--- license: cc-by-4.0 task_categories: - text-to-speech - automatic-speech-recognition - audio-to-audio language: - ur tags: - Urdu - TTS - LargeScaleDataset pretty_name: Munch --- # Munch - Large-Scale Urdu Text-to-Speech Dataset [![Dataset](https://img.shields.io/badge/🤗%20Dataset-Munch-blue)](https://huggingface.co/datasets/humair025/Munch) [![Hashed Index](https://img.shields.io/badge/🤗%20Index-hashed__data-green)](https://huggingface.co/datasets/humair025/hashed_data) [![Size](https://img.shields.io/badge/Size-1.27TB-orange)]() [![Rows](https://img.shields.io/badge/Rows-4.17M-brightgreen)]() [![License](https://img.shields.io/badge/License-CC--BY--4.0-yellow)]() ## 📖 Dataset Description **Munch** is a large-scale Urdu Text-to-Speech (TTS) dataset containing high-quality audio recordings paired with Urdu text transcripts. The dataset features multiple voice variations and natural pronunciation patterns suitable for training and evaluating Urdu TTS models. ### Rough Assumption : 4.17 million audio clips, if each 20 seconds long, total about 11,500+ hours of audio. ### Key Features - 🎤 **13 Different Voices**: alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan - 🗣️ **Natural Urdu Pronunciation**: Proper handling of Urdu script, punctuation, and intonation - 📊 **Large Scale**: 4,167,500 audio-text pairs - 🎵 **High Quality Audio**: PCM16 format, 22.05 kHz sample rate - 💾 **Efficient Storage**: Parquet format with compression - 📇 **Lightweight Index Available**: [Hashed index](https://huggingface.co/datasets/humair025/hashed_data) for exploration without downloading full dataset ### Dataset Statistics | Metric | Value | |--------|-------| | Total Size | 1.27 TB | | Total Rows | 4,167,500 | | Number of Files | ~8,300 parquet files | | Audio Format | PCM16 (raw audio bytes) | | Sample Rate | 22,050 Hz | | Bit Depth | 16-bit signed integer | | Text Language | Urdu (with occasional mixed language) | | Voice Count | 13 unique voices | | Avg Audio Size | ~50 KB to 5MB per sample | | Avg Duration | ~3-5 seconds per sample | | Total Duration | ~7,500-15,800 hours of audio | ### 🔗 Companion Dataset For efficient exploration without downloading the full 1.27 TB dataset, use the [**Munch Hashed Index**](https://huggingface.co/datasets/humair025/hashed_data): - 📊 Contains all metadata + SHA-256 hashes of audio - 💾 Only ~1 GB (99.92% smaller) - ⚡ Search 4.17M records in seconds - 🎯 Selectively download only what you need ### Related Datasets - **This Dataset (v1)**: [humair025/Munch](https://huggingface.co/datasets/humair025/Munch) - 1.27 TB, 4.17M samples - **Munch-1 (v2)**: [humair025/munch-1](https://huggingface.co/datasets/humair025/munch-1) - 3.28 TB, 3.86M samples (newer version) - **Hashed Index (v1)**: [humair025/hashed_data](https://huggingface.co/datasets/humair025/hashed_data) - Index for this dataset - **Hashed Index (v2)**: [humair025/hashed_data_munch_1](https://huggingface.co/datasets/humair025/hashed_data_munch_1) - Index for Munch-1 --- ## 🚀 Quick Start ### Installation ```bash pip install datasets pandas numpy scipy ``` ### Basic Usage ```python from datasets import load_dataset import numpy as np import io from scipy.io import wavfile import IPython.display as ipd # Load a specific file ds = load_dataset( "humair025/Munch", data_files="tts_data_20251203_125841_0a26c418.parquet", split="train" ) # Helper function to convert PCM16 bytes to WAV def pcm16_bytes_to_wav(pcm_bytes, sample_rate=22050): audio_array = np.frombuffer(pcm_bytes, dtype=np.int16) wav_io = io.BytesIO() wavfile.write(wav_io, sample_rate, audio_array) wav_io.seek(0) return wav_io # Play first audio sample row = ds[0] wav_io = pcm16_bytes_to_wav(row['audio_bytes']) ipd.display(ipd.Audio(wav_io, rate=22050)) print(f"Text: {row['text']}") print(f"Voice: {row['voice']}") ``` ### Efficient Exploration (Recommended) Instead of downloading the full 1.27 TB dataset, start with the hashed index: ```python from datasets import load_dataset import pandas as pd # Load the lightweight index (~1 GB) index_ds = load_dataset("humair025/hashed_data", split="train") index_df = pd.DataFrame(index_ds) # Explore the dataset print(f"Total samples: {len(index_df)}") print(f"Voices: {index_df['voice'].unique()}") print(f"Voice distribution:\n{index_df['voice'].value_counts()}") # Find specific samples ash_samples = index_df[index_df['voice'] == 'ash'] short_audio = index_df[index_df['audio_size_bytes'] < 40000] # Download only what you need files_needed = ash_samples['parquet_file_name'].unique()[:10] ds = load_dataset( "humair025/Munch", data_files=list(files_needed), split="train" ) ``` ### Load Multiple Files ```python # Load first 10 files ds = load_dataset( "humair025/Munch", data_files="tts_data_20251203_*.parquet", # Wildcard pattern split="train" ) print(f"Total samples: {len(ds)}") ``` ### Batch Processing ```python from huggingface_hub import HfApi # Get all parquet files api = HfApi() files = api.list_repo_files(repo_id="humair025/Munch", repo_type="dataset") parquet_files = [f for f in files if f.endswith('.parquet')] print(f"Total files: {len(parquet_files)}") # Load first 20 files batch = parquet_files[:20] ds = load_dataset( "humair025/Munch", data_files=batch, split="train" ) ``` --- ## 📊 Dataset Structure ### Data Fields Each row in the dataset contains: | Field | Type | Description | |-------|------|-------------| | `id` | int | Paragraph ID (sequential) | | `text` | string | Original Urdu text | | `transcript` | string | TTS transcript (may differ slightly from input) | | `voice` | string | Voice name used (e.g., "ash", "sage", "coral") | | `audio_bytes` | bytes | Raw PCM16 audio data | | `timestamp` | string | ISO format timestamp of generation (nullable) | | `error` | string | Error message if generation failed (nullable) | ### Example Row ```python { 'id': 42, 'text': 'یہ ایک نمونہ متن ہے۔', 'transcript': 'یہ ایک نمونہ متن ہے۔', 'voice': 'ash', 'audio_bytes': b'\x00\x01...', # PCM16 bytes 'timestamp': '2025-12-03T13:03:14.123456', 'error': None } ``` --- ## 🎯 Use Cases ### 1. **TTS Model Training** Train Urdu text-to-speech models with diverse voice samples: - Fine-tune existing TTS models - Train voice cloning systems - Develop multi-speaker TTS - Create voice conversion models ### 2. **Speech Recognition** Develop Urdu ASR systems: - Train speech-to-text models - Evaluate transcription accuracy - Research Urdu phonetics - Build pronunciation dictionaries ### 3. **Voice Research** Study voice characteristics and patterns: - Analyze voice similarity - Research pronunciation patterns - Study Urdu phonetics and prosody - Compare voice quality metrics ### 4. **Audio Processing** Develop audio processing pipelines: - Audio enhancement - Noise reduction - Speech synthesis evaluation - Audio quality assessment ### 5. **Linguistic Analysis** Explore linguistic patterns: - Text analysis and corpus linguistics - Punctuation usage patterns - Sentence structure analysis - Code-switching research (Urdu-English) --- ## 🔧 Advanced Usage ### Voice Distribution Analysis ```python import pandas as pd from collections import Counter # Using the hashed index (recommended) index_ds = load_dataset("humair025/hashed_data", split="train") index_df = pd.DataFrame(index_ds) # Count voice usage voice_counts = index_df['voice'].value_counts() print("Voice Distribution:") for voice, count in voice_counts.items(): percentage = (count / len(index_df)) * 100 print(f" {voice}: {count:,} samples ({percentage:.2f}%)") ``` ### Audio Length Analysis ```python # Using the hashed index avg_size = index_df['audio_size_bytes'].mean() avg_duration = (avg_size / 2) / 22050 # bytes to seconds print(f"Average audio size: {avg_size/1024:.2f} KB") print(f"Average duration: {avg_duration:.2f} seconds") # Duration distribution durations = (index_df['audio_size_bytes'] / 2) / 22050 print(f"Min duration: {durations.min():.2f}s") print(f"Max duration: {durations.max():.2f}s") print(f"Median duration: {durations.median():.2f}s") ``` ### Text Statistics ```python # Text length analysis text_lengths = index_df['text'].str.len() word_counts = index_df['text'].str.split().str.len() print(f"Average characters: {text_lengths.mean():.0f}") print(f"Average words: {word_counts.mean():.0f}") print(f"Longest text: {text_lengths.max()} characters") ``` ### Duplicate Detection ```python # Find duplicate audio using hashes duplicates = index_df[index_df.duplicated(subset=['audio_bytes_hash'], keep=False)] if