Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 9,124 Bytes
58d236b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""
CHIP Dataset Usage Example

This script demonstrates how to load and visualize data from the CHIP dataset,
including RGB images, depth maps, camera parameters, and 3D object models.

Requirements:
    pip install datasets huggingface_hub numpy opencv-python open3d torch
"""

import json
import os
import gc
from typing import Tuple, Optional

import numpy as np
import cv2
import open3d as o3d
import torch
from datasets import load_dataset, get_dataset_infos
from huggingface_hub import snapshot_download


def lift_point_cloud(
    depth: torch.Tensor,
    camera_intrinsics: torch.Tensor,
    xy_indices: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
) -> torch.Tensor:
    """
    Lift a depth image to a 3D point cloud using camera intrinsics.
    
    Args:
        depth: Depth image tensor of shape (H, W, C) where C >= 1.
               If C > 1, channels 1+ are treated as features (e.g., RGB).
        camera_intrinsics: Flattened camera intrinsic matrix [fx, 0, cx, 0, fy, cy, 0, 0, 1].
        xy_indices: Optional tuple of (x_coords, y_coords) to lift only specific pixels.
    
    Returns:
        Point cloud tensor of shape (N, 3+F) where F is the number of feature channels.
        First 3 columns are XYZ coordinates, remaining columns are features.
    """
    H, W, num_channels = depth.shape
    depth_values = depth[:, :, 0]
    
    if xy_indices is not None:
        x_coords, y_coords = xy_indices
        x_coords = x_coords.to(depth_values.device).float()
        y_coords = y_coords.to(depth_values.device).float()
        z_coords = depth_values[y_coords.long(), x_coords.long()]
    else:
        # Create pixel coordinate grids
        x_grid, y_grid = np.meshgrid(
            np.arange(W, dtype=np.float32),
            np.arange(H, dtype=np.float32),
            indexing='xy'
        )
        x_coords = torch.from_numpy(x_grid).flatten().to(depth_values.device)
        y_coords = torch.from_numpy(y_grid).flatten().to(depth_values.device)
        z_coords = depth_values.flatten()
    
    # Extract camera intrinsics
    fx, fy = camera_intrinsics[0], camera_intrinsics[4]
    cx, cy = camera_intrinsics[2], camera_intrinsics[5]
    
    # Back-project to 3D coordinates
    x_3d = (x_coords - cx) * z_coords / fx
    y_3d = (y_coords - cy) * z_coords / fy
    points_3d = torch.stack([x_3d, y_3d, z_coords], dim=1)
    
    # Add additional features (e.g., RGB) if present
    if num_channels > 1:
        features = depth[y_coords.long(), x_coords.long(), 1:]
        if xy_indices is None:
            features = features.reshape(H * W, num_channels - 1)
        points_3d = torch.cat([points_3d, features], dim=1)
    
    return points_3d


def back_project_rgbd(
    rgb: np.ndarray,
    depth: np.ndarray,
    camera_intrinsics: np.ndarray
) -> torch.Tensor:
    """
    Back-project RGB-D image to a colored point cloud.
    
    Args:
        rgb: RGB image array of shape (H, W, 3).
        depth: Depth map array of shape (H, W) with values in meters.
        camera_intrinsics: Flattened 3x3 camera intrinsic matrix.
    
    Returns:
        Point cloud tensor of shape (N, 6) with XYZ and RGB columns.
    """
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Get valid depth pixel coordinates
    valid_rows, valid_cols = np.where(depth > 0)
    xy_indices = torch.tensor(
        np.stack([valid_cols, valid_rows]),
        dtype=torch.long,
        device=device
    )
    
    # Concatenate depth and RGB channels
    depth_rgb = torch.cat([
        torch.from_numpy(depth).unsqueeze(-1),
        torch.from_numpy(rgb)
    ], dim=2).to(device)
    
    # Lift to 3D point cloud
    camera_tensor = torch.from_numpy(camera_intrinsics).to(device)
    point_cloud = lift_point_cloud(depth_rgb, camera_tensor, tuple(xy_indices))
    
    return point_cloud


def visualize_chip_sample(
    repo_id: str = "FBK-TeV/CHIP",
    target_dir: str = "./chip_data",
    num_samples: int = 1,
    show_2d: bool = False
) -> None:
    """
    Load and visualize samples from the CHIP dataset.
    
