Fang Yunhao
commited on
Commit
·
5c96ebf
1
Parent(s):
6f3d269
Upgrade evaluation script.
Browse files- evaluation.py +180 -131
evaluation.py
CHANGED
|
@@ -1,157 +1,206 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from mmengine import load, dump
|
| 4 |
from tqdm import tqdm
|
| 5 |
from collections import defaultdict
|
| 6 |
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
}
|
| 13 |
-
|
| 14 |
-
QUESTION_POOL = {
|
| 15 |
-
"instruction": None,
|
| 16 |
-
"physical_laws": [
|
| 17 |
-
"Violation of Newton's Law: Objects move without any external force.",
|
| 18 |
-
"Violation of the Law of Conservation of Mass or Solid Constitutive Law: Objects deform or distort irregularly.",
|
| 19 |
-
"Violation of Fluid Constitutive Law: Liquids flow in an unnatural or irregular manner.",
|
| 20 |
-
"Violation of Non-physical Penetration: Objects unnaturally pass through each other.",
|
| 21 |
-
"Violation of Gravity: Objects behave inconsistently with gravity, such as floating in the air.",
|
| 22 |
-
],
|
| 23 |
-
"common_sense": [
|
| 24 |
-
"Poor Aesthetics: Visually unappealing or low-quality content.",
|
| 25 |
-
"Temporal Inconsistency: Noticeable flickering, choppy motion, or abrupt appearance/disappearance of irrelevant objects.",
|
| 26 |
-
],
|
| 27 |
-
}
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
validation_set = load("./worldmodelbench.json")
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
if os.path.exists(
|
| 58 |
-
results = load(
|
| 59 |
try:
|
| 60 |
-
preds = results["preds"]
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
raise "Expected keys are not found in the results."
|
| 64 |
else:
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
preds = dict()
|
| 68 |
accs = defaultdict(list)
|
|
|
|
| 69 |
for vid, v_i in tqdm(enumerate(validation_set), total=len(validation_set)):
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
if not os.path.exists(video):
|
| 74 |
continue
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
for k in ["instruction", "physical_laws", "common_sense"]:
|
| 78 |
preds_i = []
|
| 79 |
-
prompt_template = PROMPT_TEMPLATES[
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
accs_i = []
|
| 83 |
-
for
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
text_prompt = prompt_template.format(common_sense=q.lower())
|
| 90 |
-
if not args.cot:
|
| 91 |
-
text_prompt = text_prompt.replace(
|
| 92 |
-
"Let's think step-by-step and conclude with",
|
| 93 |
-
"Answer with",
|
| 94 |
-
).replace(
|
| 95 |
-
"Let's analyze step-by-step and conclude with",
|
| 96 |
-
"Answer with",
|
| 97 |
-
)
|
| 98 |
-
pred = model.generate_content([video, text_prompt])
|
| 99 |
preds_i.append(pred)
|
| 100 |
-
## Always ask for violations, so a "No" is preferred!
|
| 101 |
accs_i.append("no" in pred.lower())
|
| 102 |
-
accs[
|
| 103 |
else:
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
)
|
| 107 |
-
if not args.cot:
|
| 108 |
-
text_prompt = text_prompt.replace(
|
| 109 |
-
"Let's think step-by-step and conclude with", "Answer with"
|
| 110 |
-
).replace(
|
| 111 |
-
"Let's analyze step-by-step and conclude with",
|
| 112 |
-
"Answer with",
|
| 113 |
-
)
|
| 114 |
-
pred = model.generate_content([video, text_prompt])
|
| 115 |
preds_i.append(pred)
|
| 116 |
try:
|
| 117 |
score = float(pred.split(":")[-1].strip(" ."))
|
| 118 |
-
except:
|
|
|
|
| 119 |
score = 0
|
| 120 |
-
accs[
|
|
|
|
| 121 |
if video_name not in preds:
|
| 122 |
-
preds[video_name] =
|
| 123 |
-
preds[video_name][
|
| 124 |
-
## Save results
|
| 125 |
-
# if results is None:
|
| 126 |
-
# results = {"preds": preds, "accs": accs}
|
| 127 |
-
# dump(results, f"./{args.save_name}.json", indent=4)
|
| 128 |
-
## Print results
|
| 129 |
-
num_insts = len(preds)
|
| 130 |
-
total_score = 0
|
| 131 |
-
for k, v in accs.items():
|
| 132 |
-
print(k + " details:")
|
| 133 |
-
num_sub = len(v) // num_insts
|
| 134 |
-
if num_sub == 1:
|
| 135 |
-
print(f"-- overall score: {np.mean(v):.2f}.")
