape}") |
|
|
|
|
|
|
|
|
hub_status = prepare_for_hub_upload() |
|
|
print(f"Ready for Hub upload: {hub_status['ready_for_upload']}") |
|
|
|
|
|
print("\n✅ All utilities working correctly!") |