import re import random import os import nodes import folder_paths import yaml import numpy as np import threading from impact import utils from impact import config import logging wildcards_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "wildcards")) RE_WildCardQuantifier = re.compile(r"(?P\d+)#__(?P[\w.\-+/*\\]+?)__", re.IGNORECASE) wildcard_lock = threading.Lock() wildcard_dict = {} def get_wildcard_list(): with wildcard_lock: return [f"__{x}__" for x in wildcard_dict.keys()] def get_wildcard_dict(): global wildcard_dict with wildcard_lock: return wildcard_dict def wildcard_normalize(x): return x.replace("\\", "/").replace(' ', '-').lower() def read_wildcard(k, v): if isinstance(v, list): k = wildcard_normalize(k) wildcard_dict[k] = v elif isinstance(v, dict): for k2, v2 in v.items(): new_key = f"{k}/{k2}" new_key = wildcard_normalize(new_key) read_wildcard(new_key, v2) elif isinstance(v, str): k = wildcard_normalize(k) wildcard_dict[k] = [v] elif isinstance(v, (int, float)): k = wildcard_normalize(k) wildcard_dict[k] = [str(v)] def read_wildcard_dict(wildcard_path): global wildcard_dict for root, directories, files in os.walk(wildcard_path, followlinks=True): for file in files: if file.endswith('.txt'): file_path = os.path.join(root, file) rel_path = os.path.relpath(file_path, wildcard_path) key = wildcard_normalize(os.path.splitext(rel_path)[0]) try: with open(file_path, 'r', encoding="ISO-8859-1") as f: lines = f.read().splitlines() wildcard_dict[key] = [x for x in lines if not x.strip().startswith('#')] except yaml.reader.ReaderError: with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f: lines = f.read().splitlines() wildcard_dict[key] = [x for x in lines if not x.strip().startswith('#')] elif file.endswith('.yaml') or file.endswith('.yml'): file_path = os.path.join(root, file) try: with open(file_path, 'r', encoding="ISO-8859-1") as f: yaml_data = yaml.load(f, Loader=yaml.FullLoader) except yaml.reader.ReaderError: with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f: yaml_data = yaml.load(f, Loader=yaml.FullLoader) for k, v in yaml_data.items(): read_wildcard(k, v) return wildcard_dict def process_comment_out(text): lines = text.split('\n') lines0 = [] flag = False for line in lines: if line.lstrip().startswith('#'): flag = True continue if len(lines0) == 0: lines0.append(line) elif flag: lines0[-1] += ' ' + line flag = False else: lines0.append(line) return '\n'.join(lines0) def process(text, seed=None): text = process_comment_out(text) if seed is not None: random.seed(seed) random_gen = np.random.default_rng(seed) local_wildcard_dict = get_wildcard_dict() def replace_options(string): replacements_found = False def replace_option(match): nonlocal replacements_found options = match.group(1).split('|') multi_select_pattern = options[0].split('$$') select_range = None select_sep = ' ' range_pattern = r'(\d+)(-(\d+))?' range_pattern2 = r'-(\d+)' wildcard_pattern = r"__([\w.\-+/*\\]+?)__" if len(multi_select_pattern) > 1: r = re.match(range_pattern, options[0]) if r is None: r = re.match(range_pattern2, options[0]) a = '1' b = r.group(1).strip() else: a = r.group(1).strip() b = r.group(3) if b is not None: b = b.strip() else: b = a if r is not None: if b is not None and is_numeric_string(a) and is_numeric_string(b): # PATTERN: num1-num2 select_range = int(a), int(b) elif is_numeric_string(a): # PATTERN: num x = int(a) select_range = (x, x) # Expand wildcard path or return the string after $$ def expand_wildcard_or_return_string(options, pattern, wildcard_pattern): matches = re.findall(wildcard_pattern, pattern) if len(options) == 1 and matches: # $$ return get_wildcard_options(pattern) else: # $$opt1|opt2|... options[0] = pattern return options if select_range is not None and len(multi_select_pattern) == 2: # PATTERN: count$$ options = expand_wildcard_or_return_string(options, multi_select_pattern[1], wildcard_pattern ) elif select_range is not None and len(multi_select_pattern) == 3: # PATTERN: count$$ sep $$ select_sep = multi_select_pattern[1] options = expand_wildcard_or_return_string(options, multi_select_pattern[2], wildcard_pattern ) adjusted_probabilities = [] total_prob = 0 for option in options: parts = option.split('::', 1) if isinstance(option, str) else f"{option}".split('::', 1) if len(parts) == 2 and is_numeric_string(parts[0].strip()): config_value = float(parts[0].strip()) else: config_value = 1 # Default value if no configuration is