|
|
import torch |
|
|
from sklearn.metrics import accuracy_score |
|
|
|
|
|
|
|
|
class FrenchDataset(torch.utils.data.Dataset): |
|
|
def __init__(self, encodings, labels): |
|
|
self.encodings = encodings |
|
|
self.labels = labels |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()} |
|
|
item["labels"] = torch.tensor([self.labels[idx]]) |
|
|
return item |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.labels) |
|
|
|
|
|
|
|
|
def compute_metrics(pred): |
|
|
labels = pred.label_ids |
|
|
preds = pred.predictions.argmax(-1) |
|
|
|
|
|
acc = accuracy_score(labels, preds) |
|
|
return { |
|
|
'accuracy': acc, |
|
|
} |
|
|
|