Datasets:
add dataset card
Browse files
README.md
CHANGED
|
@@ -42,3 +42,56 @@ configs:
|
|
| 42 |
- split: intents
|
| 43 |
path: intents/intents-*
|
| 44 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
- split: intents
|
| 43 |
path: intents/intents-*
|
| 44 |
---
|
| 45 |
+
|
| 46 |
+
# snips
|
| 47 |
+
|
| 48 |
+
This is a text classification dataset. It is intended for machine learning research and experimentation.
|
| 49 |
+
|
| 50 |
+
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).
|
| 51 |
+
|
| 52 |
+
## Usage
|
| 53 |
+
|
| 54 |
+
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
+
from autointent import Dataset
|
| 58 |
+
|
| 59 |
+
dream = Dataset.from_datasets("AutoIntent/banking77")
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
## Source
|
| 63 |
+
|
| 64 |
+
This dataset is taken from `benayas/snips` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
|
| 65 |
+
|
| 66 |
+
```python
|
| 67 |
+
# define util
|
| 68 |
+
from datasets import load_dataset
|
| 69 |
+
from autointent import Dataset
|
| 70 |
+
|
| 71 |
+
def convert_snips(snips_train):
|
| 72 |
+
intent_names = sorted(snips_train.unique("category"))
|
| 73 |
+
name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False))
|
| 74 |
+
n_classes = len(intent_names)
|
| 75 |
+
|
| 76 |
+
classwise_utterance_records = [[] for _ in range(n_classes)]
|
| 77 |
+
intents = [
|
| 78 |
+
{
|
| 79 |
+
"id": i,
|
| 80 |
+
"name": name,
|
| 81 |
+
}
|
| 82 |
+
for i, name in enumerate(intent_names)
|
| 83 |
+
]
|
| 84 |
+
|
| 85 |
+
for batch in snips_train.iter(batch_size=16, drop_last_batch=False):
|
| 86 |
+
for txt, name in zip(batch["text"], batch["category"], strict=False):
|
| 87 |
+
intent_id = name_to_id[name]
|
| 88 |
+
target_list = classwise_utterance_records[intent_id]
|
| 89 |
+
target_list.append({"utterance": txt, "label": intent_id})
|
| 90 |
+
|
| 91 |
+
utterances = [rec for lst in classwise_utterance_records for rec in lst]
|
| 92 |
+
return Dataset.from_dict({"intents": intents, "train": utterances})
|
| 93 |
+
|
| 94 |
+
# load and format
|
| 95 |
+
snips = load_dataset("benayas/snips")
|
| 96 |
+
snips_converted = convert_snips(snips["train"])
|
| 97 |
+
```
|