|
| 136 |
-
total_score += np.mean(v)
|
| 137 |
-
elif num_sub == 2:
|
| 138 |
-
sub_scores = []
|
| 139 |
-
for i, sub in enumerate(["framewise", "temporal"]):
|
| 140 |
-
print(f"-- {sub} score: {np.mean(v):.2f}.")
|
| 141 |
-
sub_scores.append(np.mean(v))
|
| 142 |
-
print(f"-- overall score: {np.mean(sub_scores):.2f}.")
|
| 143 |
-
total_score += np.mean(sub_scores)
|
| 144 |
-
elif num_sub == 5:
|
| 145 |
-
sub_scores = []
|
| 146 |
-
for i, sub in enumerate(
|
| 147 |
-
["newton", "mass", "fluid", "penetration", "gravity"]
|
| 148 |
-
):
|
| 149 |
-
print(f"-- {sub} score: {np.mean(v):.2f}.")
|
| 150 |
-
sub_scores.append(np.mean(v))
|
| 151 |
-
print(f"-- overall score: {np.mean(sub_scores):.2f}.")
|
| 152 |
-
total_score += np.mean(sub_scores)
|
| 153 |
-
else:
|
| 154 |
-
raise ValueError("Unexpected number of subcategories!")
|
| 155 |
-
|
| 156 |
-
print(f"\ntotal score: {total_score:.2f}.")
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from enum import Enum
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Dict, List, Optional, Union
|
| 5 |
+
import logging
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
import numpy as np
|
| 9 |
from mmengine import load, dump
|
| 10 |
from tqdm import tqdm
|
| 11 |
from collections import defaultdict
|
| 12 |
|
| 13 |
|
| 14 |
+
class EvaluationType(Enum):
|
| 15 |
+
INSTRUCTION = "instruction"
|
| 16 |
+
PHYSICAL_LAWS = "physical_laws"
|
| 17 |
+
COMMON_SENSE = "common_sense"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
|
| 20 |
+
@dataclass
|
| 21 |
+
class EvaluationConfig:
|
| 22 |
+
"""Configuration for evaluation prompts and scoring criteria."""
|
| 23 |
+
|
| 24 |
+
PROMPT_TEMPLATES: Dict[str, str] = {
|
| 25 |
+
EvaluationType.INSTRUCTION.value: """
|
| 26 |
+
Evaluate if this video follows the instruction: '{instruction}'.
|
| 27 |
+
Use the following scoring criteria:
|
| 28 |
+
|
| 29 |
+
- 0: The video does not follow the instruction at all.
|
| 30 |
+
- 1: The video includes the correct object but performs the wrong action, or vice versa.
|
| 31 |
+
- 2: The video follows the instruction and shows a tendency toward the intended goal.
|
| 32 |
+
- 3: The video follows the instruction precisely and successfully achieves the goal.
|
| 33 |
+
|
| 34 |
+
Let's analyze step-by-step and conclude with 'Score: [score]'.
|
| 35 |
+
""".strip(),
|
| 36 |
+
|
| 37 |
+
EvaluationType.PHYSICAL_LAWS.value: """
|
| 38 |
+
Watch the video and determine if it shows any '{physical_laws}'
|
| 39 |
+
Let's think step-by-step and conclude with "Yes" or "No".
|
| 40 |
+
""".strip(),
|
| 41 |
+
|
| 42 |
+
EvaluationType.COMMON_SENSE.value: """
|
| 43 |
+
Does the video exhibit '{common_sense}'?
|
| 44 |
+
Let's think step-by-step and conclude with "Yes" or "No".
