import csv import os import numpy as np import pandas as pd def loadData(purpose, fpath, has_labels=True): print("Reading labels from: ", fpath) print("Loading %s data..." % purpose) #return lat, longi if has_labels: return parseFileWithLabel(fpath) return parseFileWithoutLabel(fpath) # parse training and validation files def parseFileWithLabel(file_path): with open(file_path, "r") as f: data = f.read().splitlines() features = [splitted_line[1] for splitted_line in [line.split("\t", maxsplit=1) for line in data[1:]]] labels = np.array([splitted_line[0] for splitted_line in [line.split("\t", maxsplit=1) for line in data[1:]]]) print("Labels shape: ", labels.shape) print("Samples length: ", len(features)) return features, labels #list(labels[:, 0]), list(labels[:, 1]) # parse test file def parseFileWithoutLabel(file_path): with open(file_path, "r") as f: data = f.read().splitlines() features = [splitted_line[0] for splitted_line in [line.split("\t", maxsplit=1) for line in data[1:]]] return features def labels_to_numeric(labels): # Data frame from list labels_df = pd.DataFrame(labels) # 0 - BE, 1 - CA, 2 - CH, 3 - FR labels_df[0] = labels_df[0].replace({'BE': 0}) labels_df[0] = labels_df[0].replace({'CA': 1}) labels_df[0] = labels_df[0].replace({'CH': 2}) labels_df[0] = labels_df[0].replace({'FR': 3}) print(np.array(labels_df.values).flatten()) return list(np.array(labels_df.values).flatten()) def flatten_labels(true_labels, predictions): true_labels_flat = [] predictions_flat = [] for index in range(len(true_labels)): true_labels_flat += list(true_labels[index]) pred_flat = np.argmax(predictions[index], axis=1).flatten() predictions_flat += list(pred_flat) #print(true_labels_flat) #print(predictions_flat) return true_labels_flat, predictions_flat