import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" from transformers import CamembertTokenizer, CamembertForSequenceClassification, CamembertConfig from transformers import Trainer, TrainingArguments import pandas as pd import numpy as np from loadDataSet import loadData, labels_to_numeric from helpers import compute_max_sent_length, get_device, set_seed from bert_utils import ( FrenchDataset, compute_metrics, ) from nltk.tokenize import sent_tokenize set_seed(1) if __name__ == "__main__": # Device device = get_device() # Paths base_path = "../code/"#"/home/mgaman/projects/french_dialect/data/Corpus/" train_path = base_path + "train_slices.txt" val_path = base_path + "val_slices.txt" # Load the data trainSamples, trainLabels = loadData("train", train_path) valSamples, valLabels = loadData("validation", val_path) print("Initial train size: %d" % len(trainSamples)) print("Val size: %d" % len(valSamples)) # Load the CamemBERT tokenizer print("Loading CamemBERT tokenizer...") tokenizer = CamembertTokenizer.from_pretrained("camembert-base") # Compute max sentence length # Sentence length: Max = 512; Min = 3; Average = 445.26780711145534 # For 3-sentence paragraphs: Average sentence length: 102.64167598045637 #compute_max_sent_length(tokenizer, trainSamples) # Use approx the average in the dataset max_len = 128 # Labels to numeric format # 0 - BE, 1 - CA, 2 - CH, 3 - FR trainLabels = labels_to_numeric(trainLabels) valLabels = labels_to_numeric(valLabels) # Tokenize / Prepare the training set train_encodings = tokenizer(trainSamples, truncation=True, padding=True, max_length=max_len) # Tokenize / Prepare the validation set valid_encodings = tokenizer(valSamples, truncation=True, padding=True, max_length=max_len) # Convert our tokenized data into a torch Dataset train_dataset = FrenchDataset(train_encodings, trainLabels) valid_dataset = FrenchDataset(valid_encodings, valLabels) # Load the model and pass to device config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True) model = CamembertForSequenceClassification.from_pretrained("camembert-base", num_labels=4).to(device) # Train args training_args = TrainingArguments( output_dir="./bert_models_saved/out_fold", # output directory num_train_epochs=30, # total number of training epochs per_device_train_batch_size=32, # batch size per device during training per_device_eval_batch_size=32, # batch size for evaluation warmup_steps=500, # number of warmup steps for learning rate scheduler weight_decay=0.01, # strength of weight decay logging_dir='./logs', # directory for storing logs load_best_model_at_end=True, # load the best model when finished training (default metric is loss) # but you can specify `metric_for_best_model` argument to change to accuracy or other metric logging_steps=250, # log & save weights each logging_steps eval_steps=250, #learning_rate=5e-5, save_total_limit=5, save_strategy="steps", evaluation_strategy="steps", # evaluate each `logging_steps` ) trainer = Trainer( model=model, # the instantiated Transformers model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=valid_dataset, # evaluation dataset compute_metrics=compute_metrics, # the callback that computes metrics of interest ) # Train the model trainer.train() # Save best only trainer.save_model("./bert_models_saved/out_fold") # Evaluate the best performing model trainer.evaluate() # Save for later model.save_pretrained("./bert_models_saved/best_model/") tokenizer.save_pretrained("./bert_models_saved/best_model/")