youngsm commited on
Commit
0e5cd8f
·
verified ·
1 Parent(s): def901e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +254 -1
README.md CHANGED
@@ -12,4 +12,257 @@ pretty_name: >-
12
  Physics - Medium
13
  size_categories:
14
  - 100K<n<1M
15
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  Physics - Medium
13
  size_categories:
14
  - 100K<n<1M
15
+ ---
16
+
17
+ # Public Dataset for Particle Imaging Liquid Argon Detectors in High Energy Physics
18
+
19
+ We provide the 156 GB **PILArNet-Medium** dataset, a continuation of the [PILArNet](https://arxiv.org/abs/2006.01993) dataset, consisting of ~1.2 million events from liquid argon time projection chambers ([LArTPCs](https://www.symmetrymagazine.org/article/october-2012/time-projection-chambers-a-milestone-in-particle-detector-technology?language_content_entity=und)).
20
+
21
+ Each event contains 3D ionization trajectories of particles as they traverse the detector. Typical downstream tasks include:
22
+
23
+ - Semantic segmentation of voxels into particle-like categories
24
+ - Particle-level (instance-level) segmentation and identification
25
+ - Interaction-level grouping of particles that belong to the same interaction
26
+
27
+ ## Directory structure
28
+
29
+ The dataset is stored in HDF5 format and organized as:
30
+
31
+ ```plaintext
32
+ /path/to/dataset/
33
+ /train/
34
+ /generic_v2_196200_v2.h5
35
+ /generic_v2_153600_v1.h5
36
+ ...
37
+ /val/
38
+ /generic_v2_10880_v2.h5
39
+ ...
40
+ /test/
41
+ /generic_v2_50000_v1.h5
42
+ ...
43
+ ````
44
+
45
+ The number preceding the second `v2` indicates the number of events contained in the file.
46
+
47
+ Dataset split:
48
+
49
+ * **Train:** 1,082,400 events
50
+ * **Validation:** 66,800 events
51
+ * **Test:** 50,000 events
52
+
53
+ ## Data format
54
+
55
+ Each HDF5 file contains three main datasets: `point`, `cluster`, and `cluster_extra`.
56
+ Entries are stored as variable length 1D arrays and should be reshaped event by event.
57
+
58
+ ### `point` dataset
59
+
60
+ Each entry of `point` corresponds to a single event and encodes all spacepoints for that event in a flattened array. After reshaping, each row corresponds to a point:
61
+
62
+ Shape per event: `(N, 8)`
63
+
64
+ Columns (per point):
65
+
66
+ 1. `x` coordinate (integer voxel index, 0 to 768)
67
+ 2. `y` coordinate (integer voxel index, 0 to 768)
68
+ 3. `z` coordinate (integer voxel index, 0 to 768)
69
+ 4. Voxel value (what the detector records)
70
+ 5. Energy deposit `dE`
71
+ 6. Absolute time in nanoseconds
72
+ 7. Number of electrons
73
+ 8. `dx` in millimeters
74
+
75
+ Example:
76
+
77
+ ```python
78
+ import h5py
79
+
80
+ EVENT_IDX = 0
81
+
82
+ with h5py.File("/path/to/dataset/train/generic_v2_196200_v2.h5", "r") as h5f:
83
+ point_flat = h5f["point"][EVENT_IDX]
84
+ points = point_flat.reshape(-1, 8) # (N, 8)
85
+ ```
86
+
87
+ ### `cluster` dataset
88
+
89
+ Each entry of `cluster` corresponds to the set of clusters for a single event. After reshaping, each row corresponds to a cluster:
90
+
91
+ Shape per event: `(M, 6)`
92
+
93
+ Columns (per cluster):
94
+
95
+ 1. Number of points in the cluster
96
+ 2. Fragment ID
97
+ 3. Group ID
98
+ 4. Interaction ID
99
+ 5. Semantic type (class ID, see below)
100
+ 6. Particle ID (PID, see below)
101
+
102
+ Example:
103
+
104
+ ```python
105
+ with h5py.File("/path/to/dataset/train/generic_v2_196200_v2.h5", "r") as h5f:
106
+ cluster_flat = h5f["cluster"][EVENT_IDX]
107
+ clusters = cluster_flat.reshape(-1, 6) # (M, 6)
108
+ ```
109
+
110
+ ### `cluster_extra` dataset
111
+
112
+ Each entry of `cluster_extra` provides additional per-cluster information for a single event. After reshaping, each row corresponds to a cluster:
113
+
114
+ Shape per event: `(M, 5)`
115
+
116
+ Columns (per cluster):
117
+
118
+ 1. Particle mass (from PDG)
119
+ 2. Particle momentum (magnitude)
120
+ 3. Particle vertex `x` coordinate
121
+ 4. Particle vertex `y` coordinate
122
+ 5. Particle vertex `z` coordinate
123
+
124
+ Example:
125
+
126
+ ```python
127
+ with h5py.File("/path/to/dataset/train/generic_v2_196200_v2.h5", "r") as h5f:
128
+ cluster_extra_flat = h5f["cluster_extra"][EVENT_IDX]
129
+ cluster_extra = cluster_extra_flat.reshape(-1, 5) # (M, 5)
130
+ ```
131
+
132
+ ### Cluster and point ordering
133
+
134
+ Points in the `point` array are ordered by the cluster they belong to. For a given event:
135
+
136
+ * Let `clusters[i, 0]` be the number of points in cluster `i`
137
+ * Then points for cluster `0` occupy the first `clusters[0, 0]` rows in `points`
138
+ * Points for cluster `1` occupy the next `clusters[1, 0]` rows, and so on
139
+
140
+ This ordering allows you to map cluster-level attributes (`cluster` and `cluster_extra`) back to the underlying points.