|
| 45 |
+
""".strip(),
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
QUESTION_POOL: Dict[str, Optional[List[str]]] = {
|
| 49 |
+
EvaluationType.INSTRUCTION.value: None,
|
| 50 |
+
EvaluationType.PHYSICAL_LAWS.value: [
|
| 51 |
+
"Violation of Newton's Law: Objects move without any external force.",
|
| 52 |
+
"Violation of the Law of Conservation of Mass or Solid Constitutive Law: Objects deform irregularly.",
|
| 53 |
+
"Violation of Fluid Constitutive Law: Liquids flow in an unnatural manner.",
|
| 54 |
+
"Violation of Non-physical Penetration: Objects unnaturally pass through each other.",
|
| 55 |
+
"Violation of Gravity: Objects behave inconsistently with gravity.",
|
| 56 |
+
],
|
| 57 |
+
EvaluationType.COMMON_SENSE.value: [
|
| 58 |
+
"Poor Aesthetics: Visually unappealing or low-quality content.",
|
| 59 |
+
"Temporal Inconsistency: Noticeable flickering or abrupt changes.",
|
| 60 |
+
],
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class WorldModelEvaluator:
|
| 65 |
+
"""Evaluates world model benchmark videos using LLaVA model."""
|
| 66 |
+
|
| 67 |
+
def __init__(self, judge_path: str, video_dir: str, config: EvaluationConfig):
|
| 68 |
+
self.judge = self._load_judge(judge_path)
|
| 69 |
+
self.video_dir = Path(video_dir)
|
| 70 |
+
self.config = config
|
| 71 |
+
self.logger = logging.getLogger(__name__)
|
| 72 |
+
|
| 73 |
+
@staticmethod
|
| 74 |
+
def _load_judge(judge_path: str):
|
| 75 |
+
"""Load the LLaVA judge model."""
|
| 76 |
+
import llava
|
| 77 |
+
return llava.load(judge_path)
|
| 78 |
+
|
| 79 |
+
def _load_video(self, video_name: str) -> Optional['llava.Video']:
|
| 80 |
+
"""Load a video file for evaluation."""
|
| 81 |
+
video_path = self.video_dir / f"{video_name}.mp4"
|
| 82 |
+
if not video_path.exists():
|
| 83 |
+
self.logger.warning(f"Video not found: {video_path}")
|
| 84 |
+
return None
|
| 85 |
+
import llava
|
| 86 |
+
return llava.Video(str(video_path))
|
| 87 |
+
|
| 88 |
+
def evaluate_video(self, video: 'llava.Video', prompt: str, cot: bool = True) -> str:
|
| 89 |
+
"""Generate evaluation content for a video."""
|
| 90 |
+
if not cot:
|
| 91 |
+
prompt = prompt.replace(
|
| 92 |
+
"Let's think step-by-step and conclude with", "Answer with"
|
| 93 |
+
).replace(
|
| 94 |
+
"Let's analyze step-by-step and conclude with", "Answer with"
|
| 95 |
+
)
|
| 96 |
+
return self.judge.generate_content([video, prompt])
|
| 97 |
+
|
| 98 |
+
def process_results(self, preds: Dict, accs: defaultdict) -> float:
|
| 99 |
+
"""Process and print evaluation results."""
|
| 100 |
+
num_insts = len(preds)
|
| 101 |
+
total_score = 0
|
| 102 |
+
|
| 103 |
+
category_mapping = {
|
| 104 |
+
2: [("framewise", "temporal")],
|
| 105 |
+
5: [("newton", "mass", "fluid", "penetration", "gravity")],
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
for category, scores in accs.items():
|
| 109 |
+
print(f"\n{category} details:")
|
| 110 |
+
num_sub = len(scores) // num_insts
|
| 111 |
+
|
| 112 |
+
if num_sub == 1:
|
| 113 |
+
mean_score = np.mean(scores)
|
| 114 |
+
print(f"-- overall score: {mean_score:.2f}")
|
| 115 |
+
total_score += mean_score
|
| 116 |
+
elif num_sub in category_mapping:
|
| 117 |
+
sub_scores = []
|
| 118 |
+
for i, sub in enumerate(category_mapping[num_sub][0]):
|
| 119 |
+
sub_mean = np.mean(scores[i::num_sub])
|
| 120 |
+
print(f"-- {sub} score: {sub_mean:.2f}")
|
| 121 |
+
sub_scores.append(sub_mean)
|
| 122 |
+
overall_mean = np.mean(sub_scores)
|
| 123 |
+
print(f"-- overall score: {overall_mean:.2f}")
|
| 124 |
+
total_score += overall_mean
