""" Unified evaluation API for Frontier-CS. Provides a single interface for evaluating both algorithmic and research problems, with support for different backends (local Docker, SkyPilot cloud). """ from pathlib import Path from typing import Iterator, List, Literal, Optional, Union from .runner import EvaluationResult, DockerRunner, AlgorithmicRunner from .runner.base import Runner TrackType = Literal["algorithmic", "research"] BackendType = Literal["docker", "skypilot"] class FrontierCSEvaluator: """ Unified evaluator for Frontier-CS problems. Example usage: evaluator = FrontierCSEvaluator() # Algorithmic problem result = evaluator.evaluate("algorithmic", problem_id=1, code=cpp_code) # Research problem (local Docker) result = evaluator.evaluate("research", problem_id="flash_attn", code=py_code) # Research problem (SkyPilot) result = evaluator.evaluate("research", problem_id="flash_attn", code=py_code, backend="skypilot") # Batch evaluation results = evaluator.evaluate_batch("research", problem_ids=["flash_attn", "cross_entropy"], code=py_code) """ def __init__( self, backend: BackendType = "docker", base_dir: Optional[Path] = None, judge_url: str = "http://localhost:8081", cloud: str = "gcp", region: Optional[str] = None, ): """ Initialize FrontierCSEvaluator. Args: backend: Default backend for research problems ("docker" or "skypilot") base_dir: Base directory of Frontier-CS repo (auto-detected if None) judge_url: URL of the algorithmic judge server cloud: Cloud provider for SkyPilot ("gcp", "aws", "azure") region: Cloud region for SkyPilot """ self.default_backend = backend self.base_dir = base_dir self.judge_url = judge_url self.cloud = cloud self.region = region # Lazy-initialized runners self._algorithmic_runner: Optional[AlgorithmicRunner] = None self._docker_runner: Optional[DockerRunner] = None self._skypilot_runner: Optional[Runner] = None @property def algorithmic_runner(self) -> AlgorithmicRunner: """Get or create the algorithmic runner.""" if self._algorithmic_runner is None: self._algorithmic_runner = AlgorithmicRunner(judge_url=self.judge_url) return self._algorithmic_runner @property def docker_runner(self) -> DockerRunner: """Get or create the Docker runner.""" if self._docker_runner is None: self._docker_runner = DockerRunner(base_dir=self.base_dir) return self._docker_runner @property def skypilot_runner(self) -> Runner: """Get or create the SkyPilot runner.""" if self._skypilot_runner is None: from .runner.skypilot import SkyPilotRunner self._skypilot_runner = SkyPilotRunner( base_dir=self.base_dir, cloud=self.cloud, region=self.region, ) return self._skypilot_runner def _get_runner(self, track: TrackType, backend: Optional[BackendType] = None) -> Runner: """Get the appropriate runner for a track and backend.""" if track == "algorithmic": return self.algorithmic_runner effective_backend = backend or self.default_backend if effective_backend == "skypilot": return self.skypilot_runner return self.docker_runner def evaluate( self, track: TrackType, problem_id: Union[str, int], code: str, *, backend: Optional[BackendType] = None, timeout: Optional[int] = None, unbounded: bool = False, ) -> EvaluationResult: """ Evaluate a solution for a single problem. Args: track: Problem track ("algorithmic" or "research") problem_id: Problem identifier (int for algorithmic, str for research) code: Solution code (C++ for algorithmic, Python for research) backend: Backend to use ("docker" or "skypilot"), defaults to init value timeout: Optional timeout in seconds unbounded: For algorithmic problems, use unbounded score (no clipping) Returns: EvaluationResult with score and status """ runner = self._get_runner(track, backend) # Pass unbounded to runner if it's algorithmic if track == "algorithmic" and hasattr(runner, 'evaluate'): return runner.evaluate(str(problem_id), code, timeout=timeout, unbounded=unbounded) return runner.evaluate(str(problem_id), code, timeout=timeout) def evaluate_file( self, track: TrackType, problem_id: Union[str, int], solution_path: Path, *, backend: Optional[BackendType] = None, timeout: Optional[int] = None, ) -> EvaluationResult: """ Evaluate a solution file for a single problem. Args: track: Problem track problem_id: Problem identifier solution_path: Path to solution file backend: Backend to use timeout: Optional timeout in seconds Returns: EvaluationResult with score and status """ runner = self._get_runner(track, backend) return