len(duplicates) > 0: print(f"Found {len(duplicates):,} duplicate rows") print(f"Unique audio: {index_df['audio_bytes_hash'].nunique():,}") redundancy = (1 - index_df['audio_bytes_hash'].nunique()/len(index_df)) * 100 print(f"Redundancy: {redundancy:.2f}%") else: print("No duplicates found!") ``` ### Export to WAV Files ```python import os from tqdm import tqdm # Load specific samples ds = load_dataset( "humair025/Munch", data_files="tts_data_20251203_*.parquet", split="train" ) os.makedirs("audio_files", exist_ok=True) for i, row in enumerate(tqdm(ds[:100])): # First 100 samples wav_io = pcm16_bytes_to_wav(row['audio_bytes']) filename = f"audio_files/sample_{i:04d}_{row['voice']}.wav" with open(filename, 'wb') as f: f.write(wav_io.read()) ``` ### Selective Download by Voice ```python # Using hashed index to find files voice_of_interest = 'ash' ash_files = index_df[index_df['voice'] == voice_of_interest]['parquet_file_name'].unique() print(f"Files containing '{voice_of_interest}' voice: {len(ash_files)}") # Download first 10 files with ash voice ds = load_dataset( "humair025/Munch", data_files=list(ash_files[:10]), split="train" ) print(f"Loaded {len(ds)} samples") ``` --- ## 📝 Dataset Creation This dataset was generated using a high-performance parallel TTS pipeline with the following characteristics: ### Generation Pipeline - **Concurrent Processing**: 10-20 parallel workers - **Voice Rotation**: Sequential rotation through 13 voices - **Quality Control**: Automatic retry with exponential backoff - **Fault Tolerance**: Checkpoint-based resumption - **Smart Batching**: Efficient 500-row batches - **API**: OpenAI-compatible TTS endpoints ### Pipeline Features - ✅ Natural Urdu pronunciation with proper intonation - ✅ Punctuation-aware pausing: - `؟` (question mark): 400ms pause with higher pitch - `!` (exclamation): 300ms pause with emphasis - `،` (comma): 500ms pause - `۔` (full stop): 1000ms pause - ✅ Mixed-language support for technical terms - ✅ Variable pacing for natural flow - ✅ Error handling and logging --- ## ⚠️ Important Notes ### Audio Format - Audio is stored as **raw PCM16 bytes** (not WAV files) - Must be converted before playback (see examples above) - Sample rate: 22,050 Hz - Bit depth: 16-bit signed integer - Channels: Mono (1 channel) ### Large Dataset Considerations - 💾 **Size**: 1.27 TB total - download selectively - 📦 **Files**: ~8,300 individual parquet files - ⚡ **Streaming**: Recommended for full dataset access - 🔄 **Batching**: Load files in batches to manage memory - 📊 **Index First**: Use [hashed index](https://huggingface.co/datasets/humair025/hashed_data) to explore before downloading ### Recommended Workflow 1. **Explore**: Load the [hashed index](https://huggingface.co/datasets/humair025/hashed_data) (~1 GB) 2. **Filter**: Find samples matching your criteria 3. **Download**: Selectively download only needed parquet files 4. **Process**: Work with manageable subsets ### Potential Data Issues ⚠️ **Duplicates**: This dataset may contain duplicate audio samples. Use the hashed index for deduplication: ```python # Get unique samples only unique_df = index_df.drop_duplicates(subset=['audio_bytes_hash'], keep='first') unique_files = unique_df['parquet_file_name'].unique() ``` ⚠️ **Quality Variance**: Some samples may have: - Low volume or clipping - Mispronunciations (especially for rare words) - Background noise - Transcription differences from input text --- ## 📊 Performance Tips ### Memory Management ```python # DON'T: Load entire dataset at once # ds = load_dataset("humair025/Munch", split="train") # 1.27 TB! # DO: Use streaming mode ds = load_dataset( "humair025/Munch", data_files="tts_data_20251203_*.parquet", split="train", streaming=True # Stream data instead of loading all ) # Process in batches for i, batch in enumerate(ds.iter(batch_size=100)): # Process 100 samples at a time if i >= 10: # Process only first 1000 samples break ``` ### Efficient File Selection ```python # Select specific date range ds = load_dataset( "humair025/Munch", data_files="tts_data_20251203_*.parquet", # Only Dec 3rd files split="train" ) # Or specific time range ds = load_dataset( "humair025/Munch", data_files="tts_data_20251203_1303*.parquet", # Around 