provided adjusted_probabilities.append(config_value) total_prob += config_value normalized_probabilities = [prob / total_prob for prob in adjusted_probabilities] if select_range is None: select_count = 1 else: def calculate_max(_options_length, _max_select_range): return min(_max_select_range + 1, _options_length + 1) if _max_select_range > 0 else _options_length + 1 def calculate_select_count(_max_value, _min_select_range, random_gen): if max(_max_value, _min_select_range) <= 0: return 0 # fix: low >= high elif _max_value == _min_select_range: return _max_value else: # fix: low >= high _low_value = min(_min_select_range, _max_value) _high_value = max(_min_select_range, _max_value) return random_gen.integers(low=_low_value, high=_high_value, size=1) select_count = calculate_select_count(calculate_max(len(options), select_range[1]), select_range[0], random_gen) if select_count > len(options) or total_prob <= 1: random_gen.shuffle(options) selected_items = options else: selected_items = random_gen.choice(options, p=normalized_probabilities, size=select_count, replace=False) # x may be numpy.int32, convert to string selected_items2 = [re.sub(r'^\s*[0-9.]+::', '', str(x), count=1) for x in selected_items] replacement = select_sep.join(selected_items2) if '::' in replacement: pass replacements_found = True return replacement pattern = r'(? 1: replace_depth -= 1 # prevent infinite loop option_quantifier = [e.groupdict() for e in RE_WildCardQuantifier.finditer(text)] for match in option_quantifier: keyword = match['keyword'].lower() quantifier = int(match['quantifier']) if match['quantifier'] else 1 replacement = '__|__'.join([keyword,] * quantifier) wilder_keyword = keyword.replace('*', '\\*') RE_TEMP = re.compile(fr"(?P\d+)#__(?P{wilder_keyword})__", re.IGNORECASE) text = RE_TEMP.sub(f"__{replacement}__", text) # pass1: replace options pass1, is_replaced1 = replace_options(text) while is_replaced1: pass1, is_replaced1 = replace_options(pass1) # pass2: replace wildcards text, is_replaced2 = replace_wildcard(pass1) stop_unwrap = not is_replaced1 and not is_replaced2 return text def is_numeric_string(input_str): return re.match(r'^-?(\d*\.?\d+|\d+\.?\d*)$', input_str) is not None def safe_float(x): if is_numeric_string(x): return float(x) else: return 1.0 def extract_lora_values(string): pattern = r']+)>' matches = re.findall(pattern, string) def touch_lbw(text): return re.sub(r'LBW=[A-Za-z][A-Za-z0-9_-]*:', r'LBW=', text) items = [touch_lbw(match.strip(':')) for match in matches] added = set() result = [] for item in items: item = item.split(':') lora = None a = None b = None lbw = None lbw_a = None lbw_b = None loader = None if len(item) > 0: lora = item[0] for sub_item in item[1:]: if is_numeric_string(sub_item): if a is None: a = float(sub_item) elif b is None: b = float(sub_item) elif sub_item.startswith("LBW="): for lbw_item in sub_item[4:].split(';'): if lbw_item.startswith("A="): lbw_a = safe_float(lbw_item[2:].strip()) elif lbw_item.startswith("B="): lbw_b = safe_float(lbw_item[2:].strip()) elif lbw_item.strip() != '': lbw = lbw_item elif sub_item.startswith("LOADER="): loader = sub_item[7:] if a is None: a = 1.0 if b is None: b = a if lora is not None and lora not in added: result.append((lora, a, b, lbw, lbw_a, lbw_b, loader)) added.add(lora) return result def remove_lora_tags(string): pattern = r']+>' result = re.sub(pattern, '', string) return result def resolve_lora_name(lora_name_cache, name): if os.path.exists(name): return name else: if len(lora_name_cache) == 0: lora_name_cache.extend(folder_paths.get_filename_list("loras")) for x in lora_name_cache: if x.endswith(name): return x return None def process_with_loras(wildcard_opt, model, clip, clip_encoder=None, seed=None, processed=None): """ process wildcard text including loras :param wildcard_opt: wildcard text :param model: model :param clip: clip :param clip_encoder: you can pass custom encoder such as adv_cliptext_encode :param seed: seed for populating :param processed: output variable - [pass1, pass2, pass3] will be saved into passed list :return: model, clip, conditioning """ lora_name_cache = [] pass1 = process(wildcard_opt, seed) loras = extract_lora_values(pass1) pass2 = remove_lora_tags(pass1) for lora_name, model_weight, clip_weight, lbw, lbw_a, lbw_b, loader in loras: lora_name_ext = lora_name.split('.') if ('.'