runner.evaluate_file(str(problem_id), solution_path, timeout=timeout) def evaluate_batch( self, track: TrackType, problem_ids: List[Union[str, int]], code: str, *, backend: Optional[BackendType] = None, timeout: Optional[int] = None, ) -> List[EvaluationResult]: """ Evaluate a solution against multiple problems. Args: track: Problem track problem_ids: List of problem identifiers code: Solution code (same code for all problems) backend: Backend to use timeout: Optional timeout per problem Returns: List of EvaluationResult, one per problem """ runner = self._get_runner(track, backend) results = [] for pid in problem_ids: result = runner.evaluate(str(pid), code, timeout=timeout) results.append(result) return results def evaluate_batch_iter( self, track: TrackType, problem_ids: List[Union[str, int]], code: str, *, backend: Optional[BackendType] = None, timeout: Optional[int] = None, ) -> Iterator[EvaluationResult]: """ Evaluate a solution against multiple problems, yielding results as they complete. Args: track: Problem track problem_ids: List of problem identifiers code: Solution code backend: Backend to use timeout: Optional timeout per problem Yields: EvaluationResult for each problem as it completes """ runner = self._get_runner(track, backend) for pid in problem_ids: yield runner.evaluate(str(pid), code, timeout=timeout) def list_problems(self, track: TrackType) -> List[str]: """ List all available problems for a track. Args: track: Problem track Returns: List of problem identifiers """ if track == "algorithmic": # Read from local ./algorithmic/problems directory try: alg_base = self.docker_runner.base_dir / "algorithmic" / "problems" except Exception: return [] if not alg_base or not alg_base.exists(): return [] problems = [] for item in alg_base.iterdir(): if item.is_dir() and not item.name.startswith("."): problems.append(item.name) # Sort numerically if possible def sort_key(name): try: return (0, int(name)) except ValueError: return (1, name) return sorted(problems, key=sort_key) # Research problems - count by evaluator.py files (matches update_problem_count.py logic) research_problems_dir = self.docker_runner.research_dir / "problems" if not research_problems_dir.exists(): return [] problems = [] # Special case: poc_generation has 4 subcategories poc_dir = research_problems_dir / "poc_generation" if poc_dir.exists(): # List the 4 subcategories directly problems.extend([ "research/poc_generation/heap_buffer_overflow", "research/poc_generation/heap_use_after_free", "research/poc_generation/stack_buffer_overflow", "research/poc_generation/uninitialized_value" ]) # Find all evaluator.py files, excluding those in poc_generation for evaluator_file in research_problems_dir.rglob("evaluator.py"): # Skip if it's under poc_generation directory if "poc_generation" not in str(evaluator_file): # Get relative path from research_problems_dir problem_path = evaluator_file.parent.relative_to(research_problems_dir) problems.append("research/" + str(problem_path)) # Also include local algorithmic problems (from ./algorithmic/problems) try: alg_base = self.docker_runner.base_dir / "algorithmic" / "problems" except Exception: alg_base = None if alg_base and alg_base.exists(): for item in sorted(alg_base.iterdir(), key=lambda p: p.name): if item.is_dir() and not item.name.startswith("."): problems.append(f"algorithmic/{item.name}") return sorted(problems) def get_problem_statement( self, track: TrackType, problem_id: Union[str, int], ) -> Optional[str]: """ Get the problem statement/readme for a problem. Args: track: Problem track problem_id: Problem identifier Returns: Problem statement text, or None if not found """ if track == "algorithmic": return self.algorithmic_runner.get_problem_statement(str(problem_id)) # Research problem - read readme problem_path = self.docker_runner.get_problem_path(str(problem_id)) readme = problem_path / "readme" if readme.exists(): return readme.read_text(encoding="utf-8") return None # Convenience function for quick evaluation def evaluate( track: TrackType, problem_id: Union[str, int], code: str, *, backend: BackendType = "docker", timeout: Optional[int] = None, ) -> EvaluationResult: """ Quick evaluation function. Example: from frontier_cs import evaluate result = evaluate("research", "flash_attn", solution_code) print(f"Score: {result.score}") """ evaluator = FrontierCSEvaluator(backend=backend) return evaluator.evaluate(track, problem_id, code, timeout=timeout)