Refactor conversion script
Browse files- README.md +2 -3
- generate_evaluation_datasets.py +97 -0
README.md
CHANGED
|
@@ -15,12 +15,11 @@ python -m pip install -r requirements.txt
|
|
| 15 |
You can then run the script as follows:
|
| 16 |
|
| 17 |
```python
|
| 18 |
-
python
|
| 19 |
```
|
| 20 |
|
| 21 |
This script will:
|
| 22 |
|
| 23 |
* Download and convert the datasets under the GEM organisation to JSON format
|
| 24 |
-
*
|
| 25 |
-
* Perform a diff validation between the converted and original reference datasets via the `jq` library
|
| 26 |
|
|
|
|
| 15 |
You can then run the script as follows:
|
| 16 |
|
| 17 |
```python
|
| 18 |
+
python generate_evaluation_datasets.py
|
| 19 |
```
|
| 20 |
|
| 21 |
This script will:
|
| 22 |
|
| 23 |
* Download and convert the datasets under the GEM organisation to JSON format
|
| 24 |
+
* Validate that the each dataset has the expected columns of `gem_id`, `target`, and `references`
|
|
|
|
| 25 |
|
generate_evaluation_datasets.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import typer
|
| 2 |
+
from datasets import (Dataset, DatasetDict, get_dataset_config_names,
|
| 3 |
+
load_dataset)
|
| 4 |
+
from huggingface_hub import list_datasets
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
app = typer.Typer()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def convert(dataset_id: str):
|
| 11 |
+
errors = []
|
| 12 |
+
dataset_name = dataset_id.split("/")[-1]
|
| 13 |
+
try:
|
| 14 |
+
configs = get_dataset_config_names(dataset_id)
|
| 15 |
+
except:
|
| 16 |
+
typer.echo(f"❌ Failed to get configs for {dataset_id}")
|
| 17 |
+
errors.append({"dataset_name": dataset_id, "error_type": "config"})
|
| 18 |
+
return errors
|
| 19 |
+
|
| 20 |
+
for config in configs:
|
| 21 |
+
typer.echo(f"🛠️🛠️🛠️ Converting {dataset_id} with config {config} 🛠️🛠️🛠️")
|
| 22 |
+
try:
|
| 23 |
+
raw_datasets = load_dataset(dataset_id, name=config)
|
| 24 |
+
except:
|
| 25 |
+
typer.echo(f"❌ Failed to load {dataset_id} with config {config}")
|
| 26 |
+
errors.append({"dataset_name": dataset_id, "config": config, "error_type": "load"})
|
| 27 |
+
continue
|
| 28 |
+
datasets_to_convert = DatasetDict()
|
| 29 |
+
|
| 30 |
+
for split, dataset in raw_datasets.items():
|
| 31 |
+
if split not in ["train", "validation"]:
|
| 32 |
+
datasets_to_convert[split] = dataset
|
| 33 |
+
|
| 34 |
+
for split, dataset in datasets_to_convert.items():
|
| 35 |
+
columns_to_keep = ["gem_id", "target", "references"]
|
| 36 |
+
remainder_cols = validate_columns(dataset)
|
| 37 |
+
if len(remainder_cols) > 0:
|
| 38 |
+
typer.echo(
|
| 39 |
+
f"❌ Skipping {dataset_name}/{config}/{split} due to missing columns: {', '.join(remainder_cols)}"
|
| 40 |
+
)
|
| 41 |
+
errors.append({"dataset_name": dataset_id, "config": config, "split": split, "error_type": "missing_columns", "missing_columns": remainder_cols})
|
| 42 |
+
else:
|
| 43 |
+
# Add `input` column if it exists
|
| 44 |
+
if "input" in dataset.column_names:
|
| 45 |
+
columns_to_keep.append("input")
|
| 46 |
+
# The test split doesn't have a parent ID
|
| 47 |
+
# TODO(lewtun): check this logic!
|
| 48 |
+
if split != "test" and "gem_parent_id" in dataset.column_names:
|
| 49 |
+
columns_to_keep.append("gem_parent_id")
|
| 50 |
+
# The `datasets` JSON serializer is buggy - use `pandas` for now
|
| 51 |
+
df = dataset.to_pandas()
|
| 52 |
+
# Exclude dummy config names for comparison with GitHub source dataset
|
| 53 |
+
if config in ["default", "xsum", "totto"]:
|
| 54 |
+
reference_name = f"{dataset_name}_{split}"
|
| 55 |
+
else:
|
| 56 |
+
reference_name = f"{dataset_name}_{config}_{split}"
|
| 57 |
+
df[columns_to_keep].to_json(f"{reference_name}.json", orient="records")
|
| 58 |
+
|
| 59 |
+
typer.echo(f"✅ Successfully converted {dataset_id} with config {config}")
|
| 60 |
+
|
| 61 |
+
return errors
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def validate_columns(dataset: Dataset):
|
| 65 |
+
ref_columns = ["gem_id", "target", "references"]
|
| 66 |
+
columns = dataset.column_names
|
| 67 |
+
return set(ref_columns) - set(columns)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@app.command()
|
| 71 |
+
def extract_evaluation_datasets():
|
| 72 |
+
errors = []
|
| 73 |
+
all_datasets = list_datasets()
|
| 74 |
+
# Filter for GEM datasets
|
| 75 |
+
gem_datasets = [dataset for dataset in all_datasets if dataset.id.startswith("GEM/")]
|
| 76 |
+
# Filter for blocklist
|
| 77 |
+
blocklist = [
|
| 78 |
+
"indonlg", # Can't load
|
| 79 |
+
"RiSAWOZ", # Can't load
|
| 80 |
+
"CrossWOZ", # Can't load
|
| 81 |
+
"references", # This repo, so exclude!
|
| 82 |
+
]
|
| 83 |
+
blocklist = ["GEM/" + dataset for dataset in blocklist]
|
| 84 |
+
gem_datasets = [dataset for dataset in gem_datasets if dataset.id not in blocklist]
|
| 85 |
+
for dataset in gem_datasets:
|
| 86 |
+
errors.extend(convert(dataset.id))
|
| 87 |
+
|
| 88 |
+
if len(errors):
|
| 89 |
+
typer.echo("🙈 Found conversion errors!")
|
| 90 |
+
errors_df = pd.DataFrame(errors)
|
| 91 |
+
errors_df.to_csv("conversion_errors.csv", index=False)
|
| 92 |
+
|
| 93 |
+
typer.echo(f"🥳 All datasets converted!")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
if __name__ == "__main__":
|
| 97 |
+
app()
|