import os import time import joblib import numpy as np import pandas as pd from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.metrics import classification_report, confusion_matrix def labels_to_numeric(labels_df): # 0 - BE, 1 - CA, 2 - CH, 3 - FR labels_df["Country"] = labels_df["Country"].replace({'BE': 0}) labels_df["Country"] = labels_df["Country"].replace({'CA': 1}) labels_df["Country"] = labels_df["Country"].replace({'CH': 2}) labels_df["Country"] = labels_df["Country"].replace({'FR': 3}) print(np.array(labels_df.values).flatten()) return list(np.array(labels_df.values).flatten()) def load_data(data_dir, feats_fname, labels_fname, scope): # Paths feats_path = os.path.join(data_dir, feats_fname) labels_path = os.path.join(data_dir, labels_fname) # Load features features = np.loadtxt(feats_path, delimiter=',') print(scope, " features shape: ", features.shape) # Load labels labels_df = pd.read_csv(labels_path) labels = labels_to_numeric(labels_df) print(scope, " labels length: ", len(labels)) return features, labels def fine_tune_svm(X_train, y_train, model_fname): # Parameters param_grid = { 'C': [0.0001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000], } # Initialize the classifier clf = LinearSVC()#(probability=True) # Metrics metrics_list = ['accuracy', 'f1_macro', 'f1_weighted', \ 'precision_macro', 'precision_weighted', \ 'recall_macro', 'recall_weighted'] cv = GridSearchCV(clf, param_grid, cv=10, verbose=2, \ scoring=metrics_list, refit='accuracy', \ return_train_score=True) start = time.time() cv.fit(X_train, y_train) end = time.time() print("======> Elapsed time for training with one set of parameters: %.10f" % (end - start)) print("Best parameters: ", cv.best_params_) print("Grid scores on development set: ") for score_name in metrics_list: print("mean_score %s is %s" % (score_name, str(cv.cv_results_['mean_test_' + score_name]))) # Save model joblib.dump(cv, model_fname) print(cv.best_estimator_) return cv if __name__ == "__main__": # Data directory data_dir = "../data/bert_embeddings/" # Load the data train_features, train_labels = load_data(data_dir, "train_embeddings.csv", "train_labels.txt", "Train") #val_features, val_labels = load_data(data_dir, "val_embeddings.csv", "val_labels.txt", "Validation") test_features, test_labels = load_data(data_dir, "test_embeddings.csv", "test_labels.txt", "Test") # Fine tune grid = fine_tune_svm(train_features, train_labels, "svm_model.joblib") # Test grid_preds = grid.predict(test_features) print(confusion_matrix(test_labels, grid_preds)) print(classification_report(test_labels, grid_preds, digits=6, target_names=["BE", "CA", "CH" ,"FR"]))