141
+
142
+ ### Removing low energy deposits (LED)
143
+
144
+ By construction, the first cluster in each event (`cluster[0]`) corresponds to amorphous low energy deposits or blips: these are treated as uncountable "stuff" and labeled as LED.
145
+
146
+ To remove LED points from an event:
147
+
148
+ ```python
149
+ EVENT_IDX = 0
150
+
151
+ with h5py.File("/path/to/dataset/train/generic_v2_196200_v2.h5", "r") as h5f:
152
+ point_flat = h5f["point"][EVENT_IDX]
153
+ cluster_flat = h5f["cluster"][EVENT_IDX]
154
+
155
+ points = point_flat.reshape(-1, 8) # (N, 8)
156
+ clusters = cluster_flat.reshape(-1, 6) # (M, 6)
157
+
158
+ # Number of points belonging to LED (cluster 0)
159
+ n_led_points = clusters[0, 0]
160
+
161
+ # Drop LED points
162
+ points_no_led = points[n_led_points:] # points belonging to non-LED clusters
163
+ ```
164
+
165
+ LED clusters also have special values in the ID fields, described in the label schema below.
166
+
167
+ ## Label schema
168
+
169
+ This section summarizes the label conventions used in the dataset for semantic segmentation, particle identification, and instance or interaction level grouping.
170
+
171
+ ### Semantic segmentation classes
172
+
173
+ Semantic labels are given by the field in `cluster[:, 4]`.
174
+ The mapping is:
175
+
176
+ | Semantic ID | Class name |
177
+ | ----------- | ---------- |
178
+ | 0 | Shower |
179
+ | 1 | Track |
180
+ | 2 | Michel |
181
+ | 3 | Delta |
182
+ | 4 | LED |
183
+
184
+ Here, LED denotes low energy deposits or amorphous "stuff" that is not counted as a particle instance.
185
+
186
+ To perform semantic segmentation at the point level, use the cluster ordering:
187
+
188
+ 1. Expand cluster semantic labels to per-point labels according to the point counts per cluster.
189
+ 2. Optionally remove LED points (Semantic ID 4) as shown above.
190
+
191
+ ### Particle identification (PID) labels
192
+
193
+ Particle identification uses the Particle ID field in `cluster[:, 5]`.
194
+ The mapping is:
195
+
196
+ | ID | Particle type |
197
+ | --- | ---------------------------------- |
198
+ | 0 | Photon |
199
+ | 1 | Electron |
200
+ | 2 | Muon |
201
+ | 3 | Pion |
202
+ | 4 | Proton |
203
+ | 5 | Kaon (not present in this dataset) |
204
+ | 6 | None (LED) |
205
+
206
+ LED clusters that correspond to low energy deposits use `PID = 6`.
207
+ These clusters are typically also `Semantic ID = 4` and treated as "stuff".
208
+
209
+ ### Instance and interaction IDs
210
+
211
+ The `cluster` dataset contains several integer IDs to support different grouping granularities:
212
+
213
+ * **Fragment ID** (`cluster[:, 1]`):
214
+ Identifies contiguous fragments of a particle. Multiple fragments may belong to the same particle.
215
+
216
+ * **Group ID** (`cluster[:, 2]`):
217
+ Identifies particle-level instances. All clusters with the same group ID correspond to the same physical particle.
218
+
219
+ * Use `Group ID` for particle instance segmentation or particle-level identification tasks.
220
+
221
+ * **Interaction ID** (`cluster[:, 3]`):
222
+ Identifies interaction-level groups. All particles with the same interaction ID belong to the same interaction (for example a neutrino interaction and its secondaries).
223
+
224
+ * Use `Interaction ID` for interaction-level segmentation or classification.
225
+
226
+ For LED clusters, all three IDs
227
+
228
+ * Fragment ID
229
+ * Group ID
230
+ * Interaction ID
231
+
232
+ are set to `-1`. This differentiates LED clusters from genuine particle or interaction instances.
233
+
234
+ ## Reconstruction Tasks
235
+
236
+ Typical uses of this dataset include:
237
+
238
+ * **Semantic segmentation**:
239
+ Predict voxelwise semantic labels (shower, track, Michel, delta, LED) using the `Semantic type` field.
240
+
241
+ * **Particle-level segmentation and PID**:
242
+
243
+ * Use `Group ID` to define particle instances.
244
+ * Use `PID` to assign particle type (photon, electron, muon, pion, proton, None).
245
+
246
+ * **Interaction-level reconstruction**:
247
+
248
+ * Use `Interaction ID` to group particles belonging to the same physics interaction.
249
+ * Use `cluster_extra` for per-particle momentum and vertex information.
250
+
251
+ ## Getting started
252
+
253
+ A [Colab notebook](https://colab.research.google.com/drive/1x8WatdJa5D7Fxd3sLX5XSJiMkT_sG_im) is provided for a hands-on introduction to loading and inspecting the dataset.
254
+
255
+
256
+ ## Citation
257
+
258
+ ```bibtex
259
+ @misc{young2025particletrajectoryrepresentationlearning,
260
+ title={Particle Trajectory Representation Learning with Masked Point Modeling},
261
+ author={Sam Young and Yeon-jae Jwa and Kazuhiro Terao},
262
+ year={2025},
263
+ eprint={2502.02558},
264
+ archivePrefix={arXiv},
265
+ primaryClass={hep-ex},
266
+ url={https://arxiv.org/abs/2502.02558},
267
+ }
268
+ ```