+lora_name_ext[-1]) not in folder_paths.supported_pt_extensions: lora_name = lora_name+".safetensors" orig_lora_name = lora_name lora_name = resolve_lora_name(lora_name_cache, lora_name) if lora_name is not None: path = folder_paths.get_full_path("loras", lora_name) else: path = None if path is not None: logging.info(f"LOAD LORA: {lora_name}: {model_weight}, {clip_weight}, LBW={lbw}, A={lbw_a}, B={lbw_b}, LOADER={loader}") if loader is not None: if loader == 'nunchaku': if 'NunchakuFluxLoraLoader' not in nodes.NODE_CLASS_MAPPINGS: logging.warning("To use `LOADER=nunchaku`, 'ComfyUI-nunchaku' is required. The LOADER= attribute is being ignored.") cls = nodes.NODE_CLASS_MAPPINGS['NunchakuFluxLoraLoader'] model = cls().load_lora(model, lora_name, model_weight)[0] else: logging.warning(f"LORA LOADER NOT FOUND: '{loader}'") else: def default_lora(): return nodes.LoraLoader().load_lora(model, clip, lora_name, model_weight, clip_weight) if lbw is not None: if 'LoraLoaderBlockWeight //Inspire' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node( 'https://github.com/ltdrdata/ComfyUI-Inspire-Pack', "To use 'LBW=' syntax in wildcards, 'Inspire Pack' extension is required.") logging.warning("'LBW(Lora Block Weight)' is given, but the 'Inspire Pack' is not installed. The LBW= attribute is being ignored.") model, clip = default_lora() else: cls = nodes.NODE_CLASS_MAPPINGS['LoraLoaderBlockWeight //Inspire'] model, clip, _ = cls().doit(model, clip, lora_name, model_weight, clip_weight, False, 0, lbw_a, lbw_b, "", lbw) else: model, clip = default_lora() else: logging.warning(f"LORA NOT FOUND: {orig_lora_name}") pass3 = [x.strip() for x in pass2.split("BREAK")] pass3 = [x for x in pass3 if x != ''] if len(pass3) == 0: pass3 = [''] pass3_str = [f'[{x}]' for x in pass3] logging.info(f"CLIP: {str.join(' + ', pass3_str)}") result = None for prompt in pass3: if clip_encoder is None: cur = nodes.CLIPTextEncode().encode(clip, prompt)[0] else: cur = clip_encoder.encode(clip, prompt)[0] if result is not None: result = nodes.ConditioningConcat().concat(result, cur)[0] else: result = cur if processed is not None: processed.append(pass1) processed.append(pass2) processed.append(pass3) return model, clip, result def starts_with_regex(pattern, text): regex = re.compile(pattern) return regex.match(text) def split_to_dict(text): pattern = r'\[([A-Za-z0-9_. ]+)\]([^\[]+)(?=\[|$)' matches = re.findall(pattern, text) result_dict = {key: value.strip() for key, value in matches} return result_dict class WildcardChooser: def __init__(self, items, randomize_when_exhaust): self.i = 0 self.items = items self.randomize_when_exhaust = randomize_when_exhaust def get(self, seg): if self.i >= len(self.items): self.i = 0 if self.randomize_when_exhaust: random.shuffle(self.items) item = self.items[self.i] self.i += 1 return item class WildcardChooserDict: def __init__(self, items): self.items = items def get(self, seg): text = "" if 'ALL' in self.items: text = self.items['ALL'] if seg.label in self.items: text += self.items[seg.label] return text def split_string_with_sep(input_string): sep_pattern = r'\[SEP(?:\:\w+)?\]' substrings = re.split(sep_pattern, input_string) result_list = [None] matches = re.findall(sep_pattern, input_string) for i, substring in enumerate(substrings): result_list.append(substring) if i < len(matches): if matches[i] == '[SEP]': result_list.append(None) elif matches[i] == '[SEP:R]': result_list.append(random.randint(0, 1125899906842624)) else: try: seed = int(matches[i][5:-1]) except Exception: seed = None result_list.append(seed) iterable = iter(result_list) return list(zip(iterable, iterable)) def process_wildcard_for_segs(wildcard): if wildcard.startswith('[LAB]'): raw_items = split_to_dict(wildcard) items = {} for k, v in raw_items.items(): v = v.strip() if v != '': items[k] = v return 'LAB', WildcardChooserDict(items) else: match = starts_with_regex(r"\[(ASC-SIZE|DSC-SIZE|ASC|DSC|RND)\]", wildcard) if match: mode = match[1] items = split_string_with_sep(wildcard[len(match[0]):]) if mode == 'RND': random.shuffle(items) return mode, WildcardChooser(items, True) else: return mode, WildcardChooser(items, False) else: return None, WildcardChooser([(None, wildcard)], False) def wildcard_load(): global wildcard_dict wildcard_dict = {} with wildcard_lock: read_wildcard_dict(wildcards_path) try: read_wildcard_dict(config.get_config()['custom_wildcards']) except Exception: logging.info("[Impact Pack] Failed to load custom wildcards directory.") logging.info("[Impact Pack] Wildcards loading done.")