13:03 split="train" ) # Or use the index to find specific files target_files = index_df[index_df['voice'] == 'ash']['parquet_file_name'].unique()[:5] ds = load_dataset("humair025/Munch", data_files=list(target_files), split="train") ``` ### Storage Optimization ```python # If storage is limited, consider: # 1. Download only specific voices # 2. Download in batches and process incrementally # 3. Use the hashed index for metadata-only analysis # 4. Delete processed files after feature extraction ``` --- ## 📜 Citation If you use this dataset in your research, please cite: ### BibTeX ```bibtex @dataset{munch_urdu_tts_2025, title={Munch: Large-Scale Urdu Text-to-Speech Dataset}, author={Munir, Humair}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/datasets/humair025/Munch}}, note={4.17M audio-text pairs across 13 voices} } ``` ### APA Format ``` Munir, H. (2025). Munch: Large-Scale Urdu Text-to-Speech Dataset [Dataset]. Hugging Face. https://huggingface.co/datasets/humair025/Munch ``` ### MLA Format ``` Munir, Humair. "Munch: Large-Scale Urdu Text-to-Speech Dataset." Hugging Face, 2025, https://huggingface.co/datasets/humair025/Munch. ``` --- ## 🤝 Contributing Issues, suggestions, and contributions are welcome! Please: - 🐛 Report data quality issues - 💡 Suggest improvements - 📝 Share your use cases and research - 🔧 Contribute analysis scripts or tools ## 📄 License This dataset is released under the **Creative Commons Attribution 4.0 International (CC-BY-4.0)** license. You are free to: - ✅ **Share** — copy and redistribute the material in any medium or format - ✅ **Adapt** — remix, transform, and build upon the material for any purpose - ✅ **Commercial use** — use the dataset for commercial purposes Under the following terms: - 📝 **Attribution** — You must give appropriate credit, provide a link to the license, and indicate if changes were made --- ## 🔗 Important Links - 🎧 [**This Dataset (Full Audio)**](https://huggingface.co/datasets/humair025/Munch) - 1.27 TB - 📊 [**Hashed Index**](https://huggingface.co/datasets/humair025/hashed_data) - ~1 GB metadata + hashes - 🔄 [**Munch-1 (Newer Version)**](https://huggingface.co/datasets/humair025/munch-1) - 3.28 TB, 3.86M samples - 💬 [**Discussions**](https://huggingface.co/datasets/humair025/Munch/discussions) - Ask questions, share research - 🐛 [**Report Issues**](https://huggingface.co/datasets/humair025/Munch/discussions) - Data quality problems --- ## 🙏 Acknowledgments - **TTS Generation**: OpenAI-compatible API endpoints - **Voices**: 13 high-quality voice models (alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan) - **Infrastructure**: HuggingFace Datasets platform - **Tools**: Python, datasets, pandas, numpy, scipy --- ## 📈 Usage Statistics Help us understand how the dataset is used: - Training TTS models - Speech recognition research - Voice cloning experiments - Linguistic analysis - Educational purposes - Other (please share in discussions!) --- ## ⚡ Quick Start Tips 1. **First Time Users**: Start with the [hashed index](https://huggingface.co/datasets/humair025/hashed_data) (~1 GB) to explore the dataset 2. **Download Smart**: Use the index to find specific samples, then download only those parquet files 3. **Memory Matters**: Use streaming mode if working with large subsets 4. **Deduplication**: Check for duplicates using audio hashes before training 5. **Voice Selection**: Each voice has ~320k samples - choose based on your needs 6. **Consider Munch-1**: A newer version with 3.86M samples is also available at [humair025/munch-1](https://huggingface.co/datasets/humair025/munch-1) --- **Note**: This is a large dataset (1.27 TB, 4.17M samples). Please download selectively based on your needs. Consider using the [hashed index](https://huggingface.co/datasets/humair025/hashed_data) for exploration and selective downloading. **Last Updated**: December 2025 **Status**: ✅ Complete - All ~8,300 files uploaded --- 💡 **Pro Tip**: Download the lightweight [hashed index](https://huggingface.co/datasets/humair025/hashed_data) first to explore the dataset, find duplicates, and identify exactly which files you need - then download only those specific parquet files from this dataset!