Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,75 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: gpl-3.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: gpl-3.0
|
| 3 |
+
tags:
|
| 4 |
+
- biology
|
| 5 |
+
pretty_name: ProtHGT Knowledge Graph Data & Pretrained Checkpoints
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
This repository provides the **knowledge graph (KG) `.pt` files** and **pretrained model checkpoints** used in **ProtHGT: Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Biological Knowledge Graphs and Language Models**.
|
| 9 |
+
- **Code (training & prediction)**: https://github.com/HUBioDataLab/ProtHGT
|
| 10 |
+
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
## What’s Inside
|
| 14 |
+
|
| 15 |
+
### data/
|
| 16 |
+
PyTorch Geometric-compatible KG files:
|
| 17 |
+
- Full KG file (e.g., `prothgt-kg.pt`)
|
| 18 |
+
- Train/validation/test splits (e.g., `prothgt-*-graph.pt`)
|
| 19 |
+
- Alternative KG versions under `alternative_protein_embeddings/` (e.g., `esm2/`, `prott5/`), where the protein node features differ by embedding type.
|
| 20 |
+
|
| 21 |
+
**Available Files**
|
| 22 |
+
```
|
| 23 |
+
├── prothgt-kg.pt # The default full knowledge graph containing TAPE embeddings as the initial protein representations.
|
| 24 |
+
├── prothgt-train-graph.pt # Training set (80% of the default full KG).
|
| 25 |
+
├── prothgt-val-graph.pt # Validation set (10% of the default full KG).
|
| 26 |
+
├── prothgt-test-graph.pt # Test set (10% of the default full KG).
|
| 27 |
+
└── alternative_protein_embeddings/ # Contains alternative KGs with different protein representations.
|
| 28 |
+
├──apaac/
|
| 29 |
+
│ └── ...
|
| 30 |
+
├──esm2/
|
| 31 |
+
│ └── ...
|
| 32 |
+
└──prott5/
|
| 33 |
+
└── ...
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
### models/
|
| 38 |
+
Pretrained ProtHGT models (`.pt`). Models are provided:
|
| 39 |
+
- per GO sub-ontology (e.g., Molecular Function / Biological Process / Cellular Component)
|
| 40 |
+
- per protein embedding type (default vs `esm2` / `prott5` / etc.)
|
| 41 |
+
|
| 42 |
+
**Important:** Use a model checkpoint that matches the KG embedding variant you are using.
|
| 43 |
+
|
| 44 |
+
**Available Files**
|
| 45 |
+
```
|
| 46 |
+
├── prothgt-model-molecular-function.pt # Pretrained ProtHGT checkpoint for Molecular Function (default/TAPE-based KG).
|
| 47 |
+
├── prothgt-model-biological-process.pt # Pretrained ProtHGT checkpoint for Biological Process (default/TAPE-based KG).
|
| 48 |
+
├── prothgt-model-cellular-component.pt # Pretrained ProtHGT checkpoint for Cellular Component (default/TAPE-based KG).
|
| 49 |
+
└── alternative_protein_embeddings/ # Models trained with alternative protein representations.
|
| 50 |
+
├── esm2/
|
| 51 |
+
│ └── ...
|
| 52 |
+
└── prott5/
|
| 53 |
+
└── ...
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
|
| 58 |
+
### How to Use (Training & Prediction)
|
| 59 |
+
To train or run inference, follow the instructions in the GitHub repository: https://github.com/HUBioDataLab/ProtHGT
|
| 60 |
+
|
| 61 |
+
Key scripts:
|
| 62 |
+
- `train.py` — trains ProtHGT using the provided KG splits
|
| 63 |
+
- `predict.py` — runs inference using pretrained checkpoints
|
| 64 |
+
|
| 65 |
+
---
|
| 66 |
+
|
| 67 |
+
### Citation
|
| 68 |
+
Please refer to our preprint for more information. If you use the ProtHGT method or the datasets provided in this repository, please cite this paper:
|
| 69 |
+
Ulusoy, E., & Dogan, T. (2025). ProtHGT: Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Biological Knowledge Graphs and Language Models (p. 2025.04.19.649272). bioRxiv. [Link](https://doi.org/10.1101/2025.04.19.649272)
|
| 70 |
+
|
| 71 |
+
---
|
| 72 |
+
|
| 73 |
+
### Licensing
|
| 74 |
+
Copyright (C) 2025 HUBioDataLab
|
| 75 |
+
This dataset is released under GPL-3.0.
|