    Args:
        repo_id: Hugging Face dataset repository ID.
        target_dir: Local directory to store downloaded model files.
        num_samples: Number of samples to visualize.
        show_2d: If True, display RGB and depth images in OpenCV windows.
                 If False, only show 3D point cloud visualization.
    """
    # Display dataset information
    info = get_dataset_infos(repo_id)
    print(f"Dataset info: {info}\n")
    
    # Download 3D object models
    print("Downloading 3D models...")
    local_path = snapshot_download(
        repo_id=repo_id,
        repo_type="dataset",
        local_dir=target_dir,
        allow_patterns=["models/*"]
    )
    print(f"Models downloaded to: {local_path}\n")
    
    # Stream dataset samples
    dataset = load_dataset(repo_id, streaming=True)
    
    for idx, example in enumerate(dataset['test'].take(num_samples)):
        print(f"Processing sample {idx + 1}/{num_samples}...")
        
        # ========== Load RGB Image ==========
        rgb_image = np.array(example['image'])
        rgb_bgr = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
        
        # ========== Load Depth Map ==========
        depth_map = np.array(example['depth'], dtype=np.uint16).astype(np.float32)
        
        # Visualize depth for display
        depth_vis = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX)
        depth_vis = depth_vis.astype(np.uint8)
        
        # ========== Parse Camera Parameters ==========
        camera_params = json.loads(example['camera_params'])
        intrinsics_matrix = np.array(camera_params['cam_K']).reshape(3, 3)
        depth_scale = camera_params['depth_scale']
        
        print(f"Camera intrinsics:\n{intrinsics_matrix}")
        print(f"Depth scale: {depth_scale}")
        
        # ========== Parse Object Labels ==========
        labels = json.loads(example['labels'])
        label = labels[0]  # Process first object
        
        rotation_matrix = np.array(label['cam_R_m2c_flat']).reshape(3, 3)
        translation_vector = np.array(label['cam_t_m2c'])
        bbox = [
            label['bbox_x'],
            label['bbox_y'],
            label['bbox_width'],
            label['bbox_height']
        ]
        
        print(f"\nObject ID: {label['obj_id']}")
        print(f"Rotation matrix:\n{rotation_matrix}")
        print(f"Translation vector: {translation_vector}")
        print(f"Bounding box (x, y, w, h): {bbox}\n")
        
        # ========== Visualize 2D ==========
        if show_2d:
            x, y, w, h = bbox
            rgb_with_bbox = rgb_bgr.copy()
            cv2.rectangle(rgb_with_bbox, (x, y), (x + w, y + h), (0, 255, 0), 2)
            
            cv2.imshow("RGB Image", rgb_with_bbox)
            cv2.imshow("Depth Map", depth_vis)
            print("Displaying 2D images (press any key to continue to 3D)...")
            cv2.waitKey(0)
        
        # ========== Create 3D Point Cloud ==========
        depth_metric = depth_map * depth_scale
        point_cloud = back_project_rgbd(rgb_image, depth_metric, intrinsics_matrix.flatten())
        
        # Convert to Open3D format
        pcd_o3d = o3d.geometry.PointCloud()
        pcd_o3d.points = o3d.utility.Vector3dVector(point_cloud[:, :3].cpu().numpy())
        if point_cloud.shape[1] > 3:
            pcd_o3d.colors = o3d.utility.Vector3dVector(
                point_cloud[:, 3:].cpu().numpy() / 255.0
            )
        
        # ========== Load and Transform 3D Model ==========
        model_path = os.path.join(target_dir, "models", f"obj_{label['obj_id']:06d}.ply")
        model_mesh = o3d.io.read_triangle_mesh(model_path)
        model_mesh.paint_uniform_color([1.0, 0.0, 0.0])  # Red
        
        # Apply pose transformation
        pose_matrix = np.eye(4)
        pose_matrix[:3, :3] = rotation_matrix
        pose_matrix[:3, 3] = translation_vector
        model_mesh.transform(pose_matrix)
        
        # ========== Visualize 3D ==========
        print("Displaying 3D visualization (close window to continue)...")
        o3d.visualization.draw_geometries(
            [pcd_o3d, model_mesh],
            window_name=f"CHIP Sample {idx + 1}: Scene + Model (Red)"
        )
        
        if show_2d:
            cv2.destroyAllWindows()
        else:
            # Small delay to prevent visualization from closing too quickly
            cv2.waitKey(100)
    
    # Cleanup
    del dataset
    gc.collect()
    print("\nVisualization complete!")


if __name__ == "__main__":
    # Example usage
    
    # Option 1: Show both 2D images and 3D point cloud
    visualize_chip_sample(
        repo_id="FBK-TeV/CHIP",
        target_dir="./chip_data",
        num_samples=1,
        show_2d=True  # Display RGB and depth images
    )
    
    # Option 2: Show only 3D point cloud visualization
    # visualize_chip_sample(
    #     repo_id="FBK-TeV/CHIP",
    #     target_dir="./chip_data",
    #     num_samples=1,
    #     show_2d=False  # Skip 2D visualization
    # )