|
| 125 |
+
else:
|
| 126 |
+
raise ValueError(f"Unexpected number of subcategories: {num_sub}")
|
| 127 |
+
|
| 128 |
+
return total_score
|
| 129 |
+
|
| 130 |
+
def main():
|
| 131 |
+
import argparse
|
| 132 |
+
|
| 133 |
+
parser = argparse.ArgumentParser(description="Evaluate World Model Benchmark")
|
| 134 |
+
parser.add_argument("--judge", type=str, required=True, help="Path to judge model checkpoint")
|
| 135 |
+
parser.add_argument("--video_dir", type=str, required=True, help="Path to generated video directory")
|
| 136 |
+
parser.add_argument("--save_name", type=str, required=True, help="Path to save evaluation results")
|
| 137 |
+
parser.add_argument("--cot", action="store_true", help="Enable Chain-of-Thought output")
|
| 138 |
+
|
| 139 |
args = parser.parse_args()
|
| 140 |
+
|
| 141 |
+
# Setup logging
|
| 142 |
+
logging.basicConfig(level=logging.INFO)
|
| 143 |
+
logger = logging.getLogger(__name__)
|
| 144 |
|
| 145 |
+
# Initialize evaluator
|
| 146 |
+
config = EvaluationConfig()
|
| 147 |
+
evaluator = WorldModelEvaluator(args.judge, args.video_dir, config)
|
| 148 |
+
|
| 149 |
+
# Load validation set
|
| 150 |
validation_set = load("./worldmodelbench.json")
|
| 151 |
+
|
| 152 |
+
# Check for existing results
|
| 153 |
+
save_path = f"{args.save_name}_cot" if args.cot else args.save_name
|
| 154 |
+
if os.path.exists(save_path):
|
| 155 |
+
results = load(save_path)
|
| 156 |
try:
|
| 157 |
+
preds, accs = results["preds"], results["accs"]
|
| 158 |
+
except KeyError:
|
| 159 |
+
raise KeyError("Expected keys not found in results file")
|
|
|
|
| 160 |
else:
|
| 161 |
+
preds = {}
|
|
|
|
|
|
|
| 162 |
accs = defaultdict(list)
|
| 163 |
+
|
| 164 |
for vid, v_i in tqdm(enumerate(validation_set), total=len(validation_set)):
|
| 165 |
+
video_name = Path(v_i["first_frame"]).stem
|
| 166 |
+
video = evaluator._load_video(video_name)
|
| 167 |
+
if not video:
|
|
|
|
| 168 |
continue
|
| 169 |
+
|
| 170 |
+
for eval_type in EvaluationType:
|
|
|
|
| 171 |
preds_i = []
|
| 172 |
+
prompt_template = config.PROMPT_TEMPLATES[eval_type.value]
|
| 173 |
+
questions = config.QUESTION_POOL[eval_type.value]
|
| 174 |
+
|
| 175 |
+
if questions:
|
| 176 |
accs_i = []
|
| 177 |
+
for question in questions:
|
| 178 |
+
format_kwargs = {
|
| 179 |
+
f"{eval_type.value}": question.lower()
|
| 180 |
+
}
|
| 181 |
+
prompt = prompt_template.format(**format_kwargs)
|
| 182 |
+
pred = evaluator.evaluate_video(video, prompt, args.cot)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
preds_i.append(pred)
|
|
|
|
| 184 |
accs_i.append("no" in pred.lower())
|
| 185 |
+
accs[eval_type.value].extend(accs_i)
|
| 186 |
else:
|
| 187 |
+
prompt = prompt_template.format(instruction=v_i["text_instruction"])
|
| 188 |
+
pred = evaluator.evaluate_video(video, prompt, args.cot)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
preds_i.append(pred)
|
| 190 |
try:
|
| 191 |
score = float(pred.split(":")[-1].strip(" ."))
|
| 192 |
+
except ValueError:
|
| 193 |
+
logger.warning(f"Could not parse score from prediction: {pred}")
|
| 194 |
score = 0
|
| 195 |
+
accs[eval_type.value].append(score)
|
| 196 |
+
|
| 197 |
if video_name not in preds:
|
| 198 |
+
preds[video_name] = {}
|
| 199 |
+
preds[video_name][eval_type.value] = preds_i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
# Process and display results
|
| 202 |
+
total_score = evaluator.process_results(preds, accs)
|
| 203 |
+
print(f"\nTotal score: {total_score:.2f}")
|
| 204 |
+
|
| 205 |
+
if __name__ == "__main__":
|
| 206 |
+
main()
|