ervau commited on
Commit
837ff51
·
verified ·
1 Parent(s): 9dbaa26

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -3
README.md CHANGED
@@ -1,3 +1,75 @@
1
- ---
2
- license: gpl-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gpl-3.0
3
+ tags:
4
+ - biology
5
+ pretty_name: ProtHGT Knowledge Graph Data & Pretrained Checkpoints
6
+ ---
7
+
8
+ This repository provides the **knowledge graph (KG) `.pt` files** and **pretrained model checkpoints** used in **ProtHGT: Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Biological Knowledge Graphs and Language Models**.
9
+ - **Code (training & prediction)**: https://github.com/HUBioDataLab/ProtHGT
10
+
11
+ ---
12
+
13
+ ## What’s Inside
14
+
15
+ ### data/
16
+ PyTorch Geometric-compatible KG files:
17
+ - Full KG file (e.g., `prothgt-kg.pt`)
18
+ - Train/validation/test splits (e.g., `prothgt-*-graph.pt`)
19
+ - Alternative KG versions under `alternative_protein_embeddings/` (e.g., `esm2/`, `prott5/`), where the protein node features differ by embedding type.
20
+
21
+ **Available Files**
22
+ ```
23
+ ├── prothgt-kg.pt # The default full knowledge graph containing TAPE embeddings as the initial protein representations.
24
+ ├── prothgt-train-graph.pt # Training set (80% of the default full KG).
25
+ ├── prothgt-val-graph.pt # Validation set (10% of the default full KG).
26
+ ├── prothgt-test-graph.pt # Test set (10% of the default full KG).
27
+ └── alternative_protein_embeddings/ # Contains alternative KGs with different protein representations.
28
+ ├──apaac/
29
+ │ └── ...
30
+ ├──esm2/
31
+ │ └── ...
32
+ └──prott5/
33
+ └── ...
34
+ ```
35
+
36
+
37
+ ### models/
38
+ Pretrained ProtHGT models (`.pt`). Models are provided:
39
+ - per GO sub-ontology (e.g., Molecular Function / Biological Process / Cellular Component)
40
+ - per protein embedding type (default vs `esm2` / `prott5` / etc.)
41
+
42
+ **Important:** Use a model checkpoint that matches the KG embedding variant you are using.
43
+
44
+ **Available Files**
45
+ ```
46
+ ├── prothgt-model-molecular-function.pt # Pretrained ProtHGT checkpoint for Molecular Function (default/TAPE-based KG).
47
+ ├── prothgt-model-biological-process.pt # Pretrained ProtHGT checkpoint for Biological Process (default/TAPE-based KG).
48
+ ├── prothgt-model-cellular-component.pt # Pretrained ProtHGT checkpoint for Cellular Component (default/TAPE-based KG).
49
+ └── alternative_protein_embeddings/ # Models trained with alternative protein representations.
50
+ ├── esm2/
51
+ │ └── ...
52
+ └── prott5/
53
+ └── ...
54
+ ```
55
+
56
+ ---
57
+
58
+ ### How to Use (Training & Prediction)
59
+ To train or run inference, follow the instructions in the GitHub repository: https://github.com/HUBioDataLab/ProtHGT
60
+
61
+ Key scripts:
62
+ - `train.py` — trains ProtHGT using the provided KG splits
63
+ - `predict.py` — runs inference using pretrained checkpoints
64
+
65
+ ---
66
+
67
+ ### Citation
68
+ Please refer to our preprint for more information. If you use the ProtHGT method or the datasets provided in this repository, please cite this paper:
69
+ Ulusoy, E., & Dogan, T. (2025). ProtHGT: Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Biological Knowledge Graphs and Language Models (p. 2025.04.19.649272). bioRxiv. [Link](https://doi.org/10.1101/2025.04.19.649272)
70
+
71
+ ---
72
+
73
+ ### Licensing
74
+ Copyright (C) 2025 HUBioDataLab
75
+ This dataset is released under GPL-3.0.