# DLSCA Test Dataset A Hugging Face dataset for Deep Learning Side Channel Analysis (DLSCA) with streaming support for large trace files using zarr format. ## Features - **Streaming Support**: Large trace data is converted to zarr format with chunking for efficient streaming access - **Caching**: Uses Hugging Face cache instead of fsspec cache for better integration - **Zip Compression**: Zarr chunks are stored in zip files to minimize file count - **Memory Efficient**: Only loads required chunks, not the entire dataset ## Dataset Structure - **Labels**: 1000 examples with 4 labels each (int32) - **Traces**: 1000 examples with 20,971 features each (int8) - **Index**: Sequential index for each example ## Usage ### Local Development ```python from test import TestDataset # Load dataset locally dataset = TestDataset() dataset.download_and_prepare() dataset_dict = dataset.as_dataset(split="train") # Access examples example = dataset_dict[0] print(f"Labels: {example['labels']}") print(f"Traces length: {len(example['traces'])}") ``` ### Streaming Usage (for large datasets) ```python from test import TestDownloadManager, TestDataset # Initialize streaming dataset dl_manager = TestDownloadManager() traces_path = "data/traces.npy" zarr_zip_path = dl_manager.download_zarr_chunks(traces_path, chunk_size=100) # Access zarr data efficiently dataset = TestDataset() zarr_array = dataset._load_zarr_from_zip(zarr_zip_path) # Access specific chunks chunk_data = zarr_array[0:100] # First chunk ``` ### Chunk Selection ```python # Select specific ranges for training selected_range = slice(200, 300) selected_traces = zarr_array[selected_range] selected_labels = labels[selected_range] ``` ## Implementation Details ### Custom DownloadManager The `TestDownloadManager` extends `datasets.DownloadManager` to: - Convert numpy arrays to zarr format with chunking - Store zarr data in zip files for compression - Use Hugging Face cache directory - Support streaming access patterns ### Custom Dataset Builder The `TestDataset` extends `datasets.GeneratorBasedBuilder` to: - Handle both local numpy files and remote zarr chunks - Provide efficient chunk-based data access - Maintain compatibility with Hugging Face datasets API ### Zarr Configuration - **Format**: Zarr v2 (for better fsspec compatibility) - **Chunks**: (100, 20971) - 100 examples per chunk - **Compression**: ZIP format for the zarr store - **Storage**: Hugging Face cache directory ## Performance The zarr-based approach provides: - **Memory efficiency**: Only loads required chunks - **Streaming capability**: Can work with datasets larger than RAM - **Compression**: Zip storage reduces file size - **Cache optimization**: Leverages Hugging Face caching mechanism ## Requirements ``` datasets zarr<3 fsspec numpy zipfile36 ``` ## File Structure ``` test/ ├── data/ │ ├── labels.npy # Label data (small, kept as numpy) │ └── traces.npy # Trace data (large, converted to zarr) ├── test.py # Main dataset implementation ├── example_usage.py # Usage examples ├── requirements.txt # Dependencies └── README.md # This file ``` ## Notes - The original `traces.npy` is ~20MB, which demonstrates the zarr chunking approach - For even larger datasets (GB/TB), this approach scales well - The zarr v2 format is used for better compatibility with fsspec - Chunk size can be adjusted based on memory constraints and access patterns ## Future Enhancements - Support for multiple splits (train/test/validation) - Dynamic chunk size based on available memory - Compression algorithms for zarr chunks - Metadata caching for faster dataset initialization