import os import time import joblib import numpy as np import pandas as pd from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.metrics import classification_report, confusion_matrix def labels_to_numeric(labels_df): # 0 - BE, 1 - CA, 2 - CH, 3 - FR labels_df["Country"] = labels_df["Country"].replace({'BE': 0}) labels_df["Country"] = labels_df["Country"].replace({'CA': 1}) labels_df["Country"] = labels_df["Country"].replace({'CH': 2}) labels_df["Country"] = labels_df["Country"].replace({'FR': 3}) print(np.array(labels_df.values).flatten()) return list(np.array(labels_df.values).flatten()) def load_data(data_dir, feats_fname, labels_fname, scope): # Paths feats_path = os.path.join(data_dir, feats_fname) labels_path = os.path.join(data_dir, labels_fname) # Load features features = np.loadtxt(feats_path, delimiter=',') print(scope, " features shape: ", features.shape) # Load labels labels_df = pd.read_csv(labels_path) labels = labels_to_numeric(labels_df) print(scope, " labels length: ", len(labels)) return features, labels # method to write the predictions in the proper format def writePredictions(predictions, file_path): d = {0: "BE", 1: "CA", 2: "CH", 3: "FR"} preds = [d[elem] for elem in predictions] df = pd.DataFrame(preds, columns=["Country"]) df.to_csv(file_path, index=False) if __name__ == "__main__": # Data directory model_file="svm_model.joblib" data_dir = "../data/bert_embeddings/" # Load the data #train_features, train_labels = load_data(data_dir, "train_embeddings.csv", "train_labels.txt", "Train") val_features, val_labels = load_data(data_dir, "val_embeddings.csv", "val_labels.txt", "Validation") test_features, test_labels = load_data(data_dir, "test_embeddings.csv", "test_labels.txt", "Test") # Test data clf = joblib.load(model_file) # Test/Predict print("TEST data:") y_pred_test = clf.predict(test_features) print(confusion_matrix(test_labels, y_pred_test)) print(classification_report(test_labels, y_pred_test, digits=6, target_names=["BE", "CA", "CH" ,"FR"])) # Validation data print("VAL data:") y_pred_val = clf.predict(val_features) print(confusion_matrix(val_labels, y_pred_val)) print(classification_report(val_labels, y_pred_val, digits=6, target_names=["BE", "CA", "CH" ,"FR"])) writePredictions(y_pred_test, os.path.join(".", "svm_preds_test.csv")) writePredictions(y_pred_val, os.path.join(".", "svm_preds_val.csv"))