File size: 7,069 Bytes
ab0bd2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada1640
 
ab0bd2f
 
ada1640
ab0bd2f
ada1640
 
ab0bd2f
 
 
 
 
4c0d6dc
 
 
 
 
 
 
 
 
 
 
 
 
ab0bd2f
4c0d6dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
---
dataset_info:
  features:
  - name: text
    dtype: string
  - name: Patent Number
    dtype: string
  - name: Document ID
    dtype: string
  - name: Date Published
    dtype: string
  - name: Family ID
    dtype: int64
  - name: Title
    dtype: string
  - name: CPCI
    dtype: string
  - name: CPCA
    dtype: string
  - name: Inventor
    dtype: string
  - name: Assignee
    dtype: string
  - name: Application Number
    dtype: string
  - name: Filing Date
    dtype: string
  - name: Primary Examiner
    dtype: string
  - name: Assistant Examiner
    dtype: string
  - name: OR
    dtype: string
  - name: XREF
    dtype: string
  - name: Applicant Name
    dtype: string
  - name: Notes
    dtype: string
  - name: Notes/Tagged
    dtype: string
  - name: Relevancy
    dtype: float64
  - name: Database
    dtype: string
  - name: total_tokens
    dtype: int64
  splits:
  - name: train
    num_bytes: 6273796410
    num_examples: 49023
  download_size: 2287664239
  dataset_size: 6273796410
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
language:
- en
tags:
- DLT
- Blockchain
- Cryptocurrencies
- Bitcoin
- Ethereum
- Crypto
- Patents
pretty_name: Distributed Ledger Technology (DLT) / Blockchain Patents
size_categories:
- 10K<n<100K
---
# DLT-Patents

## Dataset Description

### Dataset Summary

DLT-Patents is a comprehensive corpus of patent documents related to Distributed Ledger Technology (DLT). This dataset is part of the larger DLT-Corpus collection, designed to support NLP research, innovation studies, and patent analysis in the DLT domain.

The dataset contains **49,023 patent documents** with **1,296 million tokens** (1.296 billion tokens), spanning patents from **1990 to 2025**. All documents are in English and sourced from the United States Patent and Trademark Office (USPTO).

This dataset is part of the DLT-Corpus collection. For the complete corpus including scientific literature and social media data, see: https://huggingface.co/collections/ExponentialScience/dlt-corpus-68e44e40d4e7a3bd7a224402

### Languages

English (en)

## Dataset Structure

### Data Fields

Each patent document in the dataset contains the following fields:

- **Patent Number**: USPTO patent number (e.g., US10123456B2)
- **Document ID**: Unique document identifier
- **Title**: Title of the patent
- **text**: Complete patent text including abstract, claims, and description
- **Date Published**: Date the patent was published
- **Filing Date**: Date the patent application was filed
- **Family ID**: Patent family identifier
- **Application Number**: Patent application number
- **Inventor**: List of inventors
- **Assignee**: Patent assignees (companies or individuals holding the patent)
- **Applicant Name**: Name of the patent applicant
- **Primary Examiner**: Name of the primary patent examiner
- **Assistant Examiner**: Name of the assistant examiner
- **CPCI**: Cooperative Patent Classification Invention codes
- **CPCA**: Cooperative Patent Classification Additional codes
- **OR**: Original reference information
- **XREF**: Cross-reference information
- **Relevancy**: Relevancy score or classification
- **Notes**: Additional notes about the patent
- **Notes/Tagged**: Tagged notes or annotations
- **Database**: Source database (USPGPUB or USPAT)
- **total_tokens**: Total number of tokens in the document

### Data Splits

This is a single corpus without predefined splits. Users should create their own train/validation/test splits based on their specific research needs. Consider temporal splits to avoid data leakage in time-series analyses.

## Dataset Creation

### Curation Rationale

DLT-Patents was created to address the lack of large-scale, domain-specific patent corpora for NLP and innovation research in the Distributed Ledger Technology field. Patents provide unique insights into:

- Commercial applications of DLT technology
- Technical innovations and their evolution
- Industry trends and competitive landscapes
- The transition from research to practical implementation

### Source Data

#### Data Collection

Patents were retrieved from **USPTO public databases**, specifically:
- **USPGPUB**: Published patent applications
- **USPAT**: Granted patents

#### Data Processing

The collection process involved:

1. **Text extraction**: Extracting text from USPTO XML and full-text databases
2. **Formatting standardization**: Normalizing text format and structure
3. **Encoding correction**: Fixing character encoding errors and special characters
4. **Deduplication**: Removing duplicate entries and ensuring unique patents
5. **Quality filtering**: Removing incomplete or corrupted documents

### Personal and Sensitive Information

This dataset contains only publicly available patent documents from the USPTO. Inventor and assignee names are retained as they appear in official patent records, which is standard practice for patent documentation. No personal or confidential information beyond what is in public patent records is included.

## Considerations for Using the Data

### Discussion of Biases

Potential biases include:

- **Geographic bias**: Only US patents are included; international patents are not represented
- **Language bias**: Only English-language patents are included
- **Temporal bias**: More recent years have significantly more patents due to the growth of DLT technology
- **Entity bias**: Large corporations may be over-represented compared to individual inventors
- **Technology bias**: Certain DLT applications (e.g., cryptocurrency) may be over-represented compared to others

### Other Known Limitations

- **USPTO only**: Dataset only includes US patents, missing international innovations
- **Temporal lag**: Recently filed patents may not yet be published (18-month publication delay)
- **Keyword limitations**: Some relevant patents may be missed due to evolving terminology
- **Legal complexity**: Patent language is highly technical and legally precise, which may limit general NLP applicability

## Additional Information

### Dataset Curators

Walter Hernandez Cruz, Peter Devine, Nikhil Vadgama, Paolo Tasca, Jiahua Xu

### Licensing Information

**Public Domain** under USPTO's Terms of Service (TCS).

Patent text is typically not subject to copyright restrictions per USPTO's Terms of Service. Users are free to use, reproduce, and distribute this data. However, users should note:

- The *content* of patents (the inventions themselves) may be protected by patent rights
- Using patented technologies may require licensing from patent holders
- This dataset provides access to patent *text* for research purposes, not rights to use patented technologies

For more information, see: https://www.uspto.gov/terms-use-uspto-websites

### Citation Information

```bibtex
@article{hernandez2025dlt-corpus,
  title={DLT-Corpus: A Large-Scale Text Collection for the Distributed Ledger Technology Domain},
  author={Hernandez Cruz, Walter and Devine, Peter and Vadgama, Nikhil and Tasca, Paolo and Xu, Jiahua},
  